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1. Introduction

Over the past two decades, the empirical asset pricing literature has seen a

proliferation of reported return anomalies, cross-sectional patterns in average returns

that appear unexplained by standard factor models. This explosion of findings has

sparked concerns about data mining, and whether such findings can be replicated, raising

fundamental questions: Which anomalies are genuine and robust? Which merely reflect

statistical noise or sample-specific overfitting?

In this paper, we introduce a new approach to anomaly evaluation, to distinguish

between spanned and unspanned anomalies in a principled and scalable way. The key

insight driving our approach is that it is statistically easier to verify that an anomaly is

spanned rather than to argue that it is unspanned. Spanning means that the anomaly can

be explained by the factor set, and this can be checked directly, even if the factor set is

not optimal or complete. In contrast, even if an anomaly is unspanned by a given set of

factors, it is possible that it can be spanned by another, more optimal set of risk factors.

Thus, asserting that an anomaly is unspanned is inherently more challenging. Therefore,

our framework reverses the usual logic. Specifically, the null is that the anomaly cannot be

spanned, and discovery corresponds to the finding that it can be spanned.

To implement our approach in high dimensions and under model uncertainty, we

develop a Bayesian sequential expected false discovery rate (EFDR) procedure. In

this procedure, we compute posterior spanning probabilities for single anomalies, then

sequentially for pairs, triplets, and larger sets, using all admissible partitions in the manner

of Chib and Zeng (2020), that split the benchmark factors and anomalies into spanned

and unspanned components. EFDR control is applied within a stepwise screening loop in

which at each round, we remove factors with high posterior spanning probability (fake

anomalies) and retain those that remain unspanned across rounds. This approach results

in sharper, benchmark-robust inference with formal decision-theoretic guarantees about

which anomalies are spanned and which are not.

Literature. One strand of the recent work emphasizes publication bias and data-snooping
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in anomaly detection (e.g., Chen, 2025), which can be viewed as addressing uncertainty

about the anomaly space itself. The dominant approach for anomaly detection is to

determine whether an anomaly delivers incremental pricing power.1 This is approached

by setting the null that alpha is zero (the anomaly is spanned) and using t-tests for statistical

significance. Several concerns about this approach have been noted in the literature. The

frequentist test can only fail to reject the null or reject the null. Thus, in this framework, it is

not possible to ever claim that the anomaly is spanned and, without a coherent alternative,

it is not possible to know what is discovered when the null is rejected. The statistical power

of these tests can be low, with a further loss under multiple testing, as discussed in Harvey,

Liu, and Zhu (2016), Harvey and Liu (2020), and Harvey et al. (2020). This leads to fragile

inferences (Lewellen et al., 2010; Harvey, 2017).

A second key issue with existing approaches is model uncertainty arising from

incomplete knowledge of the stochastic discount factor (SDF). Because the true SDF

is unknown, the benchmark factors used to evaluate anomalies are typically ad hoc and

rarely justified.2 Benchmark choice strongly affects which anomalies appear to survive

(Fama and French, 2016) and which funds seem to exhibit skill (Lehmann and Modest,

1987), yet most studies only report results under a small number of alternative benchmarks

as robustness checks (Yan and Zheng, 2017; Chordia et al., 2020).

Contributions. Recognizing that the conventional hypothesis-testing architecture and

pervasive benchmark uncertainty make it nearly impossible to establish that an anomaly

truly earns a significant alpha, we take the opposite perspective and reverse the hypotheses:

the null is that the anomaly is not spanned by the benchmark factors, and the alternative is

that it is spanned. Beyond the novelty of this idea, this inversion is natural for two reasons.

First, declaring an anomaly to be genuine presumes knowledge of the true SDF, an object

that is essentially unattainable in practice. In contrast, spanning, unlike alpha significance,

1Common diagnostics include time-series alpha tests, cross-sectional Fama–MacBeth regressions that
estimate characteristic prices, and direct tests of high-minus-low (H–L) portfolio returns.

2Two benchmarks dominate applied work: the capital asset pricing model (CAPM; Sharpe (1964); Lintner
(1965)) and the Fama–French three- and five-factor models (FF3, FF5; (Fama and French, 1993, 2015)).
Variants include the Carhart four-factor model (Carhart, 1997) and the q-factor model (Hou et al., 2015).
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is a directly testable restriction in the Bayesian framework and does not depend on the

optimality of the benchmark SDF. Second, when confronted with a collection of putative

anomalies, it is more coherent to begin from the null that they are anomalies and to seek

evidence of spanning, rather than to assume the opposite. Applying our method to the

U.S. dataset of Jensen et al. (2023), which contains 153 candidate anomaly factors, we find

that 132 can be spanned, evidence that is consistent with a broader replication crisis in

empirical asset pricing.

The rest of the paper is organized as follows. Section 2 introduces our Bayesian

spanning framework, beginning with single anomalies and extending sequentially to pairs,

triplets, and larger sets under EFDR control. Section 3 deals with the empirical analysis and

shows that most of the anomalies given in Jensen et al. (2023) are spanned, leaving a much

smaller residual set. Section 4 evaluates economic performance via predictive likelihoods

and out-of-sample portfolio tests and reports robustness to alternative benchmarks.

Section 5 concludes with implications for replication and the identification of genuine risk

factors.

2. Methodology: Which Anomalies Can Be Spanned?

Our methodology for determining which anomalies can be spanned makes extensive

use of the Bayesian model comparison framework developed in Chib and Zeng (2020) and

Chib, Zeng, and Zhao (2020). This framework is used to sequentially evaluate whether

anomalies are priced, that is, spanned by a given factor model. We begin by testing each

anomaly individually alongside FF6, computing the posterior probability of spanning for

each case. We then apply Bayesian EFDR control to select anomalies with strong evidence

of being spanned. These are excluded from further testing. We next examine all remaining

pairs of anomalies in combination with FF6, applying the same logic again. We continue

this process iteratively, with the candidate set shrinking and the factor set expanding at

each step, until no further anomalies are identified as spanned. Thus, up to the level of our

EFDR control, these are the anomalies that may be classified as fake.

The residual set that remains may contain genuine factors or non-factors, but this
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distinction cannot be known with certainty given that the true SDF is unobserved.

Moreover, it is possible that another starting benchmark set of factors could span some

of these remaining anomalies. To evaluate this possibility, we repeat the pruning process

below using an alternative benchmark factor set and take the union of the spanned

anomalies across benchmarks. Because our Bayesian EFDR-based approach imposes a

strict burden of proof for declaring an anomaly spanned, the resulting spanned sets are

expected to be largely stable across benchmark choices.

2.1. Anomaly Spanning: One at a Time

Suppose we have n candidate anomalies a1, a2, . . . , an. For each anomaly ai, we

consider the augmented factor set

f (i) = (FF6, ai)

We now consider all possible splits of f (i) into factors that are unspanned x
(i)
j and factors

that are spanned w
(i)
j , where j = 1, 2, ..., J , for J = 127 = 27 − 1, denotes the jth such split.

Each of these splits defines a model that we indicate by M(i)
j . It is important to bear in

mind that in some of these splits, ai is an element of x(i)
j , and in other splits it is an element

of w(i)
j .

