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Abstract

Overconservatism has long been recognized as a major issue of robust op-

timization, despite its major advantages of tractability, performance guar-

antee, and limited information. A new criterion based on adjustable regret

is proposed to address this issue by adapting the level of conservatism to

the environment, while maintaining all the aforementioned advantages. The

level of conservatism can be fine-tuned by maximizing the reward guaran-

tee for scenarios representative of opportunities provided by experts as most

likely values, leading to a simple heuristic to best catch opportunities. This

criterion also supports a new approach to competitive ratio analysis that is

applicable even to multistage problems. The new criterion is then applied

to the one-way trading problem with analytical solutions, from which the

competitive ratio is easily derived by the new approach. Numerical exper-

iments are conducted to demonstrate fine control of conservatism and the

effectiveness of the heuristic, with the average reward improved in one case

by 3 - 9% over other commonly used criteria.
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1. Introduction.

Robust optimization (RO) is a popular method of decision making under

uncertainty, and the decision criterion plays a key role in achieving the ma-

jor advantages of RO: limited informatin requirement, robust solutions with

a performance guarantee, and computational tractability. Limited informa-

tion for RO is provided by an uncertainty set with all possible scenarios,

without any probabilistic distribution as required by stochastic optimiza-

tion. The outcome of an action depends on the realized scenario, it relies on

the criterion to evaluate an action when only the outcomes for scenarios are

known with limited information. The recommended solutions are robust as

the criterion endows them with a performance guarantee for worst scenar-

ios. And finally, computational tractability generally relies on the criterion

preserving convexity, as many classes of convex optimization problems admit

polynomial-time algorithms (Nesterov and Nemirovskii 1994), while mathe-

matical optimization is NP-hard in general (Murty and Kabadi 1987). The

convexity of the feasible region is naturally preserved in RO, so convexity is

preserved as long as the criterion forms a convex objective. These advantages

have made RO an appealing method in various fields of applications, such as

finance, operations management, aerospace, and defense.

Despite these advantages, a major issue with RO is overconservatism,

which has led to flurries of highly fruitful researches. Obsessed with the worst

scenario while ignoring all opportunities in others, no matter how likely they

may occur, overconservatism ends up sacrificing too much performance for

the sake of robustness, which seriously hinders the adoption of RO in indus-

tries, such as robust revenue management in airlines (Vinod 2021). Such an
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obsession is abated by having some ambiguous information on probability

distributions in distributionally robust optimization (DRO), a less conser-

vative method that has attracted great research interests, see Kuhn et al.

(2025) for a recent survey and Zhen et al. (2025) for a unified thoery. Mean-

while, combating overconservatism without distributions has always been an

active and important research front for RO soon after the first RO models

appear in Soyster (1973). These early models are extremely pessimistic on

how uncertainty affects feasibility and performance, contributing to overcon-

servatism in two ways: Firstly, extreme scenarios may render some good

solutions infeasible; Secondly, the minimax (cost) criterion evaluates a solu-

tion by the worst scenario while ignoring all opportunities in others. Hence

overconservatism has been tackled accordingly by either excluding certain

extreme scenarios or resorting to less conservative criteria.

Scenario exclusion begins by questioning the absolute guarantee of fea-

sibility under all scenarios, especially those rare and extreme ones. Though

necessary for critical applications where infeasibility causes disasters like

doomed satellites or damaged rovers, it can be relaxed if adverse events only

bring about limited consequences, such as low demand or supply in business.

In the latter case, it is acceptable to exclude some rare and extreme scenarios

and have a smaller uncertainty set, settling for a probabilistic feasibility guar-

antee in exchange for better performance. Researches in this regard provide

insights into robust solutions as well as probabilistic guarantees of feasibility,

see Ben-Tal and Nemirovski (2008) and Bertsimas et al. (2011) for a compre-

hensive survey and Ben-Tal et al. (2009) for a book treatment. Models with

ellipsoidal uncertainty sets are proposed by Ben-Tal and Nemirovski (1998,
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1999, 2000), El-Ghaoui and Lebret (1997), and El Ghaoui et al. (1998). As

such models are nonlinear and computationally demanding, Bertsimas and

Sim (2004) proposes uncertainty budget to fully control the uncertainty set

while maintaining linearity. In this approach, the uncertainty set is tampered

with to trade-off between robustness and performance, which can be difficult

in practice as it may need probability estimation for those rare and extreme

scenarios.

Another direction to tackle overconservatism is by employing alternative

decision criterion. The minimax criterion adopted in the earliest RO mod-

els is invented when economists contemplated on decision theories (Wald

1950). This criterion is critisized by Savage (1954) as “ultrapessimistic”, as

it focuses entirely on performances in the worst scenario and ignores all plau-

sible opportunities in others. The opportunity in a scenario is fully realized

in and measured by the ex post (i.e. after knowing the scenario) optimal

objective. The regret of a solution is the opportunity loss defined as the

difference between the objectives of the ex post optimal and the solution.

Savage (1951) proposes the minimax regret criterion as a less conservative

criterion that minimizes the worst-case regret, which also serves as a regret

guarantee. The so-called “competitive ratio,” a popular criterion for online

optimization (Borodin and El-Yaniv 2005; Kouvelis and Yu 2013), is equiv-

alent to the relative regret criterion, which considers the ratio of regret to

the ex post optimal objective instead. Various numerical studies find the

absolute regret less conservative than the relative regret, which is in turn

less conservative than the maximin criterion in reward maximizing problems

(Lan et al. 2008; Perakis and Roels 2008; Poursoltani and Delage 2021).
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All these commonly used criteria maintain the major advantages of RO,

yet they only offer three distinct levels of conservatism, and it is only possible

with a continuum of choices to have fine control of conservatism. An early

attempt is made by Hurwicz (1951) with the Hurwicz criterion, which evalu-

ates a solution by a weighted sum of its worst and best outcomes in order to

balance pessimism and optimism. There is a “coefficient of pessimism” (α)

between 0 and 1 as the weight on the worst outcome, while (1−α) weights on

the best outcome. It becomes the most conservative as the minimax criterion

when α = 1, and the most aggressive as the minimin criterion when α = 0,

and in between it generally gets more and more conservative as α increases.

Unfortunately, its major drawback is not preserving convexity, thus losing

the advantage of computational tractability.

Many other criteria are proposed thereafter to moderate conservatism

for fine control, but none of them can keep all the major advantages of

RO. For example, the p-robustness by Snyder (2006) first screens out by

additional constraints overly conservative solutions whose worst-case regret

exceeds an upper limit, but sometimes it is very difficult to determine if it

is making a problem infeasible. Kalaı et al. (2012) suggest the lexicographic

robustness criterion to mitigate the primary role of the worst-case scenario in

solution evaluation, yet it requires finite uncertainty sets, and poses a serious

computational challenge for large uncertainty sets.

This work aspires to create a new criterion for fine control of conser-

vatism while upholding all the major advantages of RO. Adjustable regret

minimization (ARM) is proposed as a new criterion with a continuum of

conseratism choices. The regret becomes adjustable by comparing the actual
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objective not with a fixed ex post optimal, but with that ex post optimal

scaled by a conservatism control parameter (CCP). It turns out this simple

design works with limited information, comes with performance guarantees,

and maintains tractability by preserving convexity. Most interestingly, the

criterion generally gets more aggressive as the CCP increases, which enables

the CCP to adjust the level of conservatism for fine control. By optimizing

certain performance measures, such as the reward guarantee for scenarios

representative of opportunities, derived from experts estimating most likely

values (as for task durations in project management), a simple heuristic to

determine the CCP is proposed, analyzed theoretically, and studied numer-

ically with impressive results. The application of the ARM criterion and

the heuristic is not limited to situations without distributions. When dis-

tribution is available but a performance guarantee is highly desireable, they

can help find a robust solution with maximal expected reward. They can

also be applied with DRO to queeze out extra performance if the most likely

subset of distributions are known, which is often the case when confidence

intervals of distribution parameters are estimated to specify the ambiguity

set for DRO.

