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1 Introduction

Priority-based assignments are pervasive in a wide range of real-world matching
contexts, including university admissions, public-sector placements, and cadet-
branch allocations in military academies (see, e.g., Balinski and Sénmez, 1999;
Sonmez and Switzer, 2013). In a typical priority-based system, participants are
strictly ranked—based on exam scores or a merit list for instance—and are as-
signed to positions accordingly. The central fairness requirement in these contexts
is that no lower-ranked participant should occupy a seat that a higher-ranked par-
ticipant strictly prefers; otherwise, the latter has a legitimate grievance, known as
gustified envy (Abdulkadiroglu and Sénmez, 2003). Such fairness concerns become
even more pronounced when the priorities at stake represent strongly protected
interests—like property rights or national exam rankings—where even a single
instance of justified envy can trigger legal and administrative challenges.!

Under the standard approach of designing direct mechanisms—where each par-
ticipant reports a complete ranking over positions—Serial Dictatorship (SD) is
in fact the only mechanism that can satisfy non-wastefulness—i.e., not leaving
desirable positions unfilled—and no-justified-envy. In SD, the highest-priority
participant picks their top choice, the next participant picks from the remaining
positions, and so on. This procedure prevents any lower-ranked participant from
ending up in a spot that a higher-ranked participant strictly prefers, ensuring
no-justified-envy. However, SD can produce allocations that are misaligned with
policy goals, such as excessive clustering of top-ranked participants in a small set
of elite locations, or undesirable regional or demographic distributions. When
considering standard direct mechanisms, there is no alternative to SD that both
respects strict priorities and operates on full preference lists. Thus, policymakers
appear to face a dilemma: given the requirement for “fairness by priority”, how
can one construct rules in pursuit of better distributional outcomes?

When we look at real-world priority-based assignments, we see many depart

from the fully “direct” approach, as illustrated by the following cases:

1. In the Indian Administrative Services (IAS), officers were formerly assigned

1One example of these legal challenges is the Federal University of Bahia hiring suit (Brazil,
2025), where a federal judge blocked the university from hiring a lower-scoring quota applicant
and ordered the single vacancy awarded to the exam’s top scorer (Agéncia Estado, 2025). An-
other was the Italian national residency “fiasco”, in which the Regional Administrative Tribunal
of Lazio annulled a ruling that forced higher-ranked doctors to forfeit more-preferred specialties
while lower-ranked peers advanced (Focus.it, 2016). Both rulings treat the harm as a breach of
the merit order—i.e., a violation of justified envy—showing that such breaches readily provoke
litigation.



Figure 1: Example of a preference ranking in the 2017 IAS Mechanism

Zone 3 Zone 1 Zone 4 Zone 2 Zone 5
Gujarat AGMUT Manipur Uttar Pradesh Andhra
Madhya Punjab West Bengal QOdisha Pradesh
Pradesh > Jammu & Kashmir > Sikkim > Bihar > Telangana
Chhattisgarh Himachal Pradesh Nagaland Jharkhand Kerala
Maharashtra Uttarakhand Assam-Meghalaya Tamil Nadu

Haryana Tripura Karnataka
Rajasthan

to state cadres in a priority-driven process aligned with exam-based merit. This
arrangement, which was essentially a serial dictatorship with some modifications,
produced undesirable allocations exhibiting homophily, i.e., a propensity for offi-
cers to serve in or near their home regions. Such geographic clustering was seen
as compromising the national integration objective of the service (Thakur, 2023).
A 2017 reform imposed a zone-based scheme: all cadres were partitioned into five
geographic zones, and each officer now submits a separate ranking of cadres within
each zone rather than a single list over the entire country (see Figurel). The re-
vised mechanism guarantees that no lower-ranked officer receives a cadre preferred
by a higher-ranked officer inside the zone where they are ultimately matched, while
the zonal structure itself allows for officers to be more evenly dispersed across In-
dia—advancing distributional goals without overriding the preferences participants

actually report.

2. Under the U.S. Military Academy matching process of cadets to military
branches used in 2006, each cadet (i) ranked the branches and (ii) stated, for
every branch, whether they would accept a longer service obligation in exchange
for a priority boost (Sonmez and Switzer, 2013; Greenberg et al., 2024). This
elicitation did not allow them to report cross-branch trade-offs. Omitting this
information let the Academy honour the official order-of-merit list while making
it possible to steer more cadets into longer commitments that would have been
rejected under full preference elicitation. As Sonmez (2024) explains, this design

kept such priority violations hidden:

“Several years later, in 2019, I finally learned why the Army initially
did not pursue a potential reform of the USMA-2006 mechanism. (...)
Any failure of the no-justified-envy axiom rooted in this first issue was
also ‘invisible’ to the Army. When a cadet receives his first-choice
branch at the increased price but prefers his second choice at the base
price, this information was simply unavailable under the strategy space
of the USMA-2006 mechanism.”



3. In the Chinese college admissions system, applicants submit a structured rank-
order list in which majors are nested under colleges, effectively enforcing a lexico-
graphic hierarchy: once a college is deemed higher-ranked, every major it offers is
treated as strictly preferred to any program at a lower-ranked college. Although
this structure is known to generate numerous cases of justified envy in practice,
none of these can be challenged under the restricted message space (see Hu et al.,
2025).2

As the preceding cases show, limiting what participants may report can hide
genuine priority breaches. Following this, we say a mechanism is visibly fair
when, given the elicited (partial) preferences, no outcome appears to violate pri-
ority. For example, if seats are partitioned into zones and participants may only
rank seats within each zone, allocating by priority inside every zone looks per-
fectly fair—even though a cross-zone comparison (never elicited) might reveal a
lower-ranked participant holding a seat a higher-ranked participant prefers. By
restricting the scope of reported preferences, policy makers can pursue goals such
as geographic diversity while keeping any latent violations invisible. A closely
related idea appears already in Greenberg et al. (2024), who introduced the no-
tion of detectable priority reversals, a concept that corresponds precisely to visible
(un)fairness in the context of the US Army’s branching mechanism.

Inspired by these observations, we examine the design problem of assigning
officers to positions under a strict priority ordering while maintaining visible fair-
ness. In contrast to standard models that fix a preference-reporting format, in
this framework the policy maker chooses both the message space (the form
of partial preferences agents can report) and the outcome rule. Our analysis
provides a framework and results on how to configure these two elements together

so as to achieve desired policy objectives.

Summary of Results

Our analysis delivers three main sets of results. First, we pin down the precise
structure that visible fairness imposes on allocation rules. Theorem 1 shows that
any visibly—fair mechanism must operate as an m-queue allocation: officers are

processed in strict priority order, and each is assigned a state that is undomi-

2 As of January 2025, 23 out of 31 provinces in China retain the nested rank-order procedure
(Hu et al., 2025), including Shanghai, Beijing, Tianjin, Hainan, Jiangsu, Fujian, Hubei, Hu-
nan, Guangdong, Heilongjiang, Gansu, Jilin, Anhui, Jiangxi, Guangxi, Shanxi, Henan, Shaanxi,
Ningxia, Sichuan, Yunnan, Tibet, and Xinjiang. We provide screenshots from Fujian and Shang-
hai’s official college-major list sample form in Appendix B.



nated, among the remaining states, within the partial ranking she is allowed to
report. When the message space induces a partition of the state space into zones,
this characterization yields the more specific results in Theorems 2 and 3. In this
setting, the only visibly-fair rules are partitioned priority mechanisms. Moreover,
when rankings are permitted across “zones,” the only visibly-fair rules are ranked-
partitioned priority mechanisms. While visible fairness implies serial dictatorship
(and therefore strategy-proofness) when using direct mechanisms (Corollary 2),
that is not the case for general message spaces. We show in Theorem 4 that
strategy-proofness is obtained exactly when the mechanism also satisfies expres-
siveness and (weak) availability, two properties that rule out profitable deviations
when the mapping from message profiles to outcomes is more general.

Second, we introduce a flexible way to encode distributional goals through
modular upper-bounds. A quota system is modular when every bound caps groups
of officers within an arbitrary subset of states (Definition 10). Modular bounds
induce zonal message spaces with a partition of states—formally captured in Def-
inition 13—where all states subject to the same collection of caps fall in the same
“zone.” Building on this structure, the Modular Priority Mechanism (Defini-
tion 14) processes officers by priority while dynamically clogging zones whose rel-
evant caps have just filled. Theorem 6 proves that this mechanism simultaneously
respects every modular bound, remains visibly fair, and is strategy-proof.

Yet, as Example 6.1 and the impossibility result in Theorem 7 shows, in gen-
eral, no static (one-shot) rule can simultaneously (i) satisfy visible fairness, (ii)
respect modular upper-bounds, and (iii) not be Pareto-improved by allocations
that respect the caps. The root of the conflict is informational. To guarantee that
every admissible report keeps the quotas intact, the policy maker must prune the
message space in advance, excluding comparisons whose truthful revelation could
otherwise force a violation. This secures fairness and feasibility but withholds
preference information that would uncover (and implement) mutually beneficial
swaps still compatible with the same caps.

Finally, we show that this tension can be resolved using a dynamic mechanism.
The Dynamic Modular Priority Mechanism (Definition 16) re-elicits each officer’s
preferences after observing earlier assignments, restricting her menu only by the
quotas that are now binding. This simple refinement recovers constrained Pareto

efficiency, while being strategy-proof (Theorem 8).



Related Literature

A foundational theory for mechanisms with restricted message spaces comes from
Green and Laffont (1986), who study settings where participants are restricted to
a limited message space that depends on their true state. Their key insight is that
by constraining the information a participant can reveal, the set of implementable
outcomes can be expanded beyond what is possible in standard direct mechanisms.

Beyond the already discussed cases of the Indian Administrative Service (IAS)
cadre allocation (Thakur, 2023), the U.S. Military Academy’s cadet-branch match-
ing (Sénmez and Switzer, 2013; Sonmez, 2013; Greenberg et al., 2024), and Chinese
college admissions (Hu et al., 2025), many real-world mechanisms also limit the
extent of preference reporting. In school choice, for example, some systems cap the
number of schools an applicant may rank (Haeringer and Klijn, 2009a; Calsamiglia
et al., 2010), while others allow applicants to “bundle” schools into groups without
inter-group comparisons (Huang and Zhang, 2025).

Dynamic procedures often also restrict preferences and by doing so, might
reduce complexity (Pycia and Troyan, 2023). Bé and Hakimov (2022) propose It-
erative Deferred Acceptance by letting participants choose from menus, obtaining
stable results without demanding complete rankings, and B6 and Hakimov (2024);
Mackenzie and Zhou (2022) extend this idea to mechanisms that sequentially offer
feasible outcomes—enhancing privacy and performing well in controlled experi-
ments. Even small constraints, like limiting the length of rank-ordered lists, can
disrupt classical incentive properties: Haeringer and Klijn (2009b) show how cap-
ping the number of ranked schools compromises the usual strategy-proofness of
the Deferred Acceptance procedure. Meanwhile, Caspari and Khanna (2025) pro-
pose precise conditions for stability and incentives with non-standard preference
formats. Collectively, these studies highlight how restricting preference elicitation
can open new design possibilities while preserving key desiderata — an insight we
leverage in defining and deploying visible fairness. Decerf et al. (2024) is perhaps
the most conceptually related work to ours. Their notion of incontestable assign-
ments describes an environment where participants cannot fully observe others’
preferences or placements, leaving them unable to identify certain envy issues.
This parallels our concept of visible fairness, in which certain violations become
undetectable. The key difference, however, is that Decerf et al. (2024) derive
their informational constraints from the participants’ limited ability to view the
full outcome, whereas in our framework, these constraints are intentionally de-

signed by the policy maker. Specifically, in our setup the policy maker restricts



what participants can report so as to preclude distributional tensions that might
otherwise manifest as visible grievances.®> In addition, while Decerf et al. (2024)
accommodate a variety of school-specific priorities, our model considers a single,
strict priority ranking that orders all participants.

Another paper that considers mechanisms using alternative message spaces is
Cavallo and Dogan (2024). The authors analyze Italy’s nationwide teacher-mobility
scheme, in which teachers may rank entire municipalities, districts, or provinces—nested
geographic units that bundle many schools into a single item on their list. They
show that the tie-breaking rule used to resolve these coarse rankings might allocate
lower-priority teachers ahead of higher-priority ones, creating detectable instances
of justified envy. They also show that these result in legal challenges: Italian
courts have repeatedly upheld merit-based claims, and parliamentary testimony
records more than 1,000 lawsuits filed each year, on average, over such priority
violations.

Partial preferences have also been studied in other contexts within market de-
sign. One strand lets participants declare indifference classes directly: Erdil and
Ergin (2017); Manjunath and Westkamp (2021); Andersson et al. (2021) build
mechanisms that treat weak orders — strict ranks punctuated by ties — as the
primitives, and then exploit those ties to recover efficiency and strategy-proofness.
A second strand considers problems in which not every pair of outcomes can be
compared, evaluating which adaptation of standard properties, such as stability,
can nonetheless sustain strategy-proofness under suitable conditions (Caspari and
Khanna, 2025; Kuvalekar, 2023). Typically, these frameworks rely on “weak sta-
bility,” where participants who are indifferent or indecisive simply cannot block
assignments. In contrast, our approach presumes participants do have complete
preferences but are deliberately constrained from revealing them in full.

