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1 Introduction

Priority-based assignments are pervasive in a wide range of real-world matching

contexts, including university admissions, public-sector placements, and cadet-

branch allocations in military academies (see, e.g., Balinski and Sönmez, 1999;

Sönmez and Switzer, 2013). In a typical priority-based system, participants are

strictly ranked—based on exam scores or a merit list for instance—and are as-

signed to positions accordingly. The central fairness requirement in these contexts

is that no lower-ranked participant should occupy a seat that a higher-ranked par-

ticipant strictly prefers; otherwise, the latter has a legitimate grievance, known as

justified envy (Abdulkadiroğlu and Sönmez, 2003). Such fairness concerns become

even more pronounced when the priorities at stake represent strongly protected

interests—like property rights or national exam rankings—where even a single

instance of justified envy can trigger legal and administrative challenges.1

Under the standard approach of designing direct mechanisms—where each par-

ticipant reports a complete ranking over positions—Serial Dictatorship (SD) is

in fact the only mechanism that can satisfy non-wastefulness—i.e., not leaving

desirable positions unfilled—and no-justified-envy. In SD, the highest-priority

participant picks their top choice, the next participant picks from the remaining

positions, and so on. This procedure prevents any lower-ranked participant from

ending up in a spot that a higher-ranked participant strictly prefers, ensuring

no-justified-envy. However, SD can produce allocations that are misaligned with

policy goals, such as excessive clustering of top-ranked participants in a small set

of elite locations, or undesirable regional or demographic distributions. When

considering standard direct mechanisms, there is no alternative to SD that both

respects strict priorities and operates on full preference lists. Thus, policymakers

appear to face a dilemma: given the requirement for “fairness by priority”, how

can one construct rules in pursuit of better distributional outcomes?

When we look at real-world priority-based assignments, we see many depart

from the fully “direct” approach, as illustrated by the following cases:

1. In the Indian Administrative Services (IAS), officers were formerly assigned

1One example of these legal challenges is the Federal University of Bahia hiring suit (Brazil,
2025), where a federal judge blocked the university from hiring a lower-scoring quota applicant
and ordered the single vacancy awarded to the exam’s top scorer (Agência Estado, 2025). An-
other was the Italian national residency “fiasco”, in which the Regional Administrative Tribunal
of Lazio annulled a ruling that forced higher-ranked doctors to forfeit more-preferred specialties
while lower-ranked peers advanced (Focus.it, 2016). Both rulings treat the harm as a breach of
the merit order—i.e., a violation of justified envy—showing that such breaches readily provoke
litigation.
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Figure 1: Example of a preference ranking in the 2017 IAS Mechanism
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to state cadres in a priority-driven process aligned with exam-based merit. This

arrangement, which was essentially a serial dictatorship with some modifications,

produced undesirable allocations exhibiting homophily, i.e., a propensity for offi-

cers to serve in or near their home regions. Such geographic clustering was seen

as compromising the national integration objective of the service (Thakur, 2023).

A 2017 reform imposed a zone-based scheme: all cadres were partitioned into five

geographic zones, and each officer now submits a separate ranking of cadres within

each zone rather than a single list over the entire country (see Figure1). The re-

vised mechanism guarantees that no lower-ranked officer receives a cadre preferred

by a higher-ranked officer inside the zone where they are ultimately matched, while

the zonal structure itself allows for officers to be more evenly dispersed across In-

dia—advancing distributional goals without overriding the preferences participants

actually report.

2. Under the U.S. Military Academy matching process of cadets to military

branches used in 2006, each cadet (i) ranked the branches and (ii) stated, for

every branch, whether they would accept a longer service obligation in exchange

for a priority boost (Sönmez and Switzer, 2013; Greenberg et al., 2024). This

elicitation did not allow them to report cross-branch trade-offs. Omitting this

information let the Academy honour the official order-of-merit list while making

it possible to steer more cadets into longer commitments that would have been

rejected under full preference elicitation. As Sönmez (2024) explains, this design

kept such priority violations hidden:

“Several years later, in 2019, I finally learned why the Army initially

did not pursue a potential reform of the USMA-2006 mechanism. (...)

Any failure of the no-justified-envy axiom rooted in this first issue was

also ‘invisible’ to the Army. When a cadet receives his first-choice

branch at the increased price but prefers his second choice at the base

price, this information was simply unavailable under the strategy space

of the USMA-2006 mechanism.”
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3. In the Chinese college admissions system, applicants submit a structured rank-

order list in which majors are nested under colleges, effectively enforcing a lexico-

graphic hierarchy: once a college is deemed higher-ranked, every major it offers is

treated as strictly preferred to any program at a lower-ranked college. Although

this structure is known to generate numerous cases of justified envy in practice,

none of these can be challenged under the restricted message space (see Hu et al.,

2025).2

As the preceding cases show, limiting what participants may report can hide

genuine priority breaches. Following this, we say a mechanism is visibly fair

when, given the elicited (partial) preferences, no outcome appears to violate pri-

ority. For example, if seats are partitioned into zones and participants may only

rank seats within each zone, allocating by priority inside every zone looks per-

fectly fair—even though a cross-zone comparison (never elicited) might reveal a

lower-ranked participant holding a seat a higher-ranked participant prefers. By

restricting the scope of reported preferences, policy makers can pursue goals such

as geographic diversity while keeping any latent violations invisible. A closely

related idea appears already in Greenberg et al. (2024), who introduced the no-

tion of detectable priority reversals, a concept that corresponds precisely to visible

(un)fairness in the context of the US Army’s branching mechanism.

Inspired by these observations, we examine the design problem of assigning

officers to positions under a strict priority ordering while maintaining visible fair-

ness. In contrast to standard models that fix a preference-reporting format, in

this framework the policy maker chooses both the message space (the form

of partial preferences agents can report) and the outcome rule. Our analysis

provides a framework and results on how to configure these two elements together

so as to achieve desired policy objectives.

Summary of Results

Our analysis delivers three main sets of results. First, we pin down the precise

structure that visible fairness imposes on allocation rules. Theorem 1 shows that

any visibly–fair mechanism must operate as an m-queue allocation: officers are

processed in strict priority order, and each is assigned a state that is undomi-

2As of January 2025, 23 out of 31 provinces in China retain the nested rank-order procedure
(Hu et al., 2025), including Shanghai, Beijing, Tianjin, Hainan, Jiangsu, Fujian, Hubei, Hu-
nan, Guangdong, Heilongjiang, Gansu, Jilin, Anhui, Jiangxi, Guangxi, Shanxi, Henan, Shaanxi,
Ningxia, Sichuan, Yunnan, Tibet, and Xinjiang. We provide screenshots from Fujian and Shang-
hai’s official college-major list sample form in Appendix B.
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nated, among the remaining states, within the partial ranking she is allowed to

report. When the message space induces a partition of the state space into zones,

this characterization yields the more specific results in Theorems 2 and 3. In this

setting, the only visibly-fair rules are partitioned priority mechanisms. Moreover,

when rankings are permitted across “zones,” the only visibly-fair rules are ranked-

partitioned priority mechanisms. While visible fairness implies serial dictatorship

(and therefore strategy-proofness) when using direct mechanisms (Corollary 2),

that is not the case for general message spaces. We show in Theorem 4 that

strategy-proofness is obtained exactly when the mechanism also satisfies expres-

siveness and (weak) availability, two properties that rule out profitable deviations

when the mapping from message profiles to outcomes is more general.

Second, we introduce a flexible way to encode distributional goals through

modular upper-bounds. A quota system is modular when every bound caps groups

of officers within an arbitrary subset of states (Definition 10). Modular bounds

induce zonal message spaces with a partition of states—formally captured in Def-

inition 13—where all states subject to the same collection of caps fall in the same

“zone.” Building on this structure, the Modular Priority Mechanism (Defini-

tion 14) processes officers by priority while dynamically clogging zones whose rel-

evant caps have just filled. Theorem 6 proves that this mechanism simultaneously

respects every modular bound, remains visibly fair, and is strategy-proof.

Yet, as Example 6.1 and the impossibility result in Theorem 7 shows, in gen-

eral, no static (one-shot) rule can simultaneously (i) satisfy visible fairness, (ii)

respect modular upper-bounds, and (iii) not be Pareto-improved by allocations

that respect the caps. The root of the conflict is informational. To guarantee that

every admissible report keeps the quotas intact, the policy maker must prune the

message space in advance, excluding comparisons whose truthful revelation could

otherwise force a violation. This secures fairness and feasibility but withholds

preference information that would uncover (and implement) mutually beneficial

swaps still compatible with the same caps.

Finally, we show that this tension can be resolved using a dynamic mechanism.

The Dynamic Modular Priority Mechanism (Definition 16) re-elicits each officer’s

preferences after observing earlier assignments, restricting her menu only by the

quotas that are now binding. This simple refinement recovers constrained Pareto

efficiency, while being strategy-proof (Theorem 8).
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Related Literature

A foundational theory for mechanisms with restricted message spaces comes from

Green and Laffont (1986), who study settings where participants are restricted to

a limited message space that depends on their true state. Their key insight is that

by constraining the information a participant can reveal, the set of implementable

outcomes can be expanded beyond what is possible in standard direct mechanisms.

Beyond the already discussed cases of the Indian Administrative Service (IAS)

cadre allocation (Thakur, 2023), the U.S. Military Academy’s cadet-branch match-

ing (Sönmez and Switzer, 2013; Sönmez, 2013; Greenberg et al., 2024), and Chinese

college admissions (Hu et al., 2025), many real-world mechanisms also limit the

extent of preference reporting. In school choice, for example, some systems cap the

number of schools an applicant may rank (Haeringer and Klijn, 2009a; Calsamiglia

et al., 2010), while others allow applicants to “bundle” schools into groups without

inter-group comparisons (Huang and Zhang, 2025).

Dynamic procedures often also restrict preferences and by doing so, might

reduce complexity (Pycia and Troyan, 2023). Bó and Hakimov (2022) propose It-

erative Deferred Acceptance by letting participants choose from menus, obtaining

stable results without demanding complete rankings, and Bó and Hakimov (2024);

Mackenzie and Zhou (2022) extend this idea to mechanisms that sequentially offer

feasible outcomes—enhancing privacy and performing well in controlled experi-

ments. Even small constraints, like limiting the length of rank-ordered lists, can

disrupt classical incentive properties: Haeringer and Klijn (2009b) show how cap-

ping the number of ranked schools compromises the usual strategy-proofness of

the Deferred Acceptance procedure. Meanwhile, Caspari and Khanna (2025) pro-

pose precise conditions for stability and incentives with non-standard preference

formats. Collectively, these studies highlight how restricting preference elicitation

can open new design possibilities while preserving key desiderata — an insight we

leverage in defining and deploying visible fairness. Decerf et al. (2024) is perhaps

the most conceptually related work to ours. Their notion of incontestable assign-

ments describes an environment where participants cannot fully observe others’

preferences or placements, leaving them unable to identify certain envy issues.

This parallels our concept of visible fairness, in which certain violations become

undetectable. The key difference, however, is that Decerf et al. (2024) derive

their informational constraints from the participants’ limited ability to view the

full outcome, whereas in our framework, these constraints are intentionally de-

signed by the policy maker. Specifically, in our setup the policy maker restricts
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what participants can report so as to preclude distributional tensions that might

otherwise manifest as visible grievances.3 In addition, while Decerf et al. (2024)

accommodate a variety of school-specific priorities, our model considers a single,

strict priority ranking that orders all participants.

Another paper that considers mechanisms using alternative message spaces is

Cavallo and Dogan (2024). The authors analyze Italy’s nationwide teacher-mobility

scheme, in which teachers may rank entire municipalities, districts, or provinces—nested

geographic units that bundle many schools into a single item on their list. They

show that the tie-breaking rule used to resolve these coarse rankings might allocate

lower-priority teachers ahead of higher-priority ones, creating detectable instances

of justified envy. They also show that these result in legal challenges: Italian

courts have repeatedly upheld merit-based claims, and parliamentary testimony

records more than 1,000 lawsuits filed each year, on average, over such priority

violations.

Partial preferences have also been studied in other contexts within market de-

sign. One strand lets participants declare indifference classes directly: Erdil and

Ergin (2017); Manjunath and Westkamp (2021); Andersson et al. (2021) build

mechanisms that treat weak orders — strict ranks punctuated by ties — as the

primitives, and then exploit those ties to recover efficiency and strategy-proofness.

A second strand considers problems in which not every pair of outcomes can be

compared, evaluating which adaptation of standard properties, such as stability,

can nonetheless sustain strategy-proofness under suitable conditions (Caspari and

Khanna, 2025; Kuvalekar, 2023). Typically, these frameworks rely on “weak sta-

bility,” where participants who are indifferent or indecisive simply cannot block

assignments. In contrast, our approach presumes participants do have complete

preferences but are deliberately constrained from revealing them in full.

