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the test to industry and pseudo-random portfolios, we reject the null hypothesis that fewer than

ten factors are sufficient to explain returns, and show that at least forty factors are needed for

the various sample periods examined. We find that dense models outperform sparse ones in both
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suggest that most existing factor models, which have fewer than six factors, are questionable, and

that future research on such low-dimensional models is unlikely to be fruitful.
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1 Introduction

One crucial question in empirical asset pricing is to identify a set of factors that are capable of

explaining the cross-section expected equity returns. After the pioneering capital asset pricing

model (CAPM) model of Sharpe (1964) which suggests the market factor is the single ancestor for

everything, there are the well-known three- (five-, or six-) factor models proposed by Fama and

French (1993, 2015, 2018), the investment-based four-factor model proposed by Hou, Xue, and

Zhang (2015), the mispricing-based four-factor model proposed by Stambaugh and Yuan (2017),

the behavior-based three-factor model proposed by Daniel, Hirshleifer, and Sun (2020), and so on.

The list of models in the literature is large given the growing number of factors proposed. Indeed,

there are more than one hundred potential factors or anomalies discussed by Green, Hand, and

Zhang (2017) and Hou, Xue, and Zhang (2020) and more are analyzed by Feng, Giglio, and Xiu

(2020).

Given the large number of candidate factors, there is also a large literature on how to search

for a small subset of relevant factors, such as Barillas and Shanken (2018), Chib, Zeng, and Zhao

(2020), Bryzgalova, Huang, and Julliard (2023), He, Huang, Li, and Zhou (2023). Many such

studies adapt concepts and methods of sparse estimators from statistics, examples of which include

the AIC (Akaike (1974)), BIC (Schwarz (1978)), LASSO (Tibshirani (1996)), SCAD (Fan and

Li (2001)), Elastic Net (Zou and Hastie (2005)). Sparse asset pricing models have the benefit

of easy interpretation. However, the assumption of model sparsity is challenged. Feng, Giglio,

and Xiu (2020) emphasize that “the asset pricing literature has adopted the concept of sparsity

without always explicitly acknowledging it.” Such an implicit assumption can be problematic,

and a sparse model would be inappropriate if the underlying DGP is dense, i.e., at the opposite
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end of the spectrum from sparse (see e.g., Tibshirani (1996) and Hsu, Kakade, and Zhang (2014)).

Consistent with this point, Chib, Zhao, and Zhou (2024) find that a relatively complex linear model

is necessary to price more than a hundred anomalies. Kozak, Nagel, and Santosh (2020) also

point out that characteristic-sparse models cannot adequately summarize the cross-section of stock

returns. In the general context of quantitative economic research using big data, Giannone, Lenza,

and Primiceri (2021) also emphasize that sparsity is an illusion in many modeling contexts.

In this paper, we propose the first formal statistical test for sparsity in the number of factors in

asset pricing. The null hypothesis is that an unknown sparse set of factors can adequately explain

the cross-sectional variation of asset returns. If the sparsity is rejected, it will imply that that a

large number of factors are needed to explain the asset returns. It also rejects the earlier well

known models that rely on a few factors. Theoretically, our test is generic and directly addresses

the question of whether there exists an unknown small set of candidate factors that can explain

the cross-section of expected equity returns. This setting diverges from the typical setting in the

literature, which focuses on the number of non-zero coefficients in a regression of a set of given

factors (see e.g., Jin and Cai (2007); Jin (2008); Cai and Jin (2010); Carpentier and Verzelen (2019,

2021)). When factors are sparse, it implies there is a small proportion of non-zero coefficients,

but not the converse. In addition, the pricing factors can be highly correlated, falling outside

the typical assumption of no or limited correlation (see e.g., Cai and Jin (2010); Carpentier and

Verzelen (2021)). To test against the sparse null hypothesis, we adopt the alternative hypothesis

that the cross-sectional variation is represented by a dense model. This means that while many

factors can have small effects, they are collectively non-negligible and important in explaining the

cross-section of asset returns.
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The intuition of our test is motivated from using a measure to summarize the number of

“relevant pricing factors.” Under the null hypothesis, only a small number of such factors exist,

and, whereas under the alternative hypothesis, there is a large number of factors with small effects.

The test statistic then aims to distinguish the two scenarios. We reject sparsity when the measure

is large. Simulation evidence shows that the test can accurately differentiate whether the simulated

data originates from a sparse or dense data-generating process (DGP), even in extreme cases of

highly correlated factors.

To address the sparsity hypothesis on the number of characteristic-based factors, we conduct

a further empirical analysis using the proposed methodology. We consider two sets of pricing

objectives to price industry and pseudo-random portfolios, respectively. Instead of using the excess

returns data directly, we “de-market” each time series using the value-weighted market factor and

pass on the residuals to the proposed test following Kozak, Nagel, and Santosh (2020) and use

the monthly observations of 153 characteristic-based factors in the U.S. following Jensen, Kelly,

and Pedersen (2023). With data from January 1974 to December 2023, both whole sample and

subsample analysis reject the sparsity hypothesis that the number of factors in the US equity market

is less than 10, and it is likely that at least 40 factors are needed. Our conclusion is important,

since almost all existing factor models, such as Fama and French (1993, 2015, 2018), Hou, Xue,

and Zhang (2015), Stambaugh and Yuan (2017) and Daniel, Hirshleifer, and Sun (2020), focus

on fewer than 10 factors. Our test rejects all of these models and suggests that future research in

searching for a single-digit number of factors to price the equities will most likely be doomed.

To provide the economic insight for our test, we evaluate the performance of dense models and

sparse models in two ways, their ability to price the cross-section and their investment potential. To
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compare the pricing ability, we include two different measures, one that captures the pricing error

and another that gauges the goodness-of-fit. The results show that the dense model representation

performs better in pricing for both the industry portfolios and the pseudo-random portfolios when

compared to sparse models in both the whole sample and subsamples. For the investment potential,

we consider the annualized Sharpe ratio of tangency portfolios constructed using factors of dense

and sparse models, respectively. We find that the dense model has significantly higher annualized

Sharpe ratio, both in- and out-of-sample, supporting again the relative advantage of dense models.

Our empirical result of no-sparsity in the US equity market is robust in a number of aspects.

First, we consider alternative test assets. Using a novel set of test assets proposed by Cong, Feng,

He, and He (2023) who employ tree-based models (P-Trees) to create P-Tree portfolios as test

assets, we find that our test continues to support dense models. Second, we provide further analysis

on scenarios where only a limited number of firm characteristics are involved. The associated

empirical findings demonstrate the effectiveness of the test in determining the complexity of any

set of pricing objectives and in identifying the relevant signals for constructing test assets that

represent the cross-section. Third, we also apply our test to contexts in which the “de-market”

procedure is generalized to other sparse linear factor models, such as the Fama and French three-

factor (FF3) or six-factor (FF6) models. By using the residuals from these models instead of the

original data, the test results remain consistent, providing further evidence to reject the sparsity

assumption.

Our test is related to the well-known Gibbons, Ross, and Shanken (1989) test on the validity

of a given factor model, but differs entirely. The GRS test requires a few factors to be given, and,

to prove non-sparsity, it will require to test all possible specifications of a few factor models out of

4



a given set of candidates. Chib, Zhao, and Zhou (2024) show that it is manageable to do so only

for a set of 12 candidates, but impossible when the set has more than 100. Hence, the GRS test

and the like are unsuitable for our large dimensional case with 154 potential factors. In contrast

to the GRS, our test is specification-free in that it does not require the identification of a small

set of factors from the potential candidates. Our test is designed to answer the question whether

there exists an unknown set of sparse factors to price the assets out of potentially a large set of

candidates.

The rest of the paper is organized as follows. Section 2 provides the methodology and the

simulation evidence. Section 3 presents the empirical results. Section 4 concludes.