The design of matching markets with distributional constraints through quota
systems has emerged as a critical area of research in market design, balancing
equity objectives with efficiency and stability considerations (Echenique and Yen-
mez, 2015; Abdulkadiroglu and Grigoryan, 2023).* Kamada and Kojima (2015)

3In many real-life aplications, such as the IAS hiring and public sector hiring contests in Italy
and Brazil, transparency requirements imply the public disclosure of information such as exam
papers, scoring sheets, and even interview recordings. These are not considered private and must
be accessible to ensure administrative and social oversight (Autorita Nazionale Anticorruzione,
2025; Controladoria-Geral da Uniao, 2023; Abizada and Bé, 2021). Under these informational
circumstances, incontestability might become equivalent to standard elimination of justified envy,
and therefore under single priority imply serial dictatorship.

4Practical implementations in education markets reveal both the potential and complex-
ity of quota systems. Combe et al. (2022) quantified these trade-offs through France’s teacher
assignment reforms, where experience-based distribution constraints reduced novice teacher con-
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introduced the idea of matching with distributional constraints, showing that con-
ventional stable matching algorithms can break down under strict regional quotas.
To address these deficiencies, they introduced new mechanisms that ensure such
constraints are respected while preserving or improving upon stability, efficiency,
and incentive alignment. Subsequent research refines and generalizes these in-
sights: for instance, Kamada and Kojima (2018) identify structural conditions
enabling strategy-proof and stable mechanisms under distributional constraints,
and their more recent work (Kamada and Kojima, 2024) extends stability ideas
to increasingly nuanced affirmative action policies.”

At the core of this field lies the tension between rigid distributional quotas and
the flexible preferences of participants. Fragiadakis and Troyan (2017) demon-
strated this through military cadet matching, where static reservation systems
created inefficiencies by locking seats for specific groups prematurely. Their dy-
namic quota mechanism represented a paradigm shift, adjusting reservation tar-
gets based on revealed preferences while maintaining strategy-proofness. This
approach inspired subsequent innovations like the Adaptive Deferred Acceptance
(ADA) mechanism by Goto et al. (2017), which introduced hereditary constraints—rules
where satisfying a constraint automatically satisfies all its subsets. The ADA
mechanism’s success in Japanese medical residency matching showed that carefully
designed constraints need not sacrifice core market principles like nonwastefulness

and strategy-proofness.

Structure of the paper. In Section 2, we introduce the model and definitions,
covering partial preferences, feasible allocations, and our message-space frame-
work. Section 3 then characterizes visibly fair mechanisms, identifying them
as queue-allocation variants and examining applications such as zonal message
spaces. Section 4 turns to incentives, specifying exactly when these mechanisms
are strategy-proof via the conditions of expressiveness and availability. Sections 5
and 6 present our results on distributional objectives, including modular upper-
bounds and the Modular Priority Mechanism, alongside an analysis of efficiency

that leads to our Dynamic Modular Priority Mechanism. Section 7 concludes. All

centrations in disadvantaged schools by 18% without significant efficiency losses. Combe et al.
(2025) extended this through a reassignment algorithm that prioritized understaffed schools,
demonstrating how temporal flexibility in constraints (allowing multi-year adjustment periods)
could mitigate short-term displacement costs.

®Additional contributions include Aziz et al. (2019), who introduce the principle of “cutoff
stability” for diversity-constrained matching, and Kojima et al. (2020), who identify conditions
ensuring that distributional constraints do not undermine substitutability in job-matching mar-
kets.



proofs are relegated to Appendix A.

2 Model and Definitions

A problem consists of:

1. a finite set of officers I = {iy,ia,...,0n},
2. a finite set of states S = {s1,52,...,5m},
3. a capacity for each state (gs)secs, such that Y o qs > n,

4. a strict preference (asymmetric, complete, and transitive) for each officer

(=i)ier over states S.° and

5. a priority ranking 7 of officers I, where officer 7 is ranked higher than officer

Jjif (i) < w(j).

For a given problem, the goal is to produce an allocation of officers to states.
Formally, an allocation a = (a;);¢; is a list specifying a state a; € S for each officer
i € I. An allocation is feasible if, for each s € S, we have [{i € I : a; = s}| < ¢s.
We denote the set of all feasible allocations by A. Furthermore, without loss of
generality, we assume that officers with lower subscripts have a higher priority,
e, m(iy) < mw(iz) < --+ < m(iy). While the allocation decision is based on
officers’” reported preferences and assigned priorities, in our setup, officers do not
necessarily communicate their full preferences directly but instead provide partial
preference information from a menu of partial preferences available.

More specifically, let M; denote the message space for officer + € I. Each
message m; € M, is an irreflezive and acyclic binary relation >,,, over the set of
states S.” Throughout, “~,,” will be read as “preferred under the message m;.”
We say that states s and s’ are comparable under m; if s = s’ or if m; ranks
one strictly above the other, i.e., s >, s or ' >, s. We denote message space

profiles and message profiles by M = (M;);c; and m = (m;)ie;-

6We denote by ; the associated weak preference—that is, s >=; s’ <= s >=; s/ or s = ',
"Binary relation >,,, on S is irreflezive if for all s € S, (s =, s). Binary relation >,,, on
S is acylic if for all s,s' € S, for all K € N, and for all s°,...,s% € S,

[s=s"and s" 1 =, s¥ forall k € {1,... K} and s% = 5'] = =(s' =, ).

We denote by 77, the associated weak binary relation.



Definition 1. A message space M; satisfies richness if, whenever there exists a
message m; € M; and two states s, s’ € S such that s >, s and there is no state

y € S where s >,,, y >, s, then there also exists a message m; € M; such that:

e for every pair (s1,s2) € S X S with {s1,$2} # {s,5}, s1 =m, s2if and only

if s, =m! S2, and
o s ~m! S.
1

In words, whenever the designer allows an officer to send a message that ranks
s above s, there also exists a message m, € M, that preserves every other pairwise
comparison of m;, but reverses the comparison of s and s’. The condition involving
the third state y prevents this reversal from violating transitivity.

Henceforth, we assume each message space M; satisfies richness, unless noted
otherwise. This property guarantees that the message space never forces the of-
ficer to reveal a comparison in one direction without permitting the symmetric
comparison in the opposite direction.

Having defined both allocations and messages, we now formally define a mech-
anism. A M-mechanism is a function from message profiles to allocations,
v M — A. We will use the shorthand mechanism when the space of mes-

sage profiles is clear from the context.

3 Visibly Fair Mechanisms

3.1 Visible Fairness

The key notions that we introduce in this paper is that of visible fairness.
Definition 2. An allocation a is visibly unfair under m if for some i € I either
i) there is a j € I such that a; # a;, 7(i) < 7(j), and a; >, a;, or
ii) there is a s € S such that a; # s, |[{i € [ : a; = s}| < ¢, and s >, a;.

A mechanism ¢ is visibly fair if there does not exist m € M such that ¢ (m) is

visibly unfair under m.

At first sight, visible (un)fairness appears to be a combination of standard non-
wastefulness and elimination of justified envy. The distinction, however, lies in the

fact that m;, in general, is incomplete, and therefore some existing wastefulness
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or justified envy is “invisible” due to the limits to the expression of the associated
prefrences imposed by the message space.
Define the set G(X,m;) of all m;-maximal elements of X C S by

G(X,m;) ={s€ X :=(s =, s) forall & € X}.

Since =, is acyclic and S is finite, G(X,m;) # @.® We next introduce a new

family of mechanisms.

Definition 3. A mechanism 1 is a m-queue allocation mechanism if ¢)(m) is

the outcome produced by the following procedure:
Step 0: Set S' = S.

Step k (1 < k < n): a, = s* € G(S*,my). If the number of officers
assigned to s* reaches ¢, that is !{z e€l:i1<kanda;= sk}‘ = @, then
Skt = Sk\ {sF}. Otherwise, S*! = S*.

The m-queue allocation mechanism is the natural partial-preference analogue
of serial dictatorship. Starting from the highest-ranked officer, they are matched
to undominated states, given previously assigned ones. The difference here being,
of course, that there might be multiple undominated states, and therefore some

selection criterion between them must also be defined.

Theorem 1. A mechanism ) is visibly fair if and only if it is a m-queue allocation

mechanism.

When considering complete message spaces, Theorem 1 gives us the following

corollary:

Corollary 1. If for every i € I, every m; € M; and every s,s’ € S, states s
and s' are comparable under m;, then Serial Dictatorship is the unique visibly fair

M -mechanism.

Theorem 1 provides a full characterization of visibly fair mechanisms: any
such mechanism must be an m-queue allocation mechanism. While this defi-
nition is compact, it captures an extensive class of mechanisms. Designing an
m~queue mechanism involves two layers of choice—first, specifying the message
spaces officers can use, and second, given a message space, determining which

of the undominated (m;-maximal) states each officer is matched to. This latter

8For a proof, see Bossert and Suzumura (2010, Theorem 2.6).
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choice can depend on exogenous policy parameters or on the overall message pro-
file. In contrast, as indicated in the corollary above, when officers are allowed
to submit complete preferences over all states, visible fairness alone pins down a
unique mechanism—serial dictatorship. The characterization in Theorem 1 there-
fore illustrates how relaxing the message space, dramatically expands the set of
mechanisms that satisfy visible fairness, enabling greater flexibility in accommo-

dating policy goals beyond those implementable via serial dictatorship.

3.2 Two Special Message Spaces

We now turn to two natural families of message spaces, which are used in practice
and serve as the foundation for implementing distributional objectives in Section
5.

3.2.1 Zonal Message Space

We now introduce a family of message spaces that induce a partition of the set of
states into “zones.” Formally, suppose a message space M; is such that the states
S can be partitioned into disjoint subsets Z = {z1,..., 2} with U§:1 z; = S and
z;Nzy =@ for j # j'. We call M; a zonal message space if within each subset
zj, any two states are comparable under any m; € M,;, while any two states in
different subsets are never comparable under any m; € M;. That is, zonal message
spaces have the following properties:

Within-zone completeness: For every strict total order R on S, there exists

a message m; € M, such that, for every zone z; € Z and all states s, s’ € z; with

s+,

sRs <+ s>,5.

In other words, within each zone, the message space is rich enough to permit
any ranking of states within that zone.

Across-zone incomparability: For every pair of zones (z;, z;;) with j # j',
and for every message m; € M;, no two states in z; and z; are ever ordered under
>m,- That is, the message space never allows an officer to rank a state in z;
relative to a state in 2.

From an officer’s perspective, submitting a message in a zonal message space
amounts to choosing a complete (strict) ordering over states within each zone but

leaving no comparison defined across zones.

12



Example 3.1. Suppose the states S are {si, s2, 83, $4}. One could design a mes-

sage space that effectively partitions these states into two zones:

z1 = {81,82}, 2o = {83784}-

Officers would be required to provide complete rankings among {s;, s2} and
among {ss, s4}, but they would never be allowed to compare s; (or s9) with sz (or

s4). Consequently, any message in this space is of the form:
e Within z;, rank s; above sy (or vice versa).
e Within zy, rank s3 above s4 (or vice versa).
e Across z; and zy, no ordering is possible.

Although the zone partition can be entirely endogenously derived from how
comparisons are restricted in the message space, a mechanism designer may also
choose to impose such a structure normatively, for example to ensure no cross-
zone comparisons are made (as in the Indian Civil Services, where certain sets of
states are grouped into “zones”). From a theoretical standpoint, both perspectives
are equivalent: a zonal message space is simply one in which states are fully
comparable within each zone and never comparable across zones.

Notice that given any Z, i, zonal message space M;, and a preference over
states >=;, there is exactly one message m; € M; such that for every pair of states
$,8, 8= 8 = s>, 5.

Suppose each officer has a zonal message space. Consider a zone selection
function C; : 2° x M — Z, which is a function such that for any X C S,
X NGC(X,m)+#a°

Definition 4. A mechanism v is a partitioned priority mechanism if there
exists a zone selection function profile (C;),.; such that for any message profile m,

¥(m) is the outcome produced by the following procedure:
Step 0: Set S' = S.

Step k (1 <k < n): a, € G(S*, my,)NCr(S*, m)) = {s*}.1° If the number of
officers assigned to s* reaches g, that is |{z el:i<kanda;= sk}’ = @k,
then S**! = S*\{s*}. Otherwise, S¥1 = S*.
9That is, as long as there are states with spare capacity available, C; must choose a zone
with at least one of them.

