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Abstract

Overconservatism has long been recognized as a major issue of robust op-
timization, despite its major advantages of tractability, performance guar-
antee, and limited information. A new criterion based on adjustable regret
is proposed to address this issue by adapting the level of conservatism to
the environment, while maintaining all the aforementioned advantages. The
level of conservatism can be fine-tuned by maximizing the reward guaran-
tee for scenarios representative of opportunities provided by experts as most
likely values, leading to a simple heuristic to best catch opportunities. This
criterion also supports a new approach to competitive ratio analysis that is
applicable even to multistage problems. The new criterion is then applied
to the one-way trading problem with analytical solutions, from which the
competitive ratio is easily derived by the new approach. Numerical exper-
iments are conducted to demonstrate fine control of conservatism and the
effectiveness of the heuristic, with the average reward improved in one case
by 3 - 9% over other commonly used criteria.
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1. Introduction.

Robust optimization (RO) is a popular method of decision making under
uncertainty, and the decision criterion plays a key role in achieving the ma-
jor advantages of RO: limited informatin requirement, robust solutions with
a performance guarantee, and computational tractability. Limited informa-
tion for RO is provided by an uncertainty set with all possible scenarios,
without any probabilistic distribution as required by stochastic optimiza-
tion. The outcome of an action depends on the realized scenario, it relies on
the criterion to evaluate an action when only the outcomes for scenarios are
known with limited information. The recommended solutions are robust as
the criterion endows them with a performance guarantee for worst scenar-
ios. And finally, computational tractability generally relies on the criterion
preserving convexity, as many classes of convex optimization problems admit
polynomial-time algorithms (Nesterov and Nemirovskii 1994), while mathe-
matical optimization is NP-hard in general (Murty and Kabadi 1987). The
convexity of the feasible region is naturally preserved in RO, so convexity is
preserved as long as the criterion forms a convex objective. These advantages
have made RO an appealing method in various fields of applications, such as
finance, operations management, aerospace, and defense.

Despite these advantages, a major issue with RO is overconservatism,
which has led to flurries of highly fruitful researches. Obsessed with the worst
scenario while ignoring all opportunities in others, no matter how likely they
may occur, overconservatism ends up sacrificing too much performance for
the sake of robustness, which seriously hinders the adoption of RO in indus-

tries, such as robust revenue management in airlines (Vinod 2021). Such an



obsession is abated by having some ambiguous information on probability
distributions in distributionally robust optimization (DRO), a less conser-
vative method that has attracted great research interests, see Kuhn et al.
(2025) for a recent survey and Zhen et al. (2025) for a unified thoery. Mean-
while, combating overconservatism without distributions has always been an
active and important research front for RO soon after the first RO models
appear in Soyster (1973). These early models are extremely pessimistic on
how uncertainty affects feasibility and performance, contributing to overcon-
servatism in two ways: Firstly, extreme scenarios may render some good
solutions infeasible; Secondly, the minimax (cost) criterion evaluates a solu-
tion by the worst scenario while ignoring all opportunities in others. Hence
overconservatism has been tackled accordingly by either excluding certain
extreme scenarios or resorting to less conservative criteria.

Scenario exclusion begins by questioning the absolute guarantee of fea-
sibility under all scenarios, especially those rare and extreme ones. Though
necessary for critical applications where infeasibility causes disasters like
doomed satellites or damaged rovers, it can be relaxed if adverse events only
bring about limited consequences, such as low demand or supply in business.
In the latter case, it is acceptable to exclude some rare and extreme scenarios
and have a smaller uncertainty set, settling for a probabilistic feasibility guar-
antee in exchange for better performance. Researches in this regard provide
insights into robust solutions as well as probabilistic guarantees of feasibility,
see Ben-Tal and Nemirovski (2008) and Bertsimas et al. (2011) for a compre-
hensive survey and Ben-Tal et al. (2009) for a book treatment. Models with
ellipsoidal uncertainty sets are proposed by Ben-Tal and Nemirovski (1998,



1999, 2000), El-Ghaoui and Lebret (1997), and El Ghaoui et al. (1998). As
such models are nonlinear and computationally demanding, Bertsimas and
Sim (2004) proposes uncertainty budget to fully control the uncertainty set
while maintaining linearity. In this approach, the uncertainty set is tampered
with to trade-off between robustness and performance, which can be difficult
in practice as it may need probability estimation for those rare and extreme
scenarios.

Another direction to tackle overconservatism is by employing alternative
decision criterion. The minimax criterion adopted in the earliest RO mod-
els is invented when economists contemplated on decision theories (Wald
1950). This criterion is critisized by Savage (1954) as “ultrapessimistic”, as
it focuses entirely on performances in the worst scenario and ignores all plau-
sible opportunities in others. The opportunity in a scenario is fully realized
in and measured by the ex post (i.e. after knowing the scenario) optimal
objective. The regret of a solution is the opportunity loss defined as the
difference between the objectives of the ex post optimal and the solution.
Savage (1951) proposes the minimax regret criterion as a less conservative
criterion that minimizes the worst-case regret, which also serves as a regret
guarantee. The so-called “competitive ratio,” a popular criterion for online
optimization (Borodin and El-Yaniv 2005; Kouvelis and Yu 2013), is equiv-
alent to the relative regret criterion, which considers the ratio of regret to
the ex post optimal objective instead. Various numerical studies find the
absolute regret less conservative than the relative regret, which is in turn
less conservative than the maximin criterion in reward maximizing problems

(Lan et al. 2008; Perakis and Roels 2008; Poursoltani and Delage 2021).



All these commonly used criteria maintain the major advantages of RO,
yet they only offer three distinct levels of conservatism, and it is only possible
with a continuum of choices to have fine control of conservatism. An early
attempt is made by Hurwicz (1951) with the Hurwicz criterion, which evalu-
ates a solution by a weighted sum of its worst and best outcomes in order to
balance pessimism and optimism. There is a “coefficient of pessimism” («)
between 0 and 1 as the weight on the worst outcome, while (1 —«) weights on
the best outcome. It becomes the most conservative as the minimax criterion
when o = 1, and the most aggressive as the minimin criterion when o = 0,
and in between it generally gets more and more conservative as « increases.
Unfortunately, its major drawback is not preserving convexity, thus losing
the advantage of computational tractability.

Many other criteria are proposed thereafter to moderate conservatism
for fine control, but none of them can keep all the major advantages of
RO. For example, the p-robustness by Snyder (2006) first screens out by
additional constraints overly conservative solutions whose worst-case regret
exceeds an upper limit, but sometimes it is very difficult to determine if it
is making a problem infeasible. Kalai et al. (2012) suggest the lexicographic
robustness criterion to mitigate the primary role of the worst-case scenario in
solution evaluation, yet it requires finite uncertainty sets, and poses a serious
computational challenge for large uncertainty sets.