The design of matching markets with distributional constraints through quota

systems has emerged as a critical area of research in market design, balancing

equity objectives with efficiency and stability considerations (Echenique and Yen-

mez, 2015; Abdulkadiroglu and Grigoryan, 2023).4 Kamada and Kojima (2015)

3In many real-life aplications, such as the IAS hiring and public sector hiring contests in Italy
and Brazil, transparency requirements imply the public disclosure of information such as exam
papers, scoring sheets, and even interview recordings. These are not considered private and must
be accessible to ensure administrative and social oversight (Autorità Nazionale Anticorruzione,
2025; Controladoria-Geral da União, 2023; Abizada and Bó, 2021). Under these informational
circumstances, incontestability might become equivalent to standard elimination of justified envy,
and therefore under single priority imply serial dictatorship.

4Practical implementations in education markets reveal both the potential and complex-
ity of quota systems. Combe et al. (2022) quantified these trade-offs through France’s teacher
assignment reforms, where experience-based distribution constraints reduced novice teacher con-
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introduced the idea of matching with distributional constraints, showing that con-

ventional stable matching algorithms can break down under strict regional quotas.

To address these deficiencies, they introduced new mechanisms that ensure such

constraints are respected while preserving or improving upon stability, efficiency,

and incentive alignment. Subsequent research refines and generalizes these in-

sights: for instance, Kamada and Kojima (2018) identify structural conditions

enabling strategy-proof and stable mechanisms under distributional constraints,

and their more recent work (Kamada and Kojima, 2024) extends stability ideas

to increasingly nuanced affirmative action policies.5

At the core of this field lies the tension between rigid distributional quotas and

the flexible preferences of participants. Fragiadakis and Troyan (2017) demon-

strated this through military cadet matching, where static reservation systems

created inefficiencies by locking seats for specific groups prematurely. Their dy-

namic quota mechanism represented a paradigm shift, adjusting reservation tar-

gets based on revealed preferences while maintaining strategy-proofness. This

approach inspired subsequent innovations like the Adaptive Deferred Acceptance

(ADA) mechanism by Goto et al. (2017), which introduced hereditary constraints—rules

where satisfying a constraint automatically satisfies all its subsets. The ADA

mechanism’s success in Japanese medical residency matching showed that carefully

designed constraints need not sacrifice core market principles like nonwastefulness

and strategy-proofness.

Structure of the paper. In Section 2, we introduce the model and definitions,

covering partial preferences, feasible allocations, and our message-space frame-

work. Section 3 then characterizes visibly fair mechanisms, identifying them

as queue-allocation variants and examining applications such as zonal message

spaces. Section 4 turns to incentives, specifying exactly when these mechanisms

are strategy-proof via the conditions of expressiveness and availability. Sections 5

and 6 present our results on distributional objectives, including modular upper-

bounds and the Modular Priority Mechanism, alongside an analysis of efficiency

that leads to our Dynamic Modular Priority Mechanism. Section 7 concludes. All

centrations in disadvantaged schools by 18% without significant efficiency losses. Combe et al.
(2025) extended this through a reassignment algorithm that prioritized understaffed schools,
demonstrating how temporal flexibility in constraints (allowing multi-year adjustment periods)
could mitigate short-term displacement costs.

5Additional contributions include Aziz et al. (2019), who introduce the principle of “cutoff
stability” for diversity-constrained matching, and Kojima et al. (2020), who identify conditions
ensuring that distributional constraints do not undermine substitutability in job-matching mar-
kets.
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proofs are relegated to Appendix A.

2 Model and Definitions

A problem consists of:

1. a finite set of officers I = {i1, i2, . . . , in},

2. a finite set of states S = {s1, s2, . . . , sm},

3. a capacity for each state (qs)s∈S, such that
∑

s∈S qs ≥ n,

4. a strict preference (asymmetric, complete, and transitive) for each officer

(≻i)i∈I over states S,6 and

5. a priority ranking π of officers I, where officer i is ranked higher than officer

j if π(i) < π(j).

For a given problem, the goal is to produce an allocation of officers to states.

Formally, an allocation a = (ai)i∈I is a list specifying a state ai ∈ S for each officer

i ∈ I. An allocation is feasible if, for each s ∈ S, we have |{i ∈ I : ai = s}| ≤ qs.

We denote the set of all feasible allocations by A. Furthermore, without loss of

generality, we assume that officers with lower subscripts have a higher priority,

i.e., π(i1) < π(i2) < · · · < π(in). While the allocation decision is based on

officers’ reported preferences and assigned priorities, in our setup, officers do not

necessarily communicate their full preferences directly but instead provide partial

preference information from a menu of partial preferences available.

More specifically, let Mi denote the message space for officer i ∈ I. Each

message mi ∈Mi is an irreflexive and acyclic binary relation ≻mi
over the set of

states S.7 Throughout, “≻mi
” will be read as “preferred under the message mi.”

We say that states s and s′ are comparable under mi if s = s′ or if mi ranks

one strictly above the other, i.e., s ≻mi
s′ or s′ ≻mi

s. We denote message space

profiles and message profiles by M = (Mi)i∈I and m = (mi)i∈I .

6We denote by ≿i the associated weak preference—that is, s ≿i s
′ ⇐⇒ s ≻i s

′ or s = s′.
7Binary relation ≻mi

on S is irreflexive if for all s ∈ S, ¬(s ≻mi
s). Binary relation ≻mi

on
S is acylic if for all s, s′ ∈ S, for all K ∈ N, and for all s0, . . . , sK ∈ S,

[s = s0 and sk−1 ≻mi
sk for all k ∈ {1, . . .K} and sK = s′] =⇒ ¬(s′ ≻mi

s).

We denote by ≿mi
the associated weak binary relation.
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Definition 1. A message space Mi satisfies richness if, whenever there exists a

message mi ∈Mi and two states s, s′ ∈ S such that s ≻mi
s′ and there is no state

y ∈ S where s ≻mi
y ≻mi

s′, then there also exists a message m′
i ∈Mi such that:

• for every pair (s1, s2) ∈ S × S with {s1, s2} ̸= {s, s′}, s1 ≻mi
s2 if and only

if s1 ≻m′
i
s2, and

• s′ ≻m′
i
s.

In words, whenever the designer allows an officer to send a message that ranks

s above s′, there also exists a message m′
i ∈Mi that preserves every other pairwise

comparison ofmi, but reverses the comparison of s and s′. The condition involving

the third state y prevents this reversal from violating transitivity.

Henceforth, we assume each message space Mi satisfies richness, unless noted

otherwise. This property guarantees that the message space never forces the of-

ficer to reveal a comparison in one direction without permitting the symmetric

comparison in the opposite direction.

Having defined both allocations and messages, we now formally define a mech-

anism. A M-mechanism is a function from message profiles to allocations,

ψ : M → A. We will use the shorthand mechanism when the space of mes-

sage profiles is clear from the context.

3 Visibly Fair Mechanisms

3.1 Visible Fairness

The key notions that we introduce in this paper is that of visible fairness.

Definition 2. An allocation a is visibly unfair under m if for some i ∈ I either

i) there is a j ∈ I such that ai ̸= aj, π(i) < π(j), and aj ≻mi
ai, or

ii) there is a s ∈ S such that ai ̸= s, |{i ∈ I : ai = s}| < qs, and s ≻mi
ai.

A mechanism ψ is visibly fair if there does not exist m ∈ M such that ψ(m) is

visibly unfair under m.

At first sight, visible (un)fairness appears to be a combination of standard non-

wastefulness and elimination of justified envy. The distinction, however, lies in the

fact that mi, in general, is incomplete, and therefore some existing wastefulness

10



or justified envy is “invisible” due to the limits to the expression of the associated

prefrences imposed by the message space.

Define the set G(X,mi) of all mi-maximal elements of X ⊆ S by

G(X,mi) = {s ∈ X : ¬(s′ ≻mi
s) for all s′ ∈ X}.

Since ≻mi
is acyclic and S is finite, G(X,mi) ̸= ∅.8 We next introduce a new

family of mechanisms.

Definition 3. A mechanism ψ is a m-queue allocation mechanism if ψ(m) is

the outcome produced by the following procedure:

Step 0: Set S1 = S.

Step k (1 ≤ k ≤ n): ak = sk ∈ G(Sk,mk). If the number of officers

assigned to sk reaches qsk , that is
∣∣{i ∈ I : i ≤ k and ai = sk}

∣∣ = qsk , then

Sk+1 ≡ Sk\{sk}. Otherwise, Sk+1 = Sk.

The m-queue allocation mechanism is the natural partial-preference analogue

of serial dictatorship. Starting from the highest-ranked officer, they are matched

to undominated states, given previously assigned ones. The difference here being,

of course, that there might be multiple undominated states, and therefore some

selection criterion between them must also be defined.

Theorem 1. A mechanism ψ is visibly fair if and only if it is a m-queue allocation

mechanism.

When considering complete message spaces, Theorem 1 gives us the following

corollary:

Corollary 1. If for every i ∈ I, every mi ∈ Mi and every s, s′ ∈ S, states s

and s′ are comparable under mi, then Serial Dictatorship is the unique visibly fair

M-mechanism.

Theorem 1 provides a full characterization of visibly fair mechanisms: any

such mechanism must be an m-queue allocation mechanism. While this defi-

nition is compact, it captures an extensive class of mechanisms. Designing an

m-queue mechanism involves two layers of choice—first, specifying the message

spaces officers can use, and second, given a message space, determining which

of the undominated (mi-maximal) states each officer is matched to. This latter

8For a proof, see Bossert and Suzumura (2010, Theorem 2.6).
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choice can depend on exogenous policy parameters or on the overall message pro-

file. In contrast, as indicated in the corollary above, when officers are allowed

to submit complete preferences over all states, visible fairness alone pins down a

unique mechanism—serial dictatorship. The characterization in Theorem 1 there-

fore illustrates how relaxing the message space, dramatically expands the set of

mechanisms that satisfy visible fairness, enabling greater flexibility in accommo-

dating policy goals beyond those implementable via serial dictatorship.

3.2 Two Special Message Spaces

We now turn to two natural families of message spaces, which are used in practice

and serve as the foundation for implementing distributional objectives in Section

5.

3.2.1 Zonal Message Space

We now introduce a family of message spaces that induce a partition of the set of

states into “zones.” Formally, suppose a message space Mi is such that the states

S can be partitioned into disjoint subsets Z = {z1, . . . , zℓ} with
⋃ℓ

j=1 zj = S and

zj ∩ zj′ = ∅ for j ̸= j′. We call Mi a zonal message space if within each subset

zj, any two states are comparable under any mi ∈ Mi, while any two states in

different subsets are never comparable under any mi ∈Mi. That is, zonal message

spaces have the following properties:

Within-zone completeness: For every strict total order R on S, there exists

a message mi ∈ Mi such that, for every zone zj ∈ Z and all states s, s′ ∈ zj with
s ̸= s′,

sR s′ ⇐⇒ s ≻m s′.

In other words, within each zone, the message space is rich enough to permit

any ranking of states within that zone.

Across-zone incomparability: For every pair of zones (zj, zj′) with j ̸= j′,

and for every message mi ∈Mi, no two states in zj and zj′ are ever ordered under

≻mi
. That is, the message space never allows an officer to rank a state in zj

relative to a state in zj′ .

From an officer’s perspective, submitting a message in a zonal message space

amounts to choosing a complete (strict) ordering over states within each zone but

leaving no comparison defined across zones.
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Example 3.1. Suppose the states S are {s1, s2, s3, s4}. One could design a mes-

sage space that effectively partitions these states into two zones:

z1 = {s1, s2}, z2 = {s3, s4}.

Officers would be required to provide complete rankings among {s1, s2} and

among {s3, s4}, but they would never be allowed to compare s1 (or s2) with s3 (or

s4). Consequently, any message in this space is of the form:

• Within z1, rank s1 above s2 (or vice versa).

• Within z2, rank s3 above s4 (or vice versa).

• Across z1 and z2, no ordering is possible.

Although the zone partition can be entirely endogenously derived from how

comparisons are restricted in the message space, a mechanism designer may also

choose to impose such a structure normatively, for example to ensure no cross-

zone comparisons are made (as in the Indian Civil Services, where certain sets of

states are grouped into “zones”). From a theoretical standpoint, both perspectives

are equivalent: a zonal message space is simply one in which states are fully

comparable within each zone and never comparable across zones.

Notice that given any Z, i, zonal message space Mi, and a preference over

states ≻i, there is exactly one message mi ∈Mi such that for every pair of states

s, s′, s ≻i s
′ ⇐⇒ s ≻mi

s′.