10Tt is easy to see that within each zone, there is a unique m;-maximal element among any
set of remaining states with spare capacity, since all states in a zone are comparable under m;.
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Zone selection functions constitute the essential component of the definition
that results in the large variety of these mechanisms. They indicate, for each
profile of messages, which zone will be used to determine an officer’s outcome.
This zone can depend on some exogenous parameter, on the allocations of higher-
ranked officers and/or the preferences stated by other officers, as well as her own
message. Once a zone is determined, however, the state that will be matched to
the officer depends only on her preferences between the remaining states in that

zone. !

Theorem 2. For a zonal message space M, 1) is visibly fair if and only if it is a

partitioned priority mechanism.

3.2.2 Zonal Message Space with Ranking over the Zones

We now enrich the idea of a zonal message space by allowing officers to impose a
strict ordering across the zones. As before, let Z = {z1,..., 2} be a partition of
S into disjoint zones. Let, moreover, max(X,m;) = G(X,m;) and min(X,m;) =
{ sEX: P €X, 5, s’}. A zonal message space with ranking over the
zones is a message space M; in which:

Within each zone, states are comparable just as in the standard zonal case.
That is, for every strict total order R on S, there exists a message m; € M, such

that, for every zone z; € Z and all states s, s’ € z; with s # ¢/,

sRs <+ s>=,5.

Across zones, each message m; € M, implies a complete ranking >,,, over

zones Z S.t.
2 Dm; 2j <= max(z,m;) >, min(zj,mi).

No other preferences among states can be expressed in these message spaces.
In words, these rankings augment zonal message spaces in a minimal sense:
they allow officers to express some information about how they rank zones in a
weakest sense: by ranking zone z above 2/, they are saying that the best state in
z is preferred over the worst in z’. Notice that if this was not the case, we would

have z being ranked above 2z’ while every state in 2’ is preferred to every state in

1Notice, moreover, that the definition of the mechanism requires that C;, chooses a zone with
states with spare capacity, which by assumption always exists.
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Z.12

Notice, moreover, that Zonal Message Space with Ranking over the Zones do
not satisfy the richness condition we introduced in definition 1: you can express

max(2g, m;) >m, min(zj,mi), but not min(zj,mi) = m, Max(zg, m;) .

Example 3.2. Suppose the states S are {si, s2, 53, $4}. One could design a mes-

sage space that effectively partitions these states into two zones:

21 = {51,52}, 22 = {83754}

Officers’ messages contain complete rankings among {s1, so} and among {ss, s4},
and a ranking over zones b,,.. Consequently, any message in this space is of the

form:

e Within z;, rank s; above sy (or vice versa).
e Within z,, rank s3 above s4 (or vice versa).
e In addition to these:
— If s >, S2 and s3 =, s4, either s; is ranked above sy (21 >y, 22), or

s3 above Sy (22 Dy, 21).

— If $1 >, 2 and s4 >, s3, either sy is ranked above s3 (21 >y, 22), or
sy above Sy (2o Dy, 21)-

— If s9 >, $1 and s3 =, s4, either s, is ranked above sy (21 >y, 22), or
s3 above $1 (22 Dy, 21).

— If s9 =, $1 and s4 >, s3, either sy is ranked above s3 (21 >y, 22), or

s4 above $1 (22 By, 21).

e No other preferences across states are possible.

Suppose each officer i has a zonal message space with ranking over the zones,
as described above. Define a ranked zone selection function C; : 2°x M — Z
to be a mapping that, for each subset of states X C S and each message profile
m, selects a zone C;(X,m) € Z such that:

12To see this, suppose that Z = {z1, 22}, 21 = {s1,52} and 23 = {s3, s4}. Let m; be such that
S1 >m; S2 and Sg >, S4. If a ranking z; >, 22 is associated with s1 >, s4, we have this
additional comparison between states and nothing else. But if it was associated with s4 >, s1,
this would imply that s3 >, S4, 84 >m,; S1,51 >m, S2, thus making s3 the m;-maximal element
in {s1, S2, 83, $4}, which would be at odds with any reasonable interpretation of what z1 by, 22
implies for preferences among these states.
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1. XNCi(X,m) # @, and

2. either
X N CG(X,m) # {min(C;(X,m),m;)},

or there is no zone z € Z with z >,,, C;(X,m) and max(z, mz) e X.

A ranked zone selection function restricts which zone will be assigned to an
officer on the basis of the limits visible fairness imply given the ranking over zones:
if a zone z contains only the state deemed as the least preferred in z, no zone 2z’

for which 2’ >, z can have spare capacity in its most-preferred state.

Definition 5. A mechanism ¢ is a ranked partitioned priority mechanism
if there exists a ranked zone selection function profile (C;);cr such that for any

message profile m, ¥(m) is the outcome produced by the following procedure:
Step 0: Set S' = S.

Step k (1 <k < n): a, € G(S*, my,)NCr(S*, m)) = {s*}.13 If the number of
officers assigned to s* reaches g, that is |{z e€el:i<kanda;= sk}’ = @k,
then S**! = S*\{s*}. Otherwise, S¥1 = S*.

Theorem 3. For zonal message space with ranking over zones, 1 is visibly fair if

and only if it is a ranked partitioned priority mechanism.

The presence of ranking over zones implies some restrictions on the zones that

the zone selection function can determine, as shown in the example below.

Example 3.3. There are three states S = {s1, 59, 53} (capacity 1 each) and two

zones

2z ={s1}, 29 = {52,853}

13Ranked zone selection function makes sure that within the selected zone, mj-maximal
element exists. To see why, let z = Cy(S*¥, m) be the selected zone. We have two cases from the
ranked zone selection function definition:

Case 1: S¥ Nz # @ and S* Nz # {min(z,my)}

Then S* Nz contains non-minimal elements of zone z. Since all states in a zone are comparable
under my, the my-maximal state within S* N z is unique. By the across-zone ranking property,
only min(z,my) can be dominated by states in different zones, so the myg-maximal state within
Sk N 2 is also mg-maximal in all of S¥. Therefore, G(S*, my) N C(S*,m)) is non-empty and a
singleton.

Case 2: SNz # @ and no zone 2’ >,,, z has max(z’,my) € S*

The condition ensures that all maximal elements of higher-ranked zones are unavailable in S*.
Therefore, mj-maximal state within S* N z faces no domination from higher-ranked zones and
is my-maximal in S*. Therefore, again G(S*, ms) N Cx(S*,m)) is non-empty and a singleton.
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There are two officers, i; and 75. We will consider visibly fair mechanisms in
which the message space is zonal with rankings over these zones for both officers.

Officers 47 and 75 both submit the same message:
Z21 Pm,; 22, 82 7 m,; S3-

Because z, contains two available states, the ranked-zone selection function
could, in this scenario, place i1 in either zone z; or zs. Suppose that it places on
zy. Given my, i1 is matched to s».

Now z; still has s; free, and 2z only s3. Since z; remains vacant and is the
highest-ranked for i, the mechanism must choose z; and assign s;. Selecting 29
would contradict z; >, 20 while 2; still offers an available seat, and is therefore

not allowed.

Ordinary partitioned priority mechanisms (without the zone ranking) would
leave the planner free to swap i between z; and z,, illustrating how adding

cross-zone orderings tightens the designer’s hands, in comparison.

4 Incentives

To analyze incentives, we first define what it means for an officer to report truth-
fully. The idea is straightforward: given an officer’s preference over states, their
report is truthful if the underlying preference information in the submitted mes-
sage aligns with their actual preferences. For a given officer ¢ € I, let O, be the
set of all preferences over S. Officer i’s message m; is a truthful message for

a preference 7;€ Q;, if for all s5,5" € S,
S m, 8§ = s>=; 5.

Note that our richness assumption on the message space M; ensures the existence
of a truthful message for every officer. That is, for every preference ;€ Q;, there
exists at least one message m; € M; that is truthful.

When it comes to incentives, a key desideratum is that an officer who submits
a truthful message should never receive a less preferred allocation than if they
were to report any other message. Formally, a mechanism ) is strategy-proof if
for all i € I, ;€ Q;, for any m; € M; that is a truthful message for 7—;, and any

)~ ~l)

other message m; € M; we have
w(m)z i w(mwm—z)z
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Strategy-proofness implies, therefore, that if an officer has multiple truthful
messages, then they cannot lead to different outcomes. We next define two condi-
tions that are sufficient for a visibly fair mechanism to be strategy-proof. Weak-
ening one of the two conditions is also necessary for a visibly fair mechanism to
be strategy-proof.

The first condition, expressiveness, requires that whenever an officer changes
her message and thereby obtains another assignment, this new assignment must
be comparable to the officer’s originally assigned state under the original message.
Note that, the condition allows for the new assignment to be identical to the

original assignment and that a state is always comparable to itself.

Definition 6. Let 1 be a mechanism and let m be a message profile. The interest
into state s € S is expressed by officer ¢ under m if s and i(m); are comparable
under m;.

A mechanism v satisfies expressiveness if for all i € I, any m; € M, and any
other message m; € M; interest into state 1(m;, m_;); was expressed by officer i

under m.

The second condition, availability, requires that whenever an officer changes
her message and thereby obtains another assignment, this new assignment must
always correspond to a state that was already available to her under the original
message. Note that, the condition allows for the new assignment to be identical
to the original assignment in which case the state is trivially available under the

original message.

Definition 7. Let v be a mechanism and let m be a message profile. A state s € S
is available to officer i under mif |[{j € I : (m); = s} N {jeI:n(j) <7w()}| <
ds-

A mechanism 1) satisfies availability if for all ¢ € I, any m; € M; and any
other message m; € M; , we have that state ¢ (m;, m_;); is available to officer i

under m.

Interestingly, availability is too strong of a condition for ensuring strategy-
proofness. Indeed, while availability ensures that an officer cannot manipulate
the availability of states by submitting a different message, weak availability only
requires that an officer cannot manipulate the availability of weakly preferred
states, evaluated at the original message, relative to her assignment under the
original message. This condition, together with expressiveness in necessary for a

visibly fair mechanism to be strategy-proof.
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Definition 8. A mechanism v satisfies weak availability if for alli € I, =—;€ Q;,
for any m; € M; that is a truthful message for 7—;, and any other message m; € M;
s.t. (i, m_;); 72 ¥(m);, we have that state (m;, m_;); was available to officer

1 under m.
Now we are ready to formally state our main result on incentives.

Theorem 4. A wvisibly fair mechanism is strateqy-proof if and only if it satisfies

expressiveness and weak availability.
The following corollary is immediate:

Corollary 2. A wvisibly fair mechanism is strategy-proof if it satisfies expressive-

ness and availability.

To give some intuition behind the results we give two examples. The first
one is a strategy-proof mechanism violating availability — but satisfying weak

availability and expressiveness.

Example 4.1 (Strategy-proof mechanism violating availability).  Consider a
problem with two officers I = {i1,i2}. Without loss of generality, we let officer i,
have higher priority than iy, i.e., 7(i;) < 7(i2). There are two states S = {s1, s2},
each with capacity gs = 1. Consider a mechanism  where 7; can only submit a
single message m;, without any preference information and i, can either submit
mMessage My, : §1 =m,, S2 OF My, : S =mi 51 Finally, let ¢ (m;,, m;,) = (s2,51)
and ¥ (m;,, my,) = (51, 52).

Clearly, the mechanism is strategy-proof as ¢; cannot influence the outcome by
submitting a different message, and i, always gets her top choice when submitting
preferences truthfully. Moreover, the mechanism is visibly fair as i; gives no
preference information and 75 gets her top choice.

It is easy to see that availability is violated as, e.g., consider message m; and
message m;. Note that, m; leads to a different outcome v (m;,,m;, )i, = {s2} #
w(m);, = {s1} which is not available under m.

Note that weak availability is not violated as under m; which is a truthful

message for s; =, so we have (m);, =i, ¥(ms,,mj,);,, and analogous under m;,
which is a truthful message for sy =;, 51 we have ¥(m;,, mj, )i, =i, V(m)s,.
Overall this example illustrates how availability is too strong a requirement for

strategy-proofness.

The second example shows a mechanism satisfying expressiveness but violating

weak availability and thus strategy-proofness.
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Example 4.2 (Expressive but not weakly available mechanism).  Consider a
problem with two officers I = {iy, 15}, where, without loss of generality, officer i,
has higher priority than iy, i.e., m(i;) < m(i3). There are two states S = {sy, s2},
each with capacity g; = 1. Consider a mechanism ¢ where 7; can only submit a
single message m;, without any preference information and i, can either submit
mMessage My, : §1 =m,, Sz OF M, : S >mi 51 Finally, let ¢ (m;,, m;,) = (s1,S2)
and ¥(m;,, m;,) = (s2, $1).

(Clearly, the mechanism is not strategy-proof as i, always gets his second choice
when submitting a truthful message and can get his first choice by simply reporting
the opposite message. The mechanism is visibly fair as ¢; does not give any
preference information, and 7, only reports the preferred state, which is given to
the higher priority officer ;.

The mechanism also satisfies expressiveness as under any message iy gives
full preference information, while 7; has a single message automatically satisfying
expressiveness. At the same time the mechanism violates weak availability as e.g.