In Table A.1 we enumerate all 127 possible splits of f (i) = (FF6, ai). The unshaded

rows correspond to models in which ai is included in the unspanned set x
(i)
j ; these

are denoted by M0 = {M(i)
7 ,M(i)

13 ,M
(i)
18 , . . . ,M

(i)
126,M

(i)
127}. In contrast, the shaded rows

correspond to models where ai appears in the spanned set w
(i)
j , denoted by M1 =

{M(i)
1 ,M(i)

2 ,M(i)
3 , . . . ,M(i)

114,M
(i)
120}.

For each given anomaly ai, the typical model M(i)
j is given by

x
(i)
j = λ

(i)
j + u

(i)
j , (1)

w
(i)
j = Γ

(i)
j x

(i)
j + ε

(i)
j , j = 1, 2, ..., 127 (2)

where there is no intercept in the second model since w
(i)
j by definition is spanned by x

(i)
j .
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It is useful to note that included among these J = 127 models are the two conventional

benchmarks typically compared in a Bayesian test of whether ai is priced by FF6. The first

is model M(i)
120 in Table A.1. This specification places all six FF6 factors in the unspanned

set and ai in the spanned set:

FF6︸︷︷︸
= x

(i)
120

= λ
(i)
120 + u

(i)
120, (3)

ai︸︷︷︸
= w

(i)
120

= Γ
(i)
120 x

(i)
120 + ε

(i)
120, (4)

so that ai lies in the span of FF6. The other is model M(i)
127 in Table A.1. This specification

treats ai as an additional (unspanned) factor alongside FF6:

FF6

ai


︸ ︷︷ ︸
= x

(i)
127

= λ
(i)
127 + u

(i)
127, w

(i)
127 = ∅. (5)

in which case ai is not in the span of FF6. A conventional Bayesian analysis would compare

M(i)
120 and M(i)

127. Our approach is more comprehensive. It goes beyond this two-model

comparison by embedding both within the larger collection {M(i)
j : j = 1, 2, . . . , 127}, i.e.,

all possible splits of f (i) = (FF6, ai) into unspanned and spanned components.

Under Gaussianity of the errors and the priors given in Chib and Zeng (2020) and

Chib, Zeng, and Zhao (2020), Bayesian fitting of each of the J models is straightforward.

Importantly, from this Bayesian fitting, the marginal likelihood of the data under model

M(i)
j , denoted as m(i)

j , is available in closed form. Assuming a discrete uniform prior over

the J models, given by Pr(M(i)
j ) = 1/J , the posterior probability of each model is available

as

Pr(M(i)
j | data) =

m
(i)
j∑J

ℓ=1m
(i)
ℓ

, for j = 1, . . . , J, and i = 1, . . . , n. (6)

Given these posterior probabilities, we compute the total posterior probability that
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anomaly ai is spanned by any subset of the FF6 factors as follows:

pi = Pr(ai is spanned | data)

=
∑

j:ai∈w
(i)
j

Pr(M(i)
j | data) , i = 1, 2, . . . , n, (7)

where the summation is taken over all models in which ai ∈ w
(i)
j . A large value of pi

indicates strong evidence that anomaly ai is priced (i.e., spanned).

Since there are m anomaly-specific tests, it is crucial to address multiplicity to avoid a

high rate of false discoveries. We adopt the expected false discovery rate (EFDR) procedure

from the Bayesian multiple testing literature (e.g., Müller et al., 2007; Newton et al., 2004),

which delivers a data-adaptive selection threshold and an explicit bound on the expected

fraction of mistakes among the declared discoveries.

For each anomaly i = 1, . . . , n, we test

H0,i : ai /∈ w (not spanned), H1,i : ai ∈ w (spanned). (8)

The roles of null and alternative are reversed relative to common frequentist treatments: our

discovery is spanning (pricing), which frequentist tests cannot support directly. Moreover,

as seen in Table A.1, |M(i)
0 | = 64 and |M(i)

1 | = 63; under a uniform prior over the 127

models, the prior probabilities of H0,i and H1,i are nearly equal, so posterior evidence is

not dominated by prior asymmetry.

Let pi = Pr(H1,i | data) be the posterior probability that anomaly i is spanned, given

the data. Define the local false discovery rate (lfdr) as

lfdri = Pr(H0,i | data) = 1− pi. (9)

If a rule selects a set S ⊂ {1, . . . , n} as “spanned,” a false discovery occurs when i ∈ S but

H0,i is true; the posterior probability of that mistake is lfdri. Hence, the posterior expected
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number of false discoveries is
∑

i∈S lfdri, and the posterior expected false discovery rate is

EFDR(S | D) =

∑
i∈S lfdri

max{|S|, 1}
. (10)

Declaring “spanned” whenever pi ≥ τ ignores multiplicity and correlation across

candidates. With many tests, some pi will be large by chance, and a fixed τ provides

no control over the expected fraction of mistakes among selections. In contrast, EFDR

explicitly targets the decision problem “maximize discoveries subject to EFDR ≤ q,” and

sets the cutoff adaptively from the joint evidence.

The EFDR selector is formulated as follows. Sort the lfdri in increasing order:

lfdr(1) ≤ lfdr(2) ≤ · · · ≤ lfdr(n), (11)

and for k = 1, . . . , n define the running EFDR

EFDR(k) =
1

k

k∑
ℓ=1

lfdr(ℓ) =
1

k

k∑
ℓ=1

(
1− p(ℓ)

)
. (12)

Choose the largest k∗ with EFDR(k∗) ≤ q for a prespecified level q ∈ (0, 1) (e.g., q = 0.2),

and classify a(1), . . . , a(k∗) as spanned. This controls the posterior EFDR at level q and yields

a data-adaptive, multiplicity-aware selection.

We formally summarize this procedure, and its decision-theoretic optimality, in the

following proposition.

Proposition 1 (Bayes–optimal EFDR–controlled selection). Let

k∗ = max
{
k ∈ {0, . . . , n} :

1

k

k∑
ℓ=1

lfdr(ℓ) ≤ q
}

(with the empty sum for k = 0 taken as 0), and set S∗ = {(1), . . . , (k∗)}. Then:

1. (EFDR control) EFDR(S∗ | data) ≤ q.

2. (Bayes optimality) Among all S with EFDR(S | data) ≤ q, S∗ maximizes the posterior
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expected number of true discoveries,

∑
i∈S

pi =
∑
i∈S

(
1− lfdri

)
.

Proof. (1) By construction, EFDR(S∗ | data) equals the average of the k∗ smallest lfdr

values, which is ≤ q. (2) Fix k = |S|. If S omits some lfdr(j) while including a larger lfdr,

swapping in lfdr(j) weakly tightens the constraint and strictly increases
∑

i∈S(1 − lfdri).

Thus the optimal S of size k is {(1), . . . , (k)}; feasibility requires EFDR(k) ≤ q. Choosing

the largest feasible k yields S∗.

2.2. Anomaly Spanning: Two at a Time

In the second step of our procedure, we consider the spanning of two anomalies

at a time. This step is important because stopping after singleton tests can miss two

economically common situations. First, masking: two highly correlated anomalies may

each look only weakly spanned in isolation, yet be jointly spanned once evaluated together.