Many of the nice analytical properties of the ARM criterion support a

new approach to competitive ratio analysis that may significantly reduce

the analysis complexity to derive closed-form solutions. Competitive ratio

analysis is often more complex than absolute regret analysis, which can be

observed in comparing El-Yaniv et al. (2001) and Wang et al. (2016), as each

carries out one type of analysis with exactly the same problem setup. The

new approach first solves the problem with the ARM criterion, which can
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have similar complexity as the absolute regret analysis, then the competitive

ratio is derived simply by solving an equation. This new approach is demon-

strated by solving the robust one-way trading problem, recovering the main

results in both papers.

The contributions of this paper are as follows: (i) The ARM criterion

is proposed for fine control of conservatism while the major advantages of

RO are maintained. The properties of the ARM criterion are studied theo-

retically, such as convexity preservation and conservatism control. (ii) The

mechanism to control conservatism is investigated and a heuristic is proposed

to determine the CCP by maximizing the reward guarantee for representative

scenarios, while alternatives are also discussed. (iii) A new approach to com-

petitive ratio analysis based on the ARM criterion is investigated, which can

reduce the complexity of analysis to find analytical solutions. (iv) The ro-

bust one-way trading problem with the ARM criterion is solved analytically,

with the competitive ratio easily derived by the new approach, and numerical

experiments are conducted to demonstrate fine control of conservatism, with

the average reward of the heuristic witnessing a 3% to 9% improvement in

one case over other commonly used criteria.

The rest of this paper is arranged as follows. Section 2 gives general

ARM formulations, whose properties are studied in Section 3, leading to a

new approach to competitive ratio analysis. The mechanism for fine control

of conservatism is discussed and analyzed with a heuristic to determine a

proper CCP. In section 4 the ARM criterion is applied to the robust one-way

trading problem. The analysis derives a closed-form solution, which yields

the competitive ratio quickly by the new appraoch. Numerical experiments
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demonstrate effective fine control of conservatism by the ARM criterion and

the heuristic. Finally, section 5 draws conclusions with future research out-

looks.

2. Formulations.

The ARM criterion is first presented with single-stage problems for clar-

ity, then extended to multistage formulations for generality. Though only

reward maximization is considered here, the results should translate to cost

minimization. A scenario ζ consists of realized values for uncertain data,

and all scenarios is specified by the uncertainty set U . Let Xζ be the feasi-

ble set for ζ, as the constraints may depend on ζ. The robustly feasible set

X =
⋂

ζ∈U Xζ is feasible for all scenarios. For generality, both U and Xζ can

be continuous or discrete. In single-stage problems, an action x takes place

first, then a scenario ζ realizes, and the resultant reward r(x, ζ) depends

on both x and ζ. Let r∗(ζ) = maxx∈Xζ
r(x, ζ) denote the ex post optimal,

measuring the potential opportunities in ζ. It is assumed throughout the

paper that the min and max operators are well-defined, otherwise they may

be replaced by inf and sup.

The CCP β ∈ [−∞,+∞] is introduced into ARM as a factor in the

benchmark βr∗(ζ) for the actual reward r(x, ζ), producing a β-adjusted re-

gret D(x, ζ; β) = βr∗(ζ)− r(x, ζ) for an action x ∈ X. The worst-case regret

D̄(x; β) = maxζ∈U D(x, ζ; β) serves as a regret guarantee for x. The ARM

criterion minimizes this regret guarantee:

D(β) = min
x∈X

D̄(x; β) = min
x∈X

max
ζ∈U

βr∗(ζ)− r(x, ζ). (1)
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Though (1) is used for analyzing and reducing computational complexities in

combinatorial optimization problems in Averbakh (2005), it has never been

proposed and studied as a new criterion for moderating conservatism. Let

ř(r, β) = βr−D(β) denote the reward guarantee by the optimal solution for

any ζ ∈ U(r) = {ζ ∈ U : r∗(ζ) = r}. Obviously, the ARM criterion chooses

the same solutions if r(x, ζ) is replaced by r′(x, ζ) = kr(x, ζ)+b for any k > 0

and b ∈ R. Also note that it can easily adapt to DRO with ζ representing a

distribution and r(x, ζ) being the expected revenue.

Here is a glimpse of the effects of β on conservatism when the ARM

criterion transmorphs into other well-known criteria. At β = 0 it becomes the

maximin criterion in traditional RO models, which is the most conservative.

When β takes on the competitive ratio (usually a special value between 0 and

1), it is the same as the relative regret criterion (more details later), which is

less conservative than the previous. At β = 1 it is the absolute regret criterion

that is even less conservative, and finally as β = +∞ it recovers the maximax

criterion that is the most aggressive. Interestingly, at the other extreme of

β = −∞ is the opposite to the maximax criterion, which recommends an x

that performs best for the least promising scenario ζ ′ with r∗(ζ ′) being the

minimal. These cases suggests that the ARM criterion becomes increasingly

more aggressive as β gets bigger, which will be analyzed in depth later.

The formulation readily extends to multistage problems, where decisions

are made stage by stage as the scenario gradually reveals itself. Let t =

1, · · · , T labels the stages sequentially, and let xt and ζt denote the part of

decision and scenario in stage t. To standardize and simplify, a stage decision

xt is always carried out before the stage scenario ζt is realized and known,
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which is without loss of generality: If a stage scenario is realized before any

decision is made, a dummy decision can be inserted in the very beginning for

a standardized formulation. Let x = (x1, · · · , xT ) and ζ = (ζ1, · · · , ζT ) for

the entire decision and scenario.

It is assumed that decision makers neither know nor influence the stage

scenarios not yet realized when making a stage decision, which is known in

multistage stochastic programming as nonanticipativity. Specifically, when

making decision xt for stage t, only the partial scenario ζ1:t = (ζ1, · · · , ζt−1) is

known, which reduces the uncertainty set to U(ζ1:t) = {ω ∈ U : ω1:t = ζ1:t}.

For the current U(ζ1:t), let XU(ζ1:t) =
⋂

ω∈U(ζ1:t)
Xω be the feasible set, which

expands as uncertainty reduces: XU(ζ1:t) ⊆ XU(ζ1:t+1) as U(ζ1:t+1) ⊆ U(ζ1:t).

Let x1:t = (x1, · · · , xt−1) be all stage decisions before stage t, and ht =

(x1:t, ζ1:t) be the history. Given ht = (x1:t, ζ1:t), the compatible feasible set is

X(ht) = {y ∈ XU(ζ1:t) : y1:t = x1:t}. Let Xt(ht) = {yt : y ∈ X(ht)} be the

stage feasible set, and Ut(ζ1:t) = {ωt : ω ∈ U(ζ1:t)} be the stage scenario set.

A history ht = (x1:t, ζ1:t) is feasible only if it satisfies

xτ ∈ Xτ (hτ ), τ = 1, · · · , t− 1, where hτ = (x1:τ , ζ1:τ ). (2)

Let Ht denote the set of all feasible histories before stage t.

The ARM criterion for multistage problems can be defined recursively.

Let r(x, ζ) denote the total reward over all stages, either accrued over stages

or received at once in the end. Let r∗(ζ) = maxx∈Xζ
r(x, ζ) be the ex post

optimal. The regret for a completed history hT+1 = (x, ζ) is

DT (hT+1; β) = βr∗(ζ)− r(x, ζ). (3)

Work from DT (hT+1; β), the regret guarantee D̄t(xt, ht; β) and the minimum
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guarantee Dt−1(ht; β) is found by backward induction for t = T, · · · , 1:

D̄t(xt, ht; β) = max
ζt∈Ut(ζ1:t)

Dt(ht+1; β), (4)

Dt−1(ht; β) = min
xt∈Xt(ht)

D̄t(xt, ht; β),

= min
xt∈Xt(ht)

max
ζt∈Ut(ζ1:t)

Dt(ht+1; β). (5)

where ht+1 is formed by appending xt and ζt to x1:t and ζ1:t respectively. Note

that (4) is often referred to as the “adversarial problem”, as if an almighty

adversary is making the worst for the decision maker. As h1 is empty, let

D(β) ≡ D0(h1; β) for the best overall regret guarantee, so that there is still

ř(r, β) = βr −D(β). This completes the plain formulation.