Suppose each officer has a zonal message space. Consider a zone selection

function Ci : 2S × M → Z, which is a function such that for any X ⊆ S,

X ∩ Ci(X,m) ̸= ∅.9

Definition 4. A mechanism ψ is a partitioned priority mechanism if there

exists a zone selection function profile (Ci)i∈I such that for any message profile m,

ψ(m) is the outcome produced by the following procedure:

Step 0: Set S1 = S.

Step k (1 ≤ k ≤ n): ak ∈ G(Sk,mk)∩Ck(Sk,m)) = {sk}.10 If the number of

officers assigned to sk reaches qsk , that is
∣∣{i ∈ I : i ≤ k and ai = sk}

∣∣ = qsk ,

then Sk+1 ≡ Sk\{sk}. Otherwise, Sk+1 = Sk.
9That is, as long as there are states with spare capacity available, Ci must choose a zone

with at least one of them.
10It is easy to see that within each zone, there is a unique mi-maximal element among any

set of remaining states with spare capacity, since all states in a zone are comparable under mi.
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Zone selection functions constitute the essential component of the definition

that results in the large variety of these mechanisms. They indicate, for each

profile of messages, which zone will be used to determine an officer’s outcome.

This zone can depend on some exogenous parameter, on the allocations of higher-

ranked officers and/or the preferences stated by other officers, as well as her own

message. Once a zone is determined, however, the state that will be matched to

the officer depends only on her preferences between the remaining states in that

zone.11

Theorem 2. For a zonal message space M , ψ is visibly fair if and only if it is a

partitioned priority mechanism.

3.2.2 Zonal Message Space with Ranking over the Zones

We now enrich the idea of a zonal message space by allowing officers to impose a

strict ordering across the zones. As before, let Z = {z1, . . . , zℓ} be a partition of

S into disjoint zones. Let, moreover, max(X,mi) ≡ G(X,mi) and min(X,mi) ≡{
s ∈ X : ∄s′ ∈ X, s ≻mi

s′
}
. A zonal message space with ranking over the

zones is a message space Mi in which:

Within each zone, states are comparable just as in the standard zonal case.

That is, for every strict total order R on S, there exists a message mi ∈ Mi such

that, for every zone zj ∈ Z and all states s, s′ ∈ zj with s ̸= s′,

sR s′ ⇐⇒ s ≻m s′.

Across zones, each message mi ∈ Mi implies a complete ranking ▷mi
over

zones Z s.t.

zi ▷mi
zj ⇐⇒ max(zi,mi) ≻mi

min
(
zj,mi

)
.

No other preferences among states can be expressed in these message spaces.

In words, these rankings augment zonal message spaces in a minimal sense:

they allow officers to express some information about how they rank zones in a

weakest sense: by ranking zone z above z′, they are saying that the best state in

z is preferred over the worst in z′. Notice that if this was not the case, we would

have z being ranked above z′ while every state in z′ is preferred to every state in

11Notice, moreover, that the definition of the mechanism requires that Ck chooses a zone with
states with spare capacity, which by assumption always exists.
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z.12

Notice, moreover, that Zonal Message Space with Ranking over the Zones do

not satisfy the richness condition we introduced in definition 1: you can express

max(zk,mi) ≻mi
min

(
zj,mi

)
, but not min

(
zj,mi

)
≻mi

max(zk,mi) .

Example 3.2. Suppose the states S are {s1, s2, s3, s4}. One could design a mes-

sage space that effectively partitions these states into two zones:

z1 = {s1, s2}, z2 = {s3, s4}.

Officers’ messages contain complete rankings among {s1, s2} and among {s3, s4},
and a ranking over zones ▷mi

. Consequently, any message in this space is of the

form:

• Within z1, rank s1 above s2 (or vice versa).

• Within z2, rank s3 above s4 (or vice versa).

• In addition to these:

– If s1 ≻mi
s2 and s3 ≻mi

s4, either s1 is ranked above s4 (z1 ▷mi
z2), or

s3 above s2 (z2 ▷mi
z1).

– If s1 ≻mi
s2 and s4 ≻mi

s3, either s1 is ranked above s3 (z1 ▷mi
z2), or

s4 above s2 (z2 ▷mi
z1).

– If s2 ≻mi
s1 and s3 ≻mi

s4, either s2 is ranked above s4 (z1 ▷mi
z2), or

s3 above s1 (z2 ▷mi
z1).

– If s2 ≻mi
s1 and s4 ≻mi

s3, either s2 is ranked above s3 (z1 ▷mi
z2), or

s4 above s1 (z2 ▷mi
z1).

• No other preferences across states are possible.

Suppose each officer i has a zonal message space with ranking over the zones,

as described above. Define a ranked zone selection function Ci : 2S×M → Z

to be a mapping that, for each subset of states X ⊆ S and each message profile

m, selects a zone Ci(X,m) ∈ Z such that:

12To see this, suppose that Z = {z1, z2}, z1 = {s1, s2} and z2 = {s3, s4}. Let mi be such that
s1 ≻mi

s2 and s3 ≻mi
s4. If a ranking z1 ▷mi

z2 is associated with s1 ≻mi
s4, we have this

additional comparison between states and nothing else. But if it was associated with s4 ≻mi s1,
this would imply that s3 ≻mi s4, s4 ≻mi s1, s1 ≻mi s2, thus making s3 the mi-maximal element
in {s1, s2, s3, s4}, which would be at odds with any reasonable interpretation of what z1 ▷mi

z2
implies for preferences among these states.
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1. X ∩ Ci(X,m) ̸= ∅, and

2. either

X ∩ Ci(X,m) ̸=
{
min

(
Ci(X,m),mi

)}
,

or there is no zone z ∈ Z with z ▷mi
Ci(X,m) and max

(
z,mi

)
∈ X.

A ranked zone selection function restricts which zone will be assigned to an

officer on the basis of the limits visible fairness imply given the ranking over zones:

if a zone z contains only the state deemed as the least preferred in z, no zone z′

for which z′ ▷mi
z can have spare capacity in its most-preferred state.

Definition 5. A mechanism ψ is a ranked partitioned priority mechanism

if there exists a ranked zone selection function profile (Ci)i∈I such that for any

message profile m, ψ(m) is the outcome produced by the following procedure:

Step 0: Set S1 = S.

Step k (1 ≤ k ≤ n): ak ∈ G(Sk,mk)∩Ck(Sk,m)) = {sk}.13 If the number of

officers assigned to sk reaches qsk , that is
∣∣{i ∈ I : i ≤ k and ai = sk}

∣∣ = qsk ,

then Sk+1 ≡ Sk\{sk}. Otherwise, Sk+1 = Sk.

Theorem 3. For zonal message space with ranking over zones, ψ is visibly fair if

and only if it is a ranked partitioned priority mechanism.

The presence of ranking over zones implies some restrictions on the zones that

the zone selection function can determine, as shown in the example below.

Example 3.3. There are three states S = {s1, s2, s3} (capacity 1 each) and two

zones

z1 = {s1}, z2 = {s2, s3}.
13Ranked zone selection function makes sure that within the selected zone, mk-maximal

element exists. To see why, let z = Ck(S
k,m) be the selected zone. We have two cases from the

ranked zone selection function definition:
Case 1: Sk ∩ z ̸= ∅ and Sk ∩ z ̸= {min(z,mk)}
Then Sk∩z contains non-minimal elements of zone z. Since all states in a zone are comparable

under mk, the mk-maximal state within Sk ∩ z is unique. By the across-zone ranking property,
only min(z,mk) can be dominated by states in different zones, so the mk-maximal state within
Sk ∩ z is also mk-maximal in all of Sk. Therefore, G(Sk,mk) ∩ Ck(Sk,m)) is non-empty and a
singleton.
Case 2: Sk ∩ z ̸= ∅ and no zone z′ ▷mi z has max(z′,mk) ∈ Sk

The condition ensures that all maximal elements of higher-ranked zones are unavailable in Sk.
Therefore, mk-maximal state within Sk ∩ z faces no domination from higher-ranked zones and
is mk-maximal in Sk. Therefore, again G(Sk,mk) ∩ Ck(Sk,m)) is non-empty and a singleton.
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There are two officers, i1 and i2. We will consider visibly fair mechanisms in

which the message space is zonal with rankings over these zones for both officers.

Officers i1 and i2 both submit the same message:

z1 ▷mi
z2, s2 ≻mi

s3.

Because z2 contains two available states, the ranked-zone selection function

could, in this scenario, place i1 in either zone z1 or z2. Suppose that it places on

z2. Given m1, i1 is matched to s2.

Now z1 still has s1 free, and z2 only s3. Since z1 remains vacant and is the

highest-ranked for i2, the mechanism must choose z1 and assign s1. Selecting z2

would contradict z1 ▷m2 z2 while z1 still offers an available seat, and is therefore

not allowed.

Ordinary partitioned priority mechanisms (without the zone ranking) would

leave the planner free to swap i2 between z1 and z2, illustrating how adding

cross-zone orderings tightens the designer’s hands, in comparison.

4 Incentives

To analyze incentives, we first define what it means for an officer to report truth-

fully. The idea is straightforward: given an officer’s preference over states, their

report is truthful if the underlying preference information in the submitted mes-

sage aligns with their actual preferences. For a given officer i ∈ I, let Qi be the

set of all preferences over S. Officer i’s message mi is a truthful message for

a preference ≿i∈ Qi, if for all s, s
′ ∈ S,

s ≻mi
s′ =⇒ s ≻i s

′.

Note that our richness assumption on the message space Mi ensures the existence

of a truthful message for every officer. That is, for every preference ≿i∈ Qi, there

exists at least one message mi ∈Mi that is truthful.

When it comes to incentives, a key desideratum is that an officer who submits

a truthful message should never receive a less preferred allocation than if they

were to report any other message. Formally, a mechanism ψ is strategy-proof if

for all i ∈ I, ≿i∈ Qi, for any mi ∈ Mi that is a truthful message for ≿i, and any

other message m̂i ∈Mi we have

ψ(m)i ≿i ψ(m̂i,m−i)i.
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Strategy-proofness implies, therefore, that if an officer has multiple truthful

messages, then they cannot lead to different outcomes. We next define two condi-

tions that are sufficient for a visibly fair mechanism to be strategy-proof. Weak-

ening one of the two conditions is also necessary for a visibly fair mechanism to

be strategy-proof.

The first condition, expressiveness, requires that whenever an officer changes

her message and thereby obtains another assignment, this new assignment must

be comparable to the officer’s originally assigned state under the original message.

Note that, the condition allows for the new assignment to be identical to the

original assignment and that a state is always comparable to itself.

Definition 6. Let ψ be a mechanism and let m be a message profile. The interest

into state s ∈ S is expressed by officer i under m if s and ψ(m)i are comparable

under mi.

A mechanism ψ satisfies expressiveness if for all i ∈ I, any mi ∈Mi and any

other message m̂i ∈ Mi interest into state ψ(m̂i,m−i)i was expressed by officer i

under m.

The second condition, availability, requires that whenever an officer changes

her message and thereby obtains another assignment, this new assignment must

always correspond to a state that was already available to her under the original

message. Note that, the condition allows for the new assignment to be identical

to the original assignment in which case the state is trivially available under the

original message.

Definition 7. Let ψ be a mechanism and letm be a message profile. A state s ∈ S
is available to officer i underm if |{ j ∈ I : ψ(m)j = s} ∩ { j ∈ I : π(j) < π(i)}| <
qs.

A mechanism ψ satisfies availability if for all i ∈ I, any mi ∈ Mi and any

other message m̂i ∈ Mi , we have that state ψ(m̂i,m−i)i is available to officer i

under m.

Interestingly, availability is too strong of a condition for ensuring strategy-

proofness. Indeed, while availability ensures that an officer cannot manipulate

the availability of states by submitting a different message, weak availability only

requires that an officer cannot manipulate the availability of weakly preferred

states, evaluated at the original message, relative to her assignment under the

original message. This condition, together with expressiveness in necessary for a

visibly fair mechanism to be strategy-proof.

18



Definition 8. A mechanism ψ satisfies weak availability if for all i ∈ I, ≿i∈ Qi,

for any mi ∈Mi that is a truthful message for ≿i, and any other message m̂i ∈Mi

s.t. ψ(m̂i,m−i)i ≿i ψ(m)i, we have that state ψ(m̂i,m−i)i was available to officer

i under m.

Now we are ready to formally state our main result on incentives.

Theorem 4. A visibly fair mechanism is strategy-proof if and only if it satisfies

expressiveness and weak availability.

The following corollary is immediate:

Corollary 2. A visibly fair mechanism is strategy-proof if it satisfies expressive-

ness and availability.

To give some intuition behind the results we give two examples. The first

one is a strategy-proof mechanism violating availability — but satisfying weak

availability and expressiveness.