Second, redundancy: multiple proxies for the same latent risk can yield inflated marginal

evidence. Joint testing de-duplicates such signals by requiring them to be priced together.

A pairwise spanning stage therefore improves power against masked alternatives, reduces

false discoveries from redundancy, and preserves multiplicity control by applying EFDR

at the pair level.

Let b1, . . . , bm, where m = (n− k∗), denote the anomalies that were not classified as

spanned in Step 1. We now consider all n∗ =
(
m
2

)
distinct pairs (bi, bk) with i < k. For each

pair, we construct the augmented factor set

f (i,k) = (FF6, bi, bk)

For each factor set f (i,k), there are J∗ = 28 − 1 = 255 possible nontrivial partitions into

spanned factors w
(i,k)
j and unspanned factors x

(i,k)
j . However, we now restrict attention

only to models in which:
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• either both bi and bk are in x
(i,k)
j (jointly unspanned).

• or both bi and bk are in w
(i,k)
j (jointly spanned),

We exclude from consideration all models in which one of bi, bk is spanned and the other

is not. This focuses the inference on joint pricing behavior and removes ambiguity from

mixed-spanning configurations.

Each model M(i,k)
j in this restricted class takes the form

x
(i,k)
j = λ

(i,k)
j + u

(i,k)
j , (13)

w
(i,k)
j = Γ

(i,k)
j x

(i,k)
j + ε

(i,k)
j , (14)

with w
(i,k)
j spanned by construction, and no intercept in the second equation.

It is useful to emphasize that included among these Jjoint = 127 admissible models

(see Table A.2) are the following two models.

The first is model M(i,k)
120 in Table A.2. This specification places all six FF6 factors in the

unspanned set and both anomalies in the spanned set:

FF6︸︷︷︸
= x

(i,k)
120

= λ
(i,k)
120 + u

(i,k)
120 , (15)

bi

bk


︸ ︷︷ ︸
= w

(i,k)
120

= Γ
(i,k)
120 x

(i,k)
120 + ε

(i,k)
120 , (16)

so that the pair (bi, bk) lies in the span of FF6 (jointly spanned).

The second is model M(i,k)
127 in Table A.2. This specification treats both anomalies as
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additional (unspanned) factors alongside FF6:


FF6

bi

bk


︸ ︷︷ ︸
= x

(i,k)
127

= λ
(i,k)
127 + u

(i,k)
127 , w

(i,k)
127 = ∅, (17)

in which case (bi, bk) is not in the span of FF6 (jointly unspanned).

We could just compare only M(i,k)
120 and M(i,k)

127 to find the probability of spanning. Our

approach is more comprehensive: we embed both within the larger collection {M(i,k)
j : j =

1, . . . , 127}, i.e., all admissible splits of f (i,k) = (FF6, bi, bk) into unspanned and spanned

components and find the probability of spanning from these splits, as we now explain.

Let m(i,k)
j denote the marginal likelihood of model M(i,k)

j , computable using the closed-

form expressions described in Chib (1995) and applied in Chib and Zeng (2020). Under a

uniform prior over the restricted set of models (now smaller than 255), we compute the

posterior probability of model M(i,k)
j as

Pr(M(i,k)
j | data) =

m
(i,k)
j∑

l m
(i,k)
l

, (18)

where the sum is over all models in the restricted space for the pair (bi, bk).

For each pair (bi, bk), define the joint inclusion probability:

p
joint
i,k =

∑
j:{bi,bk}⊂w

(i,k)
j

Pr(M(i,k)
j | data), (19)

which is the posterior probability that both bi and bk are jointly spanned under models in

the restricted space.

We now frame the hypothesis test for the pair as follows:

• Null hypothesis H(i,k)
0 : neither bi nor bk is spanned.

10



• Alternative hypothesis H(i,k)
1 : both bi and bk are spanned.

Table A.2 presents the restricted set of model splits in which both (bi, bk) are either

included in x
(i,k)
j or in w

(i,k)
j . The unshaded rows correspond to the null hypothesis, while

the shaded rows represent the alternative, comprising 64 and 63 models, respectively.

Under a uniform prior over all models, the prior probabilities assigned to the null and

alternative hypotheses are approximately equal, consistent with the one-at-a-time testing

framework.

The local false discovery rate for the pair is defined as:

lfdrjoint
i,k = 1− p

joint
i,k . (20)

Let n∗ =
(
m
2

)
be the number of distinct anomaly pairs. We sort the local fdrs in

increasing order:

lfdrjoint
(1) ≤ lfdrjoint

(2) ≤ · · · ≤ lfdrjoint
(n∗). (21)

Then for each k = 1, . . . , n∗, compute the expected false discovery rate:

EFDR(k) =
1

k

k∑
ℓ=1

lfdrjoint
(ℓ) . (22)

Let k∗∗ be the largest integer such that EFDR(k∗∗) ≤ q, for a pre-specified threshold

q ∈ (0, 1) (e.g., q = 0.2).

The top k∗∗ pairs are declared as jointly spanned:

Pspanned =
{
(b(ℓ), b

′
(ℓ))

}k∗∗

ℓ=1
, (23)

and the set of anomalies classified as spanned is the union:

Sjoint =
k∗∗⋃
ℓ=1

{b(ℓ), b′(ℓ)}. (24)
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This procedure sharpens the inference by conditioning only on models where

anomalies are either jointly unspanned or jointly spanned. It simplifies the model

space, strengthens the evidence required for joint pricing, and controls the expected

false discovery rate among selected pairs at level q.

2.3. Anomaly Spanning: Three at a Time

In our third step, we evaluate spanning for triplets of anomalies. This stage guards

against higher–order masking (where no singleton or pair appears spanned, but the triplet

is jointly spanned) and further de–duplicates family redundancy (multiple close proxies

for the same risk). It also accommodates conditional spanning patterns that only emerge

when all three signals are considered together. As in earlier steps, we impose a joint

decision, either all three are in w (jointly spanned) or all three are in x (jointly unspanned)

and control multiplicity by applying EFDR at the triplet level.

Let c1, . . . , cr denote the anomalies not classified as spanned after the two-at-a-time

step, where r = m − k∗∗ = n − k∗ − k∗∗. For each triplet (ci, ck, cℓ) with i < k < ℓ, we

construct the augmented factor set:

f (i,k,ℓ) = (FF6, ci, ck, cℓ)

There are J∗∗ = 29 − 1 = 511 nontrivial partitions of this 9-factor set into spanned

(w(i,k,ℓ)
j ) and unspanned (x(i,k,ℓ)

j ) subsets. We restrict attention to the subset of models in

which:

• either all three anomalies {ci, ck, cℓ} are in w
(i,k,ℓ)
j (jointly spanned),

• or all three are in x
(i,k,ℓ)
j (jointly unspanned).

We exclude models where only some of the three anomalies are spanned, to maintain
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symmetry and eliminate ambiguous configurations. Each model M(i,k,ℓ)
j takes the form:

x
(i,k,ℓ)
j = λ

(i,k,ℓ)
j + u

(i,k,ℓ)
j , (25)

w
(i,k,ℓ)
j = Γ

(i,k,ℓ)
j x

(i,k,ℓ)
j + ε

(i,k,ℓ)
j , (26)

where there is no intercept in the second equation.