2 Methodology

2.1 Model Setup

We start from the multi-factor asset pricing regression given by

Y︸︷︷︸
T×N

= X︸︷︷︸
T×L

B′︸︷︷︸
L×N

+ E︸︷︷︸
T×N

, (1)

where T denotes the number of observations, N denotes the number of test assets, and L denotes

the total number of candidate characteristic-based factors. The parameter matrix B represents the

factor loadings, where each element βi j denotes the i-th (out of N) test asset’s loading on the j-th

(out of L) factor. Throughout the paper, we use j to index the columns of B. The j-th column

vector of B is therefore β j, which summarizes those N test assets’ loadings on the j-th factor, for

5



j = 1,2, . . . ,L. Without loss of generality, we can assume each column of Y and X have mean

zero, and we will be focusing on the βi j coefficients. The ordinary least square (OLS) estimate of

B′ is given by

B̂′ = (X ′X)−1X ′Y . (2)

Loosely speaking, we refer to the above multi-factor model as sparse if the variation in Y is

explained by only K columns of X , where K << L denotes the number of relevant factors. In

other words, only K columns of B are non-zero vectors. In contrast, a dense model is the other

extreme, for which all columns of X have non-zero coefficients. Below our null and alternative

hypotheses formalize the two extreme paradigms of models mathematically. Our test then asks the

question of whether the estimated model falls closer to the sparse paradigm or the dense paradigm.

2.2 The Hypotheses

2.2.1 Null Hypothesis

Our null hypothesis can be thought of as a large family of sparse generating distributions for B

that is consistent with our definition for sparsity-in-factors, i.e., only K factors are relevant out of

L candidate factors in total. Let F be the set of all distributions defined on RN×L. Formally, the

null hypothesis is

H0(κ) : β j = z jγ j, for j = 1,2, . . . ,L,

z j
IID∼ Bernoulli(κ), where κ = K/L,

(γ1, . . . ,γL)∼ F for some distribution F ∈ F .

(3)
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According to this null hypothesis, each β j is a N-dimensional zero vector with probability 1−κ .

That is, when z j = 0, the corresponding j-th characteristic-based factor has no explanation power

for any of these test assets. However, when z j ̸= 0 with probability κ = K/L, the associated j-th

factor is indeed relevant, and β j = γ j is allowed to be any vectors in RN .1 If we fixed F to be a

normal distribution with large variance, the generating distribution for each β j can be thought of

as a N-dimensional “spike-and-slab” prior in Mitchell and Beauchamp (1988). Our hypothesis is

more general, in which F can be arbitrary, including a Dirac-delta measure. In the case where F

is a Dirac-delta measure, each realized β j is then either the N-dimensional zero vector or a fixed

N-dimensional vector.

The above null hypothesis can also be interpreted as a family of Bayesian priors for the matrix

B conditional on the knowledge that “about at least 1−κ fraction of factors have zero coefficients

for test assets”. Since this prior prescribes that each β j = 0 with probability 1− κ , it is rather

informative about the location of each β j. Under this paradigm, ex-ante, only a few candidate

factors have non-zero explanation power of these test assets which represent the cross-section.

2.2.2 Alternative Hypothesis

The alternative hypothesis is designed to capture the other extreme situation of the “many

small effects”. Given that there is little ex-ante information about the parameters, we require

homogeneity across the coefficients for different vectors in X . That is, the generating distributions

for β j are i.i.d. across j = 1, . . . ,L. In other words, ex-ante, the vector of factor loadings for each

factor is drawn independently from the same distribution.

1Since F can be arbitrary, the null hypothesis H0(κ) is contained in H0(κ
′) whenever κ < κ ′.
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We adopt the normal distribution to model this generating process. The normal distribution

is the maximum entropy distribution and is therefore conventionally the distribution of the

coefficients when a minimal amount of information is known (see, e.g. Jaynes (1968)). The

only requirement now is to pin down its mean and variance. Due to symmetry, we take the mean

to be zero. Without any additional assumption, the variance can be determined using the moment

identity for every i and t,

Vart [yti] =Vart

[
∑

j
xt jβi j

]
+σ

2
i (4)

where σ2
i := Vart [eti]. Since β j is i.i.d. for different j’s, it holds that Var[βi j] = Var[βi j′] for all

j ̸= j′. Therefore, summing up (4) across t, we have for every i,

E[y′iyi]−E[e′iei] = tr(X ′X)Var[βi j] (5)

or equivalently,

Var[βi j] =
T

tr(X ′X)

(
E[y′iyi]/T −σ

2
i
)

(6)

for every i, j. Therefore, our alternative hypothesis is summarized as

Ha : β j
IID∼ N

(
0,

T Ω

tr(X ′X)

)
, for j = 1,2, . . . ,L, (7)

where Ω = diag
(
E[y′iyi]/T −σ2

i
)

is a N ×N diagonal matrix.

Under this alternative hypothesis, not only all βi j’s are non-zero vectors, but also most of them

are of order 1√
L

. Hence this hypothesis can be interpreted as a prior for a large number of small

coefficients. In empirical implementations, we take the direct approach and plug-in the standard
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unbiased plug-in estimates to obtain Ω.2

2.3 The Max-min Likelihood Ratio between the Hypotheses

To separate from the notation of the column vectors, we use subscript i to index the row vectors of

B in the paper. The i-th row is therefore denoted by βi, i = 1, ...,N, and the variance of the OLS

estimate β̂i =
(

β̂i1, β̂i2, · · · , β̂iL

)′
is given by σ2

i (X
′X)−1. The variance of the estimate β̂i j is the

j-th diagonal of σ2
i (X

′X)−1. Therefore, we denote the j-th diagonal element of matrix T (X ′X)−1

by s2
j for some s j ≥ 0. To construct our test statistic, we first standardize the OLS estimates β̂i to

β̃i = (β̃i1, β̃i2, · · · , β̃iL)
′, according to

β̃i j =

√
T

σis j
β̂i j, for i = 1, · · · ,N and j = 1, . . . ,L. (8)

Under this scaling, conditional on the true parameters B, each β̃i j has the same marginal variance.

When the factor loadings matrix is sparse, in the sense that all but a few, for an illustrative

special example: the first K columns of matrix B are zero vectors, we could remove the non-zero

columns, i.e., β j ̸= 0 for j ≤ K. The remaining standardized estimators β̃i j, for i = 1, . . . ,N and

j > K, all center at zero with unit variance. Figure 1 plots the empirical distribution of β̃i j from

an illustrative simulation. In this illustration, the distribution of β̃i j with 1 ≤ i ≤ N and j > K lies

under the standard normal density as indicated by the dashed blue curve.3 And on the other hand,

the β̃i j’s for j ≤ K are shown to fall outside the distribution in Figure 1.

2That is, we use sample variance Var[yi] for E[y′iyi]/T , and the residual (degree of freedom adjusted) mean-squared
error Var[êi] for σ2

i .
3The limiting normality of the empirical distribution in this illustration can be shown as in Azriel and Schwartzman

(2015). Nonetheless, our test holds in a more general context since our derivation does not rely on the empirical
distribution of β̃i j across i to be normal.
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In general, under our null hypothesis, β̃ j can be interpreted as a standard normal vector except

for a small number K of indices j with β j ̸= 0. This leads to an interpretation of the null as follows:

each β̃ j is drawn from some unknown distribution with probability κ , and is drawn from the

standard normal distribution otherwise. Formally, this means that under the original null hypothesis

(3) simplifies to

H0(κ) : β̃ j
d
= (1− z j)u j + z jγ j, for j = 1,2, . . . ,L,

z j
IID∼ Bernoulli(κ), where κ = K/L,

u j
IID∼ N (0, IN),

(γ1, . . . ,γL)∼ F for some distribution F ∈ F .

(9)

Therefore, β̃ j follows an N-dimensional standard normal distribution with probability 1−κ , and

follows some other distributions with probability κ . In other words, under H0(κ), β̃ j is a random

vector in the so-called κ-contaminated neighborhood of N (0, IN).

Under the alternative hypothesis (7), a direct calculation simplifies the alternative to

Ha : β̃ j
d
= N

(
0, IN +Ω j

)
, j = 1, . . . ,L, (10)

where

Ω j =
T
s2

j
diag

(
1

σ1
, . . . ,

1
σN

)
T Ω

tr(X ′X)
diag

(
1

σ1
, . . . ,

1
σN

)
. (11)

A test for the pair of hypotheses (9) and (10) is the robust test for the κ-contaminated

neighborhood. Below we follow the derivation as in Huber (2004) to obtain the max-min optimal

test statistic for each β̃ j.
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We start with the likelihood ratio without κ-contamination. Denote by pa j the density of

β̃ j under the alternative, i.e., the density of N (0, IN +Ω j). Also, denote by p0 the density for

N (0, IN). Without contamination, the likelihood ratio between the distributions N
(
0, IN +Ω j

)
and N (0, IN) is proportional to

pa j(β̃ j)

p0(β̃ j)
= det

(
IN +Ω j

)−1/2 exp
{

1
2
β̃′

j

[
IN −

(
IN +Ω j

)−1
]
β̃ j

}
. (12)

After taking the log of the likelihood ratio, other terms become irrelevant and it suffices if we

consider the statistic

x j(β̃ j) = β̃′
j

[
IN −

(
IN +Ω j

)−1
]
β̃ j. (13)

Under the null hypothesis, we have seen previously that the density of β̃ j is q = (1−κ)p0+κ f

for some arbitrary density function f .4 Following section 10.3 of Huber (2004), the max-min

optimal choice of q is the one that

q j(.) =


(1−κ)p0 for all β̃ j s.t. x j ≤ x∗j ;

c j pa j for all β̃ j s.t. x j > x∗j .