An alternative formulation is based on policies. A feasible policy π is a

sequence of functions π = {πt : πt(ht) ∈ Xt(ht),∀ht ∈ Ht, t = 1, 2, · · · , T}

to make stage decisions by xt = πt(ht), with nonanticipativity already baked

in. The focus is on deterministic policies, though random ones are possile.

A policy π can determine the whole decision x for a scenario ζ, or simply

x = π(ζ), and the subset of realizable histories before stage t under π is

Hπ
t = {(x1:t, ζ1:t) : x = π(ζ), ζ ∈ U}. The restriction of πt to Hπ

t for all t

defines a pruned policy π̈, as other histories are cut away. Let Π be the set

of all feasible deterministic policies, and let Π̈ = {π̈ : π ∈ Π}.

The regret guarantee of π is also found by backward induction. In the

end the history hT+1 = (x, ζ) is fully developed, and the regret is still

Dπ
T (hT+1; β) = βr∗(ζ)− r(x, ζ). (6)

The regret guarantee given ht = (x1:t, ζ1:t) is defined recursively by

Dπ
t−1(ht; β) = max

ζt∈Ut(ζ1:t)
Dπ

t (h
π
t+1; β), t = T, · · · , 1, (7)
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where hπ
t+1 = ((x1:t, πt(ht)), (ζ1:t, ζt)) evolves from ht under π. Apply (7)

recursively for the overall regret guarantee Dπ(β) ≡ Dπ
0 (h1, β):

Dπ(β) = max
ζ1∈U1(ζ1:1)

Dπ
1 (h

π
2 ; β)

= max
ζ1∈U1(ζ1:1)

max
ζ2∈U2(ζ1:2)

Dπ
2 (h

π
3 ; β)

= max
ζ1∈U1(ζ1:1)

· · · max
ζT∈UT (ζ1:T )

Dπ
T (h

π
T+1; β)

= max
ζ∈U

Dπ
T (h

π
T+1; β) (8)

where hπ
T+1 = (π(ζ), ζ). The policy-based formulation chooses a policy to

minimize the overall regret guarantee:

min
π∈Π

Dπ(β) = min
π∈Π

max
ζ∈U

βr∗(ζ)− r(π, ζ), (9)

where r(π, ζ) = r(π(ζ), ζ), as π in (9) plays the same role as x in (1).

A couple of comments on the policy-based formulation. First, in (9) all

decisions are made by a policy π, reaching only realizable histories in Hπ
t ,

thus it makes no difference if Π is replaced by Π̈ there. Second, for problems

with states, any ht ∈ Ht maps to a state s(ht), which can replace ht to reduce

complexity. Finally, there may be many policies that give the same D(β),

but have different values of Dπ
t−1(ht; β) for some history ht. The optimal

policies can be refined by the principle of optimality (Bellman 1954), which

requires recursively that the subpolicies of an optimal policy are themesleves

optimal: A policy π∗ is optimal if and only if Dπ∗
t−1(ht; β) ≤ Dπ

t−1(ht; β) for

all π ∈ Π and ht ∈ Ht, t = 1, · · · , T .

3. Theoretical Analysis.

In this section, formulation equivalence and convexity preservation are

established first, then comes a new approach to competitive ratio analysis,
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and finally fine control of conservatism is analyzed with a heuristic proposed.

Theorem 1. Under the principal of optimality, the plain and the policy-

based formulations are equivalent in that any optimal policy π∗ ∈ Π satisfies

Dt−1(ht; β) = Dπ∗

t−1(ht; β),∀ht ∈ Ht, t = 1, · · · , T + 1, (10)

π∗
t (ht) ∈ argmin

xt∈Xt(ht)

max
ζt∈Ut(ζ1:t)

Dt(ht+1; β),∀ht ∈ Ht, t = 1, · · · , T, (11)

where ζ1:t belongs to ht = (x1:t, ζ1:t).

Proof: A policy π∗ ∈ Π satisfying (11) clearly exists for well-defined prob-

lems, and its optimality can be proven in two logic progressions. The first

progression proves that if any policy π∗ satisfies (11), then it also satisfies

(10), which is done by backward induction. As the initial step, (10) trivially

holds for t = T + 1. For the induction step, assume (10) holds for t = τ + 1,

and show it also holds for t = τ . Recall (5) and proceed as follows

Dτ−1(hτ ; β) = min
xτ∈Xτ (hτ )

max
ζτ∈Uτ (ζ1:τ )

Dτ (hτ+1; β)

= max
ζτ∈Uτ (ζ1:τ )

Dτ (hτ+1; β)

= max
ζτ∈Uτ (ζ1:τ )

Dπ∗

τ (hπ∗

τ+1; β)

= Dπ∗

τ−1(hτ ; β),

where the second equality comes by (11), the third by the inductive assump-

tion, and the last comes by (7). Thus π∗ also satisfies (10).

The next progression proves that if a policy π∗ satisfies (10), then it is

optimal under the principle of optimality, which becomes

Dt−1(ht; β) ≤ Dπ
t−1(ht; β),∀π ∈ Π,∀ht ∈ Ht, t = 1, · · · , T + 1, (12)
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after integrating (10). It is again by backward induction, whose initial step

trivially holds for t = T + 1. For the induction step, assume (12) holds for

t = τ + 1 so as to show it also holds for t = τ . Recall (5) with t = τ and

apply the assumption by replacing Dτ (hτ+1; β) with Dπ
τ (hτ+1; β):

Dτ−1(hτ ; β) ≤ min
xτ∈Xτ (hτ )

max
ζτ∈Uτ (ζ1:τ )

Dπ
τ (hτ+1; β)

≤ max
ζτ∈Uτ (ζ1:τ )

Dπ
τ (h

π
τ+1; β)

= Dπ
τ−1(hτ ; β),

where the second inequality comes by fixing xτ = πτ (hτ ), and the last line

comes by (7). Therefore (12) holds by backward induction, and π∗ is optimal.

Once an optimal policy π∗ is known to satisfy (10), the principle of op-

timality requires that any optimal policy must satisfy (10), thus (11) auto-

matically holds. ■

It is handy to have both formulations, as the plain one solves the problem

stage by stage, while the policy-based one facilitates theoretical analysis. The

interchangeability principle of Shapiro (2017) can obtain a weaker result, as

it does not respect the principle of optimality. Also note that with t = 1

there is Dπ∗
(β) = D(β) by (10).

Convexity preservation is crucial for compuational tractability, which

works with consistently convex problems and pruned policies. Consistent

convexity requires that max{r(x, ζ) : x ∈ Xζ} is convex for any ζ ∈ U . A

convex combination of two pruned policies π̈1, π̈2 ∈ Π̈ by a λ ∈ [0, 1] is de-

fined as π̈(ζ) = λπ̈1(ζ) + (1− λ)π̈2(ζ) for all ζ ∈ U , which can be written as

π̈ = λπ̈1 + (1− λ)π̈2 with π̈ regarded as a vector of π̈(ζ), ζ ∈ U .
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Theorem 2. With consistent convexity, the policy-based formulation (9) re-

stricted to pruned policies Π̈ is convex, and all subproblems (5) in the plain

formulation are convex.

Proof: First prove the convexity of the domains. As a projection of the

convex set X(ht), the convexity of Xt(ht) is obvious, but the convexity of Π̈

needs some explanation. For π̈1, π̈2 ∈ Π̈, the histories hπ̈i

T+1 = (π̈(ζ), ζ), i =

1, 2 satisfy the feasibility condition (2) for all ζ ∈ U . For Π̈ to be convex,

it must be shown that policy π̈ = λπ̈1 + (1 − λ)π̈2 for any λ ∈ [0, 1] also

satisfies (2) to have π̈ ∈ Π̈. Apply both π̈i, i = 1, 2 to an arbitrary ζ to

have xi = π̈i(ζ), i = 1, 2. As hπ̈i

T+1 = (xi, ζ), i = 1, 2 satisfy (2), there exists

yit ∈ XU(ζ1:t) such that yit1:t = xi
1:t for i = 1, 2 and t = 1, · · · , T . Consistent

convexity implies that any XU(ζ1:t) is convex, which ensures yt = λy1t + (1−

λ)y2t ∈ XU(ζ1:t), hence for x = π̈(ζ), hπ̈
T+1 = (x, ζ) there is xt ∈ Xt(h

π̈
t ) for

t = 1, · · · , T , so hπ̈
T+1 satisfies (2) and there is π̈ ∈ Π̈.