Similarly, we still have Jjoint = 127 admissible models, as shown in Table A.3. Among

them, M(i,k,ℓ)
120 and M(i,k,ℓ)

127 denote, respectively, the cases where the tuple (ci, ck, cℓ) is jointly

spanned by FF6 and where it is not in the span of FF6.

Let m(i,k,ℓ)
j denote the marginal likelihood of model M(i,k,ℓ)

j , computed as in Chib (1995).

Assuming a uniform prior over the restricted model space, we compute:

Pr(M(i,k,ℓ)
j | data) =

m
(i,k,ℓ)
j∑

l m
(i,k,ℓ)
l

. (27)

We define the joint inclusion probability:

p
joint
i,k,ℓ =

∑
j:{ci,ck,cℓ}⊂w

(i,k,ℓ)
j

Pr(M(i,k,ℓ)
j | data), (28)

which is the posterior probability that the triplet is jointly spanned.

We test the hypotheses:

• Null hypothesis H(i,k,ℓ)
0 : none of {ci, ck, cℓ} are spanned

• Alternative hypothesis H(i,k,ℓ)
1 : all of {ci, ck, cℓ} are jointly spanned

The local false discovery rate for each triplet is:

lfdrjoint
i,k,ℓ = 1− p

joint
i,k,ℓ. (29)

Let n∗∗ =
(
r
3

)
denote the number of distinct anomaly triplets. We sort the local fdrs in
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increasing order:

lfdrjoint
(1) ≤ lfdrjoint

(2) ≤ · · · ≤ lfdrjoint
(n∗∗). (30)

Then compute for each k = 1, . . . , n∗∗:

EFDR(k) =
1

k

k∑
ℓ=1

lfdrjoint
(ℓ) . (31)

We identify the largest k∗∗∗ such that EFDR(k∗∗∗) ≤ q. The top k∗∗∗ triplets are declared as

jointly spanned:

Tspanned = {(c(ℓ), c′(ℓ), c′′(ℓ))}k
∗∗∗

ℓ=1 , (32)

and the set of anomalies classified as spanned is:

Striplet =
k∗∗∗⋃
ℓ=1

{c(ℓ), c′(ℓ), c′′(ℓ)}. (33)

This extension maintains symmetry, sharpens the inference, and ensures that only

triplets with strong joint evidence of spanning are declared as priced, while controlling the

expected false discovery rate at level q.

2.4. Anomaly Spanning: General Case

Now that we have established the set-up and provided details and intuition for how

our method is implemented in particular cases, we describe the general case when FF6 is

paired with r anomalies. Let c1, . . . , cr denote the anomalies remaining after the previous

step. For each subset S ⊂ {c1, . . . , cr} such that |S| = s, we construct the augmented factor

set:

f (S) = (FF6, ci1 , . . . , cis) for S = {ci1 , . . . , cis}. (34)

There are Js = 26+s − 1 nontrivial partitions of this factor set into spanned and

unspanned subsets. We restrict attention to models where the anomalies in S are either:

• all in the spanned set w(S)
j (jointly spanned), or

14



• all in the unspanned set x(S)
j (jointly unspanned).

This restriction eliminates mixed configurations and simplifies the classification. Each

model M(S)
j in the restricted class takes the form:

x
(S)
j = λ

(S)
j + u

(S)
j , (35)

w
(S)
j = Γ

(S)
j x

(S)
j + ε

(S)
j , (36)

where no intercept appears in the second equation.

Let m(S)
j denote the marginal likelihood of model M(S)

j , computed using the method

of Chib (1995). With a uniform prior over the restricted model space, the posterior model

probabilities are:

Pr(M(S)
j | data) =

m
(S)
j∑

k m
(S)
k

. (37)

Define the joint inclusion probability for the subset S as:

p
joint
S =

∑
j:S⊂w

(S)
j

Pr(M(S)
j | data). (38)

This is the posterior probability that all anomalies in S are jointly spanned.

We now test the hypotheses:

• Null hypothesis H(S)
0 : none of the anomalies in S are spanned

• Alternative hypothesis H(S)
1 : all anomalies in S are jointly spanned

The local false discovery rate for each subset is:

lfdrS = 1− p
joint
S . (39)

Let ns =
(
r
s

)
denote the number of distinct s-anomaly subsets. We sort the lfdrs:

lfdr(1) ≤ lfdr(2) ≤ · · · ≤ lfdr(ns). (40)
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For each k = 1, . . . , ns, compute:

EFDR(k) =
1

k

k∑
ℓ=1

lfdr(ℓ). (41)

Let k∗ be the largest index such that EFDR(k∗) ≤ q, for a pre-specified threshold q ∈ (0, 1).

The top k∗ subsets are declared as jointly spanned:

Gspanned = {S(ℓ)}k
∗

ℓ=1, (42)

and the anomalies classified as spanned are:

Sfinal =
k∗⋃
ℓ=1

S(ℓ). (43)

This procedure generalizes the two- and three-anomaly steps, maintains symmetry,

and controls the expected false discovery rate at level q. We continue this iterative process

until the set of unspanned anomalies stabilizes.

Building on Proposition 1, which considers EFDR control at the individual anomaly

level, we now establish a second decision-theoretic optimality result about our Bayesian

screening method. We show that our sequential screening across nested anomaly sets

maintains global EFDR control.

Proposition 2 (Sequential EFDR control across stages). Fix data D. For each candidate subset

S of anomalies at stage s, let pjoint
S = Pr(H1,S | D) denote the posterior probability that the set S is

jointly spanned (alternative true), and define the local false discovery rate lfdrS = 1− p
joint
S . Let

Hs be the collection of subsets tested at stage s and write lfdr(s)(1) ≤ · · · ≤ lfdr
(s)
(ns)

for the ordered

lfdr values over Hs.

At level q ∈ (0, 1), the Bayes–optimal EFDR step–up rule (Prop. 1) selects

k⋆
s = max

{
k ∈ {0, . . . , ns} :

1

k

k∑
ℓ=1

lfdr
(s)
(ℓ) ≤ q

}
, S⋆

s =
{
S(s)
(1) , . . . ,S

(s)
(k⋆s )

}
,
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and we define the associated posterior–null threshold

τs ≡ lfdr
(s)
(k⋆s )

(with the convention that τs = +∞ if k⋆
s = 0) .

so that the same selection can be written equivalently as

S⋆
s =

{
S ∈ Hs : lfdrS ≤ τs

}
.

Assume nested elimination across stages:

Hs+1 ⊆ Hs \ S⋆
s ,

so that the selected sets S⋆
1 , . . . ,S⋆

S are pairwise disjoint. Let the cumulative discovery set be

S⋆ =
S⋃

s=1

S⋆
s .

Then the global EFDR computed at the subset level satisfies

EFDR
(
S⋆ | D

)
=

1

max
(
|S⋆|, 1

) ∑
S∈S⋆

lfdrS ≤ q.

Proof. All probabilities are posterior given D. For any finite selection A of subsets, the

EFDR at the subset level is

EFDR
(
A | D

)
=

1

max
(
|A|, 1

) ∑
S∈A

lfdrS .