(14)

for some constants x∗j and c j such that
∫

q j = 1 and c j pa j = (1−κ)p0 whenever x j(β̃ j) = x∗j .

Proposition 1 For each j = 1, ...,L, if 1 ≤ (1 − κ)det(IN + Ω j)
1/2 there is a unique pair of

4This is without loss of generality since any distribution F can be approximated by a sequence of continuous
distributions in total variation.
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constants x∗j and c j that simultaneously solve for q j defined as above that


∫

q j = 1;

c j pa j(b) = (1−κ)p0(b) for all b s.t. x j(b) = x∗j .

(15)

In particular, the solution x∗j satisfies

1
1−κ

=
∫

x j(b)≤x∗j
p0(b)db+det(IN +Ω j)

1/2 exp(−1
2

x∗j)
∫

b′Ω jb>x∗j
p0(b)db. (16)

Now it follows from Theorem 3.2 in Huber (2004) that the max-min test statistic for

each β̃ j is simply ln pa j
q j
(β̃ j). Further simplification gives an equivalent max-min test statistic:

min{x j(β̃ j),x∗j}.

For implementation, we need to numerically approximate the integrals in (16). Denote by ui

for i = 1, ...,N independent standard normal random variables ui ∼ N (0,1), then the integrals in

(16) can be expressed as

∫
x j(b)≤x∗j

p0(b)db =Pr




u1

...

uN



T

[
IN −

(
IN +Ω j

)−1
]


u1

...

uN

≤ x∗j


=Pr

(
N

∑
i=1

ω j(i)
1+ω j(i)

χ
2
1 ≤ x∗j

)
,

(17)
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where ω j(i) is the ith eigenvalue of Ω j. And similarly,

∫
b′Ω jb>x∗j

p0(b)db = Pr

(
N

∑
i=1

ω j(i)χ2
1 > x∗j

)
. (18)

In other words, they are respectively the cumulative distribution function (CDF) and the com-

plementary CDF of sums of scaled Chi-squared random variable with degree of freedom one.

Numerically, the solutions x∗j’s for (16) in this paper are approximately solved for, using an R-

package “momentchi2” approximating the above CDF functions.

2.4 The Test Statistic

We propose the overall test statistic to be a weighted sum of each of the individual test statistic,

that is,

T =
1
L

L

∑
j=1

w j min
{

x j
(
β̃ j
)
,x∗j
}
. (19)

for some positive weights w j, j = 1, . . . ,L, that does not depend on β̃ j. Different weights put

different emphasis on each factor j. For instance, if w j = 1 for every j, then a j with a large x∗j

would be critical. If this x∗j is much larger than every other threshold, then the outcome of the

test depends heavily upon β̃ j, and for instance, the null would be much more easily rejected if

x j(β̃ j) ≥ x∗j . To ensure each term in the sum has equal influence on the rejection of the null, we

can choose w j so that when each β̃ j is in favor of the alternative, its expectation is similar to others.

More specifically, we choose w j so that

Ea[w jx j(β̃ j)] = 1, (20)

13



which gives

w j =
1

tr(Ω j)
. (21)

The value of the test statistic would be larger under the alternative than under the null. So the

test will reject the sparse null hypothesis when T is greater than a critical threshold. The exact

distribution of T under the null is difficult to express, and we do not have an analytical α level.

However, the following result allows us to simulate the rejection region.

Theorem 2 Under H0(κ), T is first-order stochastically dominated by

S :=
1
L

L

∑
j=1

w j
[
(1− z j)min{x j(e j),x∗j}+ z jx∗j

]
, (22)

where z j
IID∼ Bernoulli(κ) and e j is the jth column of the N ×L matrix [e1,e2, ...,eL], where each

i ∈ {1, . . . ,N} row is independently drawn from

ei ∼ N

(
0,diag

(√
T
s2

1
, . . . ,

√
T
s2

L

)
(X ′X)−1diag

(√
T
s2

1
, . . . ,

√
T
s2

L

))
. (23)

In particular, this first-order stochastic upper bound is tight.

Since S is an upper bound for the test statistic, we can obtain a proper alpha level of the test, i.e.

the region of rejection for T ≥ tα , through simulation. Specifically, we can simulate S to obtain tα

such that Pr(S ≥ tα)≤ α . Alternatively, we can also decide on the test by simulating the p-value.

For any given T , the p-value can be approximated by simulating Pr(S ≥ T ).
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2.5 Simulation Evidence

In this section we report the results of simulation experiments. In each subsection we simulate

datasets from the following model

Y =XB′+E

for L = 150, N = 50, and various T = 300 and T = 600. Those dimension parameters are selected

to match the empirical analysis. For each setting, we simulate G = 1000 datasets and conduct the

test accordingly. We report the probabilities of rejecting the null hypotheses at the 5% significance

level for different null hypothetical levels of κ .

2.5.1 Simulation under sparse and dense DGP: no correlation across factors

In the standard case where there is no correlation across factors, all x’s and error terms are simulated

from the standard normal distribution N (0,1). For each data generating process (DGP), we set

β j =
3√
K
1 for j = 1,2, . . . ,K, and β j = 0 otherwise. The DGP is set therefore only the first K

factors are relevant, while the remaining L−K factors are redundant. The scalar 3√
K

is multiplied

in front of the one vector to make sure that the signal to noise ratios are the same across different

DGPs. By choosing different values of K, we can simulate from a sparse or a dense data generating

process.

Table 1 reports the rejection probabilities under the sparse settings. The non-zero parameter

vectors are set to be K = 3,4,5,6 in both panels, and are tested under various κ ×L specification.

It can be seen that the rejection probabilities are properly under the significance level for all K <

κ ×L. Therefore, Table 1 presents simulation evidence supporting the theoretical requirements for
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conducting our test.

Table 2 reports the simulations for which a significant proportion of parameters are distinct

from zero. In particular, there are K = 30,60,90,120,150 non-zero parameter vectors respectively

and the rejection probabilities tested against each κ specification are reported. We mark the cells in

the table bold if the correct decision is to reject the null. It can be seen that the rejection probability

are close to one when K > κ ×L, and zero when K < κ ×L. The table shows our test has good

power against various non-sparse settings where the null is violated.

2.5.2 Simulation under sparse DGP: correlated factors

Since the test statistic is obtained through numerical approximation, we would examine below how

the test controls the Type I error under correlated design scenarios.

We consider three cases ρ ∈ {0.2,0.5,0.8} where ρ parameterizes the correlation coefficient

across factors. Specifically in each case, xt is drawn i.i.d. from N (0,Σ), where Σ = (σi j)1≤ j, j′≤L

and σ j j′ = ρ | j− j′|. As before, error terms are simulated from the standard normal distribution

N (0,1). For each case, we perform four simulations under the sparse DGP where the number of

non-zero parameter vectors is K = 3,4,5,6, respectively.

To examine our test under the most extreme scenarios, we almost evenly distribute the non-

zero factors among the x’s. Since σ j j′ = ρ | j− j′|, evenly distributing the non-zero factors will allow

these factors to correlate with the zero factors as much as possible. Our simulation is more extreme

than an alternative scenario where only the first K factors are non-zero. In that scenario, the set

of non-zero factors would be more correlated with each other and less with the remaining zero

factors. More precisely, we set β j =
3√
K
1 for j = 1,50,100 if K = 3; for K = 4 we set β j =

3√
K
1
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for j = 1,50,100,150; for K = 5 we set β j =
3√
K
1 for j = 1,30,60,90,150; for K = 6 we set

β j =
3√
K
1 for j = 1,30,60,90,120,150; and set all the remaining β j = 0. The above DGPs are

pushing to extreme our numerical implementation of the test to see how it controls the rejection

level when each genuine factor is highly correlated with some irrelevant factors. In particular, in

the simulation when ρ = 0.8, the number of highly correlated pairs of x’s is similar to that number

in the data.5

Table 3 reports the rejection probabilities under such simulation design. Although in a

relatively shorter sample of T = 300 with a high correlation of ρ = 0.8, we do observe over

rejection at κ = 0.05, the performance improves when we test for a moderate sparsity level of

κ = 0.10. Moreover, for a larger sample size of T = 600, the rejection probabilities are all properly

under the significance level for K < κ × L, indicating practical reliability. Therefore, Table 3

presents additional simulation evidence supporting the theoretical requirements for conducting our

test even if there is a high correlation between factors.