/
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where (m;,, M4, )i, Zi, ¥(m)i, we have that ¥ (mj ,my,);, is not available under

under m;, which is a truthful message for s; >;, sy and another message m

m.

Finally, an alternative condition that ensures a mechanism is strategy-proof,
without requiring visible fairness, is defined next. Coherence requires that when-
ever an officer changes her message and thereby obtains a different assignment,
this new assignment is not in the set of undominated states — consisting of both
the new and original assignment — evaluated at the original message. Note that

this condition only applies when the two assignments are distinct states.

Definition 9. A mechanism satisfies coherence if for any message m; € M; and
any other message m; € M; such that 1 (m;, m_;); # 1»(m); we have ¥(1;, m_;); &
G({w(m)i} UL (g, m—;)i}, mi).

Indeed, the following result follows almost immediately:

Theorem 5. A mechanism is strategy-proof if and only if it satisfies coherence.

4.1 Two special message spaces revisited

In this section we show that, neither the class of partition priority mechanism nor

the ranked partition priority mechanisms are always strategy-proof.
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In Example 4.3 we show that mechanisms using zonal message spaces can fail
weak availability and expressiveness, and therefore not be strategy-proof. More-
over, in Example 4.4 we show that zonal message spaces can be sufficient conditions

for visibly fair mechanisms to fail expressiveness, and therefore strategy-proofness.

Example 4.3 (Partitioned-priority can violate strategy-proofness).  Consider a
problem with three officers I = {iy,is,i3}. There are three states S = {s1, 9, s3},
each with capacity ¢s = 1. The zonal message space for all officers consists of
two zones: z; = {s1,s2} and 2o = {s3}. Suppose each officer’s true preference is
51 > S2 > s3. For each officer 7, let m; be the message that ranks s; >,,, s2, and
let m] reverse it: sy = m! S1-

Consider a zone selection function C that includes the following:

Ci1(57 m) = Z1, Ci1<57 <m7i37m23>> = Z1,
Cig({82783}7 m) = 21, Ci2<{82783}7 (m—ig,?m;S)) = Z2,

Cia({53}v m) = 22, Ci3<{82}’ (m_i37m’,i3)) = “1.

Notice that these conditions are consistent with zone selection function that
induces a partitioned priority mechanism. Consider the following successful ma-
nipulation for i3: Under truthful report m, the allocation is (si, sq, $3); but when
i3 flips her internal ranking (m;, —mj, ), the mechanism assigns (sy, s3, 52), giving
i3 a preferred assignment as sg >;, Ss.

Weak availability is violated as e.g. sy is available under mj, but not under
m,, which is a truthful message for >;, under which s, is preferred to ss;.

Similarly, expressiveness is violated as e.g. officer i3 does not express any
preference information regarding ss and s3, even though s, is allocated to i3 under

message m;, and s3 is allocated to i3 under message m;;.

Finally, we give an example that illustrates that a ranked partition priority

mechanism might not be strategy-proof due to its violation of expressiveness.

Example 4.4 (Ranked-partitioned priority can violate Expressiveness).
Consider a setting with three officers I = {i1,72,i3}. The set of states is
S = {s1, 2, 83}, each with a capacity of ¢; = 1. The message space is zonal for all
officers and requires officers to rank two zones: z; = {s;, s2} and 2z, = {s3}. Each
officer’s message must provide a full ranking over the states within zone z1, i.e.,

between s; and sy, and additionally indicate whether z; I>,,,, 2o or 29 D>y, 21.
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True preferences for i1: s1 >4, S2 >i S3. This yields a unique truthful message

>

m; o (s1 > sy D> s3),'* ensuring 7, obtains s; in any visibly fair mechanism.

Two preferences for iy:

1. First, suppose iy has s3 >;, s >;, s1. The unique truthful message m;, :
(s3 > sy > s1) forces is to end up with s3 under any visibly fair, strategy-
proof mechanism. To see this, suppose that i is assigned s, instead. Then,
by submitting mf’ : s3> 51 = 53, any visibly fair mechanism must assign s3

to i, leading to a successful manipulation.

2. Next, consider >;,: sy > s3 > s1. Here, two truthful messages are possible.

One message m;, : (s3> s > s1) again, as we have just argued, assigns s3

>

to io. Another message m;) (s9 > s1 > s3) must assign Sy to is.

Here, expressiveness is violated as e.g. officer i3 does not express any preference

information regarding s, and s3 given message m,,, even though s, is allocated to

>

i3 under message m;," and s3 is allocated to io under message m;,. On the other

hand, weak availability does not pose a problem in the above example.

Given Theorem 4, combined with Example 4.3 and Example 4.4 the following

corollary is immediate:

Corollary 3. Consider the zonal message space with and without rankings, then
both the partitioned priority mechanism and ranked partition priority mechanism

might not be strategy-proof.

5 Achieving Distributional Objectives

When using direct mechanisms, our earlier discussion shows that only serial dicta-
torship (SD) achieves visible fairness. By eliciting less information about prefer-
ences—through carefully designed restricted message spaces—we expand the set
of allocations that can be deemed visibly fair for a given problem. This relaxation
provides the policy maker with additional flexibility, allowing for the implemen-
tation of a broader array of allocation rules that still adhere to this notion of

fairness.

14 A message m?l : 81 > S [>s3 is our abbreviation for the preference message with s, =mi, S2
and 21 D, 22-
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There are, in principle, many distinct distributional objectives that can be ac-
commodated within this broader framework. In this section, we introduce one fam-
ily of such objectives, which we denote Modular Upper-Bounds, and give complete
instructions on how to design mechanisms that are visibly fair, strategy-proof,
and respect these bounds. Modular upper-bounds model distributional objectives
by imposing limits on the number of officers of certain types assigned to specific

subsets of states.

5.1 Modular Upper-Bounds

We extend our original model by saying that each officer ¢ has a type ¢ from a
finite set of types T', where t; denotes the type of officer 7. The distributional goals
of the designer are modeled through type-specific modular upper-bounds, where
for a set of types, a collection of upper-bounds specifies limits on the allocation of

officers with those types to subsets of states.

Definition 10. A modular upper-bound system is a finite collection

H = {(Zn, Sh, kn)},

where for each element h € H:'
o O+ Z, CT is the set of types covered by the quota,
e 5;, C S is a subset of states, and
e kj, € N is the ceiling.

For every type t € T" we write
H' == { (S}, Snkn) € H:t €5}
For every state s € S and type t € T', we write its upper-bound signature as
H* = {(Z4, S, kn) EH :5€ Sy, t €=}

Definition 11. An allocation a € A respects the modular upper-bounds H
if, for every (2, Sy, kn) € H:

Hiel: a; € Sh, ti€Zn} < kn.

15Tn our notation, H contains a set of upper-bounds, each of which represented by the letter
h. In this context, =; for example, is the first component of h.
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We say that the modular upper-bound (=, Sy, k) is binding at allocation
a € A if the constraint is satisfied with equality.

Since in our model officers cannot be left unmatched, we need to guarantee
that these upper-bounds are compatible with that restriction while using visibly
fair mechanisms. Formally, hereafter we will restrict our attention to modular

upper-bound systems that satisfy the following property of sequential solvency.

Definition 12. For any allocation a € A, officer ¢ € I, and modular upper bound
h € H, define n, := }{j;«éi:ajst and n;, = |{j7éi:aj65h, tj € Zp).
The modular upper-bounds system H satisfies sequential solvency if and only
if for all 7 € I and for all a € A that respect H,

ns < qs, and
ds € S s.t.

he H — n, < ky, Vh e H.

The intuition for the definition above is simple. Regardless of which capacities
or collection of upper-bounds bind, there will always be a compatible state for
every remaining officer. That is, while matching officers one at a time, modular
upper-bounds can restrict where officers are matched, but not whether they are
matched. Since it relies on the particular number of agents of each type in I, it
allows for interesting and practical constraints, as we will show in examples that

will follow.6

Example 5.1. Consider a problem with five states S = {sy, $o, s3, S4, S5}, each

having capacity qs = 1. There are two officer types: t; and t,.

e For type tq, the upper-bound system is

HY — {({tl},{sl,sg,S;;}, 2)},

meaning that at most 2 type-t; officers may be assigned to states in {1, $2, s3}.

e For type t,5, the upper-bound system is

e = { ({2}, (50,0500, 1) .

meaning that at most 1 type-t, officer may be assigned to states in {s3, S4, 55 }.

I6Notice that it is crucial that the definition depends on the profile of types of officers.
Otherwise, the upper-bounds would have to be satisfied when all agents have the same type,
making only bounds that never bind compatible with not leaving officers unmatched.
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The literature has proposed several ways to formalize “quota-type” constraints.'”
An example of a very permissive notion is the hereditary family of Goto et al.
(2017): write a matching as a vector that counts, for every state, how many of-
ficers of each type are assigned there; a subset of vectors is hereditary when it
is closed under coordinate-wise decrements. Any system of pure ceilings clearly
has this property, so every modular upper-bound instance fits inside the heredi-
tary domain. A tighter specification is the hierarchical (laminar) system analysed
by (Kamada and Kojima, 2015, 2018): here the subsets that carry quotas must
form a tree—any two are either disjoint or one contains the other. Laminar caps
are useful when the policy maker wants, say, regional ceilings that line up neatly
with district ceilings, but they rule out overlapping constraints such as “no more
than ten officers in the Northeastern states and no more than eight in the coastal

states.” All laminar systems are modular, yet the converse is false.

5.2 Modular-induced Message Spaces

To design mechanisms that respect modular upper-bounds, we define the Modular-
induced Message Spaces. These are zonal message spaces where states are parti-
tioned into zones based on the upper-bounds, grouping together states involved

in the same upper-bounds.

Definition 13. For any type t € T, define an equivalence relation ~; on S such
that, for all s, € S,

s~y s ifand only if H®' = H*'.

The Modular-induced Message Space associated with the modular upper-
bounds H* is the zonal message space M; with zones Z = {2}, 25, ... 2L}, where

each zone zj- is an equivalence class under ~, that is,
Zy={se€S: s~ s}

for some representative state s; € S.
This construction ensures that:

i) Zones are disjoint and partition the set of states: |J i z;- = S and zj- N z;i, =0
for j #£ j'.

17An incomplete list includes Echenique and Yenmez (2015), Kamada and Kojima (2015),
Goto et al. (2017), Kamada and Kojima (2018), Aziz et al. (2019), Kojima et al. (2020), and
Kamada and Kojima (2024).
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ii) All states within the same zone are involved in exactly the same set of upper-
bounds for the type t. Therefore, if some upper-bound is binding for some

state in a zone, then it binds for all states in that zone.

5.3 Modular Prioritized Allocation Mechanism

Fix a finite set of agents I and a strict priority order = on I. Let H be a given
modular upper-bound system for a finite set of types T'. Each type t € T induces a
modular-induced message space My, as in Definition 13, where for each type t € T,
S is partitioned into zones Z' = {z! zf ...} according to equivalence classes of
states under the same upper-bound signature.

Thus, for an officer ¢ of type t;, the mechanism offers the zonal space M;,,
with associated zones z{', 25 ..., requiring her to submit a message m; € M,,.
That message ranks all states within each zone but cannot compare states across

different zones.

As part of the mechanism design, each officer i is also assigned an ezogenous

ranking

t; t;
le »; ZQZ | AN

over the same zones, independent of the message m;. These exogenous rankings—
which can encode policy priorities such as emphasizing certain zones first or last—

do not depend on agents’ reports.

Definition 14. Given a strict priority ranking 7, a modular upper-bound system
H, an exogenous zone ranking »; for each officer ¢, and a profile of messages
m = (m;)ier, each m; in the modular-induced message space M;,, the Modular

Priority Mechanism v proceeds as follows:
Initialization:
e For each s € S, set remaining capacity ¢." = ¢s.

e For each type ¢ and zone z}, set a flag B} = False.

e Set a; =@ forall i € I.

Quotas update procedure:

We next describe the procedure that updates the zone flags below:

e For each (2, Sy, k) € H:
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— Let N}, = |{i€]:a,~€5h and tiEEhH‘

— If Ny = ky, then for every ¢t € Z, and ¢ such that S, N zf # &, set

B} = True.
Sequential Assignment: Process the officers in the order (iy,...,,). For each
k=1,...,n:

1. Let t;, be the type of officer i;. Her message m;, partitions S into zones

Zlyevy RK -

2. Starting from the top-ranked zone z; under »;,, find the first zone 2, such
that:

° BZ’“ = False. (No modular upper-bound for type t;, is yet fully binding

in z.)

e There is a state s € 2, for which ¢;*" > 0.
3. If no such zone is found, set a;, = &, and move to i4;. Otherwise:

o Let s* be the most-preferred state of iy, within z, (according to m;,)
that still has ¢;<™ > 0.

e Set a;, = s* and reduce capacity ¢;<" < ¢;<™ — 1.

e Apply the quotas update procedure.

