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1 Introduction

When arriving in the European Union, an asylum seeker must submit an application for pro-

tection in a single member state. If successful, the person will be granted refugee status or

subsidiary protection by the country that examined the asylum claim. The responsible mem-

ber state cannot be chosen freely. Under the Common European Asylum System (CEAS),

the asylum seekers are required to lodge their application for protection in the country in

which they initially arrive.1 This places a disproportionate burden on countries located at

the border of the European Union. Its decentralized approach to asylum assignments leads

to delays and disputes over responsibility, while its strict no-choice approach incentivizes

asylum seekers to engage in illegal secondary movements to reach a more preferred member

state (Maiani, 2016).

1.1 An Alternative Asylum System

A centralized asylum system provides an alternative to the current decentralized approach

by considering both the preferences of asylum seekers and the priorities of member states.

Under this system, member states retain control over eligibility determinations, while asy-

lum seekers still apply for asylum at a single member state. Upon registration, asylum

seekers would submit their preferences, and a centralized clearinghouse would then assign

responsibility to a member state based on this information. Once a responsible member

state is designated, asylum seekers must travel to and remain in that state while awaiting

their asylum decision.

Unlike the current system, the centralized approach allows asylum seekers to express

preferences for specific member states, giving them greater agency in the process. This en-

sures their preferences are factored into the assignment, making the system more responsive

to their needs. Meanwhile, member states maintain control over eligibility determinations,

allowing them to prioritize and regulate decisions according to their own standards. Impor-

tantly, the centralized system designates a responsible state before the asylum application is

processed, avoiding the logistical challenge of relocating refugees after their status is deter-

mined.

The decentralized system often struggles to process claims in a timely manner, as re-

quired by the Charter of Fundamental Rights of the European Union (Beck et al., 2014).2

1This rule is stated in Article 9 on page 62 of the Text of the agreement on Asy-
lum and migration management regulation. Document last accessed on 22 October 2024
at https://www.europarl.europa.eu/meetdocs/2014_2019/plmrep/COMMITTEES/LIBE/DV/2024/02-14/

06.RAMM_Asylumandmigrationmanagement_EN.pdf.
2The suggested timeline for a standard asylum claim is six months, and member states must inform
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The centralized system addresses this by allowing asylum seekers to express preferences for

member states with shorter wait times, avoiding overburdened states and reducing delays.

European regulators have also proposed burden-sharing quotas that set targets for the

number of asylum applications each member state should process. As European Commission

(2016) states, “A corrective allocation mechanism should be established to ensure a fair

sharing of responsibility between Member States [...] in situations when a Member State

faces a disproportionate number of applications for international protection.” We show that

a centralized mechanism is particularly well-suited to facilitate the implementation of these

burden-sharing quotas across the EU.

1.2 Summary of Model and Analysis

We formulate the asylum system as matching with contracts problem (Hatfield and Milgrom,

2005), where a contract specifies an asylum seeker, a member state, and a wait time. Asy-

lum seekers submit their preferences over combinations of wait times and member states.

Following the CEAS, asylum seekers are restricted to a single application for protection,

making it a many-to-one matching problem. An asylum seeker making an application can

either represent an individual or a group of immediate family members applying for asylum

at the same time. Therefore, each asylum seeker is given a burden-size. Member states are

required to make an asylum decision after the agreed-upon wait time ends. When scheduling

asylum applications, member states are constrained by their bureaucratic capacities, repre-

senting the maximum number of asylum claims that can be processed in a given period. A

member state’s burden-sharing quota specifies the total amount of burden-size over asylum

applications that have to be scheduled. Finally, to decide between different asylum seekers,

each member state (strictly) ranks asylum seekers in terms of priority.3

We focus on finding a stable and strategy-proof mechanism for this problem. A stable

mechanism avoids situations in which an asylum seeker prefers a different contract to the

one she is assigned, and the member state specified in the more desirable contract is willing

to handle her claim in the specified wait time. A strategy-proof mechanism (for asylum

seekers) makes sure that misreporting preferences is not beneficial for asylum seekers, and

applicants if the process takes longer. However, providing an estimated completion date does not imply a
strict obligation to meet that timeframe (Beck et al., 2014).

3Member states’ priority ranking criteria can be chosen freely as long as they don’t interfere with article
14 of the European Convention on Human Rights (Jones and Teytelboym, 2017a), which prohibits discrim-
ination on any grounds such as religion or race (European Council of Human Rights, 2013). For example,
in 2015, the former prime minister of Britain, David Cameron, announced the acceptance of up to 20,000
refugees from Syria, prioritizing vulnerable children and orphans (BBC, 2015). Ties between asylum seekers
with identical characteristics may be broken randomly whenever necessary.
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thus it is their best interest to state their preferences truthfully.4

We characterize a member state choice rule over contracts in Theorem 1. This choice

rule takes into account a member state’s priority order, bureaucratic capacities, and burden-

sharing quota, to make a selection from a given set of contracts. Given the member state

choice rule, in Theorem 2 we show that: if asylum seekers are treated as having iden-

tical burden-sizes, the asylum-seeker-proposing cumulative offer mechanism (Hatfield and

Milgrom, 2005) is stable and strategy-proof. However, when asylum seekers have different

burden-sizes, Example 1 and Example 2 illustrate why both stability and strategy-proofness

might not be achievable.

The proof of Theorem 2 builds upon the results developed in the literature on many-to-one

matching markets with contracts. In particular, the member state choice rule (characterized

in Theorem 1) violates the substitutes condition and the law of aggregate demand (Kelso Jr

and Crawford, 1982; Hatfield and Milgrom, 2005; Hatfield and Kojima, 2010). However, for

the case of homogenous burden-sizes, we show that a completion of the choice rule exists

(Lemma 1), as in Hatfield and Kominers (2019), that satisfies the substitutes condition

if families are prioritized over individual asylum seekers (Proposition 3). While the law

of aggregate demand is satisfied if individual asylum seekers are prioritized over families

(Proposition 4). The cumulative offer mechanism is stable and strategy-proof for identical

burden-sizes because both requirements on the priority orderings are satisfied simultaneously.

We can obtain the same result by constructing an associated one-to-one market following

Kominers and Sönmez (2016) to show that the cumulative offer mechanism is stable and

strategy-proof for asylum seekers. We use Hatfield and Kominers (2019) because it helps us

illustrate the lacking of cumulative offer mechanism in handling heterogeneous burden sizes

(see Example 3 and Example 4).

1.3 Related Literature

The concept of managing refugee flows through organized systems has been discussed in

the literature, starting with Schuck (1997), who proposed that each member state should

bear a share of responsibility for temporary protection and permanent resettlement based

on a quota system. Moraga and Rapoport (2014) further developed this idea, proposing

a system for trading quotas multilaterally without monetary exchange, aimed at resettling

longstanding refugees and asylum seekers within the European Union. They were also the

first to mention the possibility of combining a quota system with a matching mechanism,

paving the way for subsequent models.

4We consider manipulations on the part of asylum seekers only. That is, we assume that member states
cannot misreport priorities.
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Jones and Teytelboym (2016, 2017a,b) expanded on this by advocating for the use of

matching mechanisms to enhance or replace existing resettlement practices. They differen-

tiated between two levels of refugee matching: the global refugee match, operating at an in-

ternational scale, and the local refugee match, which focuses on community-level integration

within a country. In the international context, Jones and Teytelboym (2017a,b) suggested

that the ”thickness” of the market allows refugee allocation to be effectively modeled as a

standard school choice problem (Balinski and Sönmez, 1999; Abdulkadiroğlu and Sönmez,

2003). Thus asylum seekers, whether individuals or families, can be treated equivalently in

terms of burden-size, simplifying the allocation process.

The local refugee match, however, presents more complex challenges (Jones and Teytel-

boym, 2018). Delacrétaz et al. (2023) introduced a framework that incorporates multidimen-

sional knapsack constraints, accounting for the thinness of the market and the limitations

of local resources. Andersson et al. (2018) proposed a dynamic model that assigns refugees

to localities based on types and locality-specific quotas. Additionally, Andersson and Ehlers

(2020) examined a market for allocating private housing to refugees, where landlords have

preferences over the sizes of refugee families and the native languages they speak, highlighting

the nuanced preferences that need to be considered in local resettlement. Ahani et al. (2021)

and Ahani et al. (2024) provided practical insights by assisting a U.S. resettlement agency

in matching refugees to their initial placements, achieving improved employment outcomes.

Our work differs from previous studies by incorporating wait times into the global refugee

match and addressing the differential burden-sizes across asylum seekers. Unlike past mod-

els, which assume the refugees’ status is determined prior to matching, our approach directly

matches asylum seekers, allowing member states to retain control over the eligibility deter-

mination process. This conceptual shift necessitates the use of new framework based on

matching with contracts model that must account for the strategic considerations over both

member states and wait times.

Our work also relates to the literature on stable matchings with sizes, where comple-

mentarities arise from a combination of bureaucratic capacities and differential burden-sizes

rather than hard capacity constraints (Dean et al., 2006; McDermid and Manlove, 2010; Biró

and McDermid, 2014; Yenmez, 2018; Nguyen and Vohra, 2018; Delacrétaz, 2019). While the

non-existence of stable allocations in matching with sizes is often due to rigid capacity limits,

instability in our problem does not arise from the same, as burden-sharing quotas are not

hard constraints.