Next show the convexity of the objectives. The regret of any π with a

given ζ ∈ U is Eζ(π) ≡ βr∗(ζ)− r(π, ζ). For π̈1, π̈2 ∈ Π̈ and a λ ∈ [0, 1], let

π̈ = λπ̈1+(1−λ)π̈2 ∈ Π̈. For any ζ ∈ U , there is π̈(ζ) = λπ̈1(ζ)+(1−λ)π̈2(ζ),

thus Eζ(π̈) ≤ λEζ(π̈1)+(1−λ)Eζ(π̈2) as r(x, ζ) is concave, so Eζ(π) is convex

on Π̈. The objective at π̈ ∈ Π̈ in (9) is Dπ̈(β) = maxζ∈U Eζ(π̈), which is

convex in π̈ as a pointwise max of convex functions on Π̈.

It remains to show that D̄t(xt, ht; β) in (5) is convex in xt for any ht =

(x1:t, ζ1:t) ∈ Ht. Let Π̈(ht) = {π̈ ∈ Π̈ : π̈τ (ζ1:τ ) = xτ , τ = 1, · · · , t − 1} and

Π̈(xt, ht) = {π̈ ∈ Π̈(ht) : π̈t(ζ1:t) = xt}, so that Π̈(ht) =
⋃

xt∈Xt(ht)
Π̈(xt, ht).

Due to nonanticipativity, any π̈ ∈ Π̈(ht) satisfies π̈t(ζ
′
1) = π̈t(ζ

′
2) for any

ζ ′1, ζ
′
2 ∈ U(ζ1:t), thus π̈ can be represented as a vector with only one xt com-
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ponent instead of many copies of the same xt for each ζ ′ ∈ U(ζ1:t). Both

Π̈(xt, ht) and Π̈(ht) are convex as slices of Π̈, and Π̈(xt, ht) is a slice of Π̈(ht).

Apply Theorem 1 to the subproblem (4) as an independent problem with

an uncertainty set U(ζ1:t) and a dummy decision xt so that Π̈(xt, ht) has all

pruned policies for it, to have D̄t(xt, ht; β) = minπ̈∈Π̈(xt,ht)
g(π̈), where g(π̈) ≡

maxζ∈U(ζ1:t) Eζ(π̈) is convex over Π̈(xt, ht). The epigraph epi D̄t(Xt(ht), ht; β) =

{(xt, v) : (π̈, v) ∈ epi g(Π̈(ht)) for some π̈ ∈ Π̈(xt, ht)} is convex as a pro-

jection of the convex set epi g(Π̈(ht)) = {(π̈, v) : v ≥ g(π̈)} onto xt as a

component of π̈. Thus the objective D̄t(xt, ht; β) in (5) is convex in xt. ■

Convexity preservation not only facilitates theoretical analysis, but en-

sures global convergence of numerical methods such as value iteration or

policy iteration. If the “adversarial problem” (4) can be solved efficiently,

then tractable algorithms may be designed for numerical solutions.

3.1. Competitive Ratio.

Competitive ratio has been applied in many areas, which is preferred

when relative regret is more appropriate than absolute regret, and analytical

solutions are derived sometimes even with discrete variables (e.g. Wang and

Lan 2022). Among the variants of equivalent defitions, the competitive ratio

for reward maximization problems can be defined as

γ∗ = max
π∈Π

min
ζ∈U

rζ(π)/r
∗(ζ), (13)

where r∗(ζ) > 0 for all ζ ∈ U is assumed in general.

Lemma 1. The regret guarantee Dt−1(ht; β) for t = 1, · · · , T + 1 with an

arbitrary history ht ∈ Ht is continuous in β.
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Proof: Use backward induction on t. When t = T + 1, it is clear that

DT (hT+1; β) is continuous in β according to (3), which completes the initial

step. The induction step assumes Dt(ht+1; β) is continuous in β, then shows

the same for Dt−1(ht; β). It is clear that D̄t(xt, ht; β) is continuous in β as it

is a point-wise max of continuous functions by (4). Likewise, Dt−1(ht; β) is

also continuous with regard to β by (4). ■

The next lemma gives slope bounds for D(β), which can establish that

D(β) strictly increases if r∗(ζ) > 0 for all ζ ∈ U .

Lemma 2. For β1 < β2, let π
∗
i , i ∈ {1, 2} be an optimal policy for β = βi,

and ζ∗ij = argmaxζ∈U βir
∗(ζ)− r(π∗

j , ζ), i, j ∈ {1, 2}, then there is

r∗(ζ∗21) ≥
D(β2)−D(β1)

β2 − β1

≥ r∗(ζ∗12). (14)

Proof: By the definition of π∗
2 and ζ∗12, as well as Theorem 1, there is

D(β1) = min
π∈Π

max
ζ∈U

β1r
∗(ζ)− r(π, ζ)

≤ max
ζ∈U

β1r
∗(ζ)− r(π∗

2, ζ)

= β1r
∗(ζ∗12)− r(π∗

2, ζ
∗
12).

And there is D(β2) = maxζ∈U β2r
∗(ζ) − r(π∗

2, ζ) ≥ β2r
∗(ζ∗12) − r(π∗

2, ζ
∗
12).

Therefore D(β2)−D(β1) ≥ (β2 − β1) r
∗(ζ∗12). Similarly,

D(β2) = min
π∈Π

max
ζ∈U

β2r
∗(ζ)− r(π, ζ)

≤ max
ζ∈U

β2r
∗(ζ)− r(π∗

1, ζ)

= β2r
∗(ζ∗21)− r(π∗

1, ζ
∗
21).

And there is D(β1) = maxζ∈U β1r
∗(ζ)−r(π∗

1, ζ) ≥ β1r
∗(ζ∗21)−r(π∗

1, ζ
∗
21). Thus

D(β2)−D(β1) ≤ (β2 − β1) r
∗(ζ∗21). Therefore, (14) follows immediately. ■
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With continuity and monotonicity from Lemma 1 and 2, it is ready to lay

the theoretical foundation for a new approach to competitive ratio analysis.

Theorem 3. Given r∗(ζ) > 0 for all ζ ∈ U and r(x, ζ) is bounded below,

the equation D(β) = 0 always has a unique solution β0 ≤ 1. The competitive

ratio γ∗ = β0, and (9) with β = β0 has the same optimal policies as (13).

Proof: Positive r∗(ζ) ensures a strictly increasing D(β) by Lemma 2, with

r(x, ζ) bounded below there is limβ↓−∞D(β) = −∞, andD(1) ≥ 0 is obvious,

thus D(β) = 0 has a unique solution β0 ≤ 1 by continuity from Lemma 1.

Start from (9) and apply Theorem 1:
0 = min

π∈Π
max
ζ∈U

β0r
∗(ζ)− r(π, ζ)

π∗ ∈ argmin
π∈Π

max
ζ∈U

β0r
∗(ζ)− r(π, ζ)

⇔


0 = max

ζ∈U
β0r

∗(ζ)− r(π∗, ζ)

∀π ∈ Π : 0 ≤ max
ζ∈U

β0r
∗(ζ)− r(π, ζ)

⇔


∃ζ ∈ U : 0 = β0r

∗(ζ)− r(π∗, ζ)

∀ζ ∈ U : 0 ≥ β0r
∗(ζ)− r(π∗, ζ)

∀π ∈ Π,∃ζ ∈ U : 0 ≤ β0r
∗(ζ)− r(π, ζ)

⇔


∃ζ ∈ U : β0 = r(π∗, ζ)/r∗(ζ)

∀ζ ∈ U : β0 ≤ r(π∗, ζ)/r∗(ζ)

∀π ∈ Π,∃ζ ∈ U : β0 ≥ r(π, ζ)/r∗(ζ)

⇔


β0 = min

ζ∈U
r(π∗, ζ)/r∗(ζ)

∀π ∈ Π : β0 ≥ min
ζ∈U

r(π, ζ)/r∗(ζ)
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⇔


β0 = max

π∈Π
min
ζ∈U

r(π, ζ)/r∗(ζ) = γ∗

π∗ ∈ argmax
π∈Π

min
ζ∈U

r(π, ζ)/r∗(ζ)

As it can go both ways, the theorem is established. ■

Note that Averbakh (2005) presents some similar results for single-stage

problems, which are extended to multistage problems here. So the ARM

criterion recovers the relative regret criterion if β is set to the competitive

ratio, which could be negative for some problems. The competitive ratio

is nonnegative if and only if D(0) ≤ 0. A new approach to competitive

ratio analysis comes straight out of Theorem 3. If an analytical expression

for D(β) exists, then the competitive ratio can be found by simply solving

D(β) = 0. This approach is generally simpler than directly dealing with the

ratio in (13), as illustrated by applying it to one-way trading later.