By Proposition 1, the stage–s step–up rule yields k⋆
s and S⋆

s such that

1

max
(
|S⋆

s |, 1
) ∑

S∈S⋆
s

lfdrS ≤ q .

Because Hs+1 ⊆ Hs \ S⋆
s , the selections S⋆

1 , . . . ,S⋆
S are disjoint, so
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∑
S∈S⋆

lfdrS =
S∑

s=1

∑
S∈S⋆

s

lfdrS ≤
S∑

s=1

q ·max
(
|S⋆

s |, 1
)
.

If at least one stage is nonempty, then |S⋆| =
∑S

s=1 |S⋆
s | ≥ 1, and hence

EFDR
(
S⋆ | D

)
=

∑S
s=1

∑
S∈S⋆

s
lfdrS∑S

s=1 |S⋆
s |

≤
∑S

s=1 q |S⋆
s |∑S

s=1 |S⋆
s |

= q .

If every S⋆
s = ∅, then S⋆ = ∅ and EFDR(S⋆ | D) = 0 ≤ q by convention. This proves the

claim.

Proposition 2 formalizes that the sequential screening and elimination process

preserves EFDR control globally, not just within each stage. Intuitively, previously

discovered (spanned) sets are removed from subsequent testing, ensuring that the posterior

expected proportion of false discoveries in the cumulative set of spanned anomalies

remains bounded by q. This property provides strong decision-theoretic guarantees for

our multi-stage Bayesian screening method.

3. Empirical Study

We obtain U.S. monthly data for the key risk factors, Mkt, SMB, HML, RMW, CMA, and

MOM, from the Fama-French data library. Our analysis builds on the database constructed

by Jensen, Kelly, and Pedersen (2023), which contains 153 factors grouped into 13 thematic

categories. We use monthly value-weighted returns from this dataset and restrict the

sample period to January 1985 through December 2024 to ensure full coverage across all

153 factors. This results in a total sample size of T = 480 months. The training sample

comprises the first 25% of observations (Ttr = 120), corresponding to the first 10 years,

with the remaining Test = 360 observations from Jan 1995 to Dec 2024 used for model

estimation 3. We refer to the x and w at each step as remaining anomalies and fake anomalies,

respectively.

3In the non-Bayesian empirical exercises, we continue to use a full sample of T = 480 months.
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3.1. Results

We begin with a straightforward question: when FF6 is taken as the benchmark,

which are the fake anomalies, that is, anomalies that can be spanned jointly by FF6 and

a small number of additional anomalies. To address this, we implement our stepwise

methodology based on EFDR (q = 0.2) across the initial set of 153 candidate factors. At

Step s, FF6 is allowed to enter jointly with s candidate anomalies. Once an anomaly or

a group of anomalies is classified as spanning in the preceding step, these are recorded

as fake and removed from the candidate pool, while the remaining factors proceed to the

next step.

Figure 1 reports the identification path. Steps 1, 2, 4, and 5 contribute 21, 87, 5, and

13 new fake anomalies, respectively, while Step 3 yields none. By the end of Step 5, the

classification stabilizes at 126 fake anomalies and 27 remaining factors, accounting for

82.4% and 17.6% of the total candidate anomalies set, respectively. This pattern indicates

that, within the class of “FF6 plus a small number of anomalies” models, most candidate

factors are explained, while only a small fraction provides genuinely incremental pricing

information.

Figure 1 Counts of Fake Anomalies and Remaining Anomalies.
Note: This figure reports the counts of anomalies classified as w and x by our procedure, using FF6
as the benchmark. Green bars denote remaining anomalies (x), and red bars denote fake anomalies
(w).
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From an economic perspective, the identification path offers clear intuition. FF6

already captures a substantial portion of systematic risk exposures in the cross section.

Once a few additional anomaly factors are allowed, many candidates exhibit informational

redundancy or substitutability with these benchmark exposures and are classified as w.

The 27 remaining anomalies are more likely to reflect exposures heterogeneous to FF6,

thereby carrying genuinely incremental pricing power.

It is essential to note that q = 0.2 is not a strict threshold, but rather a relatively

lenient criterion for the candidate factors. Figure 2 displays the barplot of lfdr and EFDR

in Step 1. Even though the maximum EFDR in this step is about 0.5, choosing q = 0.2

corresponds to a relatively low quantile, meaning that the factors classified as w in step 1

are screened under a fairly loose standard. At the same time, setting q = 0.2 also preserves

computational tractability; otherwise, in later steps the number of models to be evaluated

can easily run into the tens of millions. Figure A.1 illustrates the number of w factors that

can be identified from the EFDR procedure at q = 0.2 when alternative thresholds are

applied. We find that q = 0.2 yields substantially more w in the first step compared with

q = 0.1 and q = 0.15, and it continues to identify additional w in Steps 4 and 5, thereby

improving the overall screening efficiency. For robustness, we also consider the procedure

with q = 0.1 using FF6 as the benchmark. As shown in Figure A.2, when q ranges from

0.10 to 0.20, the final number of identified w is stable, with only minor differences in the

composition of the sets.

To further illustrate the stepwise selection process, Figure 3 displays the EFDR and

lfdr distributions for each step. Statistically, the absence of new w in Step 3 reflects a

selection-exhaustion effect: Steps 1-2 have already removed the anomalies most easily

spanned. In Steps 1 and 2, EFDR values fall primarily between 0.1 and 0.6, so adopting

q = 0.2 as the threshold identifies a subset of w factors. From Step 3 onward (panels (c)–(f)),

however, both EFDR and lfdr concentrate near 1 across candidate combinations. As the set

of explained w expands and the candidate pool contracts, locating additional w among

the remaining anomalies becomes increasingly difficult, accounting for the sharp drop in

incremental detections at later steps.
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Figure 2 Bar plot of EFDR and lfdr in the first step.
Note: This figure plots EFDR and lfdr for each anomaly in Step 1 of our procedure. The red bars
show EFDR, and the green bars show lfdr.
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Figure 3 Histogram of EFDRs and lfdrs across Steps 1–6.
Note: This figure displays, for steps 1–6 under the FF6 benchmark, overlaid histograms of EFDR
(red) and lfdr (green). We also mark the threshold at q = 0.2 and report the mean EFDR in each
panel.
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3.2. Why these?

Using FF6 as the benchmark effectively lays down the core pricing exposures ex ante.

Table 1 shows that once these six dimensions are in the span, themes that are economically

homogeneous with them collapse into the spanned set w. The concentration is stark for

Investment, Momentum, and Low risk (100% in w for each). Investment signals (asset

growth, capex, inventory buildup, and related net operating assets (NOA)-based growth

measures) are largely spanned by the CMA; momentum variants load on MOM; and low-risk

constructions are well approximated by combinations of FF6 factors that reproduce lower

market beta, larger value/quality tilts, and hence are readily spanned.