Our work is also connected to the literature on matching with contracts, which has

been explored in various contexts (Aygün and Turhan, 2020; Hassidim et al., 2017; Yenmez,

2018; Sönmez and Switzer, 2013; Dimakopoulos and Heller, 2019). Among these studies, our
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setup is most closely related to Dimakopoulos and Heller (2019). Of particular relevance

is Dimakopoulos and Heller (2019), which examines the German entry-level labor market

for lawyers, incorporating wait times as a contract term. While both models address wait

times, our approach uniquely accounts for member state choice rules, the consideration of

differential burden-sizes, and the inclusion of bureaucratic capacities, highlighting the unique

complexities inherent in asylum assignment.

2 Model and Definitions

An asylum seeker matching problem consists of

1. a finite set of asylum seekers A,

2. a finite set of member states M ,

3. a finite set of wait times W ⊂ R+,

4. a burden-size for each asylum seeker s : A 7→ N,

5. a list of burden-sharing quotas q = (qm)m∈M with
∑

m∈M qm ≥
∑

a∈A s(a).

6. a list of bureaucratic capacities r = (rwm)m∈M,w∈W with
∑

w∈W rwm ≥ |A| for all m ∈M ,

7. a list of preference rankings P = (Pa)a∈A over M ×W , and

8. a list of priority orders π = (πm)m∈M over A.

An asylum seeker’s burden-size s(a) specifies the amount of burden an asylum seeker’s

application consumes from a member state’s burden-sharing quota. This allows an asylum

maker applying on behalf of her immediate family differently from an asylum seeker applying

as an individual. We say that an asylum seeker matching problem 〈s, P 〉 specifies the same

burden-size for every asylum seeker if s(a) = s(a′) for all a, a′ ∈ A.

A member state’s burden-sharing quota qm specifies the minimum number of applica-

tions a member state has to process. Since every asylum seeker has the right to submit an

application, we require that the sum of burden-sharing quotas exceeds the sum of burden-

sizes, that is,
∑

m∈M qm ≥
∑

a∈A s(a).

Each asylum seeker’s application takes up one unit of bureaucratic capacity. A mem-

ber state m can process at most rwm ≥ 0 asylum seekers in time period w. Moreover, total

bureaucratic capacities are sufficiently large to schedule any asylum seeker if a long enough

time horizon W is considered, that is,
∑

w∈W rwm ≥ |A| for all m ∈M .
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Each asylum seeker has a preference ranking Pa over wait-time-member-state combi-

nations M ×W , with the corresponding weak preference written as Ra.
5 Let P denote the

set of all preference profiles.6

Each member state has a priority order πm over the set of asylum seekers A, indicating

the order in which they would prefer to accept applicants.

We fix A, M , W , q, r, and π, denoting an asylum seeker matching problem by 〈s, P 〉.
To encompass wait times, we use a matching with contracts framework. A contract x =

(a,m,w) ∈ X = A ×M ×W specifies an asylum seeker a ∈ A, a member state m ∈ M ,

and a wait time w ∈ W . Let X denote the set of all subsets of X. Given a contract x ∈ X,

let ax represent the asylum seeker, mx the member state, and wx the wait time specified in

the contract. For some subset of contracts X ′ ⊆ X, let X ′a = {x ∈ X ′ : ax = a} denote the

set of contracts asylum seeker a is part of, with equivalent notation for member states and

wait times. Let A(X ′) = {a ∈ A : ax = a for some x ∈ X ′} denote the set of asylum seekers

specified in a subset of contracts X ′ ⊆ X, again equivalently defined for member states and

wait times. An allocation Y ⊆ X is a set of contracts with |Ya| ≤ 1 for all a ∈ A, and

|Ym ∩ Yw| ≤ rwm for all m,w ∈ M ×W . Let Y denote the set of all allocations. Slightly

abusing notation, we will use Pa for preferences over contracts and allocations.7

3 Member State Choice Rule

A choice rule for a member state makes a selection out of a set of contracts based on the

member state’s priority ordering, burden-sharing quota, and bureaucratic capacities. A

choice rule Cm : X 7→ X associates with each subset of contracts X ′ ∈ X a subset of

contracts Cm(X ′) ∈ X such that Cm(X ′) ⊆ X ′m.

We say that, an asylum seeker a ∈ A(X ′) qualifies for acceptance under X ′ ∈ X if∑
{a′∈A(Cm(X′)):a′πma}

s(a′) < qm.

For a given choice rule and a subset of contracts, consider the set of asylum seekers with at

5Pa is a strict simple order, that is, a binary related that is transitive, asymmetric, and complete (ranks
everything except (x, x) — a contract with itself). The associated simple order Ra is transitive, antisym-
metric, and strongly complete (ranks everything).

6One might assume that asylum seekers prefer lower wait times for the same member state. However, we
allow for more general preferences to accommodate the concept of humanitarian visas. This means asylum
seekers could opt for longer wait times outside the EU to allow enough time to apply for a humanitarian
visa, which requires a designated member state at the time of application, and then travel there after the
centralized match.

7For any x, x′ ∈ X we say x Pa x′ ⇐⇒ (mx, wx) Pa (mx′ , wx′), and for any Y, Y ′ ∈ Y we say
Y Pa Y ′ ⇐⇒ Ya Pa Y ′

a.
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least one contract accepted. An asylum seeker qualifies for acceptance if the total burden-size

of already accepted asylum seekers with a higher priority is strictly less than the member

state’s burden-sharing quota.

We say that, an asylum seeker a ∈ A(X ′) qualifies for wait time w ∈ W under X ′ ∈ X

if X ′a ∩X ′w 6= ∅ and

|{a′ ∈ A(Cm(X ′)w) : a′πma}| < rwm.

For a given choice rule, wait time, and a subset of contracts, consider the set of asylum

seekers with a contract accepted for the relevant wait time. An asylum seeker qualifies for

that wait time if the number of higher priority asylum seekers scheduled for that wait time

is strictly less than the relevant bureaucratic capacity.

With this in mind, we propose a choice rule for member states that satisfies the following

three properties:

• A choice rule Cm satisfies feasibility if for all X ′ ∈ X, for all a ∈ A(X ′), and for all

w ∈ W , we have

|Cm(X ′)a| ≤ 1 and |Cm(X ′)w| ≤ rwm.

A choice rule is feasible if at most one contract is accepted per asylum seeker and

the member state’s bureaucratic capacities are not violated. This is unquestionably

essential and is often assumed.

• A choice rule Cm satisfies early filling if for all x ∈ Cm(X ′), and x′ 6∈ Cm(X ′), such

that ax = ax′ = a and wx′ < wx, the asylum seeker does not qualify for the lower wait

time wx′ .

For a given subset of contracts, a choice rule satisfies early filling if for any accepted

contract there does not exists a lower wait time contract for which there is still bu-

reaucratic capacity left. This minimizes overall wait times at the member state.

• A choice rule Cm respects member state priorities if for all X ′ ∈ X an asylum

seeker a ∈ A(X ′) ends up with a contract if and only if she qualifies for acceptance

and a wait time.

This property ensures that if an asylum envies another asylums seekers’ contracts, then

that asylum seeker must have a higher priority.

Our main result in this section shows that there is a unique choice rule that satisfies

feasibility, early filling, and respects member state priorities. The choice rule is straight-

forward and intuitive: asylum seekers are processed one by one in order of priority. Each
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is assigned the contract with the shortest waiting time that still has sufficient bureaucratic

capacity. The process continues until either all asylum seekers have been matched or the

burden-sharing quota is fully met, at which point no further contracts are accepted.

Member state choice rule Ĉm for a set of contract X ′ ⊆ X:

Step k ≥ 1:

1. Let Xk−1 denote the set of accepted contracts with X0 = ∅, and let Zk−1 = {x ∈ X ′m :

rwx
m > |Xk−1

wx
| and ax 6∈ A(Xk−1)} denote the set of contracts specifying an asylum

seeker not yet accepted with a wait time that has bureaucratic capacity left.

If either the burden-sharing quota is reached
∑

x∈Xk−1 s(ax) ≥ qm or no acceptable

contract is left Zk−1 = ∅ the algorithm ends and Ĉm(X ′) = Xk−1.

2. Otherwise, determine the highest priority asylum seeker left ak, defined as a ∈ A(Zk−1)

such that a π a′ for all a′ ∈ A(Zk−1) \ {a}.
Then, accept the lowest wait time contract xk available for that asylum seeker, defined

as x ∈ Zk−1
ak

such that wx < wx′ for all x′ ∈ Zk−1
ak
\ {x}.

Adjust the set of accepted contracts Xk = Xk−1 ∪ {xk} and proceed to step k + 1.

Hereafter, we will use Ĉm as the relevant choice rule, which is characterized in following

result. Proof of Theorem 1 is relegated to Appendix A.

Theorem 1. A choice rule Cm satisfies feasibility, early filling, and respects member state

priorities if and only if it is Ĉm.

4 A Stable and Strategy-Proof Mechanism

In this section, we introduce a mechanism with desirable properties designed to assign asylum

seekers to member states and manage wait times. We will start with the relevant definitions:

• A mechanism is a function ϕ that assigns every asylum seeker matching problem

〈s, P 〉 an allocation ϕ(s, P ) ∈Y.

• A mechanism ϕ is (pairwise) stable if for problem 〈s, P 〉 if for every pair a ∈ A,

m ∈M and contract x ∈ X \ ϕ(s, P ),

x Pa ϕ(s, P ) =⇒ x 6∈ Cmx(ϕ(s, P ) ∪ {x}).

A mechanism is considered (pairwise) stable if, whenever an asylum seeker prefers

a contract over the one assigned to them by the mechanism, the member state in-

volved would reject this alternative contract when evaluated alongside its existing set
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of assigned contracts. Thus, stability ensures fairness by preventing any party from

benefiting at the expense of another.

• A mechanism ϕ is strategy-proof (for asylum seekers) for problem 〈s, P 〉, if for all

a ∈ A, P̂a ∈ Pa, we have

ϕ(s, P ) Ra ϕ(s, P̂a, P−a).