3 Empirical Analysis

In empirical asset pricing, it is common to specify a three-factor (or four-, five-, six-factor) model

to explain the expected return of equities. For example, Fama and French use three, five, and six

factors in Fama and French (1993, 2015, 2018); Hou, Xue, and Zhang (2015) have a four-factor

model; Stambaugh and Yuan (2017) have their own four-factor model; and Daniel, Hirshleifer, and

Sun (2020) have their own three-factor model. Such sparse asset pricing models only use less than

5That is, specifically, if we count the number of pairs (x j,x j′), j ̸= j′, with pairwise correlation coefficient
|ρx j ,x j′ | ≥ 0.8, this number from the simulation is approximately the number we would obtain from the data.
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ten factors to illustrate the cross-section. Different approaches have been developed to compare

these sparse models, trying to prove the superiority of one model over the others.

In this section, we present empirical evidence that the asset pricing model defined over these

commonly used characteristic-based factors is not as sparse as we thought. Instead of choosing a

sparse model from the existing literature, it is preferable to adopt a dense representation.

3.1 Data

For the X variables on the right-hand side of equation (1), we focus on common “factors”

(sometimes also called as “anomalies”) in the asset pricing literature (Novy-Marx and Velikov

(2016), McLean and Pontiff (2016), Tian (2021), Hou, Xue, and Zhang (2020), Kozak, Nagel, and

Santosh (2020)). We use the comprehensive 153 characteristic-based factors in the U.S. proposed

by Jensen, Kelly, and Pedersen (2023), and use the monthly observations starting from January

1974 to December 2023 to have a relatively stable sequence. Therefore, L = 153 and T = 600

for the whole sample analysis. Besides, we also conduct sub-sample analysis, i.e., three twenty-

five-year rolling time windows (1974:01-1998:12, 1987:01-2011:12, and 1999:01-2023:12) each

covering 25 years of observations. For the sub-sample analysis, L = 153 and T = 300 are kept the

same for each sub-sample.

For the pricing objective, the left-hand side variables Y in equation (1), we consider two

different sets of test assets. We conduct the sparsity analysis based on the 49 industry portfolios

from the Kenneth R. French data library, as well as another set of pseudo-random portfolios

constructed using the company codes. For the set of pseudo-random portfolios (abbreviated as

random portfolios in tables and figures), to match the number of industry portfolios, we use each
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company code to mod 49, resulting in 49 groups of stocks. Within each group, we calculate the

value-weighted portfolio returns at each given point in time. Therefore, N = 49 is kept the same

for those two sets of portfolios.

Given the widespread acceptance of the Capital Asset Pricing Model (CAPM), our analysis

will exclude the dominant market factor and focus on assessing the sparsity among the 153

characteristic-based factors. To achieve this, we employ a “de-market” procedure described by

Kozak, Nagel, and Santosh (2020). Specifically, for each factor or test portfolio (x or y) mentioned

earlier, we “de-market” it using the value-weighted market factor. That is, for each time series,

we run a CAPM regression, and keep the residual terms instead of using the original data directly.

Through this “de-market” procedure, the effect of the market factor is removed from all the x’s

and y’s simultaneously, and the resulting data are automatically mean-zero and the test can be run

using those residual terms described above. We also show that our empirical findings are robust to

this procedure in Section 3.5.

3.2 Empirical Results

In the original null hypothesis of our sparsity test, we specify the degree of sparsity κ . That is

equivalent by assuming that the true model has K number of factors, where K = L×κ . Therefore,

we select κ = K/153 for different null hypotheses, accordingly, for different positive integers

K ≤ 153. We then report the p-values for different hypothetical numbers of factors for both of the

whole and the sub-sample analysis in Figure 2 and Figure 3.

In Figure 2, we present the results for two separate sequences of tests for the sets of industry

portfolios and pseudo-random portfolios using the whole sample from January 1974 to December
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2023. While the red line presents the results for the 49 industry portfolios, the turquoise line

presents the results for the 49 pseudo-random portfolios. For each line, the x-axis represents

different levels of sparsity, which is measured by the number of factors K = κ/153 in the null

hypothesis, and the y-axis plots the corresponding p-value for each K. It is worth noticing that the

horizontal dashed blue line is the cutoff of p = 0.05. From a statistical perspective, we reject the

null hypothesis if p < 5% at 5% significance level. For both the industry portfolios and the pseudo-

random portfolios, we can reject the sparsity assumption up to K = 105. Roughly speaking, it is

necessary to include more than 100 characteristic-based factors to explain the cross-section.

Similarly, in Figure 3, we demonstrate the results for these tests described above using three

twenty-five-year rolling time windows in three sub-figures. The three time-windows are January

1974 to December 1998, January 1987 to December 2011, and January 1999 to December 2023,

representing the starting, middle, and ending periods of the whole sample, respectively. Although

the number of factors needed seems not as large as the whole sample, given the shortened length of

the observations, the original results still hold. In short, we can reject the sparsity assumption up

to K = 40 for all these test assets and subsamples. In other words, those sparse models using less

than 10 characteristic-based factors are all rejected even using successive 25 years of data. Hence

the test suggests a dense characteristic-based factor model over the class of sparse models with less

than 10 factors.

3.3 Economic Significance

In this subsection, we illustrate the economic advantages of using a dense model representation

compared to sparse ones. We present two pieces of empirical evidence: (1) dense models outper-
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form sparse ones in terms of pricing the 49 industry portfolios and 49 pseudo-random portfolios,

and (2) tangency portfolios constructed using factors of a dense model exhibit substantially higher

annualized Sharpe ratios compared to sparse ones, indicating greater investment potential.

From an economic standpoint, we consistently include the market factor in any asset pricing

model and utilize the original characteristic-based factors without employing a prescribed “de-

market” procedure.

3.3.1 Pricing Performance

To evaluate the pricing performance of dense and sparse models, with the same two sets of test

portfolios, we need proper model representations. To achieve a dense model representation, we

first notice that as by-products of the test, in equation (19) which defines the test statistic, we

obtain intermediate outputs x j(β̃ j), x∗j , and their associated weights w j for j = 1,2, · · · ,L. By

calculating the normalized difference w j

(
x j(β̃ j)− x∗j

)
, we can approximately assess the relative

importance of these 153 factors given the set of test assets. From the previous subsection, we

conclude that for the whole sample, it is necessary to include more than 100 characteristic-based

factors to accurately price both the industry and the pseudo-random portfolios. Therefore, for

these two sets of portfolios, the industry and the pseudo-random portfolios, we identify the top 100

factors that matter for each set, respectively.6 Similarly, we conduct the procedure for those three

subsamples: January 1974 to December 1998, January 1987 to December 2011, and January 1999

to December 2023. The κ and the number of relevant factors are set according to the earlier test

results.
6Here, we use the by-products of each test by setting κ = 100/153.
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Following the previous selection step, we take the set of industry portfolios as an example.

Excluding the market factor (Mkt), we transform the raw data of these top 100 significant factors

into their principal component (PC) counterparts, X̃ = XQ, where X represents the original

data and Q is the loading matrix derived from principal component analysis (PCA). Subsequently,

we retain only the first 7 PCs, denoted as PC1, PC2, · · · , and PC7, which collectively explain

over 80% of the variation of the data. Hence, combining the market factor with the first 7 PCs

results in a dense model representation, as these principal components assign weights across all

100 factors. Similarly, for the set of pseudo-random portfolios, we denote the first 7 PCs of the top

100 significant factors as PC1*, PC2*, · · · , and PC7*. When it comes to the sub-samples, we only

keep the first several PCs that account for over 80% of the variation in the top candidate factors

selected in the first step.