Example 4.1 (Strategy-proof mechanism violating availability). Consider a

problem with two officers I = {i1, i2}. Without loss of generality, we let officer i1

have higher priority than i2, i.e., π(i1) < π(i2). There are two states S = {s1, s2},
each with capacity qs = 1. Consider a mechanism ψ where i1 can only submit a

single message mi1 without any preference information and i2 can either submit

message mi2 : s1 ≻mi2
s2 or m′

i2
: s2 ≻m′

i2
s1. Finally, let ψ(mi1 ,mi2) = (s2, s1)

and ψ(mi1 ,m
′
i2
) = (s1, s2).

Clearly, the mechanism is strategy-proof as i1 cannot influence the outcome by

submitting a different message, and i2 always gets her top choice when submitting

preferences truthfully. Moreover, the mechanism is visibly fair as i1 gives no

preference information and i2 gets her top choice.

It is easy to see that availability is violated as, e.g., consider message mi and

message m′
i. Note that, m′

i leads to a different outcome ψ(mi1 ,m
′
i2
)i2 = {s2} ≠

ψ(m)i2 = {s1} which is not available under m.

Note that weak availability is not violated as under mi which is a truthful

message for s1 ≻i2 s2 we have ψ(m)i2 ≻i2 ψ(mi1 ,m
′
i2
)i2 , and analogous under m′

i1

which is a truthful message for s2 ≻i2 s1 we have ψ(mi1 ,m
′
i2
)i2 ≻i2 ψ(m)i2 .

Overall this example illustrates how availability is too strong a requirement for

strategy-proofness.

The second example shows a mechanism satisfying expressiveness but violating

weak availability and thus strategy-proofness.
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Example 4.2 (Expressive but not weakly available mechanism). Consider a

problem with two officers I = {i1, i2}, where, without loss of generality, officer i1

has higher priority than i2, i.e., π(i1) < π(i2). There are two states S = {s1, s2},
each with capacity qs = 1. Consider a mechanism ψ where i1 can only submit a

single message mi1 without any preference information and i2 can either submit

message mi2 : s1 ≻mi2
s2 or m′

i2
: s2 ≻m′

i2
s1. Finally, let ψ(mi1 ,mi2) = (s1, s2)

and ψ(mi1 ,m
′
i2
) = (s2, s1).

Clearly, the mechanism is not strategy-proof as i2 always gets his second choice

when submitting a truthful message and can get his first choice by simply reporting

the opposite message. The mechanism is visibly fair as i1 does not give any

preference information, and i2 only reports the preferred state, which is given to

the higher priority officer i1.

The mechanism also satisfies expressiveness as under any message i2 gives

full preference information, while i1 has a single message automatically satisfying

expressiveness. At the same time the mechanism violates weak availability as e.g.

under mi2 which is a truthful message for s1 ≻i2 s2 and another message m′
i2
,

where ψ(m′
i1
,mi2)i2 ≿i2 ψ(m)i2 we have that ψ(m′

i1
,mi2)i2 is not available under

m.

Finally, an alternative condition that ensures a mechanism is strategy-proof,

without requiring visible fairness, is defined next. Coherence requires that when-

ever an officer changes her message and thereby obtains a different assignment,

this new assignment is not in the set of undominated states — consisting of both

the new and original assignment — evaluated at the original message. Note that

this condition only applies when the two assignments are distinct states.

Definition 9. A mechanism satisfies coherence if for any message mi ∈Mi and

any other message m̂i ∈Mi such that ψ(m̂i,m−i)i ̸= ψ(m)i we have ψ(m̂i,m−i)i ̸∈
G({ψ(m)i} ∪ {ψ(m̂i,m−i)i},mi).

Indeed, the following result follows almost immediately:

Theorem 5. A mechanism is strategy-proof if and only if it satisfies coherence.

4.1 Two special message spaces revisited

In this section we show that, neither the class of partition priority mechanism nor

the ranked partition priority mechanisms are always strategy-proof.
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In Example 4.3 we show that mechanisms using zonal message spaces can fail

weak availability and expressiveness, and therefore not be strategy-proof. More-

over, in Example 4.4 we show that zonal message spaces can be sufficient conditions

for visibly fair mechanisms to fail expressiveness, and therefore strategy-proofness.

Example 4.3 (Partitioned-priority can violate strategy-proofness). Consider a

problem with three officers I = {i1, i2, i3}. There are three states S = {s1, s2, s3},
each with capacity qs = 1. The zonal message space for all officers consists of

two zones: z1 = {s1, s2} and z2 = {s3}. Suppose each officer’s true preference is

s1 ≻i s2 ≻i s3. For each officer i, let mi be the message that ranks s1 ≻mi
s2, and

let m′
i reverse it: s2 ≻m′

i
s1.

Consider a zone selection function C that includes the following:

Ci1(S, m) = z1, Ci1(S, (m−i3 ,m
′
i3
)) = z1,

Ci2({s2, s3}, m) = z1, Ci2({s2, s3}, (m−i3 ,m
′
i3
)) = z2,

Ci3({s3}, m) = z2, Ci3({s2}, (m−i3 ,m
′
i3
)) = z1.

Notice that these conditions are consistent with zone selection function that

induces a partitioned priority mechanism. Consider the following successful ma-

nipulation for i3: Under truthful report m, the allocation is (s1, s2, s3); but when

i3 flips her internal ranking (mi3→m′
i3
), the mechanism assigns (s1, s3, s2), giving

i3 a preferred assignment as s2 ≻i3 s3.

Weak availability is violated as e.g. s2 is available under m′
i3

but not under

mi3 which is a truthful message for ≻i3 under which s2 is preferred to s3.

Similarly, expressiveness is violated as e.g. officer i3 does not express any

preference information regarding s2 and s3, even though s2 is allocated to i3 under

message m′
i3
and s3 is allocated to i3 under message mi3 .

Finally, we give an example that illustrates that a ranked partition priority

mechanism might not be strategy-proof due to its violation of expressiveness.

Example 4.4 (Ranked-partitioned priority can violate Expressiveness).

Consider a setting with three officers I = {i1, i2, i3}. The set of states is

S = {s1, s2, s3}, each with a capacity of qs = 1. The message space is zonal for all

officers and requires officers to rank two zones: z1 = {s1, s2} and z2 = {s3}. Each
officer’s message must provide a full ranking over the states within zone z1, i.e.,

between s1 and s2, and additionally indicate whether z1 ▷mi
z2 or z2 ▷mi

z1.
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True preferences for i1: s1 ≻i1 s2 ≻i1 s3. This yields a unique truthful message

m▷
i1
: (s1 ≻ s2 ▷ s3),

14 ensuring i1 obtains s1 in any visibly fair mechanism.

Two preferences for i2:

1. First, suppose i2 has s3 ≻i2 s2 ≻i2 s1. The unique truthful message mi2 :

(s3 ▷ s2 ≻ s1) forces i2 to end up with s3 under any visibly fair, strategy-

proof mechanism. To see this, suppose that i2 is assigned s2 instead. Then,

by submitting m▷′
i2

: s3 ▷ s1 ≻ s2, any visibly fair mechanism must assign s3

to i2, leading to a successful manipulation.

2. Next, consider ≻i2 : s2 ≻ s3 ≻ s1. Here, two truthful messages are possible.

One message mi2 : (s3 ▷ s2 ≻ s1) again, as we have just argued, assigns s3

to i2. Another message m▷′′
i2

: (s2 ≻ s1 ▷ s3) must assign s2 to i2.

Here, expressiveness is violated as e.g. officer i2 does not express any preference

information regarding s2 and s3 given message mi2 , even though s2 is allocated to

i2 under message m▷′′
i2

and s3 is allocated to i2 under message mi2 . On the other

hand, weak availability does not pose a problem in the above example.

Given Theorem 4, combined with Example 4.3 and Example 4.4 the following

corollary is immediate:

Corollary 3. Consider the zonal message space with and without rankings, then

both the partitioned priority mechanism and ranked partition priority mechanism

might not be strategy-proof.

5 Achieving Distributional Objectives

When using direct mechanisms, our earlier discussion shows that only serial dicta-

torship (SD) achieves visible fairness. By eliciting less information about prefer-

ences—through carefully designed restricted message spaces—we expand the set

of allocations that can be deemed visibly fair for a given problem. This relaxation

provides the policy maker with additional flexibility, allowing for the implemen-

tation of a broader array of allocation rules that still adhere to this notion of

fairness.

14A message m▷
i1

: s1 ≻ s2▷s3 is our abbreviation for the preference message with s1 ≻mi1
s2

and z1 ▷mi1
z2.
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There are, in principle, many distinct distributional objectives that can be ac-

commodated within this broader framework. In this section, we introduce one fam-

ily of such objectives, which we denote Modular Upper-Bounds, and give complete

instructions on how to design mechanisms that are visibly fair, strategy-proof,

and respect these bounds. Modular upper-bounds model distributional objectives

by imposing limits on the number of officers of certain types assigned to specific

subsets of states.

5.1 Modular Upper-Bounds

We extend our original model by saying that each officer i has a type t from a

finite set of types T , where ti denotes the type of officer i. The distributional goals

of the designer are modeled through type-specific modular upper-bounds, where

for a set of types, a collection of upper-bounds specifies limits on the allocation of

officers with those types to subsets of states.

Definition 10. A modular upper-bound system is a finite collection

H =
{
(Ξh, Sh, kh)

}
,

where for each element h ∈ H:15

• ∅ ̸= Ξh ⊆ T is the set of types covered by the quota,

• Sh ⊆ S is a subset of states, and

• kh ∈ N is the ceiling.

For every type t ∈ T we write

H t :=
{
(Ξh, Sh, kh) ∈ H : t ∈ Ξh

}
.

For every state s ∈ S and type t ∈ T , we write its upper-bound signature as

Hs,t = { (Ξh, Sh, kh) ∈ H : s ∈ Sh, t ∈ Ξh}.

Definition 11. An allocation a ∈ A respects the modular upper-bounds H

if, for every (Ξh, Sh, kh) ∈ H:

|{ i ∈ I : ai ∈ Sh, ti ∈ Ξh}| ≤ kh.
15In our notation, H contains a set of upper-bounds, each of which represented by the letter

h. In this context, Ξh for example, is the first component of h.
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We say that the modular upper-bound (Ξh, Sh, kh) is binding at allocation

a ∈ A if the constraint is satisfied with equality.

Since in our model officers cannot be left unmatched, we need to guarantee

that these upper-bounds are compatible with that restriction while using visibly

fair mechanisms. Formally, hereafter we will restrict our attention to modular

upper-bound systems that satisfy the following property of sequential solvency.

Definition 12. For any allocation a ∈ A, officer i ∈ I, and modular upper bound

h ∈ H, define ns :=
∣∣{j ̸= i : aj = s}

∣∣ and nh :=
∣∣{j ̸= i : aj ∈ Sh, tj ∈ Ξh

∣∣.
The modular upper-bounds system H satisfies sequential solvency if and only

if for all i ∈ I and for all a ∈ A that respect H,

∃s ∈ S s.t.

ns < qs, and

h ∈ Hs,ti =⇒ nh < kh ∀h ∈ H.

The intuition for the definition above is simple. Regardless of which capacities

or collection of upper-bounds bind, there will always be a compatible state for

every remaining officer. That is, while matching officers one at a time, modular

upper-bounds can restrict where officers are matched, but not whether they are

matched. Since it relies on the particular number of agents of each type in I, it

allows for interesting and practical constraints, as we will show in examples that

will follow.16

Example 5.1. Consider a problem with five states S = {s1, s2, s3, s4, s5}, each
having capacity qs = 1. There are two officer types: t1 and t2.

• For type t1, the upper-bound system is

H t1 =
{(
{t1}, {s1, s2, s3}, 2

)}
,

meaning that at most 2 type-t1 officers may be assigned to states in {s1, s2, s3}.

• For type t2, the upper-bound system is

H t2 =
{(
{t2}, {s3, s4, s5}, 1

)}
,

meaning that at most 1 type-t2 officer may be assigned to states in {s3, s4, s5}.
16Notice that it is crucial that the definition depends on the profile of types of officers.

Otherwise, the upper-bounds would have to be satisfied when all agents have the same type,
making only bounds that never bind compatible with not leaving officers unmatched.
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The literature has proposed several ways to formalize “quota–type” constraints.17

An example of a very permissive notion is the hereditary family of Goto et al.

(2017): write a matching as a vector that counts, for every state, how many of-

ficers of each type are assigned there; a subset of vectors is hereditary when it

is closed under coordinate-wise decrements. Any system of pure ceilings clearly

has this property, so every modular upper-bound instance fits inside the heredi-

tary domain. A tighter specification is the hierarchical (laminar) system analysed

by (Kamada and Kojima, 2015, 2018): here the subsets that carry quotas must

form a tree—any two are either disjoint or one contains the other. Laminar caps

are useful when the policy maker wants, say, regional ceilings that line up neatly

with district ceilings, but they rule out overlapping constraints such as “no more

than ten officers in the Northeastern states and no more than eight in the coastal

states.” All laminar systems are modular, yet the converse is false.