A mechanism is strategy-proof if for every asylum seeker, revealing her true preferences

is a weakly dominant strategy.

4.1 Homogenous Burden-size

If asylum seekers are treated identically in terms of burden-sizes, then a stable and strategy-

proof mechanism exists, namely, the asylum-seeker-proposing cumulative offer mechanism.

We start by defining this mechanism:

Asylum seeker proposing cumulative offer mechanism ϕc:

Step k ≥ 1.

1. Let Xk denote the set of proposed contacts with X0 = ∅.

A contract x ∈ Xk−1 is tentatively accepted if x ∈ Cmx(Xk−1) and rejected otherwise.

If there is an asylum seeker with no contract tentatively accepted, let some asylum

seeker a propose her most preferred contract, following Pa, among contracts that have

not been proposed xk ∈ X \Xk. Then, set Xk = Xk−1 ∪ {xk}.

2. Otherwise, the process terminates with ϕc(s, P ) =
⋃
m∈M Cm(Xk−1

m ).

Theorem 2. Suppose every member state is equipped with choice rule Ĉm. Then the asylum-

seeker-proposing cumulative offer mechanism is stable and strategy-proof for any problem

〈s, P 〉 with identical burden-sizes across asylum seekers.

A centralized system can assign asylum seekers to member states in a stable and (asylum-

seeker) strategy-proof manner, provided families and individuals are treated equally in the

burden-sharing quota during the assignment process. This requires identical treatment of ap-

plications from individuals and families. While the additional burden of supporting families

cannot be factored in without compromising stability and strategy-proofness, imbalances can

be addressed over time. Since asylum seeker matching is a recurring event, member states

accepting more families could have their future burden-sharing commitments adjusted down-

ward, balancing the overall burden.

Proving Theorem 2 requires conditions on the member state choice rule, which will to-

gether ensure that the above defined cumulative offer mechanism is stable and strategy-proof.
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• A choice rule Cm satisfies substitutablility if for all X ′ ⊆ X, and x, x′ ∈ X \X ′, we

have

x ∈ Cm(X ′ ∪ {x, x′}) =⇒ x ∈ Cm(X ′ ∪ {x}).

A choice rule is substitutable if whenever a contract is chosen from a set of contracts,

then the contract is also selected from any subset of contracts containing that contract.

• A choice rule Cm satisfies irrelevance of rejected contracts if for all X ′ ⊆ X, and

x ∈ X \X ′,
x 6∈ Cm(X ′ ∪ {x}) =⇒ Cm(X ′ ∪ {x}) = Cm(X ′).

A choice rule satisfies irrelevance of rejected contracts if removing a contract that has

not been chosen does not affect the set of chosen contracts.

• A choice rule Cm satisfies the law of aggregate demand if for all X ′ ⊆ X, and

x ∈ X \X ′ we have

|Cm(X ′ ∪ {x})| ≥ |Cm(X ′)|.

A choice rule satisfies the law of aggregate demand if the set of chosen contracts weakly

increases with the set of available contracts.

Hatfield and Milgrom (2005) and Aygün and Sönmez (2013) show that substitutability

and irrelevance of rejected contracts are sufficient conditions on the choice rule for the cu-

mulative offer mechanism to be stable. Additionally, combining these conditions with the

law of aggregate demand ensures strategy-proofness of the cumulative offer mechanism.

Proposition 1. The choice rule Ĉm satisfies the irrelevance of rejected contracts condition.

However, wait times introduce complementarities regardless of the specified burden-sizes

for asylum seekers. Therefore, substitutability and law of aggregate demand are violated

for the choice rule Ĉm even if the asylum seeker matching problem 〈s, P 〉 specifies the same

burden-size for every asylum seeker. We present Example 1 to illustrate this point.

Example 1 (Choice rule violates substitutability and the law of aggregate demand). Con-

sider A = {a1, a2}, M = {m}, W = {wl, wh}. Let s(a1) = s(a2) = 1, qm = 2, rwl
m = rwl

m = 1,

x1 = (a1,m,wl), x2 = (a1,m,wh),

x3 = (a2,m,wl), x4 = (a2,m,wh), and

πm : a1 − a2.
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To see that Ĉm violates substitutability, take X ′ = {x2}, x4, and x1. We have that x4 ∈
Ĉm(X ′ ∪ {x4, x1}) = {x1, x4} while x2 6∈ Ĉm(X ′ ∪ {x4}) = {x2}.Similarly, we can find a

violation of the law of aggregate demand for X ′ = {x2, x3}, and x1. We have |Ĉm(X ′)| =

|{x2, x3}| > |Ĉm(X ′ ∪ {x1})| = |{x1}|.

Remark 1. The choice rule in Example 1 also violates the weaker unilateral substitutes

condition (Hatfield and Kojima, 2010), which together with the law of aggregate demand

is sufficient for stability and strategy-proofness (for asylum seekers). A choice rule Cm is

unilateral substitutable if there does not exist X ′ ⊆ X and x, x′ ∈ X\X ′ such that ax 6∈ A(X ′),

and if x ∈ Cm(X ′ ∪ {x, x′}) then x ∈ Cm(X ′ ∪ {x}). We have a violation of unilateral

substitutability as ax4 = a2 6∈ A(X ′) = {a1}.

The literature has discussed several ways to relax the substitutability condition, as well as

cases in which violations of substitutability and the law of aggregate demand are not harmful

for stability and strategy-proofness (Hatfield and Kojima, 2010; Kominers and Sönmez, 2016;

Hatfield and Kominers, 2019; Hatfield et al., 2020). In this paper, we rely on the result of

Hatfield and Kominers (2019) which requires us to define a new property:

• C ′m is a completion of a choice rule Cm, if for all X ′ ⊆ X, either C ′m(X ′) = Cm(X ′), or

there exist distinct contracts x, x′ ∈ C ′m(X ′) that are associated with the same asylum

seeker, that is, a(x) = a(x′).

A choice rule completes another choice rule if they both choose the same set of contracts

whenever the selected set of the completing choice rule is feasible.

Hatfield and Kominers (2019) show that if completion of a choice rule satisfies substi-

tutability and the law of aggregate demand (together with the irrelevance of rejected con-

tracts) then the asylum-seeker-proposing cumulative offer mechanism is stable and strategy-

proof (for asylum seekers). The result holds even if the cumulative offer mechanism uses the

original choice rule, which violates both properties.

Theorem. (Hatfield and Kominers, 2019) If, for each m ∈M , the choice function Cm has a

substitutable completion C ′m that satisfies the law of aggregate demand and the irrelevance of

rejected contracts condition, then the cumulative offer mechanism is stable and strategy-proof

(for asylum seekers).

The following two restrictions on priority orderings will be useful before proceeding:

• πm satisfies small burden-size priority if for all a, a′ ∈ A, we have

aπma
′ =⇒ s(a) ≤ s(a′).
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If an asylum seeker has higher priority than another asylum seeker, then she must have

a weakly smaller burden-size.

• πm satisfies large burden-size priority if for all a, a′ ∈ A, we have

aπma
′ =⇒ s(a) ≥ s(a′).

If an asylum seeker has higher priority than another asylum seeker, then she must have

a weakly larger burden-size.

We next describe a choice rule that is a completion of the choice rule characterized in

Theorem 1.

Completion of the member state choice rule Ĉ ′m:

Step k ≥ 1:

1. Let Xk denote the set of accepted contracts, with X0 = ∅.

Similarly, let Zk = {x ∈ X ′m : rwx
m > |Xk

wx
| and x 6∈ Xk} denote the set of still

acceptable contracts.

If either the burden-sharing quota is reached
∑

x∈Xk−1 s(ax) ≥ qm, or no acceptable

contract is left Zk−1 = ∅ the algorithm ends and Ĉm(X ′) = Xk−1.

2. Otherwise, determine the highest priority asylum seeker left ak, defined as a ∈ A(Zk−1)

such that a π a′ for all a′ ∈ A(Zk−1) \ {a}.
Then, accept the lowest wait time contract xk available for that asylum seeker, defined

as x ∈ Zk−1
ak

, such that wx < wx′ for all x′ ∈ Zk
ak
\ {x}.

Adjust the set of accepted contracts Xk = Xk−1 ∪ {xk} and proceed to step k + 1.

The only difference of the completion Ĉ ′m relative to the original choice rule Ĉm is that

an asylum seeker already holding a contract still remains in the race for more contracts. In

particular, all contracts of a higher priority asylum seeker are accepted before all contracts

with the identical wait time of a lower priority asylum seeker (Lemma 1).

Lemma 1. Ĉ ′m is a completion of Ĉm.

The completion Ĉ ′m satisfies the irrelevance of rejected contracts (Proposition 2), is substi-

tutable if the member states’ priority order satisfies large burden-size priority (Proposition 3),

and satisfies the law of aggregate demand if small burden-size priority holds (Proposition 4).

Proposition 2. The completion Ĉ ′m satisfies irrelevance of rejected contracts.
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Proposition 3. The completion Ĉ ′m satisfies substitutability if πm satisfies large-size priority.

Proposition 4. The completion Ĉ ′m satisfies the law of aggregate demand if πm satisfies

small burden-size priority.

When the burden-size is identical across asylum seekers, the large and small burden-size

conditions hold simultaneously. Therefore, these results collectively demonstrate that the

cumulative offer mechanism is stable and strategy-proof (Theorem 2). Proofs of Propositions

1-4 and Lemma 1 are provided in Appendix A.

We revisit Example 1 to show that the completion addresses issues related to substi-

tutability and the law of aggregate demand caused by bureaucratic capacities, provided the

burden-size is homogeneous (Example 2).