For sparse model representation, we stick to the typical number of factors in sparse asset pricing

models, such as those with three, four, five, and six factors. Given that the 153 factors are all

potential factors for any sparse model, we employ a random sampling approach. Specifically, if

our objective is to generate three-factor models, in addition to the market factor, we randomly

select two factors out of 153 candidates to construct the three-factor model. For four-, five-, and

six-factor models, the logic is exactly the same. For a given number of factors, we repeat this

sampling process G = 1000 times and compute their economic performance measure.

In Table 4 and Table 5, we report the pricing performance of dense and sparse models using 49

industry portfolios and 49 pseudo-random portfolios for the whole sample and three subsamples.

The pricing performance is evaluated using two different measures: the cross-sectional average of

the absolute value of estimated intercepts (|α̂|), which measures the pricing error, and the cross-

22



sectional average of the adjusted R-squared (R2), which measures the goodness of fit of any given

model. The dense models outperform the sparse ones in terms of smaller pricing errors and higher

goodness of fit for both sets of test assets, indicating the superiority of using a dense model in

pricing the cross-section. To conclude, we observe that for both the industry portfolios and the

pseudo-random portfolios, using the whole sample as well as the three subsamples, the pricing

performance of the dense models is marginally better.

3.3.2 Investment Potential

The Sharpe ratio is a widely recognized measure that helps investors assess the excess return on an

investment relative to its risk. Consequently, the annualized Sharpe ratios of tangency portfolios

constructed using factors from any given model offer valuable insights for investment evaluation.

We check both the in-sample and out-of-sample performance in the following analysis.

We first calculate the in-sample annualized Sharpe ratios for both dense and sparse model

representations, following the method used for pricing performance evaluation. For the in-sample

analysis, dense models using principal components provide a reasonable representation. Therefore,

we report the in-sample annualized Sharpe ratios for the tangency portfolios constructed using

factors from dense and sparse model representations for the whole sample in Panel A of Table

6. Compared to the six-factor model, the resulting in-sample annualized Sharpe ratios of dense

models with a similar number of PC factors can reach as high as 1.29 and 1.27, representing an

improvement of over 33% compared to the sparse models. This in-sample analysis supports the

use of dense models as investment strategies.

However, for the out-of-sample analysis, using principal components introduces a forward-
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looking bias when comparing the annualized out-of-sample Sharpe ratios of dense and sparse

models. To evaluate the dense model, recognizing that principal components put weights on all

relevant factors selected by the test, we can omit the principal component transformation step.

Consequently, we work with the characteristic-based factors directly when evaluating the out-of-

sample performance of the dense model. While a rolling window of forty years of observations is

used for weight computation of the tangency portfolio, the last ten years of data are reserved for

out-of-sample evaluation.

Putting more preciously, for each t = 481, . . . ,600 in the out-of-sample period, we begin by

performing the test using forty years of historical data ending at t − 1. From the test, we select

the fifty most relevant factors7, and the optimal weight vector for these factors is then computed as

follows:

wt−1 =
Ω

−1
t−1µt−1

1′Ω−1
t µt

, (24)

where µt−1 and Ωt−1 are the sample mean and covariance of these fifty most relevant factors

estimated by the test. Therefore, given the realized excess returns of these fifty factors rt , the

realized return of the tangency portfolio can be obtained by

rp,t =w′
t−1rt . (25)

Finally, the annualized out-of-sample Sharpe ratio can be computed

SROOS =
√

12
mean(rp,t)

sd(rp,t)
, for t = 481, . . . ,600. (26)

7Here, we set κ = 50 and select a moderate number of top-ranked factors.
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The same procedure is conducted for any given sparse model, except for the redundant step

involving the test and relevant factor selection. For a single randomly sampled sparse model,

we calculate the optimal weights using historical data for the sampled factors and then compute

the realized excess returns for the next period. Once the ten years of realized excess returns of

tangency portfolios are obtained, the annualized out-of-sample Sharpe ratio can be computed using

the equation (26).

We report the annualized out-of-sample Sharpe ratios of both dense and sparse models in Panel

B of Table 6. The dense model without a star indicates that the relevant factors are selected using

the industry portfolios, while the dense model marked with a star indicates that the relevant factors

are selected using the pseudo-random portfolios. The results are calculated using the realized one-

period-ahead return, where the optimal weight of tangency portfolio is computed using historical

data to mimic a practical out-of-sample investment strategy. It can be seen that the dense model

can perform more than 20% better compared to sparse models, indicating that the dense models

have better investment performance for practitioners.

To conclude, we observe that the test results and the economic performance from both the

pricing and investment perspectives roughly align in supporting a dense model.

3.4 Alternative Pricing Objective: P-Tree Portfolios

For the pricing objective discussed earlier, we examine two distinct sets of test assets: the industry

portfolios and the pseudo-random portfolios. It is important to highlight that the construction of

these two sets of test assets has no relationship with any firm characteristic.
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To illustrate the application of our test and to further analyze the “no sparsity” conclusion with

the two asset sets previously discussed, we consider a novel series of test assets proposed by Cong,

Feng, He, and He (2023). They employ tree-based models (P-Trees) to create P-Tree portfolios as

test assets. Instead of using the traditional double sorting method based on two characteristics, their

model develops a single tree based on multiple characteristics (typically more than five), resulting

in 10 branches, i.e., 10 P-Tree portfolios, for each tree. When a different set of characteristics is

used, the 10 resulting P-Tree portfolios also vary, leading us to denote each variant as another tree.

3.4.1 Grouped P-Trees

Following the approach of the original paper, we conduct our analysis using forty years of monthly

observations from January 1981 to December 2020, with T = 480.8 The authors create a total of

20 different trees, denoted as P-Tree k, where k = 1,2, · · · ,20. As stated, each tree comprises 10

P-Tree portfolios. Following their methodology, we group 5 trees as one set of test assets, resulting

in N = 50. Consequently, we have four distinct groups of test assets in total: P-Trees 1-5, P-Trees

6-10, P-Trees 11-15, and P-Trees 16-20.

Consistent with the previous sections, we maintain the 153 characteristic-based factors as the

X variables throughout our analysis. Before applying our sparsity test, both X and Y variables

are “de-market”.

In Figure 4, we present the test results from four distinct sequences of tests, each utilizing

a group of five P-Trees. The shapes and trends of these curves are similar to those obtained

using both industry and pseudo-random portfolios in the earlier subsection. It is also essential to

8We thank the authors for providing the data.
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incorporate over 100 characteristic-based factors to adequately explain the cross-section defined

by grouped P-trees. Considering the construction of grouped P-Tree portfolios based on five

distinct signal (or, characteristic) sets, it is evident that their complex structure embodies the

inherent characteristics of these novel test assets. Therefore, the test results are both convincing

and straightforward to interpret. The evidence confidently rejects the sparsity assumption that the

number of factors is less than ten in asset pricing.

3.4.2 Further Discussion: What Happens for One Single P-Tree?

To understand how our sparsity test can assist in determining the complexity of the cross-section,

we present the test results using P-Tree portfolios derived from a single tree as test assets.

Specifically, we examine 10 P-Tree portfolios grown from P-Tree 1. To further illustrate the

point, we compare the test results against those using 10 industry portfolios as benchmarks. This

benchmark aims to match the dimension of the cross-section defined by one single tree, where

N = 10. It is evident that categorizing firms into 10 industries is less detailed than the previously

utilized categorization into 49 industries.

In Figure 5, we provide the test results for null hypotheses of various K, where K =

5,10, · · · ,150, using both 10 industry portfolios and 10 P-Tree portfolios of P-Tree 1. The

results indicate that the number of characteristic-based factors required to explain the 10 industry

portfolios significantly exceeds that needed for the 10 P-Tree portfolios from P-Tree 1. While the

industry portfolios are notably dense, the P-Tree portfolios exhibit less density.

To clarify these results, it’s important to remember that the construction of industry portfolios

is independent of firm characteristics. In contrast, P-Tree 1’s construction involves dividing based
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on 6 specific characteristics: “SUE,” “DOLVOL,” “BM IA,” “ROA,” “ZEROTRADE,” and “ME”

(following the notations used in the original paper). As illustrated in the figure, the sparsity test

is rejected for the null hypothesis assuming K = 5 at 5% significance level. Given the similarity

in the construction of many characteristic-based factors, it can be inferred that the test effectively

identifies the degree of sparsity in P-Tree 1. This observation is noteworthy, especially when

considering P-Trees 1-5, where the other four trees are developed using different characteristic

sets. When these five trees are combined as test assets, their collective density increases compared

to the scenario with one single tree.