Outcome: After processing all agents i1, ...,1%,, the mechanism outputs the allo-

cation a = (a;);er-

The Modular Priority Mechanism is, therefore, a partitioned priority mecha-
nism in which each officer type is associated with a zonal message space of states
that share the same upper-bound constraints. An officer’s final assignment is de-
termined by two key factors: (1) a counter that tracks remaining capacity for the
relevant states, and (2) a flag indicating whether any upper-bound restrictions in
that zone have become binding. Because all states in a given zone are governed
by the same set of constraints, a single triggered bound applies uniformly across
the entire zone. Below, we present the main result for this mechanism and two

examples that illustrate how it operates in practice.'®

18In Appendix B we show that the modular upper-bounds system presented in Example 5.2
and Example 5.3 satisfy sequential solvency.
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Theorem 6. The Modular Priority Mechanism s visibly fair, strategy-proof, and

respects modular upper-bounds.

Example 5.2 (Distributing officers across two regions). Consider four states
S = {s1, 2, 83, $4}, which are partitioned administratively into two regions: R; =
{s1,s2} and Ry = {s3, 54}, and each s € S having capacity ¢; = 2. There are 8
officers I = {iy,...,ig}, and an officer type corresponds to the region they are
originally from: ¢; € {1, 2}.

The policy objective is that at most 50% of the jobs in a region are taken by

local officers. For each r € {1,2}, the modular upper-bound is, therefore:

H" ={({r}, R, 2)},

so that for an officer of type r the cap applies only to states in R,. For any given
region r, denote by 7 the other region in 7.

For an officer i of type r, the upper-bound signature is

{{r}, R.,2)}, ifser,

6]

Hs" —
, if ser.

Thus, the induced equivalence relation partitions S into two zones:

21 ={s1,s2}, 25 ={s3, 54}

Officers therefore use the same zonal message space, where they submit com-
plete rankings over states within each zone (without comparing states across z]
and 20).

FExogenous zone ranking: each officer of type r has the fixed ordering

21 w2y ift; =1
zy w2 it =2
so that the officer’s own region’s zone is ranked above other states.
A modular—priority mechanism enforcing these bounds proceeds as in Defini-
tion 14, using the zonal message spaces M; and M, and exogenous rankings over

zones (P;),;-
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Example 5.3 (Distributing doctors across regions and urban /rural divides). Con-

sider nine hospitals S = {s1, 9, $3, 4, S5, S6, S7, Ss, So} partitioned into regions

Ry = {s1,52,83}, Ro= {54,555}, Rs={sr,5s, 5},

with each hospital having capacity ¢; = 4. In each region, the first hospital is rural
(s1, 84, 57) and the others are urban (sq, Ss, S5, S¢, Ss, S9). There are 27 doctors, 9
of each type t € {1,2,3}, indicating their home region.

Two types of modular upper-bounds apply:

H'={({t},R;,6)} foreacht=1,2,3, and HY ={({1,2,3},U,19)}

where U = {sa, $3, S5, Sg, Ss, So | 18 the set of all urban hospitals, and (U, 19) is a

universal cap across all doctors.

A doctor of type 1, for instance, faces the following signatures:

;

{({1}, R1,6)}, if s € Ry is rural (here, s7),

(
el _ {{1}, R1,6),({1,2,3},U,19)}, if s € Ry is urban (here, s9, s3),
(

o, if s is rural outside Ry (e.g. S4, S7).

\

Hence the modular-induced partition for a type-1 doctor is:

zi ={s1}, z% = {s9, 53}, z§ = {s4, 57}, zi = {55, S¢, Ss, So }

Within each zone, the doctor ranks hospitals fully, yet makes no cross-zone com-
parisons. Message spaces following the same principle are constructed for the
remaining types.

FExogenous zone ranking: each doctor of type 1 has the fixed ordering
Z; >, le >, Zi >, Z;,

so that hospitals in her own region’s zone are ranked above other states, and
urban hospitals are ranked above rural. Exogenous zone rankings for other types
of doctors are defined analogously.

A modular-priority mechanism enforces these caps by assigning each type-t
doctor to her top feasible and non-binding hospital within the partition induced

by (R:,6) and (U, 19).
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A modular—priority mechanism enforcing these caps proceeds as in Defini-
tion 14, using the zonal message spaces defined above and the exogenous rankings
over zones (P;);c;-

As noted previously, the specification of the exogenous rankings over zones
(»);c; does not affect the theoretical properties established in our results. How-
ever, if we know that, for instance, most doctors typically prefer urban hospitals
over rural ones, defining the rankings as in the examples above tends to improve
efficiency of the final allocations, without harming the other objectives. Naturally,
if the actual preferences of participants substantially diverge from such assump-
tions, employing this approach could lead to less desirable outcomes.

It is also worth noting that the mechanisms introduced above—and the over-
arching notion of visible fairness—are ill-suited to implementing within-state affir-
mative action quotas. Such policies, which often appear in the matching literature
on diversity (e.g. majority quotas or type-specific ceilings in each state), could be
encoded as modular upper-bounds with one state in each upper-bound. However,
a scenario in which, for example, each state can admit a maximum number of
agents of a certain type, the resulting zonal message space would have one state
per zone. This, of course, would eliminate a role for preferences in the allocation.
If we attempted to compensate for this by using zonal message spaces with ranking
over zones, we would easily conclude that no visibly fair mechanism with these

characteristics would respect upper bounds.

6 Efficiency

As the following example demonstrates, the Modular Prioritized Allocation Mech-

anism does not guarantee efficiency.

Example 6.1. Consider two officers I = {iy, iy} with priority 7(i;) < 7(iz) and of
the same type ¢, and two states S = {s1, s9} with capacities ¢;, = 2 and ¢;, = 1.
Let there be a modular upper-bound of one officer of type ¢ allowed in s;. Thus,
the modular-induced message space partitions states into two zones: z; = {s;}
and zo = {s2}. Let the exogenous ranking of zones be z; B; 2o for both officers.

Suppose that officers’ true preferences are as follows:

>is  S2 > Sq,

>‘Z’22 S1 >~ So2.
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Under the Modular Prioritized Allocation Mechanism, the resulting allocation

is a = (ay,a;,) = (81, $2).

Example 6.1 shows that it is possible to improve the efficiency of a mechanism
that remains visibly fair and satisfies all modular upper-bounds. Specifically,
because officer 7;’s assignment to either s; or s, does not violate any bounds, it is
unnecessary to separate those two states into different zones in 7;’s message space.
Allowing the officer to place both states in the same zone incorporates her actual
preferences more fully, thus leading to a more efficient assignment.

We now introduce a “second-best” notion of efficiency tailored to settings with

modular upper-bounds.
Definition 15. An allocation a is constrained Pareto efficient if:
i) a respects the upper—-bounds, and

ii) there is no other allocation a’ that respects the modular upper—bounds such

that for every officer ¢ we have a; 77, a;.

A mechanism is constrained Pareto efficient if, for any problem, when agents

submit any truthful message, the outcome is constrained Pareto efficient.

In other words, an allocation is constrained Pareto efficient if there is no al-
ternative allocation that respects both capacity and modular upper-bound con-
straints and strictly Pareto improves upon a (with respect to the agents’ true
preferences). A mechanism is constrained Pareto efficient if, whenever agents sub-
mit truthful messages, the resulting allocation is constrained Pareto efficient under
their full (true) preferences. The following result demonstrates that, in general,
no static mechanism can simultaneously achieve constrained Pareto efficiency and

visible fairness.

Theorem 7. Not all modular upper-bound constraints admit a (static) mechanism

that is simultaneously visibly fair and constrained Pareto efficient.

The negative result in Theorem 7 is not, of course, universal. Standard SD
satisfies those properties for modular upper-bound constraints that never bind. On
the other hand, constant mechanisms can trivially respect constraints that result
in a single feasible allocation which, by its uniqueness, would be constrained Pareto

efficient.
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Theorem 7, however, underscores a key tension in designing visibly fair mech-
anisms that must also adhere to non-trivial constraints such as modular upper-
bounds. At its core, this tension arises from the message-space design: enforcing
both fairness and quota requirements demands that the space be curated to pre-
empt scenarios where certain preference reports would necessarily violate upper-
bounds. Consequently, to avoid such violations, the mechanism must collect more
restricted preference information than might otherwise be desirable. This reduc-
tion in elicited information, while upholding fairness and preserving the bounds,
can lead to efficiency losses because the mechanism may lack the information
needed to detect and implement mutually beneficial reallocations that remain
compliant with all constraints.

Nonetheless, if one can condition each officer’s reported preferences on the
assignments of higher-ranked officers, it becomes possible to obtain second-best
outcomes. We exploit this insight to propose a dynamic mechanism, described

next.

Definition 16. The Dynamic Modular Priority Mechanism ) operates as

follows:

Initialization:

e For each officer i € I, set a) = @.

e For each type t € T, initialize the set of binding modular upper-bounds
Bl = 2.

Quotas update procedure:

We next describe the procedure that updates the set of binding upper-bounds:

e Let (By),.s be the current set of binding modular upper-bounds.

e For each (Z,, Sy, k) € H:

— Let N}, = |{i€]:a,~€5h and tiGEhH-

— If Ny, = ky, then for every t € =5, add h to Bj.

Sequential Assignment: Process the officers in the order (i1, ...,4,). For each
k=1,...,n:
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1. Let M;, be a zonal message space that partitions .S into two zones:

2 = {s €S (V(Eh,Sh,kh) S B,?k, s ¢ Sh) and |{j<k:a;=s} < qs}
ZQZS\Zl

2. Elicit from officer 75, a message my, € M;,. Let s* be officer i;’s most-preferred

state in zone z;, according to m;, .
X
3. Set a;, = s".

4. Follow the quotas update procedure and proceed to the next officer 75 .

Outcome: After processing all officers iy, ..., 14,, the assignment a = (a;)es is

the mechanism’s final allocation.

The Dynamic Modular Priority Mechanism, therefore, sequentially assigns of-
ficers, dynamically tailoring the menu of available states for each officer based on
previous assignments. At each officer’s turn, the mechanism constructs a zone
containing all states with remaining capacity that do not belong to any subset
of states where a modular upper-bound for the officer’s type has already become
binding. The officer is then matched to her most-preferred state among these
feasible alternatives. By construction, this ensures visible fairness since each offi-
cer always obtains their top choice from that zone. Furthermore, by dynamically
adjusting the zones and enabling officers to fully express their preferences within
these constraints, the mechanism attains constrained efficiency: any allocation
that improves an officer’s assignment without harming others would necessarily
violate at least one modular upper-bound. The following proposition summarizes

these properties, including incentives.'?

Theorem 8. The Dynamic Modular Priority Mechanism is visibly fair, con-

strained Pareto efficient, strategy-proof, and respects modular upper-bounds.

19While the definitions of visible fairness and respecting modular upper bounds carry over
directly without introducing additional notation, strategy-proofness warrants further clarifica-
tion in our dynamic setting. Because the Dynamic Modular Priority Mechanism allows officers’
strategies to depend on both history and the structure of the message spaces (i.e., the composi-
tion of the zones), our original, static definition of strategy-proofness does not explicitly cover
this complexity. Nevertheless, the informal argument used in the proof of Theorem 8 presented
in Appendix A remains sound: no matter how other players behave over time, an officer cannot
secure a better outcome by misreporting, so truth-telling continues to be a weakly dominant
strategy.
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It is also worth noting that the efficiency gains achieved with the Dynamic Mod-
ular Priority Mechanism come at a time cost. Whereas the standard procedure
requires only a single round of simultaneous preference elicitation, the dynamic
approach proceeds sequentially, allocating officers one by one. While this added
complexity may be negligible in small markets, it can become impractical in larger

settings, where the number of officers is substantial.

7 Conclusion

We explored how designing mechanisms that restrict the preferences participants
can report helps reconcile multiple policy objectives—particularly distributional
constraints—with fairness principles grounded in strict priority orders. We intro-
duced the concept of visible fairness, in which a mechanism never produces an
allocation that appears to violate a participant’s priority based on the partially
observed preferences. Theorem 1 demonstrated that every visibly fair mechanism
operates as a variant of serial dictatorship adapted to partial preferences. We
further showed that this framework can accommodate diverse distributional ob-
jectives by employing modular upper-bounds, which limit how many individuals
of certain types can be placed in specified subsets of positions. Central to this
approach are modular-induced message spaces, which prevent participants from
specifying cross-group preference comparisons that would otherwise undermine
these quotas.

We then characterized what makes these mechanisms incentive-compatible, by
parsing out two critical conditions—expressiveness and (weak) availability—that
together ensure no participant can profit by misreporting her partial preferences.
While restricting the scope of preference reporting can, in principle, worsen ef-
ficiency, we introduced a dynamic modular-priority framework that sequentially
elicits partial preferences and updates feasibility constraints in real time, thus re-
covering the best possible Pareto outcomes subject to capacity and distributional
limits. Overall, this paper highlights how deliberately constraining participants’
message spaces provides policy makers with new levers for achieving desired policy
goals while preserving fairness and incentive properties in priority-based allocation

settings
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A Appendix: Proofs

A.1 Proof of Theorem 1

A mechanism 1 is visibly fair if and only if it is a m-queue allocation mechanism.