Example 2 (Completion Example 1 revisited). Recall the set-up from Example 1:

A = {a1, a2}, M = {m} W = {wl, wh}, s(a1) = s(a2) = 1, qm = 2, rwl
m = rwl

m = 1, and

x1 = (a1,m1, wl), x2 = (a1,m1, wh),

x3 = (a2,m1, wl), x4 = (a2,m1, wh),

πm : a1 − a2.

Revisiting the violation of substitutability for X ′ = {x2}, x4, and x1. We have that Ĉ ′m(X ′∪
{x4, x1}) = {x1, x2} as well as Ĉ ′m(X ′ ∪ {x4}) = {x2}. Similarly, revisiting the law of

aggregate demand violation for X ′ = {x2, x3} and x1, we have |Ĉ ′m(X ′)| = |{x2, x3}| =

|Ĉ ′m(X ′ ∪ {x1})| = |{x1, x2}|.

4.2 Heterogenous Burden-size

In the following two examples we illustrate the problem in using the cumulative offer mech-

anism when the burden-size is not identical across asylum seekers. If the member states’

priority order does not satisfy large burden-size priority, Example 3 shows that there is no

guarantee for the existence of a completion satisfying substitutability. If the member states’

priority order does not satisfy small burden-size priority, Example 4 shows that there is no

guarantee for the existence of a completion satisfying the law of aggregate demand.

Example 3 (No completion satisfying substitutability). Consider A = {a1, a2, a3}, M =

{m}, W = {wl, wh}. Let s(a1) = 1, s(a2) = s(a3) = 2, qm = 2, rwl
m = rwl

m = 1,

x1 = (a1,m,wl),

x2 = (a2,m,wl),
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x3 = (a3,m,wh), and

πm1 : a1 − a2 − a3.

Note that priorities violate large burden-size priority. Moreover, for any X ′ ⊆ X, such

that |X ′a| ≤ 1 for all a ∈ A, any completion Ĉ ′m of Ĉm must choose the same set of contracts

as Ĉm, that is, Ĉ ′m(X ′) = Ĉm(X ′). We have that any completion must choose Ĉ ′m({x2, x3}) =

{x2} and Ĉ ′m({x1, x2, x3}) = {x1, x3} which violates substitutability.

Remark 2. With Example 3’s setup we can construct a counterexample for all sufficient

conditions ensuring the existence of a stable mechanism. We have that Ĉm({x2, x3}) = {x2}
and Ĉm({x1, x2, x3}) = {x1, x3}, a violation of bilateral substitutability and therefore also of

unilateral substitutability as well as substitutability (Hatfield and Milgrom, 2005; Hatfield and

Kojima, 2010). Note that a3 gets a wh-slot if {x1, x2, x3} are proposed but foregoes the slot

if only {x2, x3} are proposed, so we cannot construct an associated one-to-one market as in

Kominers and Sönmez (2016). Finally, x2, x3, x1 is an observable offer process, and thus we

have a violation of observable substitutability (Hatfield et al., 2020), because Ĉm({x2, x3}) =

{x2} but Ĉm({x1, x2, x3}) = {x1, x3}.

Example 4 (No completion satisfying the law of aggregate demand). ConsiderA = {a1, a2, a3},
M = {m}, W = {wl}. Let s(a1) = 2, s(a2) = s(a3) = 1, qm = 2, rwl

m = 2, and

x1 = (a1,m,wl),

x2 = (a2,m,wl),

x3 = (a3,m,wl),

πm : a1 − a2 − a3.

Note that priorities violate small burden-size priority. Moreover, for any X ′ ⊆ X, such that

|X ′a| ≤ 1 for all a ∈ A, any completion Ĉ ′m of Ĉm must choose the same set of contracts as

Ĉm, that is, Ĉ ′m(X ′) = Ĉm(X ′). It follows that, any completion must choose Ĉ ′m({x2, x3}) =

{x2, x3} and Ĉ ′m({x1, x2, x3}) = {x1} which violates the law of aggregate demand.

Remark 3. Note that x2, x3, x1 is an observable offer process. Thus Example 4 also shows

a violation of observable size monotonicity (Hatfield et al., 2020). The same is true for

Example 3, which shows a violation of observable substitutability. Thus the weakest known

conditions for existence of a stable and strategy-proof mechanism are violated.

In general, when the burden-size varies across asylum seekers, there does not exist a stable

mechanism (Example 5), nor can we ensure strategy-proofness to hold for a mechanism that

selects a stable outcome, whenever one exists (Example 6).
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Theorem 3. For a problem 〈s, P 〉 with heterogenous burden-sizes across asylum seekers, a

stable and strategy-proof mechanism may not exist.

We present two examples to prove Theorem 3. We will write W = {wl, wh} when we

mean that wl < wh, where l indicates low wait time and h indicates high wait time.

Example 5 (No stable outcome). Consider A = {a1, a2, a3}, M = {m1,m2,m3,m4}, and

W = {wl, wh}. Let s(a1) = 1, s(a2) = s(a3) = 2, qm1 = 2, qm2 = qm3 = qm4 = 1,

rwh
m = rwl

m = 1 for all m ∈M ,

Pa1 : x1 = (a1,m2, wl)− x2 = (a1,m1, wl)− . . . ,

Pa2 : x3 = (a2,m1, wl)− x4 = (a2,m3, wl)− . . . ,

Pa3 : x5 = (a3,m1, wh)− x6 = (a3,m2, wh)− . . . ,

πm1 : a1 − a2 − a3,

πm2 : a3 − a2 − a1,

πm3 : a1 − a2 − a3, and

πm4 : . . . .

m4 makes sure that the constraint
∑

m∈M qm ≥
∑

a∈A s(a) is satisfied. Since asylum seeker

a1 has the highest priority in member state m1 = mx2 , in any stable allocation a1 must

end up with either x1 or x2. Suppose a1 ends up with her top choice x1 at member state

m2 = mx1 . In this case a2 must get her top choice x3, since she has the highest priority

among the remaining asylum seekers at member state m1 = mx3 , preventing a3 from getting

x5 with member state m1 = mx5 . In turn, a3 forms a blocking pair with member state

m2 = mx6 through contract x6. Suppose a1 gets x2 instead. Then a2 can no longer get her

top choice x3, due to insufficient bureaucratic capacity rwl
m = 1 of member state m1 = mx3 .

On the other hand a3 can get her first choice x5 as there is sufficient bureaucratic capacity

for the high wait time rwh
m = 1 of member state m1 = mx5 , while a2 gets x4 her second choice.

But now m2 has no asylum seeker assigned and a1 forms a blocking pair with member state

m2 = mx1 through contract x1. Thus, the non-existence of stable outcomes arises from a

combination of burden-sizes and bureaucratic capacities.

Example 6 (No strategy-proof outcome). Consider A = {a1, a2, a3}, M = {m1,m2,m3},
and W = {wl}. Let s(a1) = 2, s(a2) = s(a3) = 1, qm1 = 2, qm2 = qm3 = 1, rwl

m = 2 for all

m ∈M , and
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Pa1 : x1 = (a1,m2, wl)− x2 = (a1,m1, wl)− . . . ,

Pa2 : x3 = (a2,m2, wl)− x4 = (a2,m1, wl)− x5 = (a2,m3, wl),

Pa3 : x6 = (a3,m1, wl)− x7 = (a3,m2, wl)− . . . ,

πm1 : a1 − a2 − a3,

πm2 : a3 − a2 − a1,

πm3 : a1 − a2 − a3.

In this example, a problem arises because either both a2 and a3 are matched to m1, in

which case a1 gets her top choice, or a1 is matched to m1 by herself. Because a2 blocks the

former with x3, the latter is the unique stable allocation Y1 = {x2, x5, x7}. If a2 changes

her preference to P̂a2 : x4 − x5 − x3, the former allocation is no longer blocked — in fact,

Y2 = {x1, x4, x6} becomes the unique stable allocation. It follows that even if there exists

a mechanism ϕ that selects a stable outcome whenever one exists, strategy-proofness is

violated for asylum seekers as ϕ(s, Pa1 , P̂a2 , Pa3) = Y2 Pa2 ϕ(s, P ) = Y1.

5 Conclusion

We presented an alternative to the current decentralized asylum assignment to effectively

match asylum seekers to member states, taking into account the complex interplay of pref-

erences, priorities, capacities, and burden-sharing commitments. We demonstrate that a

centralized mechanism can ensure stability and strategy-proofness under conditions of equal

burden-sizes. However, when the burden-sizes differ, the feasibility of achieving these desir-

able properties is challenged.

While the homogeneous burden-size assumption simplifies the problem and leads to a

desirable solution, it might not reflect the real-world complexities of asylum assignment,

where some member states may face disproportionately higher numbers of asylum seekers

with families. To address the challenges posed by heterogeneous burden-sizes, one may

consider adjusting burden-sharing quotas over time by rewarding member states that accept

a disproportionate number of families by lowering their quotas in subsequent assignment

rounds. Such an approach could help mitigate the long-term effects of burden imbalances.

Another possibility worth exploring could be designing mechanisms that relax either stability

or strategy-proofness to accommodate heterogenous burden-sizes. Previous studies, such as

Nguyen and Vohra (2018) and Delacrétaz (2019), have already hinted at the potential trade-

offs and implications of such relaxations, offering avenues for future research.
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In terms of practicality, our proposed mechanism can be implemented at regular intervals

as a recurring process, allowing the batch of newly arrived asylum seekers to incorporate

their preferences into the asylum assignment process. This approach is similar to Japan’s

centralized daycare center allocation, which is not based on a first-come, first-served basis.