3.2. Conservatism Control

Recall from earlier discussions that overconservatism can be caused by a

criterion obsessed with the worst scenario while ignoring the opportunities in

all others. The problem can be exacerbated if the opportunities are ignored

in highly likely scenarios, such as a typical scenario ζ∗ consisting of most

likely values estimated by experts. The ARM criterion may offer a family of

robust policies π∗
β by solving (9) for any particular β, so that a choice can be

made to best capture opportunities and mitigate overconservatism. When

the distribution of ζ is known, a suitable β can be determined by

max
β

Eζ r(π
∗
β, ζ), (15)

which provides a robust solution with least loss in expected reward. When

distribution on scenarios is available but a performance guarantee is highly
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desireable, (15) chooses a robust solution with the highest expected reward.

Of course, distributions are unavailable for RO, but (15) lends to heuris-

tics to choose β for conservatism control by exploiting most likely values

provided by experts. Suppose r(x, ζ) is continuous so that scenarios near ζ∗

have similar rewards as ζ∗, and r∗(ζ∗) could also be close to the most likely

ex post optimal r̂∗. If a policy π has high reward for ζ∗, then it also has high

reward for nearby scenarios due to continuity, which is likely to boost the

expected reward, thus a β may be found by solving maxβ r(π
∗
β, ζ

∗) instead.

Surely, a single scenario may not be as representative as a family of scenar-

ios U(r̂∗). For such scenarios, the reward guarantee ř(r̂∗, β) may serve as a

proxy for the expected reward, and a β may be chosen for an optimal reward

guarantee (ORG) ř∗(r) = maxβ ř(r, β) or

ř∗(r) = max
β

βr −D(β), (16)

where r may be set to r̂∗ or r∗(ζ∗), and the ORG ř∗(r) is actually the convex

conjugate of D(β). By this heuristic the ARM criterion may control conser-

vatism to best realize potential opportunities in a family of representative

scenarios U(r̂∗). In the case of adapting to DRO with confidence intervals of

distribution parameters, r̂∗ would be the optimal expected reward given the

most likely distribution parameters.

Let r∗− = minζ r
∗(ζ) and r∗+ = maxζ r

∗(ζ) if r∗(ζ) is bounded, and let

β∗
−(r) = inf B∗(r) and β∗

+(r) = supB∗(r), where B∗(r) = {β : βr −D(β) =

ř∗(r)}. When r ∈ {r∗−, r∗+}, an upper bound for ř(r, β) is

r̄(r) = max
π∈Π

min
ζ∈U(r)

r(π, ζ), (17)
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which comes from

D(β) = min
π∈Π

max
ζ∈U

βr∗(ζ)− r(π, ζ)

≥ min
π∈Π

max
ζ∈U(r)

βr∗(ζ)− r(π, ζ)

= βr − r̄(r).

Theorem 4. If r(x, ζ) is bounded, the ORG ř∗(r) and the maximizers β∗
−(r)

and β∗
+(r) in (16) have these properties:

i. For r1 > r0, there is β∗
−(r1) ≥ β∗

+(r0), the ORG ř∗(r) is convex with

ř∗(r0) < ř∗(r1) if β
∗
+(r0) > 0 and ř∗(r0) > ř∗(r1) if β

∗
−(r1) < 0, and

β∗
+(r) = −∞, ř∗(r) = +∞ if r < r∗−

β∗
−(r) = −∞, ř∗(r) ≤ r̄(r∗−) if r = r∗−

β∗
−(r) > −∞, β∗

+(r) < +∞ if r ∈ (r∗−, r
∗
+)

β∗
+(r) = +∞, ř∗(r) ≤ r̄(r∗+) if r = r∗+

β∗
−(r) = +∞, ř∗(r) = +∞ if r > r∗+

ii. For r ∈ [r∗−, r
∗
+], the absolute guarantee gap (AGG) of G(r) = r −

ř∗(r) ≥ 0, is concave and strictly increases (decreases) in r if β∗
+(r) < 1 (if

β∗
−(r) > 1). When r ≥ r∗− > 0, the relative guarantee gap (RGG) of G(r)/r

strictly increases (decreases) in r if β∗
+(r) < γ∗ (if β∗

−(r) > γ∗).

Proof: These properties are proved as follows. i. Let β∗
i ∈ B∗(ri) for

21



i = 0, 1. Assume β∗
1 < β∗

0 , optimality of β∗
0 gives ř(r0, β

∗
1) ≤ ř(r0, β

∗
0)

⇒ r0β
∗
1 −D(β∗

1) ≤ r0β
∗
0 −D(β∗

0)

⇒ D(β∗
0)−D(β∗

1) ≤ r0(β
∗
0 − β∗

1)

⇒ D(β∗
0)−D(β∗

1) < r1(β
∗
0 − β∗

1)

⇒ r1β
∗
1 −D(β∗

1) < r1β
∗
0 −D(β∗

0),

leading to ř(r1, β
∗
1) < ř(r1, β

∗
0), a contradiction to the optimality of β∗

1 , which

proves β∗
1 ≥ β∗

0 , implying β∗
−(r1) ≥ β∗

+(r0) when β∗
1 = β∗

−(r1), β
∗
0 = β∗

+(r0).

Note that ř∗(r) is convex conjugate of D(β), a pointwise maximum of a

family of strictly increasing (decreasing) affine functions with slope β∗
+(r0) >

0 (β∗
−(r) < 0) of r, hence convex and strictly increasing after r0 (decreasing

before r1) with monotonicity of β∗
−(r) and β∗

+(r).

By Lemma 2, there is r∗− ≤ (D(β1)−D(β0))/(β1 − β0) ≤ r∗+ for β1 > β0,

which gives D(β0) ≤ D(β1) − (β1 − β0)r
∗
−, so that ř(r, β0) ≥ ř(r, β1) +

(β1 − β0)(r
∗
− − r). Clearly, if r < r∗−, there is limβ0↓−∞ ř(r, β0) = ∞, giving

ř∗(r) = ∞ and β∗
+(r) = −∞. If r = r∗− then ř(r, β) increases as β ↓ −∞,

thus β∗
−(r) = −∞ and ř∗(r∗−) = limβ↓−∞ βr∗− − D(β), which exists as it

increases with an upper bound r̄(r∗−). For the case of r ∈ (r∗−, r
∗
+), let π

∗
β be

the optimal policy, ζ∗β the worst scenario, and ζ∗− ∈ U(r∗−). Clearly,

D(β) = βr∗(ζ∗β)− r(π∗
β, ζ

∗
β) ≥ βr∗(ζ∗−)− r(π∗

β, ζ
∗
−) ≥ (β − 1)r∗−.

Then r(r, β) ≤ β(r − r∗−) + r∗−, which goes to −∞ as β ↓ −∞, thus β∗
−(r) >

−∞. The results involving r∗+ follow similarly.

ii. Rewrite G(r) into G(r) = minβ≥0D(β) + (1 − β)r, a pointwise min-

imum of a family of strictly increasing (decreasing) affine functions in r
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when β∗
+(r) < 1 (β∗

+(r) > 1). Rewrite G(r)/r for r > 0 into G(r)/r =

minβ≥0D(β)/r − β + 1, a pointwise minimum of a family of increasing (de-

creasing) functions in r whenD(β) < 0 (D(β) > 0), asD(β) strictly increases

with r∗− > 0 by Lemma 2. By Theorem 3, when β∗
+(r) < γ∗ (β∗

−(r) > γ∗),

there is D(β∗
+(r)) < 0 (D(β∗

−(r)) > 0), and G(r)/r should strictly increase

(decrease) in the neighborhood of r. ■

Theorem 4 reveals that the ARM criterion best captures opportunities

around a bigger r̂∗ by a bigger β∗, demonstrating the conservatism mod-

erating role of β. In practical applications, there is r = r̂∗ ∈ [r∗−, r
∗
+] and

thus ř∗(r) is bounded, yet the direction of its changes depends on the sign

of β∗
−(r) and β∗

+(r). The AGG and RGG are indicators of efficiency to cap-

ture opportunities, where RGG is appropriate for considering relative losses.