Proof. Part 1: A m-queue allocation mechanism 1 is visibly fair.

Case 1. Consider any m € M and suppose by contradiction that for individual
i there exists ¥(m); =; ¥ (m);, where 7(i) < 7(j).

By construction of the mechanism, suppose individual 7 is assigned at step
k; note that both ¢ (m); € S* and ¥(m); € S* as n(i) < 7(j). It follows, by
Y(m); =; ¥(m); that ¢ (m); & G(S*¥, my) — a contradiction.

Case 2. Consider any m € M and suppose by contradiction that for individual
i there exists s »; ¥(m);, where [{i € I : {p(m); = s}| < gs.

By construction of the mechanism, suppose individual 7 is assigned at step k;
note that both s € S* and ¢(m); € S¥ as [{i € I : ¢¥(m); = s}| < qs. It follows,
by s =; ¥(m); that ¢ (m); & G(S*, m;,) — a contradiction.

Part 2: A visibly fair mechanism is a m-queue allocation mechanism

Take an arbitrary visibly fair mechanism v and fix a message profile m € M.

Denote the resulting allocation by a = ¥ (m). We now construct for this profile

the m-queue allocation procedure that replicates a.

Define set S* for each officer k € I as follows:
Step 0: Set S' = S.

Step k (1 < k < n): Set s* = a. If the number of officers assigned to s*
reaches g, that is |[{i € [ : i < k and a; = s*}| = g, then S = S\ {s*}.
Otherwise, S¥+1 = GF,
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Notice that for officer k, the set S* consists of only those states that still
have remaining capacities to accommodate k after the allocation of higher-ranking
officers is taken into account. That is, each state s € S\ S* is filled by higher
ranking offers, [{i € I : i < kand a; = s}| = ¢;. Now we must have that
a® € G(S*,my), otherwise there exists s € S* such that s =,,, ax, which makes
the outcome visibly unfair as a higher ranking offer does not occupy this state.

An m-queue mechanism working down the priority list, using sets {S*}7_,
defined above and the procedure given in Definition 3, would give every officer the
same assignment as 1. Since the construction can be repeated for every profile m,

1 is an m-queue allocation mechanism. O]

A.2 Proof of Theorem 2

For a zonal message space M, 1 is visibly fair if and only if it is a partitioned

priority mechanism.

Proof. Part 1: A partitioned priority mechanism is visibly fair.

The proof follows the same logic as in Theorem 1, Part 1, and is omitted for
brevity.
Part 2: A visibly fair mechanism is a partitioned priority mechanism.

Fix an arbitrary message profile m € M and let a = 1(m) be the allocation
produced by any visibly fair mechanism 1. We construct zone selection functions

{Cy}7_, and sets {S*}7_, that would reproduce the same allocation step by step.
Step 0: Set S' = S.

Step k (1 <k <n): If a;, € z, set Cr,(S*,m) = 2. If the number of officers
assigned to s* reaches ¢, that is HZ €l:i<kanda;= sk}‘ = @k, then
Skt = K\ {sk}. Otherwise, S*1 = S*.

After performing the construction for every k we have defined all zone selection
functions {Cy}7_, and sets {S*}7_,.

Notice that for officer k, the set S* consists of only those states that still
have remaining capacities to accommodate £ after the allocation of higher-ranking
officers is taken into account. That is, each state s € S\ S* is filled by higher
ranking offers, [{i € I : i < kanda; = s}| = ¢.. Now we must have that
a® € G(S*,my) N Cp(S*, m), otherwise there exists s € S* such that s =,,, ay,
which makes the outcome visibly unfair as a higher ranking offer does not occupy
this state.
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A partitioned priority mechanism working down the priority list, using zone
selection functions {Cy}7_,, sets {S¥}7_, defined above and the procedure given
in Definition 4, would assign every officer the same post as .

Since the construction can be repeated for every profile m, v is a partitioned

priority mechanism. O]

A.3 Proof of Theorem 3

For zonal message space with ranking over zones, 1\ is visibly fair if and only if it

1 a ranked partitioned priority mechanism.

Proof. Part 1: A ranked partitioned priority mechanism is visibly fair.
The proof follows the same logic as in Theorem 1, Part 1, and is omitted for
brevity.
Part 2: A visibly fair mechanism is a ranked partitioned priority mechanism.
Theorem 2’s constructed zone selection function and argument apply here as
well. Fix an arbitrary message profile m € M and let a = 1)(m) be the allocation
produced by any visibly fair mechanism . We construct zone selection functions

{Cy}7_, and sets {S*}7_, that would reproduce the same allocation step by step.

Step 0: Set S' = S.

Step k (1 <k <n): If a € z, set Cx(S*¥, m) = 2. If the number of officers
assigned to s* reaches ¢,r, that is !{z €l:i<kanda; = sk}‘ = (4, then
Skt = SR\ {sF}. Otherwise, S*! = S*.

After performing the construction for every k we have defined all zone selection
functions {Cy}?_, and sets {S¥}7_,.

Notice that for officer k, the set S* consists of only those states that still
have remaining capacities to accommodate k after the allocation of higher-ranking
officers is taken into account. That is, each state s € S\ S* is filled by higher
ranking offers, [{i € I : i < kand a; = s}| = ¢;. Now we must have that
a® € G(S*,my) N Cp(S*, m), otherwise there exists s € S* such that s =,,, a,
which makes the outcome visibly unfair as a higher ranking offer does not occupy
this state.

Also, see that the constructed zone selection function is a ranked zone selection
function. Suppose not, then for officer k € I, S*NC,(S*,m) = {min (C,(S*, m), my,) }

and there is a zone z € Z such that z > C,(S*,m) and max (my, z) € S*. Since

40



max (Mg, 2) >, Min (Ck(S’k, m), mk), a’ = min (Ck(Sk, M), mk) is visibly unfair
for officer k under m.

A ranked partitioned priority mechanism working down the priority list, us-
ing ranked zone selection functions {Cy}7_,, sets {S¥}7_, defined above and the
procedure given in Definition 5, would assign every officer the same post as ).

Since the construction can be repeated for every profile m, v is a ranked

partitioned priority mechanism.
m

A.4 Proof of Theorem 4

A wisibly fair mechanism is strategy-proof if and only if it satisfies expressiveness

and weak availability.

Proof. If part a. A visibly fair mechanism satisfying weak availability is strategy-
proof if it satisfies expressiveness. We prove the contrapositive statement: If a
visibly fair mechanism satisfying weak availability is not strategy-proof it does

not satisfy expressiveness.

1. By assumption (violation of strategy-proofness), there exists a truthful mes-

sage m; and a message 1; € M; such that ¢ (1, m_;); =; Y(m);.
2. By weak availability ¢ (m;, m_;); is available under $m$.

3. The expressed information ¢ (1, m_;); >m, ¥ (m);, together with ¥ (1m;, m_;);
being available under m, would lead to a violation of visible fairness. Thus,

we have found a violation of expressiveness.

If part b. A visibly fair mechanism satisfying expressiveness is strategy-proof
if it satisfies weak availability. We prove the contrapositive statement: If a visibly
fair mechanism satisfying expressiveness is not strategy-proof it does not satisfy

weak availability.

1. By assumption (violation of strategy-proofness), there exists a truthful mes-

sage m; and a message 1; € M; such that ¢ (m;, m_;); =; ¥ (m);.

2. By expressiveness the information ¢ (1m;, m_;); >m, ¥(m); is available under

m.

3. The availability of ¥ (7;, m_;); under m, together with the expressed infor-
mation ¥ (m;, m—_;); >=m, ¥(m);, would lead to a violation of visible fairness.

Thus, we have found a violation of weak availability.
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Only if part a. A visibly fair mechanism satisfies expressiveness if it is
strategy-proof. We prove the contrapositive statement: If a visibly fair mechanism

does not satisfy expressiveness then it is not strategy-proof.

1. Note that for the same state expressiveness is always satisfied. As the mech-
anism does not satisfy expressiveness, there exist officer i and messages m;
and 7h; such that ¢¥(m); # ¥(m;, m_;);, but neither ¥ (1m;, m_;); >=m, Y(m);
nor Y(m); =m, ¥(mi, m—;);

2. Consider any preference fe @Q; s.t. ¥(m;,m_;) =5 ¥(m) and s =;
whenever s >,,, s. By construction, m; is a truthful message for prefer-
ence —f€ ;. Moreover, there exists another message m; € M; such that

(i, m_;); »=; ¥v(m);, i.e., a violation of strategy-proofness.

Only if part b.
A visibly fair mechanism satisfies weak availability if it is strategy-proof. We
prove the contrapositive statement: If a visibly fair mechanism does not satisfy

weak availability then it is not strategy-proof.

1. As the mechanism does not satisfy weak availability, there exists m; € M;
that is truthful for a preference ;€ Q; and a message m; € M; \ {m;}
s.b. (mg,m_;); 7 ¥(m);; but state ¥ (m;, m_;); is not available to officer 4

under m.

2. It follows that v(m;, m_;); # (m);, and therefore we have a successful

manipulation, as ¢¥(m}, m_;); =; ¥(m);.

Proof of Theorem 5
A mechanism is strategy-proof if and only if it satisfies coherence.

Proof. If. A mechanism is strategy-proof if it satisfies coherence. We prove the
contrapositive statement: If a mechanism is not strategy-proof it does not satisfy

coherence.

By assumption, there exists a truthful message m; and a message m; € M,
such that ¥ (m;,m_;); =; ¥(m);. As ¥(m;,m_;); is strictly preferred we have
(mi,m_;); # ¥(m);. As m; is truthful we cannot have ¥)(m) >, ¥(m;,m_;),
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and therefore ¢ (m;,m_;) € G{(m)} U {(m;,m_;)},m;), i.e., a violation of

coherence.

Only if. A mechanism satisfies coherence if it is strategy-proof. We prove the
contrapositive statement: If a mechanism does not satisfy coherence then it is not
strategy-proof.

By assumption, there exists a message m; and a message m; € M; such that
W(m;,m—;) € G{v(m)} U {¢(m;,m_;)},m;). Consider any preference =€ Q;

s.t. Y(m;,m_;) = ¥(m) and s >} s’ whenever s >,,, s’. By construction, m; is a

truthful message for preference 2Zfe @Q);. Moreover, there exists another message
m; € M; such that 1 (1m;, m_;); =; ¥(m);, i.e., a violation of strategy-proofness.

]

A.5 Proof of Theorem 6

The Modular Priority Mechanism (MPM) is visibly fair, strategy-proof and respects

modular upper-bounds.

Proof. First, it should be clear that the Modular Priority Mechanism is a parti-
tioned priority mechanism: each agent, following the priority order, is associated
with a zonal message space, and is matched to the most-preferred state from a
zone that still has states with spare capacity. Since the modular upper-bound
system H satisfies sequential solvency, at every step of the MPM an officer has a
state available for which no upper-bound is binding and with spare capacity.

Next, we show that, for any given set of type-specific modular upper-bound
systems and exogenous rankings (»;);cs, the Modular Priority Mechanism, repre-
sented by the function 1, is strategy-proof.

Notice first that, by construction, an officer ¢« cannot, by submitting a different
message, change the assignment of any officer 7 < ¢. Since ¥ only produces feasible
outcomes, this implies that 1) satisfies availability.

Since the zone z from which ¢’s assignment will be drawn from depends on the
assignment of officers with higher priority and the ranking »;, both unaffected by
m;, the zone to which ¢ will be assigned during the execution of the mechanism
cannot be changed by changes in her message. Let s = ¢(m). Since the zone
from which i’s outcome will be drawn will always be in z regardless of the message
i sends, ¥ (m},m_;) € z for any m! € M,. Since both s and ¥(m}, m_;) belong
to zone z, it must be the case that s and ¢ (m}, m_;); are comparable under m,;.

Therefore, 1 satisfies expressiveness, and by Corollary 2, strategy-proofness.
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Finally, we need to show that the Modular Priority Mechanism respects mod-
ular upper-bounds. That is, the final allocation ¢¥(m) = a satisfies, for every
upper-bound (=, Sy, ki) € H:

|{i€]:aiESh, tieEtH < ky,.

We prove this by induction on the steps k = 1,2,...,n of the mechanism. In
order to facilitate notation and comprehension, we will denote by a* the “tenta-

tive” allocation a by the end of step k£ of the mechanism.

Base Case (k = 0):
At initialization, no officers have been assigned. That is, a) = & for all 7 € I.

Therefore, for any upper-bound (Z,, Sy, k;) € H, we have:
!{ie[:a?eSh, tleah}IZOSk‘h

Thus, the allocation trivially respects all modular upper-bounds at step k& = 0.