This work aspires to create a new criterion for fine control of conser-
vatism while upholding all the major advantages of RO. Adjustable regret
minimization (ARM) is proposed as a new criterion with a continuum of

conseratism choices. The regret becomes adjustable by comparing the actual



objective not with a fixed ex post optimal, but with that ex post optimal
scaled by a conservatism control parameter (CCP). It turns out this simple
design works with limited information, comes with performance guarantees,
and maintains tractability by preserving convexity. Most interestingly, the
criterion generally gets more aggressive as the CCP increases, which enables
the CCP to adjust the level of conservatism for fine control. By optimizing
certain performance measures, such as the reward guarantee for scenarios
representative of opportunities, derived from experts estimating most likely
values (as for task durations in project management), a simple heuristic to
determine the CCP is proposed, analyzed theoretically, and studied numer-
ically with impressive results. The application of the ARM criterion and
the heuristic is not limited to situations without distributions. When dis-
tribution is available but a performance guarantee is highly desireable, they
can help find a robust solution with maximal expected reward. They can
also be applied with DRO to queeze out extra performance if the most likely
subset of distributions are known, which is often the case when confidence
intervals of distribution parameters are estimated to specify the ambiguity
set for DRO.

Many of the nice analytical properties of the ARM criterion support a
new approach to competitive ratio analysis that may significantly reduce
the analysis complexity to derive closed-form solutions. Competitive ratio
analysis is often more complex than absolute regret analysis, which can be
observed in comparing El-Yaniv et al. (2001) and Wang et al. (2016), as each
carries out one type of analysis with exactly the same problem setup. The

new approach first solves the problem with the ARM criterion, which can



have similar complexity as the absolute regret analysis, then the competitive
ratio is derived simply by solving an equation. This new approach is demon-
strated by solving the robust one-way trading problem, recovering the main
results in both papers.

The contributions of this paper are as follows: (i) The ARM criterion
is proposed for fine control of conservatism while the major advantages of
RO are maintained. The properties of the ARM criterion are studied theo-
retically, such as convexity preservation and conservatism control. (ii) The
mechanism to control conservatism is investigated and a heuristic is proposed
to determine the CCP by maximizing the reward guarantee for representative
scenarios, while alternatives are also discussed. (iii) A new approach to com-
petitive ratio analysis based on the ARM criterion is investigated, which can
reduce the complexity of analysis to find analytical solutions. (iv) The ro-
bust one-way trading problem with the ARM criterion is solved analytically,
with the competitive ratio easily derived by the new approach, and numerical
experiments are conducted to demonstrate fine control of conservatism, with
the average reward of the heuristic witnessing a 3% to 9% improvement in
one case over other commonly used criteria.

The rest of this paper is arranged as follows. Section 2 gives general
ARM formulations, whose properties are studied in Section 3, leading to a
new approach to competitive ratio analysis. The mechanism for fine control
of conservatism is discussed and analyzed with a heuristic to determine a
proper CCP. In section 4 the ARM criterion is applied to the robust one-way
trading problem. The analysis derives a closed-form solution, which yields

the competitive ratio quickly by the new appraoch. Numerical experiments



demonstrate effective fine control of conservatism by the ARM criterion and
the heuristic. Finally, section 5 draws conclusions with future research out-

looks.

2. Formulations.

The ARM criterion is first presented with single-stage problems for clar-
ity, then extended to multistage formulations for generality. Though only
reward maximization is considered here, the results should translate to cost
minimization. A scenario ( consists of realized values for uncertain data,
and all scenarios is specified by the uncertainty set &. Let X, be the feasi-
ble set for (, as the constraints may depend on (. The robustly feasible set
X =N ceu X¢ 1s feasible for all scenarios. For generality, both ¢/ and X, can
be continuous or discrete. In single-stage problems, an action x takes place
first, then a scenario ( realizes, and the resultant reward r(z,() depends
on both x and {. Let r*(¢) = MaXze x, r(z,() denote the ex post optimal,
measuring the potential opportunities in (. It is assumed throughout the
paper that the min and max operators are well-defined, otherwise they may
be replaced by inf and sup.

The CCP 5 € [—o0,+00] is introduced into ARM as a factor in the
benchmark gr*(¢) for the actual reward r(zx, (), producing a [-adjusted re-
gret D(x,(; B) = pr*(¢) —r(z, ) for an action = € X. The worst-case regret
D(x; B8) = maxcey D(z,¢; B) serves as a regret guarantee for z. The ARM
criterion minimizes this regret guarantee:

D(B) = min D(z; ) = min max r*(¢) — r(z, ). (1)

zeX zeX (eU



Though (1) is used for analyzing and reducing computational complexities in
combinatorial optimization problems in Averbakh (2005), it has never been
proposed and studied as a new criterion for moderating conservatism. Let
7(r, B) = Br — D(B) denote the reward guarantee by the optimal solution for
any ( € U(r) ={¢ €U :r*({) = r}. Obviously, the ARM criterion chooses
the same solutions if r(z, {) is replaced by r'(z, () = kr(x,{)+b for any k > 0
and b € R. Also note that it can easily adapt to DRO with ( representing a
distribution and r(z, ) being the expected revenue.

Here is a glimpse of the effects of 8 on conservatism when the ARM
criterion transmorphs into other well-known criteria. At 5 = 0 it becomes the
maximin criterion in traditional RO models, which is the most conservative.
When £ takes on the competitive ratio (usually a special value between 0 and
1), it is the same as the relative regret criterion (more details later), which is
less conservative than the previous. At § = 1 it is the absolute regret criterion
that is even less conservative, and finally as 5 = +oc it recovers the maximax
criterion that is the most aggressive. Interestingly, at the other extreme of
[ = —o0 is the opposite to the maximax criterion, which recommends an z
that performs best for the least promising scenario ¢’ with 7*(¢’) being the
minimal. These cases suggests that the ARM criterion becomes increasingly
more aggressive as [ gets bigger, which will be analyzed in depth later.

The formulation readily extends to multistage problems, where decisions
are made stage by stage as the scenario gradually reveals itself. Let t =
1,---,T labels the stages sequentially, and let x; and (; denote the part of
decision and scenario in stage t. To standardize and simplify, a stage decision

x; is always carried out before the stage scenario (; is realized and known,



which is without loss of generality: If a stage scenario is realized before any
decision is made, a dummy decision can be inserted in the very beginning for
a standardized formulation. Let = = (21, -+ ,2z¢) and ( = (i, -+, () for
the entire decision and scenario.

It is assumed that decision makers neither know nor influence the stage
scenarios not yet realized when making a stage decision, which is known in
multistage stochastic programming as nonanticipativity. Specifically, when
making decision x; for stage ¢, only the partial scenario (1, = ({1, -+, (1) is
known, which reduces the uncertainty set to U((1.;) = {w € U : wiy = (14}
For the current U(Ci.t), let Xuuci.) = Noers(cr) Xo Pe the feasible set, which
expands as uncertainty reduces: Xyc,..) € Xucro1) a8 U(Crier1) € U(Crie).
Let z14 = (x1,---,24-1) be all stage decisions before stage t, and h; =
(1.4, C1.¢) be the history. Given hy = (214, (1), the compatible feasible set is
X(he) = {y € Xuecr) @ Y1t = 14} Let Xo(he) = {ye - y € X(he)} be the
stage feasible set, and U ((14) = {w; : w € U((14)} be the stage scenario set.
A history hy = (214, (1) is feasible only if it satisfies

z, € X;o(hy),7=1,--- t =1, where h; = (1.7, (1.r)- (2)

Let H; denote the set of all feasible histories before stage t.