Furthermore, by using the normalized difference w j(x j(β̃ j)− x∗j) described in the previous

economic pricing subsection, we can identify the top ten factors that matter for P-Tree portfolios

as “ami 126d”, “at gr1”, “at turnover”, “dolvol 126d”, “ivol capm 21d”, “market equity”,

“ni me”, “niq at chg1”, “prc”, and “zero trades 21d”.9 Comparing these to the six characteristics

mentioned earlier, we observe that the top-ranked factors are closely aligned with the characteris-

tics Cong, Feng, He, and He (2023) utilized to develop P-Tree 1.

This empirical evidence further underscores the practical application of our sparsity test: it

assists in determining the complexity of any set of pricing objectives and identifying the relevant

signals for constructing portfolios that represent the cross-section.

9The factors are listed alphabetically using notations following the original paper. Here, we use the by-product of
the test by setting κ = 10/153.
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3.5 Further Empirical Results

In the previous data description subsection, we mentioned that, following Kozak, Nagel, and

Santosh (2020), for each factor or test portfolio (x or y), we ”de-market” it using the value-weighted

market factor. This means that for each time series, we run a CAPM regression and use the residual

terms instead of the original data.

This “de-market” procedure can be generalized to any well-known sparse model. For example,

consider the Fama and French three-factor (FF3) model or, alternatively, the Fama and French

six-factor (FF6) model. For each time series, we can perform a multivariate regression by putting

the FF3 model on the right-hand side and then using the FF3 residuals instead of the original

data. Through this “de-FF” process, the effect of the FF3 model is removed from all the x and y

values simultaneously. The resulting data automatically has a zero mean, allowing the test to be

run confidently using these residual terms. Therefore, if we can still reject the sparsity, it provides

strong evidence of the dense nature of asset pricing, reinforcing the robustness of our findings.

In this subsection, we present the test results for using FF3 or FF6 residuals for different sets

of test assets. In Figure 6, we present the test results using monthly data of the whole sample from

January 1974 to December 2023 using 49 industry portfolios and 49 pseudo-random portfolios.

In Figure 7, we present the test results using monthly data over 40 years, from January 1981 to

December 2020 using four distinct datasets of P-Tree test portfolios. In Figure 8, we present

the test results using monthly data over 40 years, from January 1981 to December 2020, 10

industry portfolios and 10 P-Tree portfolios of P-Tree 1. From those figures, we can see that

all the conclusions in the earlier subsections remain. Therefore, we can conclude that, through a

strong version of the test, we provide further evidence of the non-sparse nature of asset pricing.
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4 Conclusion

This paper proposes the first test for sparsity in the number of factors in a factor model. Our test

is specification-free in that it does not require the identification of a small set of factors from the

multitude of characteristic-based factors proposed in the growing literature. Our test is relevant

because there are many studies that search for a few (often less than 10) factors to explain the

cross-section of expected equity returns in the US or global markets, perhaps motivated by an

attempt to simplify the understanding of the economic driving forces. Our test helps to answer

whether such research is even possible or is likely to be successful.

Theoretically, our test distinguishes between two processes: one in which the cross-sectional

asset return variation is attributed to a small number of unknown factors, and another in which the

variation can be attributed to a large set of factors, each with perhaps small effects. We provide

extensive simulation evidence under various settings, including cases where the factors are highly

correlated, to demonstrate that the proposed test is highly effective in assessing sparsity.

Empirically, we conduct a comprehensive analysis using the 153 characteristic-based factors

created by Jensen, Kelly, and Pedersen (2023) with U.S. monthly data from January 1974 to

December 2023. On the test assets that are on the left-hand side of the equation, we consider

two distinct pricing objectives, i.e., pricing a set of industry portfolios and a set of pseudo-random

portfolios, respectively. Carrying out our test for both the whole sample and three sub-samples, we

find that the sparsity assumption, that the true model comprises fewer than 10 factors, is rejected.

And at least 40 factors are needed to explain the returns. Furthermore, we illustrate the advantages

of utilizing a dense model representation over sparse ones in terms of both model fitting and Sharpe

30



ratio, and find the same robust result with P-Tree portfolios (Cong, Feng, He, and He (2023)).

In addition, we apply the test to “de-market” assets, which takes the residuals from a CAPM

regression or from a multivariate regression using FF3 or FF6 factors. Again, we find that there is

no sparsity.

The central message of our paper is that we reject the hypothesis that the number of factors in

the US equity market is sparse. Our finding is important in two ways. First, it implies existing

factor models, such as Fama and French (1993, 2015, 2018), Hou, Xue, and Zhang (2015),

Stambaugh and Yuan (2017) and Daniel, Hirshleifer, and Sun (2020) which rely on less than six

factors, are rejected. Second, future research aimed at identifying sparse factor models with fewer

than ten factors is likely to be unsuccessful. While we focus on the equity market in the paper, our

test is readily applied to other asset classes such as corporate bonds, currencies, and commodities

where the existing factor models also have only a few factors. Whether there exists sparsity or not

for these assets is of importance for pricing and is of interest for future research.
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Figure 1: The empirical distribution of standardized estimators β̃i j

This figure displays the empirical distribution of standardized estimators β̃i j for i = 1, . . . ,N and
j = 1, . . . ,L using simulated data. In this simulation, the first K = 5 columns of B are set to be
3√
5
1, while the remaining β j’s are zero vectors. The data set is simulated with N = 50, L = 150,

and T = 600, where all x’s and error terms are simulated from N (0,1).
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Table 1: Rejection probabilities under sparse settings: no correlation across factors
This table reports the rejection probabilities for different hypothetical sparsity levels of κ at the 5%
significance level under sparse settings, where there is no correlation across factors. In each column
of Pane A (or, Panel B), given the number of relevant factors K, we generate G = 1000 simulated
datasets for L = 150 and T = 300 (or, T = 600). We report the rejection frequencies under given
specification for a null hypothesis H0(κ) in each cell. We report the rejection frequencies under
given specification for a particular null hypothesis H0(κ) in each cell.

Panel A: T = 300

κ = 0.05 κ = 0.10 κ = 0.15 κ = 0.20

K = 3 0.00% 0.00% 0.00% 0.00%
K = 4 0.10% 0.00% 0.00% 0.00%
K = 5 0.50% 0.00% 0.00% 0.00%
K = 6 1.30% 0.10% 0.00% 0.00%

Panel B: T = 600

κ = 0.05 κ = 0.10 κ = 0.15 κ = 0.20

K = 3 0.00% 0.00% 0.00% 0.00%
K = 4 0.00% 0.00% 0.00% 0.00%
K = 5 0.00% 0.00% 0.00% 0.00%
K = 6 0.00% 0.00% 0.00% 0.00%
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Table 2: Rejection probabilities under dense settings: no correlation across factors
This table reports the rejection probabilities for different hypothetical sparsity levels of κ at the 5% significance level under dense
settings, where there is no correlation across factors. In each column of Pane A (or, Panel B), given the number of relevant factors K,
we generate G = 1000 simulated datasets for L = 150 and T = 300 (or, T = 600). We report the rejection frequencies under given
specification for a particular null hypothesis H0(κ) in each cell. Cells are marked in bold if the test rejects the corresponding null
hypothesis correctly.

Panel A: T = 300

κ = 0.10 κ = 0.20 κ = 0.30 κ = 0.40 κ = 0.50 κ = 0.60 κ = 0.70 κ = 0.80 κ = 0.90

K = 30 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
K = 60 100.00% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
K = 90 100.00% 100.00% 100.00% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00%
K = 120 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0.00% 0.00%
K = 150 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Panel B: T = 600

κ = 0.10 κ = 0.20 κ = 0.30 κ = 0.40 κ = 0.50 κ = 0.60 κ = 0.70 κ = 0.80 κ = 0.90

K = 30 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
K = 60 100.00% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
K = 90 100.00% 100.00% 100.00% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00%
K = 120 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0.00% 0.00%
K = 150 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
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Table 3: Rejection probabilities under sparse settings: correlated factors
This table reports the rejection probabilities for different hypothetical sparsity levels of κ at the
5% significance level under sparse settings with correlated factors. In each column of sub-panel
of Panel A (or, Panel B), given the number of relevant factors K and the correlation coefficient ρ

across factors, we generate G = 1000 simulated datasets for L = 150 and T = 300 (or, T = 600).
We report the rejection frequencies under given specification for a particular null hypothesis H0(κ)
in each cell.