Instead, slots are assigned annually in April via a centralized algorithm that considers family

preferences and prioritizes children from low-income households, single-parent families, or

those with guardians facing health challenges (Sun et al., 2023). German municipalities

also allocate daycare places at regular intervals.8 Another example of this type of matching

mechanism is Singapore’s Build-To-Order (BTO) system for public housing, where flats are

allocated monthly based on buyers’ preferences and a priority system. While asylum seekers

arrive continuously, processing applications in batches at regular intervals could significantly

improve the current decentralized system.

8See https://kitamatch.com/.

18

https://kitamatch.com/


References
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Biró, Péter and Eric McDermid, “Matching with sizes (or scheduling with processing

set restrictions),” Discrete Applied Mathematics, 2014, 164, 61–67.

Caspari, Gian, “An alternative approach to asylum assignment,” 2019.

Dean, Brian C, Michel X Goemans, and Nicole Immorlica, “The unsplittable stable

marriage problem,” in “Fourth IFIP International Conference on Theoretical Computer

Science-TCS 2006: IFIP 19th Worm Computer Congress, TC-1, Foundations of Computer

Science, August 23–24, 2006, Santiago, Chile” Springer 2006, pp. 65–75.

19
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A Mathematical Appendix and Proofs

Theorem 1

Proof. We start with the if direction.

Feasibility : Suppose feasibility is violated and consider the first step k in which some asylum

seeker ak gets her second contract. That is, ak ∈ A(Zk−1) such that akπa′ for all a′ ∈
A(Zk−1) \ {ak}. Note that Zk−1 = {x ∈ X ′m : rwx

m > |Xk−1
wx
| and ax 6∈ A(Xk−1)} but by

assumption we have ak ∈ A(Xk−1) as one contract has already been accepted: leading to a

contradiction. Similarly, consider the first step k, in which |Xk−1
w | = rwm and wxk = w, again

we get a contradiction with ak ∈ A(Zk−1) as rwx
m = |Xk−1

wx
|.

Early filling : Consider some asylum seeker ak who got assigned contract xk at step k. Note

that the algorithm chooses the lowest contract in Zk−1
ak

, hence for x′ ∈ Xak with wx′ < wxk

we have that r
wx′
m = |Xk−1

w′x
|. Since all asylum seekers in Xk−1 have higher priority than xk,

it follows directly that |{a′ ∈ A(Xk−1
w′x

) : a′πa}| = |{a′ ∈ A(Cm(X ′)wx′
) : a′πa}| = rwx

m , and

thus early filling is satisfied.

Respecting member state priorities : Consider ak accepted at step k. We have that
∑

x∈Xk−1 s(ax) <

qm and since ak has higher priority than all remaining asylum seekers, we have
∑

x∈Xk−1 s(ax) =∑
{a′∈A(Cm(X′)):a′πma} s(a

′) < qm.

Similarly, if the algorithm ends at step k, we have that
∑

x∈Xk−1 s(ax) ≥ qm and as ak

has lower priority than all previously chosen asylum seekers, we have
∑

x∈Xk−1 s(ax) =∑
{a′∈A(Cm(X′)):a′πma} s(a

′) ≥ qm.

In step k, only contracts Zk−1 = {x ∈ X ′m : rwx
m > |Xk

wx
| and ax 6∈ A(Xk)} are considered.

Take any unassigned asylum seekers a ∈ A(X ′)\{a1, . . . , ak−1}: clearly any contract x ∈ X ′a\
Zk−1 does not qualify for a wait time as the bureaucratic capacity is already occupied with

higher priority asylum seekers, |Xk−1
wx
| = |{a′ ∈ A(Xk−1

wx
) : a′πa}| = |{a′ ∈ A(Cm(X ′)wx) :

a′πa}| = rwx
m . Similarly, if ak is accepted in step k then xk ∈ Zk−1 and hence |Xk−1

wx
| = |{a′ ∈

A(Xk−1
wx

) : a′πak}| = |{a′ ∈ A(Cm(X ′)wx) : a′πak}| ≤ rwx
m .

Hence, almost by construction, an asylum seeker is accepted if and only if she qualifies for

acceptance and a wait time.

We show the only if direction, proceeding by induction. Suppose the described algorithm

for determining Ĉm(X ′) stops after k steps, and therefore Ĉm(X ′) = Xk−1.

Base step. If the algorithm stops at step 1 then Ĉm(X ′) = Cm(X ′) = X0; otherwise,

X1 ⊆ Cm(X ′).

Suppose the algorithm stops at step 1.

We have
∑

x∈X0 s(ax) =
∑

x∈∅ s(ax) = 0 ≥ qm. It follows that no asylum seeker qualifies for

acceptance, since for all a ∈ A(X ′) we have
∑
{a′∈A(Cm(X′)):a′πma} s(a

′) ≥ qm. It follows that
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Ĉm(X ′) = Cm(X ′) = X0 = ∅ since Cm(X ′) satisfies respecting member state priorities.

Suppose the algorithm does not stop at step 1.

No contract in X ′ \ Z0 can ever be accepted without violating feasibility, hence the only

relevant asylum seekers are in the set A(Z0). Moreover, as the algorithm did not stop, we

have
∑

x∈X0 s(ax) =
∑

x∈∅ s(ax) = 0 < qm and Z0 6= ∅. As a1 is the highest priority asylum

seeker, we have that
∑
{a′∈A(Cm(X′)):a′πma} s(a

′) < qm and hence a1 qualifies for acceptance.

Similarly, |{a′ ∈ A(Cm(X ′)wx) : a′πa1}| ≤ rwx
m holds for all x ∈ Z0

a1 and therefore at least

one contract in Z0
a1 must be accepted since a1 also qualifies for a wait time. Due to early

filling, the lowest available wait time contract must be accepted, which in this case is x1,

that is x1 ∈ Cm(X ′) and therefore X1 = {x1} ⊆ Cm(X ′). In other words, the contract

accepted under the described choice rule — during step 1 of the described algorithm, that is,

X1 ⊆ Ĉm(X ′) — must also be accepted under any other choice rule satisfying the described

axioms X1 ⊆ Cm(X ′).

Induction step. We assume that if the algorithm stops at step k − 1 then Ĉm(X ′) =

Cm(X ′) = Xk−2, otherwise Xk−1 ⊆ Cm(X ′). Given that, if the algorithm stopped at step k

then Ĉm(X ′) = Cm(X ′) = Xk−1, otherwise Xk ⊆ Cm(X ′).

Note that if the algorithm stops at step k − 1 then Ĉm(X ′) = Cm(X ′) = Xk−2 by the

induction assumption.

Suppose the algorithm stops at step k.

We have
∑

x∈Xk−1 s(ax) ≥ qm. It follows that no asylum seeker qualifies for acceptance,

because due to the induction assumption for all remaining asylum seekers a ∈ A(Xk−1)

we have
∑
{a′∈A(Cm(X′)):a′πma} s(a

′) ≥ qm since Xk−1 ⊆ Cm(X ′). It follows that Ĉm(X ′) =

Cm(X ′) = Xk−1 as Cm(X ′) satisfies respecting member state priorities.

Suppose the algorithm does not stop at step k.

No contract in X ′ \ Zk−1 can ever be accepted without violating feasibility. Hence, the only

relevant asylum seekers areA(Zk−1). As the algorithm did not stop, we have
∑

x∈Xk−1 s(ax) <

qm and Zk−1 6= ∅. As ak is the highest priority asylum seeker, we have that
∑
{a′∈A(Cm(X′)):a′πma} s(a

′) <

qm and thus ak qualifies for acceptance. Similarly, |{a′ ∈ A(Cm(X ′)wx) : a′πak}| ≤ rwx
m holds

for all x ∈ Zk−1
ak

and hence at least one contract in Zk−1
ak

must be accepted as ak also qual-

ifies for a wait time. Due to early filling the lowest available wait time contract must be

accepted, which in this case is xk, that is xk ∈ Cm(X ′) and therefore together with the

induction assumption Xk = Xk−1 ∪ {xk} ⊆ Cm(X ′).

As the algorithm describing Ĉm(X ′) ends after a finite number of steps, we have Ĉm(X ′) =

Cm(X ′).
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Proposition 1

Proof. Consider X ′ and X ′∪{x∗} for some x∗ ∈ X \X ′. We refer to the relevant sets during

each step of the algorithm for Cm as Xk′′, Zk′′, and so on under the former (Cm(X ′)) and

Xk′, Zk′, and so on under the latter (Cm(X ′ ∪ {x∗})).
Given that x∗ 6∈ Cm(X ′∪{x∗}), we want to show that C ′m(X ′∪{x∗}) = Cm(X ′). We proceed

by induction.

Base step: We assume that x∗ 6∈ Cm(X ′ ∪ {x∗}). If the former algorithm (Cm(X ′)) stops

at step 1 we have Cm(X ′ ∪ {x∗}) = Cm(X ′) and X1′ = X1′′ otherwise.

Suppose the former algorithm stops at step 1.

Case 1: If
∑

x∈X0′′ s(ax) ≥ qm then
∑

x∈X0′ s(ax) ≥ qm as X0′′ = X0′ = ∅ and therefore

Cm(X ′ ∪ {x∗}) = Cm(X ′) = ∅.

Case 2: If
∑

x∈X0′′ s(ax) < qm but Z0′′ = ∅ then Z0′ ⊆ {x∗} while if Z0′ = {x∗} we have

C ′m(X ′ ∪ {x∗}) = {x∗}, leading to a contradiction. Hence Z0′ = Z0′′ and Cm(X ′ ∪ {x∗}) =

Cm(X ′).