5.2 Modular-induced Message Spaces

To design mechanisms that respect modular upper-bounds, we define theModular-

induced Message Spaces. These are zonal message spaces where states are parti-

tioned into zones based on the upper-bounds, grouping together states involved

in the same upper-bounds.

Definition 13. For any type t ∈ T , define an equivalence relation ∼t on S such

that, for all s, s′ ∈ S,

s ∼t s
′ if and only if Hs,t = Hs′,t.

The Modular-induced Message Space associated with the modular upper-

bounds H t is the zonal message space Mt with zones Z = {zt1, zt2, . . . , ztk}, where
each zone ztj is an equivalence class under ∼t, that is,

ztj = {s ∈ S : s ∼t sj},

for some representative state sj ∈ S.

This construction ensures that:

i) Zones are disjoint and partition the set of states:
⋃

j z
t
j = S and ztj ∩ ztj′ = ∅

for j ̸= j′.

17An incomplete list includes Echenique and Yenmez (2015), Kamada and Kojima (2015),
Goto et al. (2017), Kamada and Kojima (2018), Aziz et al. (2019), Kojima et al. (2020), and
Kamada and Kojima (2024).
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ii) All states within the same zone are involved in exactly the same set of upper-

bounds for the type t. Therefore, if some upper-bound is binding for some

state in a zone, then it binds for all states in that zone.

5.3 Modular Prioritized Allocation Mechanism

Fix a finite set of agents I and a strict priority order π on I. Let H be a given

modular upper-bound system for a finite set of types T . Each type t ∈ T induces a

modular-induced message space Mt, as in Definition 13, where for each type t ∈ T ,
S is partitioned into zones Zt = {zt1, zt2, . . .} according to equivalence classes of

states under the same upper-bound signature.

Thus, for an officer i of type ti, the mechanism offers the zonal space Mti ,

with associated zones zti1 , z
ti
2 . . ., requiring her to submit a message mi ∈ Mti .

That message ranks all states within each zone but cannot compare states across

different zones.

As part of the mechanism design, each officer i is also assigned an exogenous

ranking

zti1 ▶i z
ti
2 ▶i · · · ▶i . . .

over the same zones, independent of the messagemi. These exogenous rankings—

which can encode policy priorities such as emphasizing certain zones first or last—

do not depend on agents’ reports.

Definition 14. Given a strict priority ranking π, a modular upper-bound system

H, an exogenous zone ranking ▶i for each officer i, and a profile of messages

m = (mi)i∈I , each mi in the modular-induced message space Mti , the Modular

Priority Mechanism ψ proceeds as follows:

Initialization:

• For each s ∈ S, set remaining capacity qrems = qs.

• For each type t and zone ztℓ, set a flag Bt
ℓ = False.

• Set ai = ∅ for all i ∈ I.

Quotas update procedure:

We next describe the procedure that updates the zone flags below:

• For each (Ξh, Sh, kh) ∈ H:
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– Let Nh = |{i ∈ I : ai ∈ Sh and ti ∈ Ξh}|.

– If Nh = kh, then for every t ∈ Ξh and ℓ such that Sh ∩ ztℓ ̸= ∅, set

Bt
ℓ = True.

Sequential Assignment: Process the officers in the order (i1, . . . , in). For each

k = 1, . . . , n:

1. Let tik be the type of officer ik. Her message mik partitions S into zones

z1, . . . , zK .

2. Starting from the top-ranked zone z1 under ▶ik , find the first zone zℓ such

that:

• B
tik
zℓ = False. (No modular upper-bound for type tik is yet fully binding

in zℓ.)

• There is a state s ∈ zℓ for which qrems > 0.

3. If no such zone is found, set aik = ∅, and move to ik+1. Otherwise:

• Let s∗ be the most-preferred state of ik within zℓ (according to mik)

that still has qrems∗ > 0.

• Set aik = s∗ and reduce capacity qrems∗ ← qrems∗ − 1.

• Apply the quotas update procedure.

Outcome: After processing all agents i1, . . . , in, the mechanism outputs the allo-

cation a = (ai)i∈I .

The Modular Priority Mechanism is, therefore, a partitioned priority mecha-

nism in which each officer type is associated with a zonal message space of states

that share the same upper-bound constraints. An officer’s final assignment is de-

termined by two key factors: (1) a counter that tracks remaining capacity for the

relevant states, and (2) a flag indicating whether any upper-bound restrictions in

that zone have become binding. Because all states in a given zone are governed

by the same set of constraints, a single triggered bound applies uniformly across

the entire zone. Below, we present the main result for this mechanism and two

examples that illustrate how it operates in practice.18

18In Appendix B we show that the modular upper-bounds system presented in Example 5.2
and Example 5.3 satisfy sequential solvency.
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Theorem 6. The Modular Priority Mechanism is visibly fair, strategy-proof, and

respects modular upper-bounds.

Example 5.2 (Distributing officers across two regions). Consider four states

S = {s1, s2, s3, s4}, which are partitioned administratively into two regions: R1 =

{s1, s2} and R2 = {s3, s4}, and each s ∈ S having capacity qs = 2. There are 8

officers I = {i1, . . . , i8}, and an officer type corresponds to the region they are

originally from: ti ∈ {1, 2}.
The policy objective is that at most 50% of the jobs in a region are taken by

local officers. For each r ∈ {1, 2}, the modular upper-bound is, therefore:

Hr = {({r}, Rr, 2)},

so that for an officer of type r the cap applies only to states in Rr. For any given

region r, denote by r̂ the other region in T .

For an officer i of type r, the upper-bound signature is

Hs,r =

 {({r}, Rr, 2)}, if s ∈ r,

∅, if s ∈ r̂.

Thus, the induced equivalence relation partitions S into two zones:

zr1 = {s1, s2}, zr2 = {s3, s4}.

Officers therefore use the same zonal message space, where they submit com-

plete rankings over states within each zone (without comparing states across zr1

and zr2).

Exogenous zone ranking: each officer of type r has the fixed ordering

zr1 ▶i z
r
2 if ti = 1

zr2 ▶i z
r
1 if ti = 2

so that the officer’s own region’s zone is ranked above other states.

A modular–priority mechanism enforcing these bounds proceeds as in Defini-

tion 14, using the zonal message spaces M1 and M2 and exogenous rankings over

zones (▶i)i∈I .
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Example 5.3 (Distributing doctors across regions and urban/rural divides). Con-

sider nine hospitals S = {s1, s2, s3, s4, s5, s6, s7, s8, s9} partitioned into regions

R1 = {s1, s2, s3}, R2 = {s4, s5, s6}, R3 = {s7, s8, s9},

with each hospital having capacity qs = 4. In each region, the first hospital is rural

(s1, s4, s7) and the others are urban (s2, s3, s5, s6, s8, s9). There are 27 doctors, 9

of each type t ∈ {1, 2, 3}, indicating their home region.

Two types of modular upper-bounds apply:

H t = {({t}, Rt, 6)} for each t = 1, 2, 3, and HU = {({1, 2, 3}, U, 19)}

where U = {s2, s3, s5, s6, s8, s9} is the set of all urban hospitals, and (U, 19) is a

universal cap across all doctors.

A doctor of type 1, for instance, faces the following signatures :

Hs,1 =



{({1}, R1, 6)}, if s ∈ R1 is rural (here, s1),

{({1}, R1, 6), ({1, 2, 3}, U, 19)}, if s ∈ R1 is urban (here, s2, s3),

{({1, 2, 3}, U, 19)}, if s is urban but not in R1 (e.g. s5, s6, s8, s9),

∅, if s is rural outside R1 (e.g. s4, s7).

Hence the modular-induced partition for a type-1 doctor is:

z11 = {s1}, z12 = {s2, s3}, z13 = {s4, s7}, z14 = {s5, s6, s8, s9}.

Within each zone, the doctor ranks hospitals fully, yet makes no cross-zone com-

parisons. Message spaces following the same principle are constructed for the

remaining types.

Exogenous zone ranking: each doctor of type 1 has the fixed ordering

z12 ▶i z
1
1 ▶i z

1
4 ▶i z

1
3 ,

so that hospitals in her own region’s zone are ranked above other states, and

urban hospitals are ranked above rural. Exogenous zone rankings for other types

of doctors are defined analogously.

A modular-priority mechanism enforces these caps by assigning each type-t

doctor to her top feasible and non-binding hospital within the partition induced

by (Rt, 6) and (U, 19).
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A modular–priority mechanism enforcing these caps proceeds as in Defini-

tion 14, using the zonal message spaces defined above and the exogenous rankings

over zones (▶i)i∈I .

As noted previously, the specification of the exogenous rankings over zones

(▶i)i∈I does not affect the theoretical properties established in our results. How-

ever, if we know that, for instance, most doctors typically prefer urban hospitals

over rural ones, defining the rankings as in the examples above tends to improve

efficiency of the final allocations, without harming the other objectives. Naturally,

if the actual preferences of participants substantially diverge from such assump-

tions, employing this approach could lead to less desirable outcomes.

It is also worth noting that the mechanisms introduced above—and the over-

arching notion of visible fairness—are ill-suited to implementing within-state affir-

mative action quotas. Such policies, which often appear in the matching literature

on diversity (e.g. majority quotas or type-specific ceilings in each state), could be

encoded as modular upper-bounds with one state in each upper-bound. However,

a scenario in which, for example, each state can admit a maximum number of

agents of a certain type, the resulting zonal message space would have one state

per zone. This, of course, would eliminate a role for preferences in the allocation.

If we attempted to compensate for this by using zonal message spaces with ranking

over zones, we would easily conclude that no visibly fair mechanism with these

characteristics would respect upper bounds.

6 Efficiency

As the following example demonstrates, the Modular Prioritized Allocation Mech-

anism does not guarantee efficiency.

Example 6.1. Consider two officers I = {i1, i2} with priority π(i1) < π(i2) and of

the same type t, and two states S = {s1, s2} with capacities qs1 = 2 and qs2 = 1.

Let there be a modular upper-bound of one officer of type t allowed in s1. Thus,

the modular-induced message space partitions states into two zones: z1 = {s1}
and z2 = {s2}. Let the exogenous ranking of zones be z1 ▶i z2 for both officers.

Suppose that officers’ true preferences are as follows:

≻i1 : s2 ≻ s1,

≻i2 : s1 ≻ s2.
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Under the Modular Prioritized Allocation Mechanism, the resulting allocation

is a = (ai1 , ai2) = (s1, s2).

Example 6.1 shows that it is possible to improve the efficiency of a mechanism

that remains visibly fair and satisfies all modular upper-bounds. Specifically,

because officer i1’s assignment to either s1 or s2 does not violate any bounds, it is

unnecessary to separate those two states into different zones in i1’s message space.

Allowing the officer to place both states in the same zone incorporates her actual

preferences more fully, thus leading to a more efficient assignment.

We now introduce a “second-best” notion of efficiency tailored to settings with

modular upper-bounds.

Definition 15. An allocation a is constrained Pareto efficient if:

i) a respects the upper–bounds, and

ii) there is no other allocation a′ that respects the modular upper–bounds such

that for every officer i we have a′i ≿i ai.

A mechanism is constrained Pareto efficient if, for any problem, when agents

submit any truthful message, the outcome is constrained Pareto efficient.

In other words, an allocation is constrained Pareto efficient if there is no al-

ternative allocation that respects both capacity and modular upper-bound con-

straints and strictly Pareto improves upon a (with respect to the agents’ true

preferences). A mechanism is constrained Pareto efficient if, whenever agents sub-

mit truthful messages, the resulting allocation is constrained Pareto efficient under

their full (true) preferences. The following result demonstrates that, in general,

no static mechanism can simultaneously achieve constrained Pareto efficiency and

visible fairness.

Theorem 7. Not all modular upper-bound constraints admit a (static) mechanism

that is simultaneously visibly fair and constrained Pareto efficient.

The negative result in Theorem 7 is not, of course, universal. Standard SD

satisfies those properties for modular upper-bound constraints that never bind. On

the other hand, constant mechanisms can trivially respect constraints that result

in a single feasible allocation which, by its uniqueness, would be constrained Pareto

efficient.
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Theorem 7, however, underscores a key tension in designing visibly fair mech-

anisms that must also adhere to non-trivial constraints such as modular upper-

bounds. At its core, this tension arises from the message-space design: enforcing

both fairness and quota requirements demands that the space be curated to pre-

empt scenarios where certain preference reports would necessarily violate upper-

bounds. Consequently, to avoid such violations, the mechanism must collect more

restricted preference information than might otherwise be desirable. This reduc-

tion in elicited information, while upholding fairness and preserving the bounds,

can lead to efficiency losses because the mechanism may lack the information

needed to detect and implement mutually beneficial reallocations that remain

compliant with all constraints.