Panel A-1: T = 300, ρ = 0.20 Panel B-1: T = 600, ρ = 0.20

κ = 0.05 κ = 0.10 κ = 0.05 κ = 0.10

K = 3 0.00% 0.00% K = 3 0.00% 0.00%
K = 4 0.20% 0.00% K = 4 0.00% 0.00%
K = 5 4.10% 0.00% K = 5 0.00% 0.00%
K = 6 4.60% 0.00% K = 6 0.00% 0.00%

Panel A-2: T = 300, ρ = 0.50 Panel B-2: T = 600, ρ = 0.50

κ = 0.05 κ = 0.10 κ = 0.05 κ = 0.10

K = 3 0.80% 0.00% K = 3 0.00% 0.00%
K = 4 1.60% 0.00% K = 4 0.00% 0.00%
K = 5 7.00% 0.00% K = 5 0.00% 0.00%
K = 6 7.90% 0.00% K = 6 0.00% 0.00%

Panel A-3: T = 300, ρ = 0.80 Panel B-3: T = 600, ρ = 0.80

κ = 0.05 κ = 0.10 κ = 0.05 κ = 0.10

K = 3 4.90% 0.10% K = 3 0.00% 0.00%
K = 4 6.70% 0.40% K = 4 0.00% 0.00%
K = 5 12.90% 0.00% K = 5 0.20% 0.00%
K = 6 14.10% 0.60% K = 6 0.30% 0.00%
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Figure 2: Industry and pseudo-random portfolios: whole sample analysis
This figure presents the test results using monthly data of the whole sample: January 1974 to
December 2023. Given L = 153 candidate characteristic-based factors, we plot the p-values for
different hypothetical numbers of factors K, each corresponding to the null hypothesis H0(κ),
where κ = K/153. The analysis uses two distinct datasets of test assets: 49 industry portfolios and
49 pseudo-random portfolios. The blue dashed line indicates the 5% significance level.
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Figure 3: Industry and pseudo-random portfolios: subsample analysis
This figure presents the test results using monthly data of three subsamples: January 1974 to
December 1998, January 1987 to December 2011, and January 1999 to December 2023. Given L=
153 candidate characteristic-based factors, we plot the p-values for different hypothetical numbers
of factors K, each corresponding to the null hypothesis H0(κ), where κ = K/153. The analysis
uses two distinct datasets of test assets: 49 industry portfolios and 49 pseudo-random portfolios.
The blue dashed line indicates the 5% significance level.
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Table 4: Pricing performance of dense and sparse models: whole sample analysis
This table presents the pricing performance of dense and sparse models using the whole sample
period from January 1974 to December 2023. The dense models are represented by the first seven
principal components of the top one hundred candidate factors, which are selected based on their
relative importance to the 49 industry portfolios and 49 pseudo-random portfolios, respectively.
The sparse models are obtained by the random sampling approach, and their average performance
is reported. For these two sets of test portfolios, we report both the cross-sectional average of
absolute pricing errors and the adjusted R-squared.

Pricing measure % mean(|α̂|) mean(adj. R2)

Panel A: 49 Industry Portfolios

Mkt+PC1+PC2+· · ·+PC7 0.11 0.63
Three-factor model 0.15 0.57
Four-factor model 0.15 0.58
Five-factor model 0.15 0.59
six-factor model 0.15 0.59

Panel B: 49 Random Portfolios

Mkt+PC1*+PC2*+· · ·+PC7* 0.07 0.82
Three-factor model 0.08 0.79
Four-factor model 0.08 0.80
Five-factor model 0.08 0.80
six-factor model 0.08 0.80
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Table 5: Pricing performance of dense and sparse models: subsample analysis
This table presents the pricing performance of dense and sparse models using three subsamples: January 1974 to December 1998,
January 1987 to December 2011, and January 1999 to December 2023. The dense models are represented by the first several principal
components (PCs) that account for over 80% of the variation in the top candidate factors. These top factors are selected based on their
relative importance to the 49 industry portfolios and 49 pseudo-random portfolios within the given subsample, respectively. The sparse
models are obtained by the random sampling approach, and their average performance is reported. For these two sets of test portfolios,
we report both the cross-sectional average of absolute pricing errors and the adjusted R2.

Pricing measure % mean(|α̂|) mean(adj. R2) Pricing measure % mean(|α̂|) mean(adj. R2)

Panel A: 49 Industry Portfolios Panel B: 49 Random Portfolios

Panel A-1: 1974:01-1998:12 Panel B-1: 1974:01-1998:12

Mkt+PC1+· · ·+PC5 0.21 0.68 Mkt+PC1*+· · ·+PC5* 0.10 0.85
Three-factor model 0.22 0.63 Three-factor model 0.11 0.82
Four-factor model 0.22 0.64 Four-factor model 0.12 0.82
Five-factor model 0.22 0.65 Five-factor model 0.12 0.83
Six-factor model 0.22 0.65 Six-factor model 0.12 0.83

Panel A-2: 1987:01-2011:12 Panel B-2: 1987:01-2011:12

Mkt+PC1+· · ·+PC4 0.18 0.62 Mkt+PC1*+· · ·+PC4* 0.10 0.81
Three-factor model 0.22 0.55 Three-factor model 0.11 0.79
Four-factor model 0.22 0.56 Four-factor model 0.11 0.79
Five-factor model 0.22 0.57 Five-factor model 0.11 0.80
Six-factor model 0.22 0.58 Six-factor model 0.11 0.80

Panel A-3: 1987:01-2023:12 Panel B-3: 1987:01-2023:12

Mkt+PC1+· · ·+PC3 0.20 0.60 Mkt+PC1*+· · ·+PC3* 0.10 0.80
Three-factor model 0.23 0.54 Three-factor model 0.12 0.78
Four-factor model 0.23 0.55 Four-factor model 0.12 0.78
Five-factor model 0.22 0.56 Five-factor model 0.12 0.79
Six-factor model 0.22 0.57 Six-factor model 0.12 0.79
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Table 6: Annualized Sharpe ratio of tangency portfolios constructed using factors of dense
and sparse models
This table reports the annualized in-sample and out-of-sample Sharpe ratios of the dense and
sparse model representations. For the in-sample analysis, the dense model is represented using
the principal components of the top hundred relevant factors for the industry and pseudo-random
portfolios, respectively. For the out-of-sample analysis, to avoid forward-looking bias, we omit the
principal component transformation step and work directly with characteristic-based factors.

Models Annualized Sharpe ratio

Panel A: In-sample Analysis

Mkt + PC1 + PC2 + · · · + PC7 1.29
Mkt + PC1* + PC2* + · · · + PC7* 1.27
Three-factor model 0.71
Four-factor model 0.80
Five-factor model 0.88
Six-factor model 0.95

Panel B: Out-of-sample Analysis

Dense model 0.95
Dense model* 0.86
Three-factor model 0.67
Four-factor model 0.71
Five-factor model 0.75
Six-factor model 0.78
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Figure 4: P-Tree portfolios of Grouped P-Trees
This figure presents the test results using monthly data over 40 years, from January 1981 to
December 2020. Given L = 153 candidate characteristic-based factors, we plot the p-values for
different hypothetical numbers of factors K, each corresponding to the null hypothesis H0(κ),
where κ = K/153. The analysis uses four distinct datasets of test assets, each containing 50 P-Tree
portfolios. Specifically, we have 20 P-Trees in total, with each P-Tree containing 10 portfolios. We
group five trees into one set of test assets, resulting in 50 P-Tree portfolios for each dataset. The
blue dashed line indicates the 5% significance level.
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Figure 5: Industry and P-Tree portfolios of P-Tree 1
This figure presents the test results using monthly data over 40 years, from January 1981 to
December 2020. Given L = 153 candidate characteristic-based factors, we plot the p-values for
different hypothetical numbers of factors K, each corresponding to the null hypothesis H0(κ),
where κ = K/153. The analysis uses two distinct datasets of test assets: 10 industry portfolios
and 10 P-Tree portfolios of one single tree, i.e., P-Tree 1. The blue dashed line indicates the 5%
significance level.
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Figure 6: Industry and pseudo-random portfolios: whole sample analysis using FF residuals
This figure presents the test results using monthly data of the whole sample: January 1974 to
December 2023. Before the test is conducted, all the x and y are residuals after taking a regression
using either the FF3 or FF6 models. Given L = 153 candidate characteristic-based factors, we
plot the p-values for different hypothetical numbers of factors K, each corresponding to the null
hypothesis H0(κ), where κ = K/153. The analysis uses two distinct datasets of test assets: 49
industry portfolios and 49 pseudo-random portfolios. In Panel A, we plot the results for residuals
from FF3 model, and in Panel B, we plot the results for residuals from FF6 model. The blue dashed
line indicates the 5% significance level.