Otherwise, consider a1′′ defined as a ∈ A(Z0′′), such that aπa′ for all a′ ∈ A(Z0′′) \ {a}, and

x1′′ defined as x ∈ Z0′′
a1′′ , such that wx < wx′ for all x′ ∈ Z0′′

a1′′ \ {x}.
Suppose by contradiction that x1′ 6= x1′′. Note that, by assumption x1′ 6= x∗ and by defini-

tion, we have x1′ ∈ Z0′. If ax1′ 6= ax1′′ , we reach a contradiction, as ax1′ ∈ A(Z0′′) and there-

fore there exists a higher priority asylum seeker. Similarly, given ax1′ = ax1′′ but wx1′ 6= wa1′′ ,

we reach a contradiction as x1′ ∈ Z0′′
a1′′ and the lowest wait time contract is uniquely defined.

Finally, since x1′ = x1′′ and X0′ = X0′′ = ∅ we have X1′ = X0′∪{x1′} = X0′′∪{x1′′} = X1′′.

Induction step: By the induction assumption, if the algorithm has not stopped at step

k − 1, we have Xk−1′ = Xk−1′′. We want to show that if the former algorithm stops at step

k we have Cm(X ′ ∪ {x∗}) = Cm(X ′) and Xk′ = Xk′′ otherwise.

Suppose the former algorithm stops at step k.

Case 1: If
∑

x∈Xk−1′′ s(ax) ≥ qm then
∑

x∈Xk−1′ s(ax) ≥ qm as Xk−1′′ = Xk−1′ and therefore

Cm(X ′ ∪ {x∗}) = Cm(X ′) = Xk′′.

Case 2: If
∑

x∈Xk−1′′ s(ax) < qm but Zk′′ = ∅ then Zk′ =⊆ {x∗}. If Zk′ = {x∗} we have

C ′m(X ′ ∪ {x∗}) = {x∗}, leading to a contradiction. Hence Zk′ = Zk′′ and Cm(X ′ ∪ {x∗}) =

Cm(X ′).

Otherwise, consider ak′′ defined as a ∈ A(Zk′′), such that aπa′ for all a′ ∈ A(Zk′′) \ {a}, and

xk′′ defined as x ∈ Zk′′
ak′′ , such that wx < wx′ for all x′ ∈ Zk′′

ak′′ \ {x}.
Suppose by contradiction that xk′ 6= xk′′. Note that by assumption xk′ 6= x∗ and moreover

Zk′ \ {x∗} = Zk′′. If axk′ 6= axk′′ , we reach a contradiction, as axk+1′ ∈ A(Zk′′) and the

highest priority asylum seeker is uniquely defined. Similarly, given axk′ = axk′′ but wxk′ 6=
wak′′ , we reach a contradiction, as xk′ ∈ Zk′′

ak′′ and the lowest wait time contract is uniquely
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defined. Finally, since xk′ = xk′′ and by the induction assumption Xk′ = Xk′′, we have

Xk′ = Xk−1′ ∪ {xk′} = Xk−1′′ ∪ {xk′′} = Xk′′.

Lemma 1

Proof. We have to show that for any X ′ ⊆ X, whenever there do not exist two contracts

x, x′ ∈ C ′m(X ′) specifying the same asylum seeker a(x) = a(x′) we must have C ′m(X ′) =

Cm(X ′). The proof is by induction on contracts accepted during the steps of the algorithms

describing the choice functions.

Base Step: If the algorithm describing Cm stops at the end of step 1 then C ′m(X ′) = Cm(X ′)

and X1′ = X1 otherwise.

Suppose the algorithm stops at step 1.

By the definition of step 0 we have X0′ = X0 = ∅ and therefore Z0′ = {x ∈ X ′m :

rwx
m > |X0

wx
| and x 6∈ X0)} = Z0 = {x ∈ X ′m : rwx

m > |X0
wx
| and ax 6∈ A(X0)}. Hence,

if
∑

x∈X0 s(ax) ≥ qm, then
∑

x∈X0′ s(ax) ≥ qm and both algorithms end. Similarly, if Z0 = ∅
then Z0′ = ∅ and both algorithms end. In both instances C ′m(X ′) = X0′ = X0 = Cm(X ′).

Suppose the algorithm does not stops at step 1.

Under the original choice rule the highest priority asylum seeker in a ∈ A(Z0) is chosen,

which is identical to the highest priority asylum seeker under A(Z0′) = A(Z0), and hence

a1′ = a1. Moreover, the original choice rule selects the lowest wait time contact in Z0, which

is identical to the lowest wait time contract in Z0′ = Z0, and hence x1′ = x1. Trivially, we

have X1′ = X0′ ∪ {x1′} = X0 ∪ {x1} = X1.

Induction Step: We assume that if the algorithm describing Cm stops at the end of step

k − 1, then C ′m(X ′) = Cm(X ′) and Xk−1′ = Xk−1 otherwise.

We show that if the algorithm describing Cm stops at the end of step k, then C ′m(X ′) =

Cm(X ′) and Xk′ = Xk otherwise.

Suppose the algorithm stops at step k.

By the induction assumptionXk−1′ = Xk−1. Hence, if
∑

x∈X0 s(ax) ≥ qm then
∑

x∈X0′ s(ax) ≥
qm and both algorithms end, and by the induction assumption C ′m(X ′) = Xk−1′ = Xk−1 =

Cm(X ′).

By the induction assumption we have Xk−1′ = Xk−1, as well as by definition Zk−1′ = {x ∈
X ′m : rwx

m > |Xk−1
wx
| and x 6∈ Xk−1)} ⊇ Zk−1 = {x ∈ X ′m : rwx

m > |Xk−1
wx
| and ax 6∈ A(Xk−1)}.

Suppose there exist some x ∈ Zk−1′ \ Zk−1. In this case x belongs to an asylum seeker

already being assigned a contract ax ∈ A(Xk−1) with higher priority than any asylum seeker

a ∈ A(Zk−1). In other words, xk′ ∈ Zk−1′\Zk−1 and at the same time we reach a contradiction
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with the initial assumption that there do not exist two accepted contracts specifying the same

contracts, that is, there exists x ∈ Xk−1 with ax = axk′ . We get Zk−1′ = Zk−1.

Suppose Zk−1 = ∅. Then Zk−1′ = Zk−1 implies that C ′m(X ′) = Xk−1′ = Xk−1 = Cm(X ′).

Suppose the algorithm does not stops at step k.

Under the original choice rule the highest priority asylum seeker in a ∈ A(Zk) is chosen,

which is identical to the highest priority asylum seeker under A(Zk′) = A(Zk), and hence

ak′ = ak. Moreover, the original choice rule selects the lowest wait time contact in Zk, which

is identical to the lowest wait time contract in Zk′ = Zk, and hence xk′ = xk. Trivially, we

have Xk′ = Xk−1′ ∪ {xk′} = Xk−1 ∪ {xk} = Xk.

Lemma 2

Lemma 2 is helpful for analyzing the completion C ′m. Lemma 2 compares the contracts

accepted under C ′m(X) and C ′m(X ∪ {x∗}) given that x∗ ∈ Cm(X ′ ∪ {x∗}) and under the

assumption that the burden-sharing stopping condition is not binding, that is, assuming∑
x∈X′∪{x∗} s(ax) ≥ qm. In essence, it states that there exists at most one previously accepted

contract x ∈ C ′m(X) that gets rejected x 6∈ C ′m(X ∪ {x∗}).

Lemma 2. Assume
∑

x∈X′∪{x∗} s(ax) ≥ qm. Consider C ′m(X ′) and Cm(X ′ ∪ {x∗}) for some

x∗ ∈ X \ X ′ with x∗ ∈ Cm(X ′ ∪ {x∗}). Let {x1′′, . . . , xK′′} = C ′m(X ′) and {x1′, . . . , xl′ =

x∗, . . . , xK′} ⊆ C ′m(X ∪ {x∗}). Let step l1 be the step at which x∗ gets accepted. If

|C ′m(X ′)wx∗ | = rwx∗ , let step l2 be the step at which the last contract with wait time wx∗

gets accepted (l2 ≥ l1).

Consider a contract xj′ 6= x∗

i) if j < l1 then xj′ = xj′′,

ii) if l2 > j > l1 then xj′ = xj−1′′, and

iii) if j > l2 then xj′ = xj′′.

Proof. Consider X ′ and X ′∪{x∗} for some x∗ ∈ X \X ′. We refer to the relevant sets during

each step of the algorithm for C ′m as Xk′′, Zk′′, and so on under the former (C ′m(X ′)) and

Xk′, Zk′, and so on under the latter (C ′m(X ′ ∪ {x∗})).
For now, consider both algorithms but ignore the stopping point of either algorithm due to∑

x∈Xk−1′ s(ax) ≥ qm and
∑

x∈Xk−1′′ s(ax) ≥ qm, respectively. In other words, assume that∑
x∈X′∪{x∗} s(ax) ≥ qm.

26



Moreover, assume that in step l the latter accepts xl′ = x∗ and the former xl′′ and denote wx∗

by w∗. Also, set the contracts accepted under the former as {x1′′, . . . , xl′′, . . . , xl+k′′, . . . , xK′′}.
Base Step. Consider step l + 1.

Case 1: If |X l′′
w∗ | = |X l′

w∗| = rw
∗

m and |X l′′
w | = |X l′

w| for all w ∈ W , then xl+1′ = xl+1′′, . . . , xK′ =

xK′′.

Case 2: If |X l′′
w∗| = |X l′

w∗| < rw
∗

m and |X l′′
w | = |X l′

w| for all w ∈ W , then xl+1′ = xl′′ with

w∗ = wxl′′ .