The ARM criterion for multistage problems can be defined recursively.
Let r(x, () denote the total reward over all stages, either accrued over stages
or received at once in the end. Let r*(¢) = max,ex, (7, () be the ex post

optimal. The regret for a completed history hyyq = (x,() is

Dr(hr1; 8) = Bre(¢) — r(z, ). (3)
Work from Dz (hri1; 3), the regret guarantee D,(x;, hy; ) and the minimum
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guarantee D;_1(hy; ) is found by backward induction for t =T, --- , 1:

Dy(xy, hy; = max Di(hi1;B), 4
¢, he; B) o t(hit1; B) (4)
Dy1(hy; B) = xtg&lht)Dt(xt,ht;ﬂ),

= min  max D;(hy1;5). (5)

zt €X't (ht) Gt €UL(C1:t)
where h; 1 is formed by appending z; and (; to x1.; and (;.; respectively. Note
that (4) is often referred to as the “adversarial problem”, as if an almighty
adversary is making the worst for the decision maker. As h; is empty, let
D(B) = Dy(hq; ) for the best overall regret guarantee, so that there is still
7(r, B) = Br — D(B). This completes the plain formulation.

An alternative formulation is based on policies. A feasible policy 7 is a
sequence of functions 7 = {m : m(hy) € Xi(hy),Yhy € Hyyt = 1,2,--- [T}
to make stage decisions by z; = m;(h;), with nonanticipativity already baked
in. The focus is on deterministic policies, though random ones are possile.
A policy 7 can determine the whole decision x for a scenario (, or simply
x = m((), and the subset of realizable histories before stage ¢t under 7 is
HF = {(x1.4,C4) : © = 7((¢),¢ € U}. The restriction of m; to H for all ¢
defines a pruned policy 7, as other histories are cut away. Let II be the set
of all feasible deterministic policies, and let IT = {7 : = € II}.

The regret guarantee of 7 is also found by backward induction. In the

end the history hpy1 = (z,() is fully developed, and the regret is still

D7 (hryr; B) = Br(¢) — r(x, (). (6)
The regret guarantee given hy = (1., (1) is defined recursively by

DY (hy; B) = DT (hT ;: t=1T,---,1 7
tfl( t7ﬁ) Ctgllt%é:t) t( t+176)7 ) ) ( )

11



where hf,, = ((#14,7(ht)), (Ci:t, G)) evolves from hy under 7. Apply (7)
recursively for the overall regret guarantee D™(3) = D (hq, f):

Dr(g) = max Di(h3;h)
- 416%12%?1:1) 426%12%2) Dg(hg; 6)
T adhion) () Dih:)
= r?gj(D;r‘(h;+l;ﬁ) (8)

where hf , = (7(¢),¢). The policy-based formulation chooses a policy to

minimize the overall regret guarantee:

min D™ (8) = min max fr*(¢) — r(x, (), 9)

well mell CeU
where (7, () = r(7((), (), as 7 in (9) plays the same role as z in (1).

A couple of comments on the policy-based formulation. First, in (9) all
decisions are made by a policy 7, reaching only realizable histories in H,
thus it makes no difference if II is replaced by II there. Second, for problems
with states, any h; € H; maps to a state s(h;), which can replace h; to reduce
complexity. Finally, there may be many policies that give the same D(f),
but have different values of DJ ,(hs; 3) for some history h;. The optimal
policies can be refined by the principle of optimality (Bellman 1954), which
requires recursively that the subpolicies of an optimal policy are themesleves
optimal: A policy 7* is optimal if and only if DI, (hs; 3) < DI | (hs; 8) for
allmelland hy € Hy,t =1,---,T.

3. Theoretical Analysis.

In this section, formulation equivalence and convexity preservation are

established first, then comes a new approach to competitive ratio analysis,
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and finally fine control of conservatism is analyzed with a heuristic proposed.

Theorem 1. Under the principal of optimality, the plain and the policy-

based formulations are equivalent in that any optimal policy 7* € 11 satisfies

Dy_1(hg; B) = DI | (hy; B),Vhe € Hpt = 1,--- T +1, (10)

7;(hy) € argmin = max  Dy(hyq; 5),Vhe € Hyyt =1,--- T, (11)
ztEXt(ht) Cteui (Cl:t)

where (4 belongs to hy = (x1.4, C1t)-

Proof: A policy 7* € II satisfying (11) clearly exists for well-defined prob-
lems, and its optimality can be proven in two logic progressions. The first
progression proves that if any policy 7* satisfies (11), then it also satisfies
(10), which is done by backward induction. As the initial step, (10) trivially
holds for ¢ =T+ 1. For the induction step, assume (10) holds for t = 7+ 1,
and show it also holds for t = 7. Recall (5) and proceed as follows

DT— hT) - 1 -DT hT ;
i) =, B T PrleniP)

= max D (h.i1;
C‘reu‘r(CI:‘r) ( + 5)

= max DT (h™.
C‘reu‘r(CI:‘r) T ( T+ /8>

= D:i1<h‘r§ 5)7

where the second equality comes by (11), the third by the inductive assump-
tion, and the last comes by (7). Thus 7* also satisfies (10).
The next progression proves that if a policy 7* satisfies (10), then it is

optimal under the principle of optimality, which becomes

Dt—l(ht;ﬁ) S D?—l(ht;ﬁ)av/ﬂ- € H7Vht € Htvt = 17 o 7T+ 17 (12)
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after integrating (10). It is again by backward induction, whose initial step
trivially holds for ¢ = 7'+ 1. For the induction step, assume (12) holds for
t = 7+ 1 so as to show it also holds for ¢ = 7. Recall (5) with ¢ = 7 and

apply the assumption by replacing D, (h,y1; ) with DT (h,y1; 8):

DT—1<hT; B)

IN

min max D7(hyyq;
-TTGXT(hT) CTEL{T(CI:T) T( T /6)

< max DI(hT, ;
— CrelUs (Crin) T( T+1 B)

D:fl(hﬂ';ﬁ)a

where the second inequality comes by fixing x, = m.(h,), and the last line
comes by (7). Therefore (12) holds by backward induction, and 7* is optimal.

Once an optimal policy 7* is known to satisfy (10), the principle of op-
timality requires that any optimal policy must satisfy (10), thus (11) auto-
matically holds. [

It is handy to have both formulations, as the plain one solves the problem
stage by stage, while the policy-based one facilitates theoretical analysis. The
interchangeability principle of Shapiro (2017) can obtain a weaker result, as
it does not respect the principle of optimality. Also note that with ¢ = 1
there is D™ (3) = D(B) by (10).

Convexity preservation is crucial for compuational tractability, which
works with consistently convex problems and pruned policies. Consistent
convexity requires that max{r(z,() : z € X} is convex for any ¢ € U. A
convex combination of two pruned policies 7,7 € Il by a A € [0,1] is de-
fined as 7(¢) = A1 (€) + (1 — X)72(C) for all ¢ € U, which can be written as
it = My + (1 — N\)irp with 7 regarded as a vector of 7(¢),( € U.

14



Theorem 2. With consistent convezity, the policy-based formulation (9) re-
stricted to pruned policies 11 is convex, and all subproblems (5) in the plain

formulation are convex.