Themes adjacent to other FF6 legs also largely migrate into w. Profit growth

(91.7% in w) is closely tied to the earnings-based profitability leg RMW; Debt issuance

(85.7%) comoves with investment and value through dilution and external-financing

cycles, allowing CMA and HML to absorb much of the variation. Value (83.3%) and Size

(80.0%) are primarily absorbed by HML and SMB, respectively. Seasonality (83.3%) captures

predictable short-horizon return patterns driven by calendar effects and institutional

rebalancing, which makes it closely related to momentum (MOM). Short-term reversal (80%)

captures microstructure- and liquidity-driven short-horizon price reversals, which makes

it negatively aligned with MOM and often accompanied by mild exposure to size (SMB). In

such case, the economic mechanism behind the characteristic is already encoded in at least

one FF6 factor, so a no-intercept spanning relation is easy to establish.

By contrast, themes that only partially overlap with FF6 leave more survivors in x.

Quality (58.8% in w) and Profitability (63.6%) capture cash-flow durability and operating

efficiency, which RMW, built on operating profitability rather than cash, does not fully

span. Accruals (50.0%) and related working-capital/NOA constructs primarily capture

accounting recognition/timing effects and the composition of operating investment. These

are only partially related to the “quantity of investment” in CMA. Low leverage (63.6%)

primarily reflects financing frictions in the price and quantity of external capital, while also

embedding profitability/safety, cash buffers, collateral/intangibles, and trading liquidity.
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Table 1 Number and Percentage of Anomalies.

Note: This table reports, by theme, the number and percentage of fake anomalies. Themes are
ordered in ascending order by the number of remaining anomalies.

Theme #w #x (%)w (%)x
Investment 22 0 100.0% 0.0%
Low risk 18 0 100.0% 0.0%
Momentum 8 0 100.0% 0.0%
Profit growth 11 1 91.7% 8.3%
Debt issuance 6 1 85.7% 14.3%
Short-term reversal 5 1 83.3% 16.7%
Size 4 1 80.0% 20.0%
Seasonality 10 2 83.3% 16.7%
Value 15 3 83.3% 16.7%
Accruals 3 3 50.0% 50.0%
Low leverage 7 4 63.6% 36.4%
Profitability 7 4 63.6% 36.4%
Quality 10 7 58.8% 41.2%

Total 126 27 82.4% 17.6%

Consequently, it is only imperfectly proxied by HML, SMB, or CMA. The result is a lower

w-share and a nontrivial x-residual along these dimensions.

Overall, a natural regularity emerges: the closer a factor’s economic content is to the

benchmark, the more likely it is to be spanned and thus classified as w. By contrast, the x

factors that deliver genuinely incremental pricing power tend to concentrate in economic

channels that are more heterogeneous relative to the benchmark.

4. Evaluating Fake Anomalies and Last-stage Anomalies

In Section 3.1, we use FF6 as the benchmark and identify 126 w and 27 x. To

distinguish them, we refer to the 126 w as fake anomalies and the 27 x as last-stage anomalies.

In fact, the process of applying our method in Section 3.1 is akin to “gold panning”: the

sand (fake anomalies) is filtered out, and the remaining portion contains both gold and

sand. In other words, the last-stage anomalies are either genuine factors or not, a fact we
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cannot ascertain since the true SDF is unknown. What we can assert, however, is that up

to the level of our EFDR control, 126 anomalies can be spanned by FF6 and combinations

of the remaining anomalies, and that, therefore, these can be classified as fake anomalies.

Furthermore, in this section, we demonstrate the differences between x and w through

a series of empirical exercises. First, following Chib et al. (2024), we evaluate the out-

of-sample (OOS) predictive performance of different factor combinations by utilizing

the predictive likelihood, which is the standard Bayesian predictive measure4. Next,

we compare the out-of-sample Sharpe ratios and pricing performance across different

combinations of x and w. We will use three test-asset universes: the Fama-French 49

industry portfolios, 100 P-Tree portfolios (Cong et al., 2025), and 120 (2× 3× 20) bi-sort

portfolios constructed from 20 characteristics5.

As discussed in Section 3.1, the number of selected x stabilizes after the fifth step

of the joint selection procedure. Accordingly, we first select five x factors from the set

of 27, yielding
(
27
5

)
=80,730 possible combinations. For each combination, we compute

the log average predictive likelihood (LAPL) for f = 5x based on Markov chain Monte

Carlo (MCMC) samples, thereby obtaining a distribution of LAPL values. Analogously,

we randomly draw 50,000 combinations of 5w from the 127 fake anomalies and perform

the same calculation. We then augment these combinations with FF6. The computation is

implemented following Chib et al. (2024). 6

Table 2 reports summary statistics of the LAPL across these different factor-

combination classes. Across both the anomalies-only specifications and the anomalies-

plus-FF6 specifications, factors identified as fake anomalies deliver lower predictive

4For a given realization of future data, the predictive likelihood, like the marginal likelihood, reduces to a
scalar and thus provides a natural basis for ranking models across the candidate model space.

5The details of the characteristics are shown in Table A.4.
6Specifically, we implement this procedure by partitioning the 40-year sample into 30 years for estimation

and 10 years for OOS prediction; the first 10 years are used to fix the prior, as discussed earlier. We
then consider 9 contiguous in-sample/OOS splits of the available data. For each split, we re-estimate the
model and compute the predictive likelihood. The performance metric is the average of these 9 predictive
likelihoods. We repeat this computation for every factor combination. For each factor combination, we
consider only the model space that corresponds to that combination. The subsequent Bayesian empirical
analyses follow the same setup.
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likelihood on average. For example, in Panel B the mean LAPL for (5x,FF6) exceeds

that for (5w,FF6) by about 24, indicating that models built with (5x,FF6) outperform the

competing models on the predictive dimension.

Table 2 Statistics of Log Average of Predictive Likelihoods for Different Factor
Combinations.

Note: This table reports the statistics of log average of predictive likelihood for selected factor
combinations. We consider model classes formed by combining x or w with/without the
benchmark. Specifically, (5x,FF6) denotes all 80,730 models obtained by augmenting FF6 with 5
x in turn; for each model, we compute the corresponding LAPL and then construct the reported
statistic. Since the number of w combinations can be very large, we randomly sample 50,000
combinations from the feasible set.

f # Factor # Comb Mean Std. Median 2.5% qtile 97.5% qtile
Panel A. Only Anom.

5x 5 80,730 1160.33 54.44 1154.43 1070.12 1192.69
5w 5 50,000 1117.52 61.30 1115.46 1003.55 1157.42

Panel B: Anom. & Bench. (Match with Method)
(5x,FF6) 11 80,730 2500.04 57.63 2494.47 2403.08 2534.96
(5w,FF6) 11 50,000 2476.34 56.28 2475.87 2368.04 2513.06

Having established that a set of w is less effective than a set of x from a predictive

perspective, we next examine the performance of different factor combinations. Specifically,

we calculate the annualized Sharpe ratios (SR) of tangency portfolios constructed from

the identified x and w, both full-sample and out-of-sample (using half of the whole data).

The OOS SR is obtained by applying the portfolio weights estimated in-sample to out-of-

sample realized returns. Analogous to Table 2, we enumerate all
(
27
5

)
possible combinations

and report the average. For comparison, we randomly select five fake anomalies from the

set of 126 and compute the corresponding full-sample and out-of-sample SRs. In addition,

we examine the performance of the (x, FF6) specification and the corresponding number

of w factors.