Case 3: If |X l′′
w

xl′′
| = |X l′

w
xl′′
|+1, |X l′

w∗| = |X l′′
w∗|+1, and |X l′′

w | = |X l′
w| for all w ∈ W \{w∗, wxl′′},

then xl+1′ = xl′′ with w∗ 6= wxl′′ .

Up until step l both algorithms accept identical contracts during each step, so X l−1′ = X l−1′′.

Note that Zk′ = {x ∈ X ′m : rxwm > |X l′
w| and x 6∈ X l′} as X l′ = X l−1′ ∪ {x∗} and Zk′′ = {x ∈

X ′m : rxwm > |X l′′
w | and x 6∈ X l′′} with X l′′ = X l−1′ ∪ {xl′′}. It follows that we can consider

the following three relevant cases, covering every possible outcome.

Case 1: w∗ = wxl′′ and |X l−1′′
w∗ |+ 1 = |X l−1′

w∗ |+ 1 = rw
∗

m .

We have |X l′′
w∗| = |X l′

w∗ | = rw
∗

m , |X l′′
w | = |X l′

w| for all w ∈ W , and X l′′ \ {xl′′} = X l′ \ {x∗}.
Hence,

Z l′ = {x ∈ X ′m : rxwm > |X l′
w| and x 6∈ X l′}

= {x ∈ X ′m : rxwm > |X l′′
w | and x 6∈ X l′′}

= Z l′′.

It follows that every remaining step of both algorithms is identical, that is, xl+1′ = xl+1′′, . . . , xK′ =

xK′′. That is of course, everything is identical, except that
∑

x∈Xl′ s(ax) might differ from∑
x∈Xl′′ s(ax), which is irrelevant, since by assumption

∑
x∈X′ s(ax) ≥ qm.

Case 2: w∗ = wl′′ and |X l−1′′
w∗ |+ 1 = |X l−1′

w∗ | < rw
∗

m .

We have |X l′′
w∗| = |X l′

w∗ | < rw
∗

m , |X l′′
w | = |X l′

w| for all w ∈ W , and X l′′ \ {xl′′} = X l′ \ {x∗}.
Hence,

Z l′ = {x ∈ X ′m : rxwm > |X l′
w| and x 6∈ X l′}

= {x ∈ X ′m : rxwm > |X l−1′′
w | and x 6∈ X l−1′′}

= Z l−1′′.

Since xl′′ was chosen due to having the highest priority and lowest wait time in Z l−1′′, we

have xl+1′ = xl′′.

Case 3: w∗ 6= wl′′.

We have |X l′′
w

xl′′
| = |X l′

w
xl′′
| + 1, |X l′

w∗| = |X l′′
w∗| + 1, |X l′′

w | = |X l′
w| for all w ∈ W \ {w∗, wxl′′},
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and X l′′ \ {xl′′} = X l′ \ {x∗}. Hence,

Zk′ = {x ∈ X ′m : rxwm > |X l′
w| and x 6∈ X l′}

⊆ {x ∈ X ′m : rxwm > |X l−1′′
w | and x 6∈ X l−1′}

= Z l−1′′

Since xl′′ was chosen due to having the highest priority and lowest wait time in Z l−1′′, we

have xl+1′ = xl′′ as xl′′ ∈ Z l′ ⊆ Z l−1′′.

Induction Step.

Induction assumption: Assume there are cases 1, 2, and 3 at step l + k.

Case 1: If |X l+k−1′′
w∗ | = |X l+k−1′

w∗ | = rw
∗

m and |X l+k−1′′
w | = |X l+k−1′

w | for all w ∈ W then

xl+k′ = xl+k′′, . . . , xK′ = xK′′.

Case 2: If |X l+k−1′′
w∗ | = |X l+k−1′

w∗ | < rw
∗

m and |X l+k−1′′
w | = |X l+k−1′

w | for all w ∈ W then

xl+k′ = xl+k−1′′, with w∗ = wxl+k−1′′ .

Case 3: If |X l+k−1′′
w

xl+k−1′′
| = |X l+1′

w
xl+k−1′′

|+ 1, |X l+k−1′
w∗ | = |X l+k−1′′

w∗ |+ 1 and |X l+k−1′′
w | = |X l+k−1′

w |
for all w ∈ W \ {w∗, wxl′′} then xl+k′ = xl+k−1′′, with w∗ 6= wxl+k−1′′ .

There are the same cases 1, 2, and 3 at step l + k + 1.

Case 1 holds at step l + k.

Note that at step l + k if we are in case 1 then trivially case 1 holds for step l + k + 1.

Case 2 holds at step l + k.

By the induction assumption, |X l+k−1′′
w∗ | = |X l+k−1′

w∗ | < rw
∗

m ,|X l+k−1′′
w | = |X l+k−1′

w | for all

w ∈ W , and we have xl+k′ = xl+k−1′′, with w∗ = wxl+k−1′′ .

Case 1: We are in case 1 if wxl+k′′ = w∗ and |X l+k−1′′
w∗ |+ 1 = |X l+k−1′

w∗ |+ 1 = rw
∗

m .

We have |X l+k′′
w∗ | = |X l+k′

w∗ | = rw
∗

m , |X l+k′′
w | = |X l+k′

w | for all w ∈ W , and X l+k′′ \ {xl+k′′} =

X l+k′ \ {x∗}. Hence,

Z l+k′ = {x ∈ X ′m : rxwm > |X l+k′
w | and x 6∈ X l+k′}

= {x ∈ X ′m : rxwm > |X l+k′′
w | and x 6∈ X l+k′′}

= Z l+k′′.

Therefore, all remaining accepted contracts are identical, that is xl+k+1′ = xl+k+1′′, . . . , xK′ =

xK′′.

Case 2: We are in case 2 if wxl+k′′ = w∗ and |X l+k−1′′
w∗ |+ 1 = |X l+k−1′

w∗ |+ 1 = rw
∗

m .

We have |X l+k′′
w∗ | = |X l+k′

w∗ | < rw
∗

m , |X l+k′′
w | = |X l+k′

w | for all w ∈ W , and X l+k′′ \ {xl+k′′} =
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X l+k′ \ {x∗}. Hence,

Z l+k′ = {x ∈ X ′m : rxwm > |X l+k′
w | and x 6∈ X l+k′}

= {x ∈ X ′m : rxwm > |X l+k−1′′
w | and x 6∈ X l+k−1′′}

= Z l+k−1′′.

Since xl+k′′ was chosen due to having the highest priority and lowest wait time in Z l−1′′, we

have xl+k+1′ = xl+k′′.

Case 3: We are in case 3 if wxl+k′′ 6= w∗.

We have |X l+k′′
w

xl+k′′
| = |X l+k′

w
xl+k′′
| + 1, |X l+k′

w∗ | = |X l+k′′
w∗ | + 1, |X l+k′′

w | = |X l+k′
w | for all w ∈

W \ {w∗, wxl+k′′}, and X l+k′′ \ {xl+k′′} = X l+k′ \ {x∗}. Hence,

Z l+k′ = {x ∈ X ′m : rxwm > |X l+k′
w | and x 6∈ X l+k′}

⊆ {x ∈ X ′m : rxwm > |X l+k−1′′
w | and x 6∈ X l+k−1′′}

= Z l+k−1′′.

Since xl+k′′ was chosen due to having the highest priority and lowest wait time in Z l+k−1′′,

we have xl+k+1′ = xl+k′′ as xl+k′′ ∈ Z l+k′ ⊆ Z l+k−1′′.

Case 3 holds at step l + k.

By the induction assumption, |X l+k−1′′
w

xl+k−1′′
| = |X l+k−1′

w
xl+k−1′′

| + 1, |X l+k−1′
w∗ | = |X l+k−1′′

w∗ | + 1,

|X l+k−1′′
w | = |X l+k−1′

w | for all w ∈ W \ {w∗, wxl′′} and we have xl+k′ = xl+k−1′′, with

w∗ 6= wxl+k−1′′ .

Case 1: We are in case 1 if wxl+k′′ = w∗ and |X l+k−1′′
w∗ |+ 1 = rw

∗
m .

We have |X l+k′′
w∗ | = |X l+k′

w∗ | = rw
∗

m , |X l+k′′
w | = |X l+k′

w | for all w ∈ Wand X l+k′′ \ {xl+k′′} =

X l+k′ \ {x∗}.
The remaining argument for xl+k+1′ = xl+k+1′′, . . . , xK′ = xK′′ is identical to the previous

argument for case 1 as Z l+k′ = Z l+k′′.

Case 2: We are in case 2 if wxl+k′′ = w∗ and |X l+k−1′′
w∗ |+ 1 < rw

∗
m .

We have |X l+k′′
w∗ | = |X l+k′

w∗ | < rw
∗

m and |X l+k′′
w | = |X l+k′

w | for all w ∈ W , and X l+k′′ \ {xl+k′′} =

X l+k′ \ {x∗}.
The remaining argument for xl+k+1′ = xl+k′′ is identical to the previous argument for case 2,

as Z l+k′ = Z l+k−1′′.

Case 3: We are in case 3 if wxl+k′′ 6= w∗.

We have |X l+k′′
w

xl+k′′
| = |X l+k′

w
xl+k′′
| + 1, |X l+k′′

w∗ | + 1 = |X l+k′
w∗ |, |X l+k′′

w | = |X l+k′
w | for all w ∈

W \ {w∗, wxl+k′′}, and X l+k′′ \ {xl+k′′} = X l+k′ \ {x∗}.
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The remaining argument for xl+k+1′ = xl+k′′ is identical to the previous argument for case 3,

as xl+k′′ ∈ Z l+k′ ⊆ Z l+k−1′′.