Proof:  First prove the convexity of the domains. As a projection of the
convex set X (hy), the convexity of X,(h) is obvious, but the convexity of II
needs some explanation. For 7', 72 € II, the histories hi. , = (7(¢),¢),i =
1,2 satisfy the feasibility condition (2) for all ¢ € Y. For II to be convex,
it must be shown that policy # = A\! + (1 — A\)#? for any A € [0,1] also
satisfies (2) to have 7 € II. Apply both 7,7 = 1,2 to an arbitrary ¢ to
have 2 = 7/(C),i = 1,2. As hi,, = (27,¢),i = 1,2 satisfy (2), there exists
y" € Xy, such that yi!, = 2%, fori = 1,2 and t = 1,--- ,T. Consistent
convexity implies that any Xy, is convex, which ensures y' = Ayt + (1 —
Ny* € Xy, hence for @ = 7(¢), hi, = (z,() there is z; € X;(hy) for
t=1,---,T,so hi, satisfies (2) and there is 7 € II.

Next show the convexity of the objectives. The regret of any m with a
given ( € U is E¢(m) = Br*(¢) — r(m, ). For 7y, 79 € IT and a A € [0,1], let
7 = ity +(1=\)ity € II. For any ¢ € U, there is 7(¢) = My () + (1= \)(C),
thus E¢(7) < AE¢(711) +(1 =) E¢(72) as r(x, ¢) is concave, so E¢(7) is convex
on II. The objective at 7 € II in (9) is D*(8) = maxcey Ec(7), which is
convex in 7 as a pointwise max of convex functions on II.

It remains to show that D;(x, hy; 8) in (5) is convex in , for any h, =
(214, C1e) € Hy. Let TI(hy) = {7 € 11 : #.(Cor) = 27,7 = 1,--- ,t — 1} and
1z, hy) = {7 € IL(hy) : #(Cre) = 24}, so that TI(hy) = UzteXt(ht)ﬂ<xt7ht)'
Due to nonanticipativity, any 7# € II(h,) satisfies 7,(¢]) = #(¢) for any

(1, C5 € U(C1.t), thus 7 can be represented as a vector with only one z; com-
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ponent instead of many copies of the same x; for each (' € U((1.;). Both
I:I(xt, hy) and I:I(ht) are convex as slices of II, and I:I(xt, hy) is a slice of I:I(ht).
Apply Theorem 1 to the subproblem (4) as an independent problem with
an uncertainty set 4(Cy) and a dummy decision z; so that II(x¢, hy) has all
pruned policies for it, to have D, (x,, hy; B) = Ml Cfy, ) g(7), where g(7) =
Maxc ey (e, e (7) is convex over IT(zy, hy). The epigraph epi Di(X;(hy), he; B) =
{(x,v) : (#,v) € epi g(II(h)) for some 7 € (x4, hy)} is convex as a pro-
jection of the convex set epi g(Il(h;)) = {(#,v) : v > g(#)} onto z; as a
component of 7. Thus the objective D;(x;, hy; 8) in (5) is convex in z;. W

Convexity preservation not only facilitates theoretical analysis, but en-
sures global convergence of numerical methods such as value iteration or

policy iteration. If the “adversarial problem” (4) can be solved efficiently,

then tractable algorithms may be designed for numerical solutions.

3.1. Competitive Ratio.

Competitive ratio has been applied in many areas, which is preferred
when relative regret is more appropriate than absolute regret, and analytical
solutions are derived sometimes even with discrete variables (e.g. Wang and
Lan 2022). Among the variants of equivalent defitions, the competitive ratio

for reward maximization problems can be defined as

7" = maxminr(m)/r"(C), (13)

where r*(¢) > 0 for all ¢ € U is assumed in general.

Lemma 1. The regret guarantee Dy_1(hy; 3) fort = 1,--- T + 1 with an

arbitrary history hy € H; is continuous in 3.
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Proof:  Use backward induction on ¢. When t = T + 1, it is clear that
Dr(hyy1; B) is continuous in S according to (3), which completes the initial
step. The induction step assumes D;(h;,1; ) is continuous in 3, then shows
the same for D,_1(hy; 3). It is clear that D,(wz,, hy; 8) is continuous in 3 as it
is a point-wise max of continuous functions by (4). Likewise, D;_;(hy; 8) is
also continuous with regard to 8 by (4). |

The next lemma gives slope bounds for D(), which can establish that
D(B) strictly increases if 7*(¢) > 0 for all { € U.

Lemma 2. For 3, < fs, let wf,i € {1,2} be an optimal policy for 5 = p;,
and (; = argmax ., Bir*(C) — r(7},(),i,j € {1,2}, then there is

r(Gy) = B, — By

Proof: By the definition of 75 and (j,, as well as Theorem 1, there is

= 1 ((ly)- (14)

D(B) = gleig[lrgeauwlr*(()—r(mé‘)

rggﬁlr*(o — (73, )
= B (Cly) — (75, Cia)-

IN

And there is D(f52) = maxcey Bor*(C) — 7(7m3,C) > Boar™((y) — (73, (fa)-
Therefore D(f2) — D(B1) > (B2 — B1) 7*((fy). Similarly,

D(By) = gleilglrgeauxﬁzr*(é)—r(mo

rggﬁzr*(o —r(m, )
= Bor*(Coy) — (71, Gop)-

IA

And there is D(f1) = maxcey f17*(¢) —r(nf, () > fir*((y) —r (7}, ¢5;). Thus
D(By) — D(B1) < (B2 — p1) 7*((5;)- Therefore, (14) follows immediately. W
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With continuity and monotonicity from Lemma 1 and 2, it is ready to lay

the theoretical foundation for a new approach to competitive ratio analysis.

Theorem 3. Given r*(¢) > 0 for all ( € U and r(x,() is bounded below,
the equation D(5) = 0 always has a unique solution Sy < 1. The competitive

ratio v* = By, and (9) with 5 = By has the same optimal policies as (13).

Proof:  Positive 7*({) ensures a strictly increasing D(f) by Lemma 2, with
r(z, ¢) bounded below there is limg| o, D(5) = —o0, and D(1) > 0 is obvious,
thus D(f8) = 0 has a unique solution fy < 1 by continuity from Lemma 1.

Start from (9) and apply Theorem 1:

[ 0= minmax for*(¢) = r(, )

7 € argmin max Sor*(¢) — (7, ()
\ rell  CeU

0= %e%ﬂor*«) —7r(7",¢)
Vrell:0< r?e%(ﬁor*@) - 7’(%()

I eU 0= pBor*(¢) —r(7*,¢)

= VCelU: 02> Bor*(¢) —r(m*, ()

| VreIL3¢CeU 0 < Bort(Q) — (7, )
(3ceu: po=r(m, Q) /r ()

& VCelU: By <r(,Q)/r(C)

| Ve L3¢ et : fy>r(m,¢)/r(C)

[ 0= minr(x*,0)/r"(€)

vrell: By > rgeig;m,cw*(o

\
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*

fo = maxminr(x, () /1(C) =

N well ¢eU
7 € argmax minr(w, () /r* ()
mell ceu
As it can go both ways, the theorem is established. [ |

Note that Averbakh (2005) presents some similar results for single-stage
problems, which are extended to multistage problems here. So the ARM
criterion recovers the relative regret criterion if 3 is set to the competitive
ratio, which could be negative for some problems. The competitive ratio
is nonnegative if and only if D(0) < 0. A new approach to competitive
ratio analysis comes straight out of Theorem 3. If an analytical expression
for D(f3) exists, then the competitive ratio can be found by simply solving
D() = 0. This approach is generally simpler than directly dealing with the
ratio in (13), as illustrated by applying it to one-way trading later.