High efficiency (small AGG or RGG) when r is near the lower or higher

end of [r∗−, r
∗
+] may be interpreted as opportunities are easier to capture

when they are cornered to either ends. Theorem 4 requires almost noth-

ing on D(β), but if D(β) is continuous and convex, then D(β) is also the

convex conjugate of ř∗(r). Note that βr∗(ζ) − r(π, ζ) is linear in β, thus

F (β; π) = maxζ∈U βr∗(ζ) − r(π, ζ) is convex in β for a given policy π. But

D(β) = minπ∈Π F (β; π) is not necessarily convex in β, and conditions are

required to make it convex.

Theorem 5. With consistent convexity, the optimal regret guarantee D(β)

is convex in β, and D(β) is strictly convex if r(x, ζ) is strictly concave in x

for all ζ ∈ U .

Proof: Let π̈∗
i ∈ Π̈ be an optimal pruned policy for βi, i = 1, 2, and let

π̈′ = λπ̈1 + (1− λ)π̈2 for any λ ∈ (0, 1). By the concavity of r(x, ζ), there is

23



r(π̈′, ζ) ≥ λr(π̈∗
1, ζ) + (1− λ)r(π̈∗

2, ζ) for all ζ ∈ U . Let β = λβ1 + (1− λ)β2

and proceed as follows:

D(β) = min
π̈∈Π̈

max
ζ∈U

βr∗(ζ)− r(π̈, ζ)

≤ max
ζ∈U

βr∗(ζ)− r(π̈′, ζ)

≤ max
ζ∈U

βr∗(ζ)− (λr(π̈∗
1, ζ) + (1− λ)r(π̈∗

2, ζ))

≤ λ

(
max
ζ∈U

β1r
∗(ζ)− r(π̈∗

1, ζ)

)
+

(1− λ)

(
max
ζ∈U

β2r
∗(ζ)− r(π̈∗

2, ζ)

)
= λD(β1) + (1− λ)D(β2).

Similarly, strict concavity comes by r(π̈′, ζ) > λr(π̈∗
1, ζ) + (1− λ)r(π̈∗

2, ζ). ■

If D(β) is strictly convex and differentiable with a continuous and strictly

increasing D′(β), then β∗(r) for (16) is simply the inverse of D′(β) from the

first order condition
∂ř(r, β)

∂β
= r −D′(β) = 0. (18)

So the ARM criterion can indeed adjust the level of conservatism to cap-

ture potential opportunies, while maintaining all major advantages of RO.

This mechanism could be highly valuable as less conservative solutions are

recommended, more performance can be expected, while only requiring most

likely values as additional information from experts. According to Vinod

(2021), for example, overconservatism is the main issue preventing the adop-

tion of robust revenue management in airlines, as the profit margin for airlines

is razor-thin, and even a 1% change in revenue could make a huge difference.
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4. One-way Trading.

In this section the ARM criterion is applied to the one-way trading prob-

lem to demonstrate its properties and potential, such as the new approach to

competitive ratio analysis and the effectiveness of the conservatism control

hueristic. The one-way trading problem has been richly studied with both

competitive ratio (El-Yaniv et al. 2001) and absolute regret (Wang et al.

2016), which ideally serve as targets of comparison. Closed-form analytical

solutions are derived with the ARM criterion, yielding the result of Wang

et al. (2016) as a special case with β = 1 while the derivation process is not

much more complex than theirs. The competitive ratio is directly found via

the new approach, in contrast to the lengthy and complex derivation pro-

cess in El-Yaniv et al. (2001) that heavily depends on acute intuition and

deep insights that call for great talents. Finally, numerical simulations are

conducted to verify that the ARM criterion can indeed offer smooth con-

trol of conservatism, and the heuristic can determine an appropriate level of

conservatism for improved performances.

4.1. Problem Formulation.

Consider selling a certain amount of divisible goods (such as gasoline) in

periods t = 1, · · · , T , while the price fluctuates in the range of [m,M ]. A

single price pt ∈ [m,M ] is first revealed in each period, then as a price-taker

the trader sells at pt an amount xt ≥ 0 out of the remaining stock, without

knowing any future prices. In the last period T , the trader must sell out

whatever remains. The goal is to maximize the total sales revenue.

It is a multistage problem, in which the stages naturally coincide with
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periods. A scenario ζ corresponds to the prices p = (p1, · · · , pT ) revealed over

time, with ζt = pt. There is U = [m,M ]T and Ut(ζ1:t) = [m,M ], as prices are

independent of each other. Without loss of generality, the total amount to sell

is 1 unit, and the action is x = (x1, · · · , xT ) with X = {x ≥ 0 :
∑T

t=1 xt = 1}.

For t < T there is Xt(ht) = [0, qt] where qt = 1 −
∑t−1

s=1 xs is the remaining

stock to sell given ht, but in the last period XT (hT ) = [qT , qT ]. The reward is

accrued over time, so let rt =
∑t−1

s=1 psxs for the rewards accrued over ht, and

the reward in the end is r(x, p) = rT+1. Let p̂t = max{ps : s = 1, · · · , t− 1}

denote the highest price seen in ht, and r∗(p) = max{r(x, p) :
∑T

t=1 xt =

1} = p̂T+1 the ex post optimal. In the end (3) becomes

DT (hT+1; β) = βp̂T+1 − rT+1. (19)

By tradition, in a stage t the uncertain price pt is revealed first, then an

action xt is taken, which differs from the standardized formulation in (5):

Dt−1(ht; β) = max
pt∈[m,M ]

min
xt∈Xt(ht)

Dt(ht+1; β). (20)

As a dummy decision can be added to have it standardized, this difference

is superficial, and all results in Section 3 remain valid.

4.2. Analytic Solution.

The analysis starts from the last period T and works backwards. It is

sufficient to consider β ≥ 0 for comparison with related work, while keeping

things simple. In the last period there is xT = qT , and (20) becomes

DT−1(hT ; β) = max
pT∈[m,M ]

βmax(p̂T , pT )− (rT + pT qT ),
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which is convex in pT , and the maximizer is either pT = m or pT = M , thus

DT−1(hT ; β) = max(βp̂T −RT , βM − (rT +MqT ))

= max(βp̂T , βM − (M −m)qT )−RT

= βmax(p̂T , P1(qT ))−RT ,

where Rt = rt + mqt for t = 1, · · · , T is the lower bound on rT+1 given ht,

and P1(y) is an auxiliary quantity-to-price function defined as

Pj(q) = (M −m)

(
1− q

βj

)+j

+m, j = 1, 2, · · · ,

with y+j = maxj(0, y) for the positive part of y raised to the jth power. Let

P−
j (y) = q be the inverse of y = Pj(q) for q ∈ [0, βj]. The trivial case of β = 0

is found by the limit as β ↓ 0. Continue on with (20) for t = T − 1, · · · , 1 by

backward induction, analytical solutions can be obtained.