Nonetheless, if one can condition each officer’s reported preferences on the

assignments of higher-ranked officers, it becomes possible to obtain second-best

outcomes. We exploit this insight to propose a dynamic mechanism, described

next.

Definition 16. The Dynamic Modular Priority Mechanism ψ operates as

follows:

Initialization:

• For each officer i ∈ I, set a0i = ∅.

• For each type t ∈ T , initialize the set of binding modular upper-bounds

Bt
0 = ∅.

Quotas update procedure:

We next describe the procedure that updates the set of binding upper-bounds:

• Let (Bt
k)t∈T be the current set of binding modular upper-bounds.

• For each (Ξh, Sh, kh) ∈ H:

– Let Nh = |{i ∈ I : ai ∈ Sh and ti ∈ Ξh}|.

– If Nh = kh, then for every t ∈ Ξh, add h to Bt
k.

Sequential Assignment: Process the officers in the order (i1, . . . , in). For each

k = 1, . . . , n:
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1. Let Mik be a zonal message space that partitions S into two zones:

z1 =
{
s ∈ S :

(
∀ (Ξh, Sh, kh) ∈ B

tik
k , s /∈ Sh

)
and |{j < k : aj = s}| < qs

}
z2 = S\z1

2. Elicit from officer ik a messagemk ∈Mik . Let s
∗ be officer ik’s most-preferred

state in zone z1, according to mik .

3. Set aik = s∗.

4. Follow the quotas update procedure and proceed to the next officer ik+1.

Outcome: After processing all officers i1, . . . , in, the assignment a = (ai)i∈I is

the mechanism’s final allocation.

The Dynamic Modular Priority Mechanism, therefore, sequentially assigns of-

ficers, dynamically tailoring the menu of available states for each officer based on

previous assignments. At each officer’s turn, the mechanism constructs a zone

containing all states with remaining capacity that do not belong to any subset

of states where a modular upper-bound for the officer’s type has already become

binding. The officer is then matched to her most-preferred state among these

feasible alternatives. By construction, this ensures visible fairness since each offi-

cer always obtains their top choice from that zone. Furthermore, by dynamically

adjusting the zones and enabling officers to fully express their preferences within

these constraints, the mechanism attains constrained efficiency: any allocation

that improves an officer’s assignment without harming others would necessarily

violate at least one modular upper-bound. The following proposition summarizes

these properties, including incentives.19

Theorem 8. The Dynamic Modular Priority Mechanism is visibly fair, con-

strained Pareto efficient, strategy-proof, and respects modular upper-bounds.

19While the definitions of visible fairness and respecting modular upper bounds carry over
directly without introducing additional notation, strategy-proofness warrants further clarifica-
tion in our dynamic setting. Because the Dynamic Modular Priority Mechanism allows officers’
strategies to depend on both history and the structure of the message spaces (i.e., the composi-
tion of the zones), our original, static definition of strategy-proofness does not explicitly cover
this complexity. Nevertheless, the informal argument used in the proof of Theorem 8 presented
in Appendix A remains sound: no matter how other players behave over time, an officer cannot
secure a better outcome by misreporting, so truth-telling continues to be a weakly dominant
strategy.
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It is also worth noting that the efficiency gains achieved with the Dynamic Mod-

ular Priority Mechanism come at a time cost. Whereas the standard procedure

requires only a single round of simultaneous preference elicitation, the dynamic

approach proceeds sequentially, allocating officers one by one. While this added

complexity may be negligible in small markets, it can become impractical in larger

settings, where the number of officers is substantial.

7 Conclusion

We explored how designing mechanisms that restrict the preferences participants

can report helps reconcile multiple policy objectives—particularly distributional

constraints—with fairness principles grounded in strict priority orders. We intro-

duced the concept of visible fairness, in which a mechanism never produces an

allocation that appears to violate a participant’s priority based on the partially

observed preferences. Theorem 1 demonstrated that every visibly fair mechanism

operates as a variant of serial dictatorship adapted to partial preferences. We

further showed that this framework can accommodate diverse distributional ob-

jectives by employing modular upper-bounds, which limit how many individuals

of certain types can be placed in specified subsets of positions. Central to this

approach are modular-induced message spaces, which prevent participants from

specifying cross-group preference comparisons that would otherwise undermine

these quotas.

We then characterized what makes these mechanisms incentive-compatible, by

parsing out two critical conditions—expressiveness and (weak) availability—that

together ensure no participant can profit by misreporting her partial preferences.

While restricting the scope of preference reporting can, in principle, worsen ef-

ficiency, we introduced a dynamic modular-priority framework that sequentially

elicits partial preferences and updates feasibility constraints in real time, thus re-

covering the best possible Pareto outcomes subject to capacity and distributional

limits. Overall, this paper highlights how deliberately constraining participants’

message spaces provides policy makers with new levers for achieving desired policy

goals while preserving fairness and incentive properties in priority-based allocation

settings
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A Appendix: Proofs

A.1 Proof of Theorem 1

A mechanism ψ is visibly fair if and only if it is a m-queue allocation mechanism.

Proof. Part 1: A m-queue allocation mechanism ψ is visibly fair.

Case 1. Consider anym ∈M and suppose by contradiction that for individual

i there exists ψ(m)j ≻i ψ(m)i, where π(i) < π(j).

By construction of the mechanism, suppose individual i is assigned at step

k; note that both ψ(m)j ∈ Sk and ψ(m)i ∈ Sk as π(i) < π(j). It follows, by

ψ(m)j ≻i ψ(m)i that ψ(m)i ̸∈ G(Sk,mk) — a contradiction.

Case 2. Consider anym ∈M and suppose by contradiction that for individual

i there exists s ≻i ψ(m)i, where |{i ∈ I : ψ(m)i = s}| < qs.

By construction of the mechanism, suppose individual i is assigned at step k;

note that both s ∈ Sk and ψ(m)i ∈ Sk as |{i ∈ I : ψ(m)i = s}| < qs. It follows,

by s ≻i ψ(m)i that ψ(m)i ̸∈ G(Sk,mk) — a contradiction.

Part 2: A visibly fair mechanism is a m-queue allocation mechanism

Take an arbitrary visibly fair mechanism ψ and fix a message profile m ∈ M .

Denote the resulting allocation by a = ψ(m). We now construct for this profile

the m-queue allocation procedure that replicates a.

Define set Sk for each officer k ∈ I as follows:

Step 0: Set S1 = S.

Step k (1 ≤ k ≤ n): Set sk = ak. If the number of officers assigned to sk

reaches qsk , that is |{i ∈ I : i ≤ k and ai = sk}| = qsk , then S
k+1 ≡ Sk\{sk}.

Otherwise, Sk+1 = Sk.
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Notice that for officer k, the set Sk consists of only those states that still

have remaining capacities to accommodate k after the allocation of higher-ranking

officers is taken into account. That is, each state s ∈ S \ Sk is filled by higher

ranking offers, |{i ∈ I : i < k and ai = s}| = qs. Now we must have that

ak ∈ G(Sk,mk), otherwise there exists s ∈ Sk such that s ≻mk
ak, which makes

the outcome visibly unfair as a higher ranking offer does not occupy this state.

An m-queue mechanism working down the priority list, using sets {Sk}nk=1

defined above and the procedure given in Definition 3, would give every officer the

same assignment as ψ. Since the construction can be repeated for every profile m,

ψ is an m-queue allocation mechanism.

A.2 Proof of Theorem 2

For a zonal message space M , ψ is visibly fair if and only if it is a partitioned

priority mechanism.

Proof. Part 1: A partitioned priority mechanism is visibly fair.

The proof follows the same logic as in Theorem 1, Part 1, and is omitted for

brevity.

Part 2: A visibly fair mechanism is a partitioned priority mechanism.

Fix an arbitrary message profile m ∈ M and let a = ψ(m) be the allocation

produced by any visibly fair mechanism ψ. We construct zone selection functions

{Ck}nk=1 and sets {Sk}nk=1 that would reproduce the same allocation step by step.

Step 0: Set S1 = S.

Step k (1 ≤ k ≤ n): If ak ∈ z, set Ck(Sk,m) = z. If the number of officers

assigned to sk reaches qsk , that is
∣∣{i ∈ I : i ≤ k and ai = sk}

∣∣ = qsk , then

Sk+1 ≡ Sk\{sk}. Otherwise, Sk+1 = Sk.

After performing the construction for every k we have defined all zone selection

functions {Ck}nk=1 and sets {Sk}nk=1.

Notice that for officer k, the set Sk consists of only those states that still

have remaining capacities to accommodate k after the allocation of higher-ranking

officers is taken into account. That is, each state s ∈ S \ Sk is filled by higher

ranking offers, |{i ∈ I : i < k and ai = s}| = qs. Now we must have that

ak ∈ G(Sk,mk) ∩ Ck(Sk,m), otherwise there exists s ∈ Sk such that s ≻mk
ak,

which makes the outcome visibly unfair as a higher ranking offer does not occupy

this state.
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A partitioned priority mechanism working down the priority list, using zone

selection functions {Ck}nk=1, sets {Sk}nk=1 defined above and the procedure given

in Definition 4, would assign every officer the same post as ψ.

Since the construction can be repeated for every profile m, ψ is a partitioned

priority mechanism.

A.3 Proof of Theorem 3

For zonal message space with ranking over zones, ψ is visibly fair if and only if it

is a ranked partitioned priority mechanism.

Proof. Part 1: A ranked partitioned priority mechanism is visibly fair.

The proof follows the same logic as in Theorem 1, Part 1, and is omitted for

brevity.

Part 2: A visibly fair mechanism is a ranked partitioned priority mechanism.

Theorem 2’s constructed zone selection function and argument apply here as

well. Fix an arbitrary message profile m ∈M and let a = ψ(m) be the allocation

produced by any visibly fair mechanism ψ. We construct zone selection functions

{Ck}nk=1 and sets {Sk}nk=1 that would reproduce the same allocation step by step.

Step 0: Set S1 = S.

Step k (1 ≤ k ≤ n): If ak ∈ z, set Ck(Sk,m) = z. If the number of officers

assigned to sk reaches qsk , that is
∣∣{i ∈ I : i ≤ k and ai = sk}

∣∣ = qsk , then

Sk+1 ≡ Sk\{sk}. Otherwise, Sk+1 = Sk.

After performing the construction for every k we have defined all zone selection

functions {Ck}nk=1 and sets {Sk}nk=1.

Notice that for officer k, the set Sk consists of only those states that still

have remaining capacities to accommodate k after the allocation of higher-ranking

officers is taken into account. That is, each state s ∈ S \ Sk is filled by higher

ranking offers, |{i ∈ I : i < k and ai = s}| = qs. Now we must have that

ak ∈ G(Sk,mk) ∩ Ck(Sk,m), otherwise there exists s ∈ Sk such that s ≻mk
ak,

which makes the outcome visibly unfair as a higher ranking offer does not occupy

this state.

Also, see that the constructed zone selection function is a ranked zone selection

function. Suppose not, then for officer k ∈ I, Sk∩Ck(Sk,m) =
{
min

(
Ck(Sk,m),mk

)}
and there is a zone z ∈ Z such that z ▷k Ck(Sk,m) and max (mk, z) ∈ Sk. Since
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max (mk, z) ≻mk
min

(
Ck(Sk,m),mk

)
, ak = min

(
Ck(Sk,mk),mk

)
is visibly unfair

for officer k under m.

A ranked partitioned priority mechanism working down the priority list, us-

ing ranked zone selection functions {Ck}nk=1, sets {Sk}nk=1 defined above and the

procedure given in Definition 5, would assign every officer the same post as ψ.

Since the construction can be repeated for every profile m, ψ is a ranked

partitioned priority mechanism.

A.4 Proof of Theorem 4

A visibly fair mechanism is strategy-proof if and only if it satisfies expressiveness

and weak availability.

Proof. If part a. A visibly fair mechanism satisfying weak availability is strategy-

proof if it satisfies expressiveness. We prove the contrapositive statement: If a

visibly fair mechanism satisfying weak availability is not strategy-proof it does

not satisfy expressiveness.

1. By assumption (violation of strategy-proofness), there exists a truthful mes-

sage mi and a message m̂i ∈Mi such that ψ(m̂i,m−i)i ≻i ψ(m)i.

2. By weak availability ψ(m̂i,m−i)i is available under $m$.

3. The expressed information ψ(m̂i,m−i)i ≻mi
ψ(m)i, together with ψ(m̂i,m−i)i

being available under m, would lead to a violation of visible fairness. Thus,

we have found a violation of expressiveness.

If part b. A visibly fair mechanism satisfying expressiveness is strategy-proof

if it satisfies weak availability. We prove the contrapositive statement: If a visibly

fair mechanism satisfying expressiveness is not strategy-proof it does not satisfy

weak availability.