3.2. Conservatism Control

Recall from earlier discussions that overconservatism can be caused by a
criterion obsessed with the worst scenario while ignoring the opportunities in
all others. The problem can be exacerbated if the opportunities are ignored
in highly likely scenarios, such as a typical scenario (* consisting of most
likely values estimated by experts. The ARM criterion may offer a family of
robust policies 7 by solving (9) for any particular 3, so that a choice can be
made to best capture opportunities and mitigate overconservatism. When

the distribution of ( is known, a suitable 5 can be determined by
mﬁaxEC (75, ), (15)

which provides a robust solution with least loss in expected reward. When

distribution on scenarios is available but a performance guarantee is highly
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desireable, (15) chooses a robust solution with the highest expected reward.

Of course, distributions are unavailable for RO, but (15) lends to heuris-
tics to choose [ for conservatism control by exploiting most likely values
provided by experts. Suppose 7(z, () is continuous so that scenarios near *
have similar rewards as ¢*, and 7*(¢*) could also be close to the most likely
ex post optimal 7*. If a policy 7 has high reward for (*, then it also has high
reward for nearby scenarios due to continuity, which is likely to boost the
expected reward, thus a 8 may be found by solving maxg (7}, (*) instead.
Surely, a single scenario may not be as representative as a family of scenar-
ios U(7*). For such scenarios, the reward guarantee 7(7*, 3) may serve as a
proxy for the expected reward, and a 8 may be chosen for an optimal reward

guarantee (ORG) 7*(r) = maxg 7(r, ) or
7 (r) = mﬂaxﬁr — D(p), (16)

where r may be set to #* or r*(¢*), and the ORG 7*(r) is actually the convex
conjugate of D(/3). By this heuristic the ARM criterion may control conser-
vatism to best realize potential opportunities in a family of representative
scenarios U (7*). In the case of adapting to DRO with confidence intervals of
distribution parameters, 7* would be the optimal expected reward given the
most likely distribution parameters.

Let 7* = min¢7*(¢) and ri = max,r*(¢) if 7*(¢) is bounded, and let
B*(r) = inf B*(r) and B (r) = sup B*(r), where B*(r) = {f : fr — D(B) =
7(r)}. When r € {r*,r*}, an upper bound for 7(r, §) is

= ' 17
r(r) = max min r(r,¢), (17)
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which comes from

D(5) = minmaxfr*(¢) — r(m,()

mell (eUu

> mj “(¢) —
2 min max fr (¢) —r(m, Q)

= fBr—r7(r).

Theorem 4. Ifr(z,() is bounded, the ORG 7*(r) and the maximizers 5* (r)
and 3% (r) in (16) have these properties:

i. Forry > rg, there is B*(r1) > B5(ro), the ORG 7*(r) is convex with
7*(ro) < 7(r1) if B%(ro) > 0 and #*(ro) > #*(r1) if B*(r1) <0, and

(
>k

t(r) = —o0, ™(r) =400 ifr<r®

IN

= —o0, ™(r) < F(r*) ifr=r*

)
)

B (r) > —o0, BL(r) < 400 ifr e (rt, 1)
) = +oo, 7 (r) <7(ry) ifr=1%
)

p*(r) = +oo, 7(r) =400 ifr>r}

\

i. Forr € [r*,r%], the absolute guarantee gap (AGG) of G(r) = r —

%

7*(r) > 0, is concave and strictly increases (decreases) in r if B (r) < 1 (if
B*(r) > 1). Whenr > r* >0, the relative guarantee gap (RGG) of G(r)/r
strictly increases (decreases) in v if B (r) <y (if 52(r) > v*).

Proof: ~ These properties are proved as follows. i. Let gf € B*(r;) for

21



i =0,1. Assume 87 < (5, optimality of 3§ gives 7(rq, 57) < 7(ro, 55)

rofi — D(B7) < rofly — D(5)
D(pg) — D(BY) < ro(By — 51)
D(55) — D(B7) < ri(By = Bi)

rpi = D(BT) < rmfBy — D(By),

L

leading to 7(r1, f7) < 7(r1, 55), a contradiction to the optimality of 5}, which
proves 3 > /35, implying 5% (r1) > B%(ro) when f; = B (r1), B = 42 (ro).

Note that 7#*(r) is convex conjugate of D(/3), a pointwise maximum of a
family of strictly increasing (decreasing) affine functions with slope 3% (r¢) >
0 (B (r) < 0) of r, hence convex and strictly increasing after ro (decreasing
before 1) with monotonicity of 5*(r) and 5% (r).

By Lemma 2, there is 7* < (D(51) — D(Bo))/ (81 — bo) < 1% for B > o,
which gives D(5y) < D(p1) — (61 — Po)r*, so that 7(r,5y) > 7(r, 1) +
(61 — Bo)(rx — ). Clearly, if r < r*, there is limg,| o 7(r, fy) = 00, giving
7™(r) = oo and % (r) = —oo. If r = r* then 7(r, §) increases as 3 | —oo,
thus 8 (r) = —oo and 7*(r*) = limg,_o Br* — D(f), which exists as it
increases with an upper bound 7(r*). For the case of r € (r*,7%), let 75 be

the optimal policy, (5 the worst scenario, and ¢* € U(r* ). Clearly,
D(B) = Bri(Cz) — r(mp, Cg) = Bri(¢) —r(ms, ¢&) = (B — 1)rt.

Then r(r, 5) < f(r —r*) +r*, which goes to —occ as | —oo, thus g*(r) >
—00. The results involving 77 follow similarly.
ii. Rewrite G(r) into G(r) = ming>o D(5) + (1 — B)r, a pointwise min-

imum of a family of strictly increasing (decreasing) affine functions in r

22



when 3%(r) < 1 (85L(r) > 1). Rewrite G(r)/r for r > 0 into G(r)/r =
mingso D(5)/r — f + 1, a pointwise minimum of a family of increasing (de-
creasing) functions in r when D(5) < 0 (D(5) > 0), as D(/3) strictly increases
with 7* > 0 by Lemma 2. By Theorem 3, when 8% (r) < ~* (8%(r) > %),
there is D(B5(r)) < 0 (D(8*(r)) > 0), and G(r)/r should strictly increase
(decrease) in the neighborhood of r. |

Theorem 4 reveals that the ARM criterion best captures opportunities
around a bigger 7* by a bigger 5*, demonstrating the conservatism mod-
erating role of 3. In practical applications, there is r = 7* € [r*,r%] and
thus 7*(r) is bounded, yet the direction of its changes depends on the sign
of 8*(r) and B%(r). The AGG and RGG are indicators of efficiency to cap-
ture opportunities, where RGG is appropriate for considering relative losses.
High efficiency (small AGG or RGG) when r is near the lower or higher
end of [r*,r*] may be interpreted as opportunities are easier to capture
when they are cornered to either ends. Theorem 4 requires almost noth-
ing on D(B), but if D(f3) is continuous and convex, then D(f) is also the
convex conjugate of 7*(r). Note that pr*(¢) — r(m, () is linear in 3, thus
F(B;m) = max¢ey fr*(¢) — r(m, () is convex in f for a given policy 7. But
D(8) = mingen F(B;7) is not necessarily convex in 3, and conditions are

required to make it convex.