Theorem 6. The minimal worst-case regret for the one-way trading problem

in period t given history ht for t = 1, 2, · · · , T is

Dt−1(ht; β) = βmax(p̂t, P1+T−t(qt))−Rt, (21)

and the optimal trading policy is π∗
t (ht, pt) = qt − q∗t+1, where q∗T+1 = 0 and

q∗t+1 = min(qt, P
−
T−t(p̂t+1)), t = 1, · · · , T − 1. (22)

Proof: By backward induction. For the initial step with t = T , it is easily

verified. For the induction step, assume (21) holds in period t+ 1 ≤ T with

Dt(ht+1; β) = βmax(p̂t+1, PT−t(qt+1))−Rt+1,
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and prove it also holds in period t. For the minimization nested in (20), let

D̄t(ht, pt; β) = min
xt∈Xt(ht)

Dt(ht+1; β)

= min
qt+1∈[0,qt]

βmax(p̂t+1, Pn(qt+1))−Rt+1, (23)

with n = T − t, qt+1 = qt − xt, and Rt+1 = rt+1 +mqt+1. First note that

P ′
n(q) = −M −m

β

(
1− q

βn

)+(n−1)

≤ 0,

which means Pn(q) is monotone and there is Pn(qt+1) ≥ p̂t+1 if qt+1 ≤

P−
n (p̂t+1) and Pn(qt+1) ≤ p̂t+1 otherwise. Therefore,

Dt(ht+1; β) =

 βPn(qt+1)−Rt+1 qt+1 ≤ P−
n (p̂t+1)

βp̂t+1 −Rt+1 qt+1 > P−
n (p̂t+1)

(24)

∂Dt(ht+1; β)

∂qt+1

=

 pt −m+ βP ′
n(qt+1) qt+1 < P−

n (p̂t+1)

pt −m qt+1 > P−
n (p̂t+1)

(25)

Note that with qt+1 < P−
n (p̂t+1), there is pt ≤ p̂t+1 < Pn(qt+1) ≤ −βP ′

n(qt+1)+

m, so pt−m+βP ′
n(qt+1) < 0. And with qt+1 > P−

n (p̂t+1), there is pt−m ≥ 0.

It is clear that (22) is an optimal solution to (23), which from (24) gives

D̄t(ht, pt; β) = βPn(q
∗
t+1)− (rt+1 +mq∗t+1). (26)

Let p̄t = max(p̂t, Pn(qt)) ∈ [m,M ], and from (20) there is

Dt−1(ht; β) = max
pt∈[m,M ]

D̄t(ht, pt; β)

= max

 maxpt∈[m,p̄t] D̄t(ht, pt; β)

maxpt∈[p̄t,M ] D̄t(ht, pt; β)

 (27)

For the branch with pt ∈ [m, p̄t] in (27), consider two cases: (i) p̄t = p̂t ≥

Pn(qt) and (ii) p̄t = Pn(qt) > p̂t. In case (i) there is p̂t+1 = max(p̂t, pt) =
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p̂t ≥ Pn(qt), therefore P−
n (p̂t+1) ≤ qt and (22) simplifies to q∗t+1 = P−

n (p̂t+1),

thus Pn(q
∗
t+1) = p̂t+1 = p̄t. In case (ii) there is p̂t+1 ≤ Pn(qt), therefore

P−
n (p̂t+1) ≥ qt and (22) simplifies to q∗t+1 = qt, thus Pn(q

∗
t+1) = Pn(qt) = p̄t.

So there is Pn(q
∗
t+1) = p̄t in both cases, and (26) becomes D̄t(ht, pt; β) =

βp̄t − (rt+1 +mq∗t+1) = βp̄t − rt − ptx
∗
t −mq∗t+1, which is linear in pt with a

slope of −x∗
t ≤ 0 as x∗

t = qt − q∗t+1 ≥ 0. Thus p∗t = m is a maximizer, which

gives maxpt∈[m,p̄t] D̄t(ht, pt; β) = βp̄t − rt −mqt = βp̄t −Rt.

For the branch with pt ∈ [p̄t,M ] in (27), as pt ≥ p̄t ≥ p̂t, there is p̂t+1 =

pt ≥ p̄t ≥ Pn(qt), thus P
−
n (p̂t+1) ≤ qt and (22) simplifies to q∗t+1 = P−

n (p̂t+1).

Therefore Pn(q
∗
t+1) = p̂t+1 = pt, and (26) simplifies to D̄t(ht, pt; β) = βpt −

rt − ptx
∗
t − mq∗t+1 = βpt − rt − pt(qt − q∗t+1) − mq∗t+1 = (β − qt + q∗t+1)pt −

mq∗t+1 − rt = (β − qt + q∗t+1)Pn(q
∗
t+1)−mq∗t+1 − rt = d(P−

n (pt)), where d(z) =

(β − qt + z)Pn(z) − mz − rt, z ∈ [0, 1], with a derivative d′(z) = (β − qt +

z)P ′
n(z) +Pn(z)−m. Note that Pn(z)−m = −(β− z/n)P ′

n(z), thus d
′(z) =

(β−qt+z)P ′
n(z)−(β−z/n)P ′

n(z) = (z+z/n−qt)P
′
n(z). As P

′
n(z) ≤ 0, there

is d′(z) ≥ 0 when z + z/n − qt ≤ 0, and d′(z) ≤ 0 when z + z/n − qt ≥ 0,

hence z∗ = nqt/(n+ 1) < qt solves maxz∈[0,1] d(z), which gives

d(z∗) = βPn+1(qt)−Rt, Pn(z
∗) ≥ Pn+1(qt).

Consider two cases with D̄t(ht, pt; β) = d(P−
n (pt)) for pt ∈ [p̄t,M ]. Case (i)

Pn(z
∗) ≥ p̄t. As P

−
n (M) = 0 ≤ z∗ ≤ P−

n (p̄t), there is maxpt∈[p̄t,M ] D̄t(ht, pt; β) =

d(z∗). Thus, according to (27) there is

Dt−1(ht; β) = max(βp̄t −Rt, d(z
∗)). (28)
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Case (ii) Pn(z
∗) < p̄t. As qt ≥ z∗ ≥ P−

n (p̄t), there is

max
pt∈[p̄t,M ]

D̄t(ht, pt; β) = max
pt∈[p̄t,M ]

d(P−
n (pt))

= max
z∈[0,P−

n (p̄t)]
d(z)

≤ max
z∈[0,qt]

d(z) = d(z∗).

As Pn(z
∗) ≥ Pn+1(qt), there is p̄t ≥ Pn+1(qt). So d(z∗) = βPn+1(qt) − Rt ≤

βp̄t − Rt, and by (27) there is Dt−1(ht; β) = βp̄t − Rt, and (28) remains

valid. Therefore, in both cases proceed from (28) and take note of p̄t =

max(p̂t, Pn(qt)) and Pn(qt) ≤ Pn+1(qt):

Dt−1(ht; β) = max(βp̄t −Rt, d(z
∗))

= max(βp̄t −Rt, βPn+1(qt)−Rt)

= βmax(p̄t, Pn+1(qt))−Rt

= βmax(p̂t, Pn(qt), Pn+1(qt))−Rt

= βmax(p̂t, Pn+1(qt))−Rt

As n = T − t, clearly (21) also holds for t. ■

Corollary 1. The minimal worst-case regret D(β) for the one-way trading

problem is a convex function of β:

D(β) = β(M −m)

(
1− 1

βT

)+T

− (1− β)m, (29)

Proof: In the first period, there is q1 = 1, r1 = 0, p̂1 = m. Use these in (21)

and simplify to have the result. The convexity of D(β) is a consequence of

the consistent convexity of the one-way trading problem and Theorem 5. ■

The result of Wang et al. (2016) is a special case of Theorem 6 with β = 1,

and the proof for this more general result requires more general treatments.
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Theorem 6 easily leads to a tremendously simplified derivation of the com-

petitive ratio, as compared to the truly ingenious and highly complicated

analysis of El-Yaniv et al. (2001).

Corollary 2. The competitive ratio defined in (13) for the one-way trading

problem is the unique root β0 of D(β) = 0 as defined in (29).

Proof: As r∗(ζ) ≥ m > 0, it follows from Theorem 3. ■

This result agrees perfectly with El-Yaniv et al. (2001), except that they

define competitive ratio as its inverse. Their analysis is much more involved

and heavily relies on insights of the worst case price paths, which can be

deduced straightforwardly once β0 is known, in a way similar to what is done

in Wang et al. (2016).

Corollary 3. As β increases, the optimal trading policy gets more optimistic

and aggressive: Other things being equal, it takes on more risks by trading less

now and reserving more for the future, which means ∀ht ∈ Ht, ∀pt ∈ [m,M ]

there is

π∗
t (ht, pt; β1) ≤ π∗

t (ht, pt; β2) if β1 > β2 > 0.