Inductive Step:

1

Assume that at step k — 1, the current assignment a*~! respects all modular

upper-bounds; that is, for every upper-bound (=, Sy, k) € H:
Nyt=|{iel:af™" €Sy, t; €En}| <k

We need to show that after assigning officer i, at step k, the updated assign-

ment a* also respects all modular upper-bounds.

Consider officer i, of type ¢;,. According to the mechanism, i, is assigned to a
state s* within a zone z}f where the upper-bounds for type ¢;, involving states in
that zone are not yet binding before i;’s assignment—this is tracked by the flag
Bz’“ = False.

That is, for every upper-bound (=, Sy, k) € H for which s* € Sy:

[{i € l:af™" €5y, t; €Eh}| < kn.

Since all of these constraints are strictly below their upper-bounds after as-
signing 7, to s* they will remain below their bounds or hit them. None of them
will go beyond their limits. Therefore, the resulting assignment a* respects all

modular upper-bounds.

Conclusion:
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In both cases, the assignment a” at step k respects all modular upper-bounds.

By induction, the final allocation a™ produced by the mechanism satisfies:
|{Z el a? S Sh, t; € Eh}| < k‘h,

for every every upper-bound h € H.

A.6 Proof of Theorem 7

Not all modular upper-bound constraints admit a (static) mechanism that is simul-

taneously visibly fair and constrained Pareto efficient.

Proof. Consider a problem with three officers I = {i1,14,43} (with priority m(i;) <
m(ig) < m(i3)) and two states S = {s1,s2} with capacity ¢;, = ¢s, = 2. Assume
that all officers are of the same type ¢t and that there is a single modular upper—
bound ({t},{s1},1); that is, at most one officer of type ¢t may be assigned to
S1.

Thus, any allocation that respects the upper—bounds must assign at most one
officer to s;. We now show that no visibly fair mechanism in this setup is con-
strained Pareto efficiency.

Since there are two states, each officer’s message space admits only two pos-
sibilities regarding the comparison between s; and sy: (i) The officer can express
a strict preference between sy and so, or (ii) The officer cannot express any com-
parison between s; and ss.

Next, note that no mechanism that elicits preferences of more than one officer
between s; and sy and is visibly fair respects modular upper-bounds. To see that,
assume that two officers express that s; >; so. Visible fairness requires that s;
does not have any empty slot. But this would violate modular upper-bounds.

Any visibly fair mechanism that respects modular upper-bounds, therefore,
will not elicit preferences for at least two officers.

Let’s denote the overall message-space configuration by a triple (X, X, X3),
where X, = Y if officer i, can express a preference between s; and so, and X, = N
otherwise.

We now examine the four cases in which we do not elicit preferences for at
least two officers and show that in each case, either the mechanism must return

an assignment that violates the modular upper-bound (i.e., assigns two or more
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officers to s1), or the outcome is not constrained Pareto efficient (because it is

Pareto dominated by another allocation that still respects the upper—bound).

Case 1: (X1, X5, X3) = (Y,N,N). Suppose i; reports s, = s;. By visible fairness
she is assigned s,. By visible fairness and modular upper-bounds, the mechanism
must assign i, and i3 to s; and sg. Suppose it assigns is to s; and i3 to ss.
If their true preferences are such that sy, >;, s; and s; >;, s, an assignment
that swaps their matches Pareto dominates the aoutcome, while still respecting
modular upper-bounds. The same reasoning can be applied if the mechanism

swaps the assignments of i, and 3.

Case 2: (X, X3, X3) = (N,N,Y). Suppose that iz reports sy >;, s;. There are
two cases to consider: (i) one of i1,is is matched to s;, or (ii) both ¢; and iy are
matched to ss. In the first case, let without loss of generality i; be matched to s,
and 75 be matched to s; and. Then, if ¢; prefers s; and iy prefers so, swapping
their assignments would Pareto dominate the outcome produced by the mechanism
while still respecting modular upper-bounds.

In the second case, both i; and 75 are matched to s;. Suppose that one of
them prefer s; to s,. Then swapping that agent’s assignment with i3 would Pareto
dominate the outcome produced by the mechanism while still respecting modular

upper-bounds.

Case 3: (X3, X5, X3) = (N,Y,N). Suppose that iy reports s >=;, s;. Then,
visible fairness requires that she is assigned to s,. By modular upper-bounds, i,
and 73 are matched to s; and sy. Suppose that both prefer the other’s assignment.
Then, swapping their matches would Pareto dominate the outcome produced by

the mechanism while still respecting modular upper-bounds.

Case 4: (X, X5, X3) = (N,N,N).

The mechanism must choose an assignment of two officers to s, and one to s;
solely by some fixed rule. Let ¢ be the officer matched to s; and #’,7” be matched
to sy (their precise identities do not matter in this case). Suppose that i prefers
So to s1, and i’ prefers s; to s;. Then, swapping their matches would Pareto
dominate the outcome produced by the mechanism while still respecting modular

upper-bounds.

In every case, the following occurs: either the outcome produced by the mech-
anism (which is constrained to be upper—bound respecting) violates the modular

upper-bound (by assigning more than one officer to s;), or there exists another
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allocation that both respects the upper—bounds and yields a strict Pareto improve-
ment with respect to the officers’ true preferences. Therefore, for these modular
upper-bounds, no mechanism exists that is simultaneously visibly fair and is con-
strained Pareto efficient.

]

A.7 Proof of Theorem 8

The Dynamic Modular Priority Mechanism is visibly fair, constrained Pareto ef-

ficient, strategy-proof, and respects modular upper-bounds.

Proof. Part 1: Visible fairness.
In the Dynamic Modular Priority Mechanism, officers are processed in strict pri-
ority order iy,1s,...,4,. For each officer iy, the mechanism partitions the state
space S into two zones: z; and z5. Officer i; is matched to her most-preferred
state in z;. Therefore, there is no state that i; ranks above her assignment. This
is true for every officer, and therefore the resulting assignment is visibly fair.

Part 2: Respects modular upper-bounds.
We show by induction on the assignment order that for any modular upper-bound
(Znh, Sh, kn), the number of officers with type in Z; assigned to states in S, never
exceeds ky,.

Base Case. Before any assignment (step 0), no officer is assigned and the count
is 0 < ky,.

Inductive Step. Suppose that after assigning officers iq,...,4,_1, the upper-
bound (Zp,, Sp, k) is not violated. When officer 5 (of type t;,) is considered, if
t

s € Sy, then by construction s belongs to zone z; for i; and the current count of

i & Zp the claim is unaffected. If ¢;, € =5, and 4 is assigned a state s with
officers with type t € =5, in 5}, is strictly lower than kj,. If after assignment the
count reaches kj, the mechanism updates B! by adding h; hence, any subsequent
officer of type t will have S}, excluded from her zone z;. Thus, by induction, no
upper-bound is ever violated.
Part 3: Strategy-proof.

We show that no officer can obtain a strictly better outcome by misreporting
her preferences. In the mechanism, the available set of states for officer iy is

determined solely by:
1. The assignments of all higher-priority officers i1, ...,7,_1, and

2. The set B,t;’“ of binding modular upper-bounds for type ¢, .
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Neither of these depends on the message m;, provided by officer ¢;. Thus, her
feasible set—the zone z;—remains fixed regardless of her report. Within z;, if
m;, truthfully reflects her preference ordering, she is assigned her top available
choice. Any misreport would merely permute her ranking over the same fixed set
z; and cannot result in an outcome strictly preferred (by her true preference) to
her truthful assignment. Therefore, the mechanism is strategy-proof.

Part 4: Constrained Pareto efficient.
Assume for contradiction that there exists an allocation a’ which Pareto dominates
a and also respects all modular upper-bounds. Let ¢* be the highest-priority officer
for whom aj. > a;-; that is, for every officer j < i*, we have a; = a;.

Consider officer ¢*. Under the Dynamic Modular Priority Mechanism, when
1* was processed, she was assigned a;+ as her most-preferred available state in
zone z1. If al. >; a;, then the state a,. must have been available when * was

considered. There are two possibilities:

1. Capacity constraint: The state al. might have been unavailable because its
capacity was already exhausted by officers j < i*. However, since a’; = a; for
all j < i*, the capacity allocated in a and o’ is identical for states assigned
to higher-priority officers. Thus, if al. is available in «’, it must have been

available for 7* in a as well.

2. Binding Upper-Bound: The other reason for al. not to be in i*’s zone z
under a is if a}. belonged to a set Sy, for which the corresponding upper-bound
(Eh, Sh, kn) was already binding at the time of ¢*’s assignment. However, if
a,. were in such a set and a’ respects the upper-bound, then al. could not
be assigned to ¢* without causing the total number of type t;« officers in S},

to exceed ky,.

In either case, if al. is strictly better for i* than a;-, then the state a. must
have been available for ¢* under the mechanism; hence, the mechanism would have
assigned al. to ¢* rather than a;~. This contradiction shows that no allocation a’
can Pareto dominate a while still respecting all modular upper-bounds. Therefore,

any allocation o’ that Pareto dominates a must violate some modular upper-
bound. ]

A.8 More on efficiency

This section explores the relationship between visible efficiency and fairness in

allocation mechanisms. An allocation is visibly efficient under message profile m
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if no alternative allocation visibly Pareto dominates it (meaning no reallocation
would make all affected agents better off according to their reported preferences).
The key results show that visibly fair allocations are always visibly efficient, but
the converse doesn’t hold. When comparing visible efficiency to true Pareto ef-
ficiency (based on actual preferences), every Pareto efficient allocation is visibly
efficient under truthful messages, but visible efficiency doesn’t guarantee Pareto ef-
ficiency—even visibly fair allocations can be Pareto inefficient. Furthermore, when
message m contains more preference information than m, allocations that are visi-
bly fair or efficient under m remain so under m, but not vice versa, demonstrating
that visible fairness and efficiency depend critically on the message spaces.

An allocation a is visibily efficient under m if it is not visible that it is
Pareto dominated by another allocation, that is, there is no allocation o’ € A
such that for all i € I with a # a;, we have a; >,,, a;. A mechanism 1 is visibly
efficient if 1)(m) is visibility efficient for all m € M.

Theorem 9. For any message m € M, the following statements are true.

1. Every wvisibly fair allocation is visibly efficient.

2. A wvisibly efficient allocation may not be visibly fair.

Proof. Statement 1: Fix a message profile m € M. Suppose a € A is a visibly
fair allocation that is not visibly efficient under m. Then there exists another
allocation a’ € A such that for all ¢ € I with a} # a;, we have a >,,, a;.

Let ¢* be the highest ranking officer among the ones that are allocated to a
different state under a and @’ and let s* be her assigned state under a’. That is,
for

I'={iel:a;#d}, i*:=argminm(i), and a,. =s"
iel

The allocation a must be visibly unfair under m. This is because either a; = s*
for some i € I, or |[{i € I : a; = s*}| < qs-. Yet s* o PR

Statement 2: Let I = {iy,i2}, S = {s1, 82}, and ¢5, = ¢s, = 1. Additionally,
assume zonal message space for both officers; Z = {z;} with z; = {s1,s2}. For
preferences s; >=;, so and s; >=;, s, the allocation (ay,as) = (s2,s1) is visibly
efficient but not visibly fair under the truthful message.

]

In contrast, an allocation a is Pareto efficient if it is not Pareto dominated
by another allocation, that is, there is no allocation a’ € A such that for all ¢ € I
with @} # a;, we have a] >; a;. A mechanism v is Pareto efficient if ¢)(m) is
Pareto efficient for all m € M.
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Theorem 10. For any truthful message m € M, the following statements are

true.
1. Every Pareto efficient allocation is visibly efficient.
2. A wisibly efficient allocation may not be Pareto efficient.
3. A wvisibly fair allocation may not be Pareto efficient.

Proof. Statement 1: Consider an allocation a € A that is not visibly efficient for
some truthful message m € M. This implies there is another allocation a’ € A
such that for all ¢ € I with a] # a;, we have a} >,,, a;, and therefore a; >=; a; (m
is a truthful message). Thus, a is not Pareto efficient.

Statement 2 and 3: Let I = {iy,i2}, S = {s1, S0, 53}, and ¢5, = ¢s, = qs; = 1.

Additionally, assume a zonal message space, Z = {z1, 22} with z; = {s1, s2} and

zo = {s3}. For preferences s3 =;, s1 =i, S and s; =;, S3 >, S2, the allocation
(a1,as) = (81, 83) is visibly fair and visibly efficient under the truthful message, as

s1 and sz are not comparable. However, it is not Pareto efficient. O

Message m contains more preference information than m, if for all i € I:

/

S m 8 = S 8.

Theorem 11. Suppose message m contains more preference information than m.

Then the following statements are true.

1. Fvery visibly fair allocation under m is also visibly fair under m.
2. A wvisibly fair allocation under m may not be visibly fair under m.
3. Every visibly efficient allocation under m is also visibly efficient under m.

4. A wisibly efficient allocation under m may not be visibly efficient under m.

Proof. Statement 1: There are two cases: (i) Allocation a is not visibly fair under
m because there exist some ¢ € I such that there is a j € I such that a; # a;,
7(i) < 7(j), and a; >, a;. Since a; >, a;, a cannot be visibly fair under 7.