Theorem 5. With consistent convexity, the optimal regret guarantee D(S)
is convez in B, and D(p) is strictly convex if r(x,() is strictly concave in x

forall eU.

Proof:  Let 7} € IT be an optimal pruned policy for £;,i = 1,2, and let
7' = Mty + (1 — \)ity for any A € (0,1). By the concavity of r(z, (), there is
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r(#,¢) > (75, ¢) + (1 — Nr(#3,¢) for all ¢ € U. Let B = A1 + (1 — \)Sa

and proceed as follows:

D(B) = minmax fr(¢) - r(#¢)
< max fri(Q) —r(i, ()
< max fr7(¢) — (Wr(#, ¢) + (1 = A)r(#3, 0))
< (max o (©) = (2.0)) +

(-3 (g ar(©) = (5.0 )
= AD(B) + (1 ND(B)

Similarly, strict concavity comes by (7', () > A (7],¢() + (1 — N)r(73,¢). A
If D(pB) is strictly convex and differentiable with a continuous and strictly
increasing D’'((), then *(r) for (16) is simply the inverse of D'(3) from the

first order condition
or(r, B)
s

So the ARM criterion can indeed adjust the level of conservatism to cap-

—r—D'(8)=0. (18)

ture potential opportunies, while maintaining all major advantages of RO.
This mechanism could be highly valuable as less conservative solutions are
recommended, more performance can be expected, while only requiring most
likely values as additional information from experts. According to Vinod
(2021), for example, overconservatism is the main issue preventing the adop-
tion of robust revenue management in airlines, as the profit margin for airlines

is razor-thin, and even a 1% change in revenue could make a huge difference.
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4. One-way Trading.

In this section the ARM criterion is applied to the one-way trading prob-
lem to demonstrate its properties and potential, such as the new approach to
competitive ratio analysis and the effectiveness of the conservatism control
hueristic. The one-way trading problem has been richly studied with both
competitive ratio (El-Yaniv et al. 2001) and absolute regret (Wang et al.
2016), which ideally serve as targets of comparison. Closed-form analytical
solutions are derived with the ARM criterion, yielding the result of Wang
et al. (2016) as a special case with 5 = 1 while the derivation process is not
much more complex than theirs. The competitive ratio is directly found via
the new approach, in contrast to the lengthy and complex derivation pro-
cess in El-Yaniv et al. (2001) that heavily depends on acute intuition and
deep insights that call for great talents. Finally, numerical simulations are
conducted to verify that the ARM criterion can indeed offer smooth con-
trol of conservatism, and the heuristic can determine an appropriate level of

conservatism for improved performances.

4.1. Problem Formulation.

Consider selling a certain amount of divisible goods (such as gasoline) in
periods ¢t = 1,--- T, while the price fluctuates in the range of [m, M]. A
single price p; € [m, M| is first revealed in each period, then as a price-taker
the trader sells at p; an amount x; > 0 out of the remaining stock, without
knowing any future prices. In the last period T', the trader must sell out
whatever remains. The goal is to maximize the total sales revenue.

It is a multistage problem, in which the stages naturally coincide with
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periods. A scenario ¢ corresponds to the prices p = (p1, - - - , pr) revealed over
time, with ¢; = p;. There isUd = [m, M|" and Uy((14) = [m, M], as prices are
independent of each other. Without loss of generality, the total amount to sell
is 1 unit, and the action is # = (21,--- ,27) with X = {& > 0: 3., = 1}.
For t < T there is X;(h;) = [0, ¢;] where ¢ = 1 — 22;11 24 is the remaining
stock to sell given hy, but in the last period X (hr) = [gr, gr|. The reward is
accrued over time, so let r; = Zi;ll psxs for the rewards accrued over hy, and
the reward in the end is r(z,p) = rryq. Let pp = max{ps: s =1,--- ,t — 1}
denote the highest price seen in hy, and 7*(p) = max{r(z,p) : 3 ,_, ¥ =
1} = pry1 the ex post optimal. In the end (3) becomes

Dr(hri1; 8) = Bbrsr — rra. (19)

By tradition, in a stage ¢ the uncertain price p; is revealed first, then an

action x; is taken, which differs from the standardized formulation in (5):

Di_y(h; ) = max  min  Di(hy; 5). (20)

pe€[m,M] z€ Xy (hy)

As a dummy decision can be added to have it standardized, this difference

is superficial, and all results in Section 3 remain valid.

4.2. Analytic Solution.

The analysis starts from the last period 7" and works backwards. It is
sufficient to consider 5 > 0 for comparison with related work, while keeping

things simple. In the last period there is 27 = gr, and (20) becomes

Dp_i(hr; 8) = max ]5maX(Z5T,pT) — (rr + prar),

pTG[m,M
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which is convex in pr, and the maximizer is either py = m or pr = M, thus

Dr_1(hr; 8) = max(Bpr — Ry, BM — (rr + Mgqr))
= max(8pr, BM — (M — m)qr) — Rr
= PBmax(pr, Pi(qr)) — Rr,

where Ry = r; + mq; for t = 1,--- T is the lower bound on rr,; given hy,

and P;(y) is an auxiliary quantity-to-price function defined as

+j
Pi(q) = (M —m) (1—%) Ymi=1,2,--,

with y™/ = max’(0,y) for the positive part of y raised to the j* power. Let

P; (y) = q be the inverse of y = P;(q) for ¢ € [0, 3j]. The trivial case of 3 = 0

is found by the limit as § | 0. Continue on with (20) fort =7 —1,--- ,1 by

backward induction, analytical solutions can be obtained.