Table 3 shows that the x remaining anomalies identified by our method consistently

deliver higher Sharpe ratios both full-sample and out-of-sample. Moreover, the

combination of “five last-stage anomalies and FF6” achieves the best out-of-sample

performance. This finding follows from the design of our procedure. The combinations
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align with its structure: when FF6 serves as the benchmark, the resulting x are exactly

those selected in the five-at-a-time step.

Table 3 Average Sharpe Ratios of Tangency Portfolios Across Different Factors.

Note: This table reports the average tangency-portfolio Sharpe ratio across the full sample and
out-of-sample window, for various factor combinations. We evaluate three configurations for
remaining anomalies: (i) choose 5 x from the 27 x; (ii) choose 5 x from the 27 x and augment
the benchmark (FF6); and (iii) use all x in combination with the benchmark (FF6). For w, the
comparison uses sets whose cardinality matches the number of x in each configuration; specifically,
we randomly draw 50,000 combinations from the 126 w. We use the second half of the full sample
for OOS evaluation.

f # Factor # Comb Full sample OOS
Panel A. Only Anom.

5x 5 80,730 0.98 0.86
5w 5 50,000 0.60 0.24

Panel B: Anom. & Bench. (Match with Method)
(5x,FF6) 5+6 80,730 1.71 1.18
(5w,FF6) 5+6 50,000 1.38 0.69

Panel C: Anom. and Bench.
(27x,FF6) 27+6 1 2.26 1.01
(27w,FF6) 27+6 50,000 1.93 0.48

Furthermore, we evaluate the ability of the 27 last-stage anomalies to explain the cross

section of expected returns across various sets of test assets. Given that Table 3 shows the

combination of “five x plus FF6” performs particularly well, and this specification aligns

with our methodology, we focus on reporting the results for all such combinations along

with the corresponding number of w factors.

Table 4 reports the average explanatory power across different factors and test assets

in the full sample and out-of-sample. Performance is summarized using several metrics:

Root Mean Square Alpha (RMS α), Root Mean Squared Error (RMSE), absolute value of

alpha (|α|), the GRS statistic, and Total R2(%) 7. All reported metrics are computed as

the averages of the corresponding metrics across all possible combinations. Specifically,

7RMS α =
√

1
N

∑N
i=1 α̂

2
i , RMSE =

√
1

NT

∑N
i=1

∑T
i=1 ε̂it2 , |α| = 1

N

∑N
i=1 |α̂i|, TR2 = 1−

∑N
i=1

∑T
i=1 ε̂it2∑N

i=1

∑T
i=1 rit2

.
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Table 4 Average Explanatory Power of Different Factors Across Test Assets.

Note: This table reports the average asset-pricing performance across the out-of-sample window,
for (i) all factor sets formed by augmenting FF6 with every possible combination of 5 last-stage
anomalies and (ii) 50,000 sets formed by augmenting FF6 with random combinations of 5 fake
anomalies. We use the second half of the full sample for OOS evaluation.

f # Factor # Comb
Metrics

RMS α RMSE |α| GRS stat. TotalR2

Panel A. 49 Industry
(5x,FF6) 11 80,730 0.0041 0.0474 0.0032 2.10 53.2
(5w,FF6) 11 50,000 0.0043 0.0480 0.0033 2.33 52.1

Panel B. 100 P-Tree
(5x,FF6) 11 80,730 0.0038 0.0387 0.0028 2.93 65.8
(5w,FF6) 11 50,000 0.0038 0.0387 0.0028 3.07 65.8

Panel C. 120 Bisort
(5x,FF6) 11 80,730 0.0019 0.0149 0.0015 13.46 95.0
(5w,FF6) 11 50,000 0.0019 0.0152 0.0015 14.67 94.8

across test-asset universes, factor sets built from the remaining anomalies in conjunction

with FF6 outperform those built from the fake anomalies. In particular, the (5x, FF6)

combinations exhibit smaller mispricing in both the full sample and the out-of-sample

period. For example, considering the full sample, in Panel A, the RMS alpha equals 0.0041

versus 0.0043 for w, and a stronger overall fit: in all three panels, (5x,FF6) attains higher

TR2 than the corresponding w sets. The evidence indicates that the x factors identified

relative to the FF6 benchmark exhibit stronger pricing ability than the w fake anomalies.

4.1. Fake Anomalies under Different Benchmarks

In Section 4, we have shown that the w identified by our procedure under FF6

benchmark can be priced by the benchmark in conjunction with the remaining anomalies,

and that w and x exhibit pronounced differences in pricing strength. Naturally, the choice

of benchmark may influence which w and x are ultimately identified. This arises because

different benchmarks contain spanning information. However, our method is relatively

benchmark-robust since the spanning set does not rely on the optimality of the starting
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benchmark set.

To examine this, we reapply our procedure with another benchmark. Specifically, we

retain the excess market return (Mkt) but replace the other FF6 factors with the profitability

(ROE) and investment (IA) factors from the Hou, Xue, and Zhang (2020) q-factor model,

the Pástor and Stambaugh (2003) liquidity factor (LIQ), the Frazzini and Pedersen (2014)

betting-against-beta factor (BAB), and an alternative value factor, HMLD, proposed by

Asness and Frazzini (2013). In other words, we continue to use six factors as the benchmark;

apart from Mkt, all constituents differ from FF6. We denote this new benchmark by NewB6.

Hence, the overall benchmark set is largely aligned with Chib, Zeng, and Zhao (2020). 8

Figure 4 Counts of Fake Anomalies and Remaining Anomalies (Benchmark: NewB6).
Note: This figure reports the counts of anomalies classified as w and x by our procedure, using
NewB6 as the benchmark. Green bars denote remaining anomalies (x), and red bars denote fake
anomalies (w).
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The results shown in Figure 4 indicate that, compared with Figure 1, when NewB6 is

used as the benchmark, the evolution of screening efficiency is similar to that under FF6.

One difference is that NewB6 identifies a larger number of spanned anomalies.

To further assess how benchmark choice affects the inference of spanned anomalies,

8Chib et al. (2020) also includes the QMJ factor, but since QMJ is among the 153 candidate anomalies in
our sample, we do not include it in the benchmark here.
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Figure 5 Percentage of Fake Anomalies within each Theme.
Note: This figure reports, for each theme category, the percentage of fake anomalies under two
benchmarks: FF6 (green) and NewB6 (red). The y-axis lists category names together with the
number of candidate anomalies in each category.
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Figure 5 reports the percentage of fake anomalies within each economic category. For

Investment, Low risk, and Momentum, the anomalies are classified as spanned regardless

of the benchmark. The largest shifts occur for Profitability and Debt issuance. With NewB6

as the benchmark, all candidates in Profitability are classified as spanned, largely because

ROE in NewB6 already embeds profitability information. By contrast, within Debt issuance,

the share classified as spanned falls from 86% to 43% (from six to three). This decline

reflects that the NewB6 factors are not perfect substitutes for CMA, SMB and MOM, so they do

not fully capture excess returns tied to investment quality (e.g., capex_abn) and financing

risk (e.g., fnl_gr1a).

In fact, although the benchmark matters, the spanned anomalies identified under

different benchmarks are highly similar. To further illustrate this phenomenon, Table 5

reports the degree of overlap in wFF6 and wNewB6. We consider four metrics, which

summarize overlap from distinct angles: set similarity (Jaccard index), the precision
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Table 5 Degree of Overlap in Fake Anomalies Under Different Benchmarks.