(ii) Allocation a is not visibly fair under m because there exist some ¢ € I such
that there is a s € S such that a; # s, [{i € I : a; = s}| < g5, and s =, a;. Since
S >, @i, a cannot be visibly fair under m.

Statement 3: We use the contrapositive. If allocation a is not visibly efficient

under m, then there exists another allocation a’ such that for all ¢ € I with a # a;,
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we have a, >, a;. Since a} >, a; for all such i € I, a cannot be visibly efficient
under m.

Statement 2 and 4: Let I = {iy,i2}, S = {s1, 52,53}, and ¢5, = ¢s, = ¢s; = 1.

Additionally, assume a zonal message space for every officer, Z = {z1, 20} with
21 = {s1,52} and 2z = {s3}. For preferences s3 >;, s1 >4, S2 and s1 >, S3 >,
S9, the allocation (aq,as) = (s1,s3) is visibly fair and visibly efficient under the
truthful message m as s; and s3 are not comparable.

Consider the zonal message space Z = {S}. The truthful message m = (> )icr
contains more preference information than m. However, allocation (aj,as) =

(s1,$3) is not visibly fair nor visibly efficient under 7. O

B Appendix: Proofs that examples satisfy se-

quential solvency

Proof that Example 5.2 satisfies sequential solvency.
Assume, for contradiction, that there exists an officer 7 who, given some feasible
placement a_; of the other 7 officers, has no admissible state. Without loss of

generality let t; = R;.

e If any seat in Ry were vacant it would be admissible for i (because the
bound (Ry,2) does not apply there), contradicting the assumption. Hence
both states in Ry are fully occupied (4 officers).

e The local cap in Ry is (Ry,2); therefore at most two of the four occupants

can be of type Ry. So at least 4 — 2 = 2 of them are of type R;.

e Among the remaining 7 officers, at most one R;-type can still be in R; (since

two are already in Rs). Thus (Ry,2) is not binding in R;.

e Only 7 officers are placed, but Ry has capacity ¢s, + ¢s, = 4; hence at least

one seat in Ry is empty.

But then, (R,2) is not binding in R; and there is spare capacity in R;, con-
tradicting ¢ not having an admissible state.

Proof that Example 5.3 satisfies sequential solvency.

Suppose, for contradiction, that some type—1 doctor ¢ and feasible placement
a_; of the other 26 doctors leave ¢ without an admissible hospital. This can only

happen if:
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(i) all hospitals in Ry and Rj are full; or

(ii) the only vacancies there are urban and the urban cap (19) is binding.

Case (i): Q(R2) + Q(R3) = 24, so at most 24 of the others are outside R;.
Then at most 2 are in Ry, leaving > 10 free seats there; the local cap (Ry,6) is
not binding, so ¢ could be placed in R;.

Case (ii): With 19 urban doctors, the remaining 26 — 19 = 7 occupy rural
seats, leaving 12 — 7 = 5 rural vacancies overall. If all rural seats in Ry and R3
were full, they would require 8 rural occupants, contradicting the total of 7. Thus
some rural hospital in Ry or R3 has a vacancy admissible to .

In both cases we contradict the assumption; hence sequential solvency holds.
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C Appendix: Indirect Message Spaces

C.1 Preference Elicitation in All India Services

The 2017 Cadre Allocation Policy for India’s All India Services, including the In-
dian Administrative Service (IAS), Indian Police Service (IPS), and Indian Forest
Service (IFoS), introduces a zonal system that divides all states and union ter-
ritories into five geographical zones, requiring candidates to first indicate their
zone preferences in descending order, followed by cadre preferences within each
preferred zone. For illustrative purposes, we include a screenshot of the submitted

preferences from 2020 IFoS examination.

C.2 Rank-order lists in Chinese College Admissions

23 out of 31 provinces in China implement the structured rank-order list system,
in which majors are effectively nested under colleges, as noted by Hu et al. (2025).
These provinces include: Shanghai, Beijing, Tianjin, Hainan, Jiangsu, Fujian,
Hubei, Hunan, Guangdong, Heilongjiang, Gansu, Jilin, Anhui, Jiangxi, Guangxi,
Shanxi, Henan, Shaanxi, Ningxia, Sichuan, Yunnan, Tibet, and Xinjiang. For il-
lustrative purposes, we include a screenshot of the official college-major preference

form from Shanghai.

C.3 Reserve Officer Training Corps (ROTC) Mechanism

Sénmez (2013)’s model of cadet-branch matching problem consists of
1. a finite set of cadets I = {iy,1a,... i},
2. a finite set of branches B = {by,bs,..., by},
3. a vector of branch capacities ¢ = (¢)veB,
4. a set of “terms” T = {t1,..., 1},
5. a list of cadet preferences P = (P;);e; over (B x T) U {@}, and
6. a list of base priority rankings m = (7 )pep-

The ROTC mechanism is not direct. Instead, each cadet submits a ranking of
branches >/, and he can sign a branch-of-choice contract for any of his top three

choices under >/
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Candidates details and Cadre Preference of Indian Forest Service Examination, 2020

PREFERENCE
g o . = § £ - Zone | Zonell - Zone 1l _ Zone IV _ Zona m
M ”_ WName of Candidate Date of Birth .m m .m ww M Home State m m M M _M .m E
= 2 © .__.lm M Hm = f_m AG |HR|HP | PE | RJ | UK m BH|JH | OD|Up ..w. CHH|GI| MP |MS| 5 | AM | MN) NG | 5K | TR|WB _m AP | KT |KR|TH|TG N B
1 |1303818 SO0RAJBEN KR 28.,09.12593 M M.5c YES |KERALA 3jals1z2{6)3|1 4 jlzl1)afz2 3ija 1 2|5 1 5 ] I|alz 1§42 1f5]3
2 [1210900 GOBBILLA VIDYADHARI 07.12.1%94 F B.TECH YES |ANDHRA PRADESH J|s|ej1|aj3|2| 4 |zjz|1|af2alzjilat2|s|2 6|5 |1]aj2)11|5]3)4]2
3 |Ba8z30 BALLIVAL VISHNU VARDHAN REDDY 01.07.1894 [t} B.TECH YES |ANDHRA PRADESH FI|1|(5)3| 64|25 (4213|234l 2 1 (4] 2 S| 6|1 (4|31 j1|5]3)4}2
4 11010526 KAVEPRASAD REDDY 28.08,1993 1} M.B.A. YES |TELANGAMNA 33 (sf4| 6 2|14 43122432 |1]|5]12 s|e|1]4a|3)1j2]|5]4)3|1
5 (1134380 KALPESH KUMAR SHARMA 13.04.1994 ] B.TECH YES |RAJASTHAN 16 {ay3 (51|24 (42|21 [3)2) 2341 2|51 |s5|e)2fjaj2]3j3|1j5fa]z2
& |eE19422 JONG PAVANKEUNMAR APFASAHER 11.06.1988 Ll M.5c. YES |MAHARASHTRA 414536 )1]2 3 412l 13§11} 3|4 2 115 2 5 6 114]3 212|1|5]4|3
7 |319862 GURHARSH SINGH 13.07.193839 M M. 5. YES |HIMACHAL PRADESH 1 3511|4162 4 3jl1]4a)2 3 4 1 215 2 3 B 114|585 Ifg2|114a)3|5
B |6305519 GALRAW JAIN 04021952 M MWL.TECH YES [MACHYA PRADESH dlalsip3fej1|2| 3 (afz)1 3223145 2fs|6|3|4|1) 231|452
9 |armsa7 SHREYAS SRIVASTAVA 17.06.19E5 M B.TECH YES |[MADHYA PRADESH 2 3fs|ifejafz 4 a3 1211 3 Ll 1 215 2 5 B 1)14]3 I |4|1)5]3)2
10 | 507027 DHIVYA N 02.11.1997 F B.TECH YES |TAMIL NADU 2laje| 15|32 4 [3f2)1)4)3]af3] 2 1|5 25| 63|41 142315
1L 303894 CHAVAN SUHAS MADHUKAR 28.10.1%390 Lt M.TECH YES [MAHARASHTRA 41354 6f1]2p 3 [3jz2l1]4]1f3]4] 2 1|5 2|56 |14 3) 2021|543
12 11118577 RAMEKRISHNA SARAN 25.06.1998 M B.TECH YES |RAJASTHAMN Ifelalafs)|1}2 & 412 1})3|2 N 1 2 5 2 5 ] 114]3 3 l2jt1]sf4f3
13 l400024 SHUBHAM BAJAJ 20.02.1997 Lt M.TECH YES |MADHYA PRADESH 4 lal3fsie|1)2f 33tz 141|232 1]|4]5]3 Sl 6|14 2|2 |3]1|5]4)2
14 |gez5781 WIKALPA N VISHWAKARMA 02.02.1992 F M.TECH YES |MAHARASHTRA 4 lale]lals5]2]1 3 3j2| 141 i]14 2 15 3 5 [ 112]4 5|1 3]4|2
15 {g119017 MRIDULA SINGH 01.03.1997 F M.TECH YE5 |UTTAR PRADESH Ile|a4|315)1)2 1 413 2p1f2|4]3 2 115 1 5 & 214]3 40315142
16 |1201952 RVIDYADHAR 03.07.1%93 Lt} M.TECH YES |TAMIL NADU I|la|s|3jej1|2] 4 (3|4 1)2]2] 4|3 2 1]5] 2 Sle|aj4l1)1)3j2|5)1|4
17 |ag29288 ANJALL VISHWAKARMA 11.01.1%93 F B.TECH YES |UTTARAKHAND 1laj6lzfs)3|1] 5 [4j2| 132|431 2141 Sl 63|42 5 |3|1]2]45
18 {1900051 DILIP K KAINIKKARA 12.05,1993 [ B.TECH YES [KERALA 6|53 412 d | 1)4)2 il4 2 1|5 2 ] 5 |41 1(5]3]1)2|4
19 |2518218 TAPAS MIHIR 06.01.1591 M M.TECH YES |UTTAR PRADESH 465|342t |a)3fp124 )31 25| 2 S|ejaj4ap12]3j1]s5]2]4
20 4314278 AKSHAT JaIN 22101993 M B.TECH YES |UTTAR PRADESH il4)5]13]631]2 1 4013 211)2] 412 1 305 3 5 a 114} 2 4 13]1]|5)4]2
2117203220 AYUSH KUMAR SHEDHARE 25.09.1995 M B.TECH YES |UTTAR PRADESH I|aye]afsfi)z2f Ljaj3fz]1z|+pz|1l 35| 3|S5 |e|1|aj2a4|3|1|5]4}2
2211134877 RAHUL JHAJHRLA 23.01.1997 M B.TECH YES |RAJASTHAN 1|6 413j5]1]2 4 412 113})2 ) 3 1 215 1 5 6 ilajz 321|543
13 |peo727s PATIL TELAS VISHNLU 17.11.19%;6 M B.TECH YES |MAHARASHTRA 415141z 6e)|1]3 3 ijzf114})1 4112 3 1 5 2 5 & ilag1 2 3|1 514)z2
24 1715363 MOHAMMED FATAHUN AZEEZ KHAN | 25.09.1951 M B.TECH YES | ODISHA 414536 fzj1) 1 jajzfrf{agz)]z |41 3|52 s (e F|ap1| 2215 4)3
25 1538312 HIMANSHU TYAGI 10.12.1995 M B.TECH YES |UTTAR PRADESH Fle|d4f1)5]3]2 1 423|112 4 3 1 215 2 5 El3[4a]1 41511 4]3)z2
26 | 6607076 SAWANT MINAL MAHADHED 27.03,1987 F M.TECH YES [MAHARASHTRA If4 e 1|5 |32l ajz|3pLp41]4|2] 3 1835|6142 2|3/2{af5]1
27 \m01009 ABHISHEK 28.03.1953 M B.TECH YES [KARNATAKA Spd|Ep2 5|3 afa)l2zprf3f2]3|[4] 2 1525|6143 1|2|1]|5]3]4
28 |g34634 WANDRNA 0d4.05.1929 F B.TECH YES |HARYAMA 16| 1}3151214} 4 Flap 212 4 13 1 2|15 3 5 B 214ap1 3 (2]1jaf3|53
29 | 3809883 AHIRE SWAPNIL MANOHAR 23.08.1954 M B TECH YES [MAHARASHTRA 3|6 |af3|5)1j2] 4 |4l2j1]|3]1)4]3] 2 153|651 ]4| 2]z |2(1|4|5]3
30 |g3zes1 RAHUL KUMAR AGRAWAL 01.02.1954 M B.TECH YES |(BIHAR 5le|dal3js5i2]1 1 112)314j2) 3 4 1 215 3 5 5 1(4]| 2 413|111 5(4)2
3114121957 KUMAR SUBHAM 17.01.1924 M M.TECH YES [JHARKHAND Fl4lsp2je|1)3p 1 p4ar1p 232 a3l 25 25|63 (41431542
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