Theorem 6. The minimal worst-case regret for the one-way trading problem

in period t given history hy fort=1,2,--- T 1is

Dy_1(hs; B) = Bmax(ps, Pryr—+(q:)) — Ry, (21)

and the optimal trading policy is 7} (hs, pt) = @ — q;y1, where ¢7., = 0 and
q:+1 = min(q, Py_,(Pes1)), t=1,---, T — 1. (22)

Proof: By backward induction. For the initial step with t = T, it is easily
verified. For the induction step, assume (21) holds in period t + 1 < T with

Dt(ht+1; 5) = ,Bmax(ﬁtﬂ, PT—t(Qt+1)) — Ritq,
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and prove it also holds in period ¢. For the minimization nested in (20), let

Dt(hmpt;ﬂ) = min Dt(htHSﬁ)

xt€Xt(he)
= min [ max(ﬁt+1> Pn(Qt+1)) — Ry, (23)

qt+1€[0,q¢]

withn =T —1t, 411 = q¢ — x4, and Ry 1 = 411 + mqs1. First note that

M _ +(n—1)
-4 (1-4) " <

n

which means P,(q) is monotone and there is P,(qy1) > Py if 1 <

P (pi+1) and P,(qi+1) < Pry1 otherwise. Therefore,

BP(q+1) — Riv1 @1 < Py (Det)

Dy(hi11;8) = . R (24)
BPry1 — R Gi+1 > Py (Prg1)
ODy(hiy1;8) pe —m+ BB (q+1) @1 < Py (Peg1) (25)
01 pe—m Qi1 > Py (Pey1)

Note that with ¢.y1 < P, (Pry1), thereis py < prr1 < Po(qey1) < —BP(qe1)+
m, so py—m~+ P (q41) < 0. And with ¢.o1 > P, (Pry1), there is p,—m > 0.
It is clear that (22) is an optimal solution to (23), which from (24) gives

Dy(he,pe; B) = 5Pn(9:+1) — (o1 + mqr+1)' (26)

Let py = max(py, Po(q)) € [m, M], and from (20) there is

Dt—1(ht;5) = max Dt(htypt;ﬁ)

peE€[m,M]
max,, cim.s D¢ (he, Dr;
— max ptE[m,pr] _t( ty Pt 5) (27>
maxy, cp,, i) Di (e, pe; B)
For the branch with p; € [m, py| in (27), consider two cases: (i) py = p; >

P.(q) and (ii) py = P.(q) > p;- In case (i) there is P,y = max(py, py) =
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Pt > P,(q), therefore P (pi1) < g and (22) simplifies to ¢;,; = P, (De+1),
thus P.(¢;,1) = Dey1 = Pr- In case (ii) there is pry1 < Pu(q), therefore
P, (Pis1) > ¢ and (22) simplifies to ¢/, = ¢, thus P,(¢;,,) = Pulq) = Dr.
So there is P,(gf,;) = Pt in both cases, and (26) becomes Dy (h¢,py; ) =
Bpr — (reg1 +mafy,) = Bpe — i — pewy — Mgy, which is linear in p, with a
slope of —z; <0 as x; = ¢, — ¢/, > 0. Thus p; = m is a maximizer, which
gives maxy, e ] Di(he, pi; B) = By — re — may = Bpr — Ry

For the branch with p; € [p;, M| in (27), as p; > p; > py, there is py1 =
e > Dt > Po(q), thus Py (Pry1) < ¢ and (22) simplifies to ¢f, = P, (Det1)-
Therefore P,(g;.1) = pit1 = pi» and (26) simplifies to Dy(hy, pi; B) = B —
Ty — ety —mqp = Bor — 1 — (@ — Gy) — Mg = (B — @ + @) —
maiyy —re = (6 = @+ @) Palaiyy) —maiyy —re = d(B; (pe)), where d(z2) =
(B—aq + 2)Py(2) — mz — 1,z € [0,1], with a derivative d'(z) = (6 — q¢; +
2)P!(z) + P,(z) —m. Note that P,(z) —m = —(8 — z/n)P.(z), thus d'(z) =
(B=—a:+2)P,(2) = (B—z/n)F(2) = (2+2/n—q)P(z). As F(z) <0, there
is d(z) > 0 when z+z/n— ¢, <0, and d'(z) <0 when z+ z/n — ¢ > 0,

hence 2* = ng;/(n + 1) < ¢ solves max_.cp 1 d(2), which gives

d(2") = BPuii1(q) — Ri, Po(2") > Poia(qu)-

Consider two cases with Dy(hy, py; 8) = d(P; (p;)) for p; € [py, M]. Case (i)
Pn(Z*) Z ﬁt‘ AS P;(M) =0 S z* S Pr;(ﬁt)a there is maXptG[ﬁt,M} Dt(h’t?pt; 5) =
d(z*). Thus, according to (27) there is

Dy_1(hy; B) = max(Bp, — Ry, d(27)). (28)
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Case (ii) P,(2*) < pt. As ¢ > z* > P, (p), there is

max  D,(hy, pg; = max d(P,
ptE€[pt,M] t( 6P 5) ptE[Pt,M] ( (pt»
= max d(z)
z€[0,Py (pt)]
< max d(z) =d(z").
2€[0,qt]

As Po(2") 2 Pat1(qe), there is py > Poia(qr). So d(2%) = BPara(q) — By <
Bpr — Ry, and by (27) there is Dy_1(hy; 5) = Bpr — Ry, and (28) remains
valid. Therefore, in both cases proceed from (28) and take note of p;, =

max(pr, P(q:)) and P, (q) < Poi1(q):

Dy1(he; B) = max(Bp, — Ry, d(z7))
= max(8p, — Ry, BPuy1(q) — Ry)
= Bmax(py, Posi(a)) — R
= Bmax(pr, Pu(qe), Pot1(ar)) — Ry

= Bmax(py, Poy1(q)) — Ry
Asn =T —t, clearly (21) also holds for t. |

Corollary 1. The minimal worst-case regret D(B) for the one-way trading
problem is a convex function of B:
1\
D(B)=pM—m)(1-—=] —(1—=pF)m, (29)
BT

Proof:  In the first period, there is ¢y = 1,71 = 0,p; = m. Use these in (21)
and simplify to have the result. The convexity of D() is a consequence of
the consistent convexity of the one-way trading problem and Theorem 5. W

The result of Wang et al. (2016) is a special case of Theorem 6 with § = 1,

and the proof for this more general result requires more general treatments.
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Theorem 6 easily leads to a tremendously simplified derivation of the com-
petitive ratio, as compared to the truly ingenious and highly complicated

analysis of El-Yaniv et al. (2001).

Corollary 2. The competitive ratio defined in (13) for the one-way trading
problem is the unique root By of D(B) = 0 as defined in (29).

Proof:  As r*(¢) > m > 0, it follows from Theorem 3. |

This result agrees perfectly with El-Yaniv et al. (2001), except that they
define competitive ratio as its inverse. Their analysis is much more involved
and heavily relies on insights of the worst case price paths, which can be
deduced straightforwardly once (3, is known, in a way similar to what is done

in Wang et al. (2016).

Corollary 3. As (3 increases, the optimal trading policy gets more optimistic
and aggressive: Other things being equal, it takes on more risks by trading less
now and reserving more for the future, which means Vh, € Hy,¥p; € [m, M]

there is

7y (he, pe; B1) < 7 (hey pu; Ba) if B > P2 > 0.

Proof: ~ Consider the quantity reserved for future ¢;,,; in (22) and note that

Py (p) = B(T —t) (1 _ \/% )

increases in (3, therefore ¢, increases as [ increases. [ ]
Corollary 3 displays theoretically the continuous moderation of conser-
vatism by [ as the optimal policy gets more optimistic and aggressive for

bigger (5 values.
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4.3. Numerical Study.