Proof: Consider the quantity reserved for future q∗t+1 in (22) and note that

P−
T−t(p) = β(T − t)

(
1− T−t

√
p−m

M −m

)
increases in β, therefore q∗t+1 increases as β increases. ■

Corollary 3 displays theoretically the continuous moderation of conser-

vatism by β as the optimal policy gets more optimistic and aggressive for

bigger β values.
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4.3. Numerical Study.

The effects of heuristics and the fine control of conservatism is further

studied numerically on the one-way trading problem. Here is the basic setup.

The instance has T = 5 periods, and the prices are in [m,M ] = [1, 3]. The

prices for all periods are independent and identically distributed (IID) with

a Beta(a, b) distribution on [m,M ] with shape parameters a = 3.5, b =

1.5. Suppose experts accurately estimate the most likely value for ex post

optimal reward r̂∗ = 2.897, by which the best β∗ = 2.58 is found numerically

by (18). Optimal policies for β ∈ {i/100 : i = 0, · · · , 400} are computed

from (22), and all policies are executed on the same sequence of randomly

generated prices to obtain the overall rewards. The whole process is repeated

N = 10, 000 times and the average and standard deviation of the reward for

each β is calculated, by which a 99% confidence interval (CI) for the average

reward is computed.

Fig. 1 has the results. Firstly, the heuristic works quite well, with the

guarantee ř∗(β) = βr̂∗ − D(β) being a fairly good proxy for the average

reward to find the maximizing β. The empirical maximizer β = 0.259 is

found on the average reward curve in the spirit of (15), while the heuristic

finds β = 2.57 as the maximizer on the best guarantee curve, which are

very close to each other with almost identical average reward. These policies

are entered in Table 1 as “heuristic” and “empirical” policies with other

special ones: the maximin policy with β = 0, the relative regret policy

with β = γ∗ = 0.72, and the absolute regret policy with β = 1, while the

second last row has the policy that maximizes expected reward (interested

readers are referred to Appendix B of Wang and Lan (2022) for more details)
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Figure 1: Average reward, guarantee, and standard deviation of reward. The average

reward is unimodal, peaks at β = 2.59 with a value of 2.636. The guarantee for r̂∗ peaks

at β = 2.57, very close to 2.59. The standard deviation is unimodel with a valley at

β = 1.45, achieving a minimal value of 0.177.

and the last row has the ex post optimal policy. Benchmarking against

the expected reward maximizing policy, the absolute and relative gaps are

listed in the table, where the heuristic has a gap of 3.2% and improves the

average reward by roughly 9% from maximin, 4% from relative regret, and

3% from absolute regret. Such improvements can make a big difference in

some practical applications, such as airline revenue management. Note that

the heuristic makes more significant improvement over the other policies if

the heuristic β is further away from theirs, which helps choose the values of

a = 3.5, b = 1.5 for Beta(a,b) to show off the potential of the ARM criterion

and the heuristic.

It seems in this experiment that the heuristic finds a sweet spot in between

extreme conservatism and aggressiveness. The extremely aggressive case of
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Policy (β) Average±99% CI Gap Gap%

maximin (0.00) 2.397±0.010 0.327 12.0%

relative (0.72) 2.519±0.006 0.205 7.5%

absolute (1.00) 2.560±0.005 0.165 6.0%

heuristic (2.57) 2.636±0.005 0.088 3.2%

empirical (2.59) 2.636±0.005 0.088 3.2%

max expected 2.725±0.006 — —

ex post optimal 2.790±0.004 -0.066 -2.4%

Table 1: Benchmark the ARM policies of various β values.

β ↑ ∞ (absent in Fig. 1) almost only sells in the last period by (22), while

the extremely conservative case of β = 0 almost only sells in the first period,

giving them identical average reward and standard deviation. Thus both

extremes give poor performance with low expected reward and high overall

risk. By adjusting the β value of the ARM criterion, the level of conservatism

can be fine-tuned to match the situation for higher rewards and lower risks.

Next, the heuristic is observed in a broader perspective for its capacity

of fine control of conservatism. The same setup is used except for different

shape parameters in Beta(a,b) for a ∈ [0.1, 3.9] with a step size of 0.1 and

b = 5 − a: the range avoids b ≤ 1 because the density would diverge at

M , causing β∗ = ∞ for the heuristic. As bigger a value is condusive to

the probability for higher prices and more chances of good opportunities, a

bigger β should be employed for a less conservative robust policy in theory.

Fig. 2 has the average rewards and corresponding β for the heuristic and

empirical policy. The heuristic policy gives an expected reward very close to
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that of the empirical policy in general, despite the fairly large discrepancy in

β at a = 3.9. The β for both the heuristic and empirical policy indeed steadily

increases as a gets bigger, illustrating continuous control of conservatism by

β to best catch increasingly better opportunities, as predicted in theory. The

average reward of the heuristic does start to fall behind a little as a ↑ 4 (see

the round head of heuristic reward curve in the top right corner with a reward

of 2.75 at a = 3.9, dropping 1% from the empirical), while the heuristic β

significantly overshoots the empirical β rapidly. It indicates that the mode r̂∗

is getting less representative, as the Beta distribution approaches the point

of divergence at M with a = 4, b = 1, resulting in r̂∗ = M and β∗ = ∞,

according to Theorem 4 with [r∗−, r
∗
+] = [m,M ].

A quick fix for reduced average reward due to impaired representativeness

of r̂∗ near the point of divergence is to expand the set of representative

scenarios to U(r, δ) = {ζ : r∗(ζ) ∈ [r−δ, r+δ]∩ [r∗−, r
∗
+]} to determine a right

β, where r = r̂∗, δ = (r∗+ − r∗−) · η, and η = 5% in the experiment. A simple

method to determine β is employed: simply use (18) with the middle point of

the defining interval for U(r, δ): rm(r, δ) = (max(r∗−, r−δ)+min(r∗+, r+δ))/2.

In Fig. 2 this method is labeled “midpoint”, whose average reward sticks with

that of the empirical throughout, and their β values are always close to each

other.

5. Conclusion.

The ARM criterion proposed in this paper provides fine control of conser-

vatism by the CCP (β), while maintaining all the major advantages of RO.

It minimizes the β-adjusted regret guarantee, from which a reward guarantee
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Figure 2: The heuristic and empirical policy under a continous shape shifting scheme for

the Beta distribution to simulate environments with increasingly better opportunities.

for scenarios can be derived. And convexity is preserved even for multistage

problems, a property great for computational tractability and theoretical

analysis. Distributions on uncertainty is not required, only the most likely

values are needed from experts to calibrate β heuristically for the right level

of conservatism to best catch opportunities and improve the performance.

The heuristic is based on the mechanism that as β increases, the ARM cri-

terion will recommend solutions with better reward guarantees for scenarios

bearing more opportunities. It is possible to adapt the ARM criterion and

the heuristic to DRO as well. Various theoretical properties of the ARM

criterion are studied, such as continuity, monotonicity, and convexity, which

may facilitate the analysis of problems, finding closed-form solutions, or de-

signing better numerical algorithms. These theoretical results also lead to

a new approach for competitive ratio analysis, which may be much simpler
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than the traditional approach, as is observed in the analysis of the one-way

trading problem.

The ARM criterion is applied to the robust one-way trading problem to

demonstrate its potential. Closed-form solution is obtained, from which the

competitive ratios is quickly derived by the new approach. Analysis of the

closed-form solution shows that the optimal policy gets more aggressive as β

increases. Numerical experiments on one-way trading are designed to illus-

trate fine control of conservatism, with significant benefits of the heuristic.

This study of the ARM criterion only serves as a starting point for future

research. First of all, applying it to pratical problems in various areas is the

thrust for further theoretical development. Conceivably, innovative methods

may be developed to find an appropriate β in practice. Note that it can also

be applied when there is rich historical data to estimate distributions, but a

performance guarantee is highly desired. Researches on linear problems with

the ARM criterion can be fruitful, as progresses are made in this regard on

the absolute and relative regret criterion by Poursoltani and Delage (2021).

Finally, it can be practically and theoretically fruitful to apply the ARM

criterion with DRO.
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