Proposition 2

Proof. This proof is almost identical to the proof for Proposition 1. ConsiderX ′ andX ′∪{x∗}
for some x∗ ∈ X \X ′. We refer to the relevant sets during each step of the algorithm for C ′m

as Xk′′, Zk′′, and so on under the former (C ′m(X ′)) and Xk′, Zk′, and so on under the latter

(C ′m(X ′ ∪ {x∗})).
Given that x∗ 6∈ C ′m(X ′∪{x∗}), we want to show that C ′m(X ′∪{x∗}) = C ′m(X ′). We proceed

by induction.

Base step: We assume that x∗ 6∈ C ′m(X ′ ∪ {x∗}). If the former algorithm (C ′m(X ′)) stops

at step 1, we have C ′m(X ′ ∪ {x∗}) = C ′m(X ′) and X1′ = X1′′ otherwise.

Suppose the former algorithm stops at step 1.

Case 1: If
∑

x∈X0′′ s(ax) ≥ qm, then
∑

x∈X0′ s(ax) ≥ qm as X0′′ = X0′ = ∅ and therefore

C ′m(X ′ ∪ {x∗}) = C ′m(X ′) = ∅.

Case 2: If
∑

x∈X0′′ s(ax) < qm but Z0′′ = ∅, then Z0′ ⊆ {x∗} while if Z0′ = {x∗} we have

C ′m(X ′∪{x∗}) = {x∗}, which leads to a contradiction. Hence Z0′ = Z0′′ and C ′m(X ′∪{x∗}) =

C ′m(X ′).

Otherwise, consider a1′′ defined as a ∈ A(Z0′′), such that aπa′ for all a′ ∈ A(Z0′′) \ {a}, and

x1′′ defined as x ∈ Z0′′
a1′′ , such that wx < wx′ for all x′ ∈ Z0′′

a1′′ \ {x}.
Suppose by contradiction that x1′ 6= x1′′. Note that, by assumption x1′ 6= x∗ and by defini-

tion, we have x1′ ∈ Z0′. If ax1′ 6= ax1′′ we reach a contradiction, as ax1′ ∈ A(Z0′′) and therefore

there exists a higher priority asylum seeker. Similarly, given ax1′ = ax1′′ but wx1′ 6= wa1′′ , we

reach a contradiction, as x1′ ∈ Z0′′
a1′′ and the lowest wait time contract is uniquely defined.

Finally, since x1′ = x1′′ and X0′ = X0′′ = ∅, we have X1′ = X0′∪{x1′} = X0′′∪{x1′′} = X1′′.

Induction step: By the induction assumption, if the algorithm has not stopped at step

k − 1, we have Xk−1′ = Xk−1′′. We want to show that if the former algorithm stops at step

k, we will have C ′m(X ′ ∪ {x∗}) = C ′m(X ′) and Xk′ = Xk′′ otherwise.

Suppose the former algorithm stops at step k.

Case 1: If
∑

x∈Xk−1′′ s(ax) ≥ qm, then
∑

x∈Xk−1′ s(ax) ≥ qm as Xk−1′′ = Xk−1′ and therefore

C ′m(X ′ ∪ {x∗}) = C ′m(X ′) = Xk′′.

Case 2: If
∑

x∈Xk−1′′ s(ax) < qm but Zk′′ = ∅, then Zk′ =⊆ {x∗}. If Zk′ = {x∗}, we have

C ′m(X ′∪{x∗}) = {x∗}, which leads to a contradiction. Hence Zk′ = Zk′′ and C ′m(X ′∪{x∗}) =

C ′m(X ′).

30



Otherwise, consider ak′′ defined as a ∈ A(Zk′′), such that aπa′ for all a′ ∈ A(Zk′′) \ {a}, and

xk′′ defined as x ∈ Zk′′
ak′′ such that wx < wx′ for all x′ ∈ Zk′′

ak′′ \ {x}.
Suppose by contradiction that xk′ 6= xk′′. Note that, by assumption xk′ 6= x∗ and moreover

Zk′ \ {x∗} = Zk′′. If axk′ 6= axk′′ , we reach a contradiction, as axk+1′ ∈ A(Zk′′) and the

highest priority asylum seeker is uniquely defined. Similarly, given axk′ = axk′′ but wxk′ 6=
wak′′ , we reach a contradiction as xk′ ∈ Zk′′

ak′′ and the lowest wait time contract is uniquely

defined. Finally, since xk′ = xk′′ and by the induction assumption Xk′ = Xk′′, we have

Xk′ = Xk−1′ ∪ {xk′} = Xk−1′′ ∪ {xk′′} = Xk′′.

By Lemma 1, C ′m is a completion of Cm(X ′), and therefore there exists a completion satisfying

irrelevance of rejected contracts.

Proposition 4

Proof. Consider X ′ and X ′∪{x∗} for some x∗ ∈ X \X ′. We refer to the relevant sets during

each step of the algorithm for C ′m as Xk′′, Zk′′, and so on under the former (C ′m(X ′)) and

Xk′, Zk′, and so on under the latter (C ′m(X ′ ∪ {x∗})).
Case 1. Suppose that x∗ 6∈ C ′m(X ′ ∪ {x∗}).
By irrelevance of rejected contracts C ′m(X ′∪{x∗}) = C ′m(X ′) and therefore |C ′m(X ′∪{x∗})| =
|C ′m(X ′)|.
Case 2. Suppose that x∗ ∈ C ′m(X ′ ∪ {x∗}).
Consider a step j with l2 ≥ j > l1 where we have Xj−1′′ = {x1′′ . . . , xl1′′, . . . , xj−1′′} and

by Lemma 2 we get that Xj−1′ = {x1′′ . . . , x∗, xl1′′, . . . , xj−2′′}. In other words, Xj−1′′ \
{xj−1′′} = Xj−1′ \ {x∗} and by small burden-size priority s(ax∗) ≤ s(axj−1′′) and therefore∑

x∈Xj−1′ s(ax) ≤
∑

x∈Xj−1′′ s(ax).

It follows that if another step is taken under X ′, then another step is taken under X ′ ∪ {x}.
Similarly, for any step j with j > l2, we have Xj−1′′ = {x1′′ . . . , xl1′′, . . . , xl2′′, . . . , xj−1′′}
and by Lemma 2 we get thatXj−1′ = {x1′′, . . . , x∗, xl1′′, . . . , xl2′ = xl2−1′′, xl2+1′ = xl2+1′′, . . . , xj−1′ =

xj−1′′}.
In other words, Xj−1′′\{xl2′′} = Xj−1′\{x∗} with ax∗πaxl2′′ and by small burden-size priority

s(ax∗) ≤ s(xl2′′) and therefore
∑

x∈Xj−1′ s(ax) ≤
∑

x∈Xj−1′′ s(ax).

It follows that if another step is taken under X ′, then another step is taken under X ′ ∪ {x}.
To sum up, under small burden-size, if another step is taken under the algorithm for X ′,

then another step is taken under the algorithm for X ′ ∪ {x}. Since each step corresponds to

an accepted contract, we have |C ′m(X ′ ∪ {x∗})| ≥ |C ′m(X ′)|.
By Lemma 1, C ′m is a completion of Cm(X ′), and therefore there exists a completion satisfying

the law of aggregate demand.
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Proposition 3

Proof. Consider X ′ and X ′∪{x∗} for some x∗ ∈ X \X ′. We refer to the relevant sets during

each step of the algorithm for C ′m as Xk′′, Zk′′, and so on under the former (C ′m(X ′)) and

Xk′, Zk′, and so on under the latter (C ′m(X ′ ∪ {x∗})).
Case 1. Suppose that x∗ 6∈ C ′m(X ′ ∪ {x∗}).
By irrelevance of rejected contracts C ′m(X ′ ∪ {x∗}) = C ′m(X ′) and therefore if x ∈ C ′m(X ′ ∪
{x∗}) then x ∈ C ′m(X ′).

Case 2. Suppose that x∗ ∈ C ′m(X ′ ∪ {x∗}).

Consider a step j with l2 ≥ j > l1 where we have Xj−1′′ = {x1′′ . . . , xl1′′, . . . , xj−1′′} and

by Lemma 2 we get that Xj−1′ = {x1′′ . . . , x∗, xl1′′, . . . , xj−2′′}.
In other words, Xj−1′′ \ {xj−1′′} = Xj−1′ \ {x∗} and by large burden-size priority s(ax∗) ≥
s(axj−1′′) and therefore

∑
x∈Xj−1′ s(ax) ≥

∑
x∈Xj−1′′ s(ax).

It follows that if another step is taken under X ′ ∪ {x}, then another step is taken under X ′

— large-size priority reverses the observation under Proposition 4.

Similarly, for any step j with j > l2, we have Xj−1′′ = {x1′′ . . . , xl1′′, . . . , xl2′′, . . . , xj−1′′}
and by Lemma 2 we get thatXj−1′ = {x1′′, . . . , x∗, xl1′′, . . . , xl2′ = xl2−1′′, xl2+1′ = xl2+1′′, . . . , xj−1′ =

xj−1′′}. In other words, Xj−1′′\{xl2′′} = Xj−1′\{x∗} with ax∗πaxl2′′ and by large burden-size

priority s(ax∗) ≤ s(ax∗∗) and therefore
∑

x∈Xj−1′ s(ax) ≥
∑

x∈Xj−1′′ s(ax).

It follows that if another step is taken under X ′ ∪ {x}, then another step is taken under X ′.

To sum up, under large burden-size, if another step is taken under the algorithm for X ′∪{x},
then another step is taken under the algorithm for X ′. Therefore, if x ∈ C ′m(X ′∪{x∗})\{x∗}
then x ∈ C ′m(X ′)

By Lemma 1, C ′m is a completion of Cm(X ′), and therefore there exists a completion satisfying

substitutability.
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