The effects of heuristics and the fine control of conservatism is further
studied numerically on the one-way trading problem. Here is the basic setup.
The instance has T' = 5 periods, and the prices are in [m, M| = [1,3]. The
prices for all periods are independent and identically distributed (IID) with
a Beta(a, b) distribution on [m, M] with shape parameters a = 3.5,b =
1.5. Suppose experts accurately estimate the most likely value for ex post
optimal reward 7* = 2.897, by which the best 5* = 2.58 is found numerically
by (18). Optimal policies for g € {i/100 : i = 0,--- ,400} are computed
from (22), and all policies are executed on the same sequence of randomly
generated prices to obtain the overall rewards. The whole process is repeated
N = 10,000 times and the average and standard deviation of the reward for
each f is calculated, by which a 99% confidence interval (CI) for the average
reward is computed.

Fig. 1 has the results. Firstly, the heuristic works quite well, with the
guarantee () = [r* — D(f) being a fairly good proxy for the average
reward to find the maximizing . The empirical maximizer § = 0.259 is
found on the average reward curve in the spirit of (15), while the heuristic
finds f = 2.57 as the maximizer on the best guarantee curve, which are
very close to each other with almost identical average reward. These policies
are entered in Table 1 as “heuristic” and “empirical” policies with other
special ones: the maximin policy with § = 0, the relative regret policy
with 0 = v* = 0.72, and the absolute regret policy with § = 1, while the
second last row has the policy that maximizes expected reward (interested

readers are referred to Appendix B of Wang and Lan (2022) for more details)
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Figure 1: Average reward, guarantee, and standard deviation of reward. The average
reward is unimodal, peaks at 8 = 2.59 with a value of 2.636. The guarantee for 7#* peaks
at B = 2.57, very close to 2.59. The standard deviation is unimodel with a valley at

[ = 1.45, achieving a minimal value of 0.177.

and the last row has the ex post optimal policy. Benchmarking against
the expected reward maximizing policy, the absolute and relative gaps are
listed in the table, where the heuristic has a gap of 3.2% and improves the
average reward by roughly 9% from maximin, 4% from relative regret, and
3% from absolute regret. Such improvements can make a big difference in
some practical applications, such as airline revenue management. Note that
the heuristic makes more significant improvement over the other policies if
the heuristic g is further away from theirs, which helps choose the values of
a = 3.5,b = 1.5 for Beta(a,b) to show off the potential of the ARM criterion
and the heuristic.

It seems in this experiment that the heuristic finds a sweet spot in between

extreme conservatism and aggressiveness. The extremely aggressive case of

33



Policy (3) Average+99% CI | Gap | Gap%
maximin (0.00) 2.397+0.010 0.327 | 12.0%
relative (0.72) 2.519+0.006 0.205 | 7.5%
absolute (1.00) 2.560+0.005 0.165 | 6.0%
heuristic (2.57) 2.636+0.005 0.088 | 3.2%
empirical (2.59) 2.636+0.005 0.088 | 3.2%
max expected 2.725+0.006 — —
ex post optimal 2.790+0.004 -0.066 | -2.4%

Table 1: Benchmark the ARM policies of various  values.

B 1 oo (absent in Fig. 1) almost only sells in the last period by (22), while
the extremely conservative case of § = 0 almost only sells in the first period,
giving them identical average reward and standard deviation. Thus both
extremes give poor performance with low expected reward and high overall
risk. By adjusting the [ value of the ARM criterion, the level of conservatism
can be fine-tuned to match the situation for higher rewards and lower risks.

Next, the heuristic is observed in a broader perspective for its capacity
of fine control of conservatism. The same setup is used except for different
shape parameters in Beta(a,b) for a € [0.1,3.9] with a step size of 0.1 and
b = 5 — a: the range avoids b < 1 because the density would diverge at
M, causing * = oo for the heuristic. As bigger a value is condusive to
the probability for higher prices and more chances of good opportunities, a
bigger 8 should be employed for a less conservative robust policy in theory.

Fig. 2 has the average rewards and corresponding 3 for the heuristic and

empirical policy. The heuristic policy gives an expected reward very close to
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that of the empirical policy in general, despite the fairly large discrepancy in
B at a =3.9. The S for both the heuristic and empirical policy indeed steadily
increases as a gets bigger, illustrating continuous control of conservatism by
[ to best catch increasingly better opportunities, as predicted in theory. The
average reward of the heuristic does start to fall behind a little as a 1 4 (see
the round head of heuristic reward curve in the top right corner with a reward
of 2.75 at a = 3.9, dropping 1% from the empirical), while the heuristic
significantly overshoots the empirical £ rapidly. It indicates that the mode 7*
is getting less representative, as the Beta distribution approaches the point
of divergence at M with a = 4,b = 1, resulting in 7#* = M and f* = oo,
according to Theorem 4 with [r*,r%] = [m, M].

A quick fix for reduced average reward due to impaired representativeness
of 7* near the point of divergence is to expand the set of representative
scenarios to U(r, ) = {¢ : r*(¢) € [r—9d,r+0]N[r*,ri]} to determine a right
B, where r = 7#*,6 = (r —r*)-n, and n = 5% in the experiment. A simple
method to determine 3 is employed: simply use (18) with the middle point of
the defining interval for U(r,0): rp,,(7,0) = (max(r*,r—0)+min(r*,r+0))/2.
In Fig. 2 this method is labeled “midpoint”, whose average reward sticks with
that of the empirical throughout, and their § values are always close to each

other.

5. Conclusion.

The ARM criterion proposed in this paper provides fine control of conser-
vatism by the CCP (), while maintaining all the major advantages of RO.

It minimizes the S-adjusted regret guarantee, from which a reward guarantee
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Figure 2: The heuristic and empirical policy under a continous shape shifting scheme for

the Beta distribution to simulate environments with increasingly better opportunities.

for scenarios can be derived. And convexity is preserved even for multistage
problems, a property great for computational tractability and theoretical
analysis. Distributions on uncertainty is not required, only the most likely
values are needed from experts to calibrate g heuristically for the right level
of conservatism to best catch opportunities and improve the performance.
The heuristic is based on the mechanism that as f increases, the ARM cri-
terion will recommend solutions with better reward guarantees for scenarios
bearing more opportunities. It is possible to adapt the ARM criterion and
the heuristic to DRO as well. Various theoretical properties of the ARM
criterion are studied, such as continuity, monotonicity, and convexity, which
may facilitate the analysis of problems, finding closed-form solutions, or de-
signing better numerical algorithms. These theoretical results also lead to

a new approach for competitive ratio analysis, which may be much simpler
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than the traditional approach, as is observed in the analysis of the one-way
trading problem.

The ARM criterion is applied to the robust one-way trading problem to
demonstrate its potential. Closed-form solution is obtained, from which the
competitive ratios is quickly derived by the new approach. Analysis of the
closed-form solution shows that the optimal policy gets more aggressive as
increases. Numerical experiments on one-way trading are designed to illus-
trate fine control of conservatism, with significant benefits of the heuristic.

This study of the ARM criterion only serves as a starting point for future
research. First of all, applying it to pratical problems in various areas is the
thrust for further theoretical development. Conceivably, innovative methods
may be developed to find an appropriate 3 in practice. Note that it can also
be applied when there is rich historical data to estimate distributions, but a
performance guarantee is highly desired. Researches on linear problems with
the ARM criterion can be fruitful, as progresses are made in this regard on
the absolute and relative regret criterion by Poursoltani and Delage (2021).
Finally, it can be practically and theoretically fruitful to apply the ARM
criterion with DRO.
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