Panel A: FF3 Residuals

Panel B: FF6 Residuals
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Figure 7: P-Tree portfolios of Grouped P-Trees: using FF residuals
This figure presents the test results using monthly data over 40 years, from January 1981 to
December 2020. Before the test is conducted, all the x and y are residuals after taking a regression
with respect to either the FF3 or FF6 model. Given L = 153 candidate characteristic-based factors,
we plot the p-values for different hypothetical numbers of factors K, each corresponding to the
null hypothesis H0(κ), where κ = K/153. The analysis uses four distinct datasets of test assets,
each containing 50 P-Tree portfolios. Specifically, we have 20 P-Trees in total, with each P-Tree
containing 10 portfolios. We group five trees into one set of test assets, resulting in 50 P-Tree
portfolios for each dataset. In Panel A, we plot the results for residuals from FF3 model, and in
Panel B, we plot the results for residuals from FF6 model. The blue dashed line indicates the 5%
significance level.

Panel A: FF3 Residuals

Panel B: FF6 Residuals
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Figure 8: Industry and P-Tree portfolios of P-Tree 1: using FF residuals
This figure presents the test results using monthly data over 40 years, from January 1981 to
December 2020. Before the test is conducted, all the x and y are residuals after taking a regression
with respect to either the FF3 or FF6 model. Given L = 153 candidate characteristic-based factors,
we plot the p-values for different hypothetical numbers of factors K, each corresponding to the
null hypothesis H0(κ), where κ = K/153. The analysis uses two distinct datasets of test assets: 10
industry portfolios and 10 P-Tree portfolios of one single tree, i.e., P-Tree 1. In Panel A, we plot
the results for residuals from FF3 model, and in Panel B, we plot the results for residuals from FF6
model. The blue dashed line indicates the 5% significance level.

Panel A: FF3 Residuals

Panel B: FF6 Residuals
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Appendix

A Proof of Proposition 1

Proof. Consider the definition of q j that

q j(·) =


(1−κ)p0 for all β̃ j s.t. x j ≤ x∗j ,

c j pa j for all β̃ j s.t. x j > x∗j .

(A.1)

By definition,

∫
q j(b)db = (1−κ)

∫
x j(b)≤x∗j

p0(b)db+ c j

∫
x j(b)>x∗j

pa j(b)db. (A.2)

The condition c j pa j = (1 − κ)p0 when x j = x∗j is satisfied iff c j =
(1−κ)p0(b)

pa j(b)
for x j(b) = x∗j .

Therefore

c j = (1−κ)det(IN +Ω j)
1/2 exp(−1

2
x∗j). (A.3)

Substitute this (A.3) into the integral (A.2) and we have

1
(1−κ)

∫
q j(b)db =

∫
x j(b)≤x∗j

p0(b)db+det(IN +Ω j)
1/2 exp(−1

2
x∗j)
∫

x j(b)>x∗j
pa j(b)db. (A.4)

Differentiating the RHS of (A.4) with respect to x∗j gives the derivative

∫
x j(b)=x∗j

p0(b)db−det(IN+Ω j)
1/2

(
exp(−1

2
x∗j)
∫

x j(b)=x∗j
pa j(b)db+

1
2

exp(−1
2

x∗j)
∫

x j(b)>x∗j
pa j(b)db

)
.

(A.5)
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Observe that when x j(b) = x∗j , we have readily seen that pa j(b) = p0(b)det(IN +Ω j)
−1/2exp(1

2x∗j).

Therefore, the derivative (A.5) can be simplified to

−det(IN +Ω j)
1/2 1

2
exp(−1

2
x∗j)
∫

x j(b)>x∗j
pa j(b)db < 0. (A.6)

Therefore, when there is a well-defined q j such that
∫

q j = 1, (A.4) implies there is a unique x∗j

that solves the equation

1
(1−κ)

=
∫

x j(b)≤x∗j
p0(b)db+det(IN +Ω j)

1/2 exp(−1
2

x∗j)
∫

x j(b)>x∗j
pa j(b)db. (A.7)

The solution is unique because (A.6) is negative.

Moreover, observe that as x∗j → ∞, the RHS of (A.4) reaches the minimum of 1. As x∗j → 0,

the RHS of (A.4) reaches maximum det(IN +Ω j)
1/2. Therefore, there exists a unique solution if

and only if

1 ≤ (1−κ)det(IN +Ω j)
1/2. (A.8)

This completes the first part of the proof. It follows that the constant x∗j is solved by setting the

RHS of (A.4)

∫
x j(b)≤x∗j

p0(b)db+det(IN +Ω j)
1/2 exp(−1

2
x∗j)
∫

x j(b)>x∗j
pa j(b)db (A.9)

=
∫

x j(b)≤x∗j
p0(b)db+det(IN +Ω j)

1/2 exp(−1
2

x∗j)
∫

b′Ω jb>x∗j
p0(b)db (A.10)

to 1/(1−κ).
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B Proof of Theorem 2

Proof. By definition, for each j = 1, . . . ,L, the N-dimensional vector β̃ j is

β̃ j
d
= e j +

√
T

s j
diag

(
1

σ1
, . . . ,

1
σN

)
β j = e j +δ j, (B.1)

where e j is as defined as in the statement of the theorem and

δ j =

√
T

s j
diag

(
1

σ1
, . . . ,

1
σN

)
β j. (B.2)

Therefore, under the null hypothesis, δ j = z jγ j where γ j ∼ F for some arbitrary distribution F .

Recall that the unweighted j-th term in S is
[
(1− z j)min{x j(e j),x∗j}+ z jx∗j

]
, and the

unweighted j-th term in the test statistic T is min
{

x j(β̃ j),x∗j
}
. We want to show that the former

is always an upper bound of the latter under the null hypothesis. According to the null hypothesis,

with probability 1−κ we have z j = 0, and hence δ j = 0. Therefore

min
{

x j(β̃ j),x∗j
}
= min

{
x j(e j +δ j),x∗j

}
= min

{
x j(e j)+ x j(δ j)+2e′j

(
IN −

[
IN +Ω j

]−1
)
δ j,x∗j

}
= (1− z j)min

{
x j(e j),x∗j

}
+ z jx∗j .

(B.3)

On the other hand, with probability κ we have zi = 1. In this case

min
{

x j(β̃ j),x∗j
}
≤ x∗j = (1− z j)min

{
x j(e j),x∗j

}
+ z jx∗j . (B.4)
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This shows that for each j = 1, . . . ,L, the j-th term in S is always weakly greater than that in T . we

conclude that under H0(κ), T ≤1st S.

To see the bound is tight, consider in H0(κ) a sequence of {Fk}k∈N ⊆ F that diverges to

infinity: for all k ∈N, Fk({b ∈RN such that ||b||< k}) = 0 . Consider the test statistic Tk under the

special generating distribution in the null hypothesis that γ j is drawn from Fk for all j. We claim

that the distribution of Tk converges to that of S.

To see so, for each j = 1, . . . ,L, we have z j = 0 with probability 1 − κ . In this case,

min
{

x j(β̃ j),x∗j
}
= (1 − z j)min

{
x j(e j),x∗j

}
+ z jx∗j . Therefore, the j-th term in T equals that

in S. On the other hand, with complementary probability κ we have z j = 1. In this case, we have

the j-th term in the test statistic min{x j(β̃ j),x∗j} → x∗j in probability Fk as k → ∞. This is because

Fk diverges as k → ∞, causing γ j diverges, and so δ j and β j also diverge to infinity. This limit is

exactly the j-th term in S, (1− z j)min{x j(e j),x∗j}+ z jx∗j = x∗j . Therefore under Fk, the j-th term

in T converges in probability to that in S for all j = 1, . . . ,L. We conclude that the statistic Tk

converges in distribution to S along Fk.
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