1. By assumption (violation of strategy-proofness), there exists a truthful mes-

sage mi and a message m̂i ∈Mi such that ψ(m̂i,m−i)i ≻i ψ(m)i.

2. By expressiveness the information ψ(m̂i,m−i)i ≻mi
ψ(m)i is available under

m.

3. The availability of ψ(m̂i,m−i)i under m, together with the expressed infor-

mation ψ(m̂i,m−i)i ≻mi
ψ(m)i, would lead to a violation of visible fairness.

Thus, we have found a violation of weak availability.
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Only if part a. A visibly fair mechanism satisfies expressiveness if it is

strategy-proof. We prove the contrapositive statement: If a visibly fair mechanism

does not satisfy expressiveness then it is not strategy-proof.

1. Note that for the same state expressiveness is always satisfied. As the mech-

anism does not satisfy expressiveness, there exist officer i and messages mi

and m̂i such that ψ(m)i ̸= ψ(m̂i,m−i)i, but neither ψ(m̂i,m−i)i ≻mi
ψ(m)i

nor ψ(m)i ≻mi
ψ(m̂i,m−i)i

2. Consider any preference ≿∗
i∈ Qi s.t. ψ(m̂i,m−i) ≻∗

i ψ(m) and s ≻∗
i s′

whenever s ≻mi
s′. By construction, mi is a truthful message for prefer-

ence ≿∗
i∈ Qi. Moreover, there exists another message m̂i ∈ Mi such that

ψ(m̂i,m−i)i ≻i ψ(m)i, i.e., a violation of strategy-proofness.

Only if part b.

A visibly fair mechanism satisfies weak availability if it is strategy-proof. We

prove the contrapositive statement: If a visibly fair mechanism does not satisfy

weak availability then it is not strategy-proof.

1. As the mechanism does not satisfy weak availability, there exists mi ∈ Mi

that is truthful for a preference ≿i∈ Qi and a message m′
i ∈ Mi \ {mi}

s.t. ψ(m̂i,m−i)i ≿i ψ(m)i; but state ψ(m̂i,m−i)i is not available to officer i

under m.

2. It follows that ψ(m̂i,m−i)i ̸= ψ(m)i, and therefore we have a successful

manipulation, as ψ(m′
i,m−i)i ≻i ψ(m)i.

Proof of Theorem 5

A mechanism is strategy-proof if and only if it satisfies coherence.

Proof. If. A mechanism is strategy-proof if it satisfies coherence. We prove the

contrapositive statement: If a mechanism is not strategy-proof it does not satisfy

coherence.

By assumption, there exists a truthful message mi and a message m̂i ∈ Mi

such that ψ(m̂i,m−i)i ≻i ψ(m)i. As ψ(m̂i,m−i)i is strictly preferred we have

ψ(m̂i,m−i)i ̸= ψ(m)i. As mi is truthful we cannot have ψ(m) ≻mi
ψ(m̂i,m−i),
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and therefore ψ(m̂i,m−i) ∈ G({ψ(m)} ∪ {ψ(m̂i,m−i)},mi), i.e., a violation of

coherence.

Only if. A mechanism satisfies coherence if it is strategy-proof. We prove the

contrapositive statement: If a mechanism does not satisfy coherence then it is not

strategy-proof.

By assumption, there exists a message mi and a message m̂i ∈ Mi such that

ψ(m̂i,m−i) ∈ G({ψ(m)} ∪ {ψ(m̂i,m−i)},mi). Consider any preference ≿∗
i∈ Qi

s.t. ψ(m̂i,m−i) ≻∗
i ψ(m) and s ≻∗

i s
′ whenever s ≻mi

s′. By construction, mi is a

truthful message for preference ≿∗
i∈ Qi. Moreover, there exists another message

m̂i ∈Mi such that ψ(m̂i,m−i)i ≻i ψ(m)i, i.e., a violation of strategy-proofness.

A.5 Proof of Theorem 6

The Modular Priority Mechanism (MPM) is visibly fair, strategy-proof and respects

modular upper-bounds.

Proof. First, it should be clear that the Modular Priority Mechanism is a parti-

tioned priority mechanism: each agent, following the priority order, is associated

with a zonal message space, and is matched to the most-preferred state from a

zone that still has states with spare capacity. Since the modular upper-bound

system H satisfies sequential solvency, at every step of the MPM an officer has a

state available for which no upper-bound is binding and with spare capacity.

Next, we show that, for any given set of type-specific modular upper-bound

systems and exogenous rankings (▶i)i∈I , the Modular Priority Mechanism, repre-

sented by the function ψ, is strategy-proof.

Notice first that, by construction, an officer i cannot, by submitting a different

message, change the assignment of any officer j < i. Since ψ only produces feasible

outcomes, this implies that ψ satisfies availability.

Since the zone z from which i’s assignment will be drawn from depends on the

assignment of officers with higher priority and the ranking ▶i, both unaffected by

mi, the zone to which i will be assigned during the execution of the mechanism

cannot be changed by changes in her message. Let s = ψ(m). Since the zone

from which i’s outcome will be drawn will always be in z regardless of the message

i sends, ψ(m′
i,m−i) ∈ z for any m′

i ∈ Mi. Since both s and ψ(m′
i,m−i) belong

to zone z, it must be the case that s and ψ(m′
i,m−i)i are comparable under mi.

Therefore, ψ satisfies expressiveness, and by Corollary 2, strategy-proofness.
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Finally, we need to show that the Modular Priority Mechanism respects mod-

ular upper-bounds. That is, the final allocation ψ(m) = a satisfies, for every

upper-bound (Ξh, Sh, kh) ∈ H:

|{i ∈ I : ai ∈ Sh, ti ∈ Ξt}| ≤ kh.

We prove this by induction on the steps k = 1, 2, . . . , n of the mechanism. In

order to facilitate notation and comprehension, we will denote by ak the “tenta-

tive” allocation a by the end of step k of the mechanism.

Base Case (k = 0):

At initialization, no officers have been assigned. That is, a0i = ∅ for all i ∈ I.
Therefore, for any upper-bound (Ξh, Sh, kh) ∈ H, we have:

∣∣{i ∈ I : a0i ∈ Sh, ti ∈ Ξh

}∣∣ = 0 ≤ kh.

Thus, the allocation trivially respects all modular upper-bounds at step k = 0.

Inductive Step:

Assume that at step k − 1, the current assignment ak−1 respects all modular

upper-bounds; that is, for every upper-bound (Ξh, Sh, kh) ∈ H:

Nk−1
h =

∣∣{i ∈ I : ak−1
i ∈ Sh, ti ∈ Ξh

}∣∣ ≤ kh.

We need to show that after assigning officer ik at step k, the updated assign-

ment ak also respects all modular upper-bounds.

Consider officer ik of type tik . According to the mechanism, ik is assigned to a

state s∗ within a zone ztiℓ∗ where the upper-bounds for type tik involving states in

that zone are not yet binding before ik’s assignment—this is tracked by the flag

B
tik
ℓ∗ = False.

That is, for every upper-bound (Ξh, Sh, kh) ∈ H for which s∗ ∈ Sh:

∣∣{i ∈ I : ak−1
i ∈ Sh, ti ∈ Ξh

}∣∣ < kh.

Since all of these constraints are strictly below their upper-bounds after as-

signing ik to s∗ they will remain below their bounds or hit them. None of them

will go beyond their limits. Therefore, the resulting assignment ak respects all

modular upper-bounds.

Conclusion:
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In both cases, the assignment ak at step k respects all modular upper-bounds.

By induction, the final allocation an produced by the mechanism satisfies:

|{i ∈ I : ani ∈ Sh, ti ∈ Ξh}| ≤ kh,

for every every upper-bound h ∈ H.

A.6 Proof of Theorem 7

Not all modular upper-bound constraints admit a (static) mechanism that is simul-

taneously visibly fair and constrained Pareto efficient.

Proof. Consider a problem with three officers I = {i1, i2, i3} (with priority π(i1) <

π(i2) < π(i3)) and two states S = {s1, s2} with capacity qs1 = qs2 = 2. Assume

that all officers are of the same type t and that there is a single modular upper–

bound ({t}, {s1}, 1); that is, at most one officer of type t may be assigned to

s1.

Thus, any allocation that respects the upper–bounds must assign at most one

officer to s1. We now show that no visibly fair mechanism in this setup is con-

strained Pareto efficiency.

Since there are two states, each officer’s message space admits only two pos-

sibilities regarding the comparison between s1 and s2: (i) The officer can express

a strict preference between s1 and s2, or (ii) The officer cannot express any com-

parison between s1 and s2.

Next, note that no mechanism that elicits preferences of more than one officer

between s1 and s2 and is visibly fair respects modular upper-bounds. To see that,

assume that two officers express that s1 ≻i s2. Visible fairness requires that s1

does not have any empty slot. But this would violate modular upper-bounds.

Any visibly fair mechanism that respects modular upper-bounds, therefore,

will not elicit preferences for at least two officers.

Let’s denote the overall message-space configuration by a triple (X1, X2, X3),

where Xk = Y if officer ik can express a preference between s1 and s2, and Xk = N

otherwise.

We now examine the four cases in which we do not elicit preferences for at

least two officers and show that in each case, either the mechanism must return

an assignment that violates the modular upper–bound (i.e., assigns two or more
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officers to s1), or the outcome is not constrained Pareto efficient (because it is

Pareto dominated by another allocation that still respects the upper–bound).

Case 1: (X1, X2, X3) = (Y,N,N). Suppose i1 reports s2 ≻ s1. By visible fairness

she is assigned s2. By visible fairness and modular upper-bounds, the mechanism

must assign i2 and i3 to s1 and s2. Suppose it assigns i2 to s1 and i3 to s2.

If their true preferences are such that s2 ≻i2 s1 and s1 ≻i3 s2, an assignment

that swaps their matches Pareto dominates the aoutcome, while still respecting

modular upper-bounds. The same reasoning can be applied if the mechanism

swaps the assignments of i2 and i3.

Case 2: (X1, X2, X3) = (N,N,Y). Suppose that i3 reports s2 ≻i3 s1. There are

two cases to consider: (i) one of i1,i2 is matched to s1, or (ii) both i1 and i2 are

matched to s2. In the first case, let without loss of generality i1 be matched to s2

and i2 be matched to s1 and. Then, if i1 prefers s1 and i2 prefers s2, swapping

their assignments would Pareto dominate the outcome produced by the mechanism

while still respecting modular upper-bounds.

In the second case, both i1 and i2 are matched to s2. Suppose that one of

them prefer s1 to s2. Then swapping that agent’s assignment with i3 would Pareto

dominate the outcome produced by the mechanism while still respecting modular

upper-bounds.

Case 3: (X1, X2, X3) = (N,Y,N). Suppose that i2 reports s2 ≻i2 s1. Then,

visible fairness requires that she is assigned to s2. By modular upper-bounds, i1

and i3 are matched to s1 and s2. Suppose that both prefer the other’s assignment.

Then, swapping their matches would Pareto dominate the outcome produced by

the mechanism while still respecting modular upper-bounds.

Case 4: (X1, X2, X3) = (N,N,N).

The mechanism must choose an assignment of two officers to s2 and one to s1

solely by some fixed rule. Let i be the officer matched to s1 and i′, i′′ be matched

to s2 (their precise identities do not matter in this case). Suppose that i prefers

s2 to s1, and i′ prefers s1 to s2. Then, swapping their matches would Pareto

dominate the outcome produced by the mechanism while still respecting modular

upper-bounds.

In every case, the following occurs: either the outcome produced by the mech-

anism (which is constrained to be upper–bound respecting) violates the modular

upper–bound (by assigning more than one officer to s1), or there exists another
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allocation that both respects the upper–bounds and yields a strict Pareto improve-

ment with respect to the officers’ true preferences. Therefore, for these modular

upper-bounds, no mechanism exists that is simultaneously visibly fair and is con-

strained Pareto efficient.

A.7 Proof of Theorem 8

The Dynamic Modular Priority Mechanism is visibly fair, constrained Pareto ef-

ficient, strategy-proof, and respects modular upper-bounds.

Proof. Part 1: Visible fairness.

In the Dynamic Modular Priority Mechanism, officers are processed in strict pri-

ority order i1, i2, . . . , in. For each officer ik, the mechanism partitions the state

space S into two zones: z1 and z2. Officer ik is matched to her most-preferred

state in z1. Therefore, there is no state that ik ranks above her assignment. This

is true for every officer, and therefore the resulting assignment is visibly fair.

Part 2: Respects modular upper-bounds.

We show by induction on the assignment order that for any modular upper-bound

(Ξh, Sh, kh), the number of officers with type in Ξt assigned to states in Sh never

exceeds kh.

Base Case. Before any assignment (step 0), no officer is assigned and the count

is 0 ≤ kh.

Inductive Step. Suppose that after assigning officers i1, . . . , ik−1, the upper-

bound (Ξh, Sh, kh) is not violated. When officer ik (of type tik) is considered, if

tik ̸∈ Ξh the claim is unaffected. If tik ∈ Ξh and ik is assigned a state s with

s ∈ Sh, then by construction s belongs to zone z1 for ik and the current count of

officers with type t ∈ Ξh in Sh is strictly lower than kh. If after assignment the

count reaches kh, the mechanism updates Bt
· by adding h; hence, any subsequent

officer of type t will have Sh excluded from her zone z1. Thus, by induction, no

upper-bound is ever violated.

Part 3: Strategy-proof.

We show that no officer can obtain a strictly better outcome by misreporting

her preferences. In the mechanism, the available set of states for officer ik is

determined solely by:

1. The assignments of all higher-priority officers i1, . . . , ik−1, and

2. The set B
tik
k of binding modular upper-bounds for type tik .
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Neither of these depends on the message mik provided by officer ik. Thus, her

feasible set—the zone z1—remains fixed regardless of her report. Within z1, if

mik truthfully reflects her preference ordering, she is assigned her top available

choice. Any misreport would merely permute her ranking over the same fixed set

z1 and cannot result in an outcome strictly preferred (by her true preference) to

her truthful assignment. Therefore, the mechanism is strategy-proof.

Part 4: Constrained Pareto efficient.

Assume for contradiction that there exists an allocation a′ which Pareto dominates

a and also respects all modular upper-bounds. Let i∗ be the highest-priority officer

for whom a′i∗ ≻i∗ ai∗ ; that is, for every officer j < i∗, we have a′j = aj.

Consider officer i∗. Under the Dynamic Modular Priority Mechanism, when

i∗ was processed, she was assigned ai∗ as her most-preferred available state in

zone z1. If a′i∗ ≻i∗ ai∗ , then the state a′i∗ must have been available when i∗ was

considered. There are two possibilities:

1. Capacity constraint: The state a′i∗ might have been unavailable because its

capacity was already exhausted by officers j < i∗. However, since a′j = aj for

all j < i∗, the capacity allocated in a and a′ is identical for states assigned

to higher-priority officers. Thus, if a′i∗ is available in a′, it must have been

available for i∗ in a as well.

2. Binding Upper-Bound: The other reason for a′i∗ not to be in i∗’s zone z1

under a is if a′i∗ belonged to a set Sh for which the corresponding upper-bound

(Ξh, Sh, kh) was already binding at the time of i∗’s assignment. However, if

a′i∗ were in such a set and a′ respects the upper-bound, then a′i∗ could not

be assigned to i∗ without causing the total number of type ti∗ officers in Sh

to exceed kh.

In either case, if a′i∗ is strictly better for i∗ than ai∗ , then the state a′i∗ must

have been available for i∗ under the mechanism; hence, the mechanism would have

assigned a′i∗ to i∗ rather than ai∗ . This contradiction shows that no allocation a′

can Pareto dominate a while still respecting all modular upper-bounds. Therefore,

any allocation a′ that Pareto dominates a must violate some modular upper-

bound.

A.8 More on efficiency

This section explores the relationship between visible efficiency and fairness in

allocation mechanisms. An allocation is visibly efficient under message profile m
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if no alternative allocation visibly Pareto dominates it (meaning no reallocation

would make all affected agents better off according to their reported preferences).

The key results show that visibly fair allocations are always visibly efficient, but

the converse doesn’t hold. When comparing visible efficiency to true Pareto ef-

ficiency (based on actual preferences), every Pareto efficient allocation is visibly

efficient under truthful messages, but visible efficiency doesn’t guarantee Pareto ef-

ficiency—even visibly fair allocations can be Pareto inefficient. Furthermore, when

message m̂ contains more preference information than m, allocations that are visi-

bly fair or efficient under m̂ remain so under m, but not vice versa, demonstrating

that visible fairness and efficiency depend critically on the message spaces.

An allocation a is visibily efficient under m if it is not visible that it is

Pareto dominated by another allocation, that is, there is no allocation a′ ∈ A
such that for all i ∈ I with a′i ̸= ai, we have a′i ≻mi

ai. A mechanism ψ is visibly

efficient if ψ(m) is visibility efficient for all m ∈M .

Theorem 9. For any message m ∈M , the following statements are true.

1. Every visibly fair allocation is visibly efficient.

2. A visibly efficient allocation may not be visibly fair.

Proof. Statement 1: Fix a message profile m ∈ M . Suppose a ∈ A is a visibly

fair allocation that is not visibly efficient under m. Then there exists another

allocation a′ ∈ A such that for all i ∈ I with a′i ̸= ai, we have a′i ≻mi
ai.

Let i∗ be the highest ranking officer among the ones that are allocated to a

different state under a and a′ and let s∗ be her assigned state under a′. That is,

for

Ī := {i ∈ I : ai ̸= a′i} , i∗ := argmin
i∈Ī

π(i), and a′i∗ = s∗.

The allocation a must be visibly unfair under m. This is because either ai = s∗

for some i ∈ Ī, or |{i ∈ I : ai = s∗}| < qs∗ . Yet s
∗ ≻mi∗ ai∗ .

Statement 2: Let I = {i1, i2}, S = {s1, s2}, and qs1 = qs2 = 1. Additionally,

assume zonal message space for both officers, Z = {z1} with z1 = {s1, s2}. For

preferences s1 ≻i1 s2 and s1 ≻i2 s2, the allocation (a1, a2) = (s2, s1) is visibly

efficient but not visibly fair under the truthful message.

In contrast, an allocation a is Pareto efficient if it is not Pareto dominated

by another allocation, that is, there is no allocation a′ ∈ A such that for all i ∈ I
with a′i ̸= ai, we have a′i ≻i ai. A mechanism ψ is Pareto efficient if ψ(m) is

Pareto efficient for all m ∈M .

49



Theorem 10. For any truthful message m ∈ M , the following statements are

true.

1. Every Pareto efficient allocation is visibly efficient.

2. A visibly efficient allocation may not be Pareto efficient.

3. A visibly fair allocation may not be Pareto efficient.

Proof. Statement 1: Consider an allocation a ∈ A that is not visibly efficient for

some truthful message m ∈ M . This implies there is another allocation a′ ∈ A
such that for all i ∈ I with a′i ̸= ai, we have a′i ≻mi

ai, and therefore a′i ≻i ai (m

is a truthful message). Thus, a is not Pareto efficient.

Statement 2 and 3: Let I = {i1, i2}, S = {s1, s2, s3}, and qs1 = qs2 = qs3 = 1.

Additionally, assume a zonal message space, Z = {z1, z2} with z1 = {s1, s2} and
z2 = {s3}. For preferences s3 ≻i1 s1 ≻i1 s2 and s1 ≻i2 s3 ≻i2 s2, the allocation

(a1, a2) = (s1, s3) is visibly fair and visibly efficient under the truthful message, as

s1 and s3 are not comparable. However, it is not Pareto efficient.

Message m̂ contains more preference information than m, if for all i ∈ I:

s ≻mi
s′ =⇒ s ≻m̂i

s′.

Theorem 11. Suppose message m̂ contains more preference information than m.

Then the following statements are true.

1. Every visibly fair allocation under m̂ is also visibly fair under m.

2. A visibly fair allocation under m may not be visibly fair under m̂.

3. Every visibly efficient allocation under m̂ is also visibly efficient under m.

4. A visibly efficient allocation under m may not be visibly efficient under m̂.

Proof. Statement 1: There are two cases: (i) Allocation a is not visibly fair under

m because there exist some i ∈ I such that there is a j ∈ I such that ai ̸= aj,

π(i) < π(j), and aj ≻mi
ai. Since aj ≻m̂i

ai, a cannot be visibly fair under m̂.

(ii) Allocation a is not visibly fair under m because there exist some i ∈ I such

that there is a s ∈ S such that ai ̸= s, |{i ∈ I : ai = s}| ≤ qs, and s ≻mi
ai. Since

s ≻m̂i
ai, a cannot be visibly fair under m̂.

Statement 3: We use the contrapositive. If allocation a is not visibly efficient

underm, then there exists another allocation a′ such that for all i ∈ I with a′i ̸= ai,
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we have a′i ≻mi
ai. Since a

′
i ≻m̂i

ai for all such i ∈ I, a cannot be visibly efficient

under m̂.

Statement 2 and 4: Let I = {i1, i2}, S = {s1, s2, s3}, and qs1 = qs2 = qs3 = 1.

Additionally, assume a zonal message space for every officer, Z = {z1, z2} with

z1 = {s1, s2} and z2 = {s3}. For preferences s3 ≻i1 s1 ≻i1 s2 and s1 ≻i2 s3 ≻i2

s2, the allocation (a1, a2) = (s1, s3) is visibly fair and visibly efficient under the

truthful message m as s1 and s3 are not comparable.

Consider the zonal message space Z = {S}. The truthful message m̂ = (≻i)i∈I

contains more preference information than m. However, allocation (a1, a2) =

(s1, s3) is not visibly fair nor visibly efficient under m̂.

B Appendix: Proofs that examples satisfy se-

quential solvency

Proof that Example 5.2 satisfies sequential solvency.

Assume, for contradiction, that there exists an officer i who, given some feasible

placement a−i of the other 7 officers, has no admissible state. Without loss of

generality let ti = R1.

• If any seat in R2 were vacant it would be admissible for i (because the

bound (R1, 2) does not apply there), contradicting the assumption. Hence

both states in R2 are fully occupied (4 officers).

• The local cap in R2 is (R2, 2); therefore at most two of the four occupants

can be of type R2. So at least 4− 2 = 2 of them are of type R1.

• Among the remaining 7 officers, at most one R1-type can still be in R1 (since

two are already in R2). Thus (R1, 2) is not binding in R1.

• Only 7 officers are placed, but R1 has capacity qs1 + qs2 = 4; hence at least

one seat in R1 is empty.

But then, (R1, 2) is not binding in R1 and there is spare capacity in R1, con-

tradicting i not having an admissible state.

Proof that Example 5.3 satisfies sequential solvency.

Suppose, for contradiction, that some type–1 doctor i and feasible placement

a−i of the other 26 doctors leave i without an admissible hospital. This can only

happen if:

51



(i) all hospitals in R2 and R3 are full; or

(ii) the only vacancies there are urban and the urban cap (19) is binding.

Case (i): Q(R2) + Q(R3) = 24, so at most 24 of the others are outside R1.

Then at most 2 are in R1, leaving ≥ 10 free seats there; the local cap (R1, 6) is

not binding, so i could be placed in R1.

Case (ii): With 19 urban doctors, the remaining 26 − 19 = 7 occupy rural

seats, leaving 12 − 7 = 5 rural vacancies overall. If all rural seats in R2 and R3

were full, they would require 8 rural occupants, contradicting the total of 7. Thus

some rural hospital in R2 or R3 has a vacancy admissible to i.

In both cases we contradict the assumption; hence sequential solvency holds.
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C Appendix: Indirect Message Spaces

C.1 Preference Elicitation in All India Services

The 2017 Cadre Allocation Policy for India’s All India Services, including the In-

dian Administrative Service (IAS), Indian Police Service (IPS), and Indian Forest

Service (IFoS), introduces a zonal system that divides all states and union ter-

ritories into five geographical zones, requiring candidates to first indicate their

zone preferences in descending order, followed by cadre preferences within each

preferred zone. For illustrative purposes, we include a screenshot of the submitted

preferences from 2020 IFoS examination.

C.2 Rank-order lists in Chinese College Admissions

23 out of 31 provinces in China implement the structured rank-order list system,

in which majors are effectively nested under colleges, as noted by Hu et al. (2025).

These provinces include: Shanghai, Beijing, Tianjin, Hainan, Jiangsu, Fujian,

Hubei, Hunan, Guangdong, Heilongjiang, Gansu, Jilin, Anhui, Jiangxi, Guangxi,

Shanxi, Henan, Shaanxi, Ningxia, Sichuan, Yunnan, Tibet, and Xinjiang. For il-

lustrative purposes, we include a screenshot of the official college-major preference

form from Shanghai.

C.3 Reserve Officer Training Corps (ROTC) Mechanism

Sönmez (2013)’s model of cadet-branch matching problem consists of

1. a finite set of cadets I = {i1, i2, . . . , in},

2. a finite set of branches B = {b1, b2, . . . , bm},

3. a vector of branch capacities q = (qb)b∈B,

4. a set of “terms” T = {t1, . . . , tk},

5. a list of cadet preferences P = (Pi)i∈I over (B × T ) ∪ {∅}, and

6. a list of base priority rankings π = (πb)b∈B.

The ROTC mechanism is not direct. Instead, each cadet submits a ranking of

branches ≻′
i, and he can sign a branch-of-choice contract for any of his top three

choices under ≻′
i
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Source: https://www.shmeea.edu.cn/page/08000/20230407/17353.html
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