Note: This table measures the overlap between fake anomalies obtained under the FF6 and NewB6
benchmarks using several complementary metrics. # a denote the number of candidate anomalies
in each theme; # wFF6 and # wNewB6 denote the numbers of fake anomalies under FF6 and NewB6,
respectively; and # wInter denote the number identified as fake by both benchmarks. Jaccard index,
PrecisionFF6, PrecisionNB6 and F1-score are four metrics to describe the level of overlap.

Theme # a # wFF6 # wNewB6 # wInter Jaccard index PrecisionFF6 PrecisionNB6 F1-score
Investment 22 22 22 22 1.00 1.00 1.00 1.00
Low risk 18 18 18 18 1.00 1.00 1.00 1.00
Seasonality 12 10 10 10 1.00 1.00 1.00 1.00
Momentum 8 8 8 8 1.00 1.00 1.00 1.00
Short-term reversal 6 5 5 5 1.00 1.00 1.00 1.00
Size 5 4 4 4 1.00 1.00 1.00 1.00
Accruals 6 3 3 3 1.00 1.00 1.00 1.00
Profit growth 12 11 10 10 0.91 0.91 1.00 0.95
Value 18 15 15 14 0.88 0.93 0.93 0.93
Low leverage 11 7 5 5 0.71 0.71 1.00 0.83
Profitability 11 7 11 7 0.64 1.00 0.64 0.78
Quality 17 10 8 7 0.64 0.70 0.88 0.78
Debt issuance 7 6 3 3 0.50 0.50 1.00 0.67

Total 153 126 122 116 0.88 0.92 0.95 0.94

of FF6 against NewB6 (PrecisionFF6), the precision of NewB6 against FF6 (PrecisionNewB6), 9

and their harmonic mean (F1-score). Let # wFF6 and # wNewB6 denote the numbers of fake

anomalies under FF6 and NewB6, respectively; and # wInter denote the number identified

as fake by both benchmarks, i.e., wInter = wFF6 ∩ wNewB6. The metrics are computed as

follows:

Jaccard J =
#wInter

#wFF6 +#wNewB6 −#wInter
(44)

PrecisionFF6 =
#wInter

#wFF6
(45)

PrecisionNewB6 =
#wInter

#wNewB6
(46)

F1-score =
2#wInter

#wFF6 +#wNewB6
(47)

9Conventionally, one would label it as the coverage of FF6 by NewB6 (RecallNewB6). Since the two
benchmarks are treated symmetrically here, we instead name such an index as (PrecisionNewB6).
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Specifically, when using FF6 or NewB6 as the benchmark, the number of fake

anomalies identified is 126 and 122, respectively. The intersection of wFF6 and wNewB6

contains 116 elements, indicating substantial overlap despite the two benchmarks sharing

only Mkt. The magnitude of this overlap is also corroborated by a Jaccard index of 0.88 and

an F1 score of 0.94. Moreover, comparing the values of precision shows that this similarity

is largely two-sided because the two are close.

4.2. Union of Fake Anomalies: What Remains?

Furthermore, we define wUnion = wFF6 ∪wNewB6, which contains 132 elements. The

complementary set of x therefore has 21 elements; for ease of reference, we denote it by

x∗. Table 6 presents the detailed information on such anomalies. Since the FF6-based

procedure yields 27 remaining anomalies, the factors classified as x under both benchmarks

represent a large share of that set (78%), implying that the economic content we emphasize

largely corresponds to what FF6 fails to span and that this content is robust to reasonable

benchmark re-specification.

These 21 survivors coalesce into four economically distinct channels: (i) fundamental

quality, (ii) management decisions, (iii) valuation level, and (iv) market behavior and

patterns. Each channel highlights a source of risk that the benchmark factor model leaves

unspanned or only partially absorbs.

The first channel, fundamental quality, integrates measures of a firm’s underlying

health, operating efficiency, and financial robustness. It encompasses cash-based

profitability (cop_at, cop_atl1), gross profitability (gp_at), composite quality (qmj,

qmj_safety), asset turnover (sale_bev), labor productivity (sale_emp_gr1), accrual

quality (cowc_gr1a, oaccruals_at, oaccruals_ni), and balance-sheet defensiveness

(cash_at, netdebt_me). These indicators are cash-flow oriented and gauge resilience

on the balance sheet, linking to cost structure and operating durability, and collectively

identify firms that remain robust and sustain value creation. They are distinct from RMW,

as they emphasize cash rather than book earnings and directly assess the reliability of

accounting information. Relative to HML, they more effectively capture the persistence of
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Table 6 Remaining Anomalies Across Benchmarks.

Note: This table reports the 21 anomalies that remain after taking the union of fake anomalies
identified under the benchmarks FF6 and NewB6. For each anomaly, we provide its name, theme,
concise description, and literature source.

Names of x Theme Description Citation
cowc_gr1a Accruals Change in current operating working capital Richardson et al. (2005)
oaccruals_at Accruals Operating accruals Sloan (1996)
oaccruals_ni Accruals Percent operating accruals Hafzalla et al. (2011)
noa_at Debt issuance Net operating assets Hirshleifer et al. (2004)
cash_at Low leverage Cash-to-assets Palazzo (2012)
netdebt_me Low leverage Net debt-to-price Penman et al. (2007)
rd_sale Low leverage R&D-to-sales Chan et al. (2001)
rd5_at Low leverage R&D capital-to-book assets Li (2011)
sale_emp_gr1 Profit growth Labor force efficiency Abarbanell and Bushee (1998)
cop_at Quality Cash-based operating profits-to-book assets Ball et al. (2016)
cop_atl1 Quality Cash-based operating profits-to-lagged book assets Ball et al. (2016)
gp_at Quality Gross profits-to-assets Novy-Marx (2013)
qmj Quality Quality minus Junk: Composite Asness et al. (2019)
qmj_safety Quality Quality minus Junk: Safety Asness et al. (2019)
sale_bev Quality Assets turnover Soliman (2008)
seas_6_10an Seasonality Years 6-10 lagged returns, annual Heston and Sadka (2008)
seas_11_15an Seasonality Years 11-15 lagged returns, annual Heston and Sadka (2008)
rd_me Size R&D-to-market Chan et al. (2001)
rmax5_rvol_21d Short-term reversal Highest 5 days of return scaled by volatility Asness et al. (2020)
fcf_me Value Free cash flow-to-price Lakonishok et al. (1994)
div12m_me Value Dividend yield Litzenberger and Ramaswamy (1979)

profitability and the provision of downside protection arising from superior operations

and financial prudence. While the quality premium tends to be favored when liquidity is

tight, the underlying mechanism does not arise solely from trading costs, so LIQ is at best

a partial proxy for this exposure. As a result, anomalies in this channel are more likely to

remain unspanned under reasonable benchmark choices.

The second channel, management decisions, centers on firms’ strategic capital allocation

and its implications for long-term value. It is captured by two distinct sets of measures: net

operating assets (noa_at), which scale physical investment, and a suite of R&D intensity

metrics (rd_sale, rd5_at, rd_me) that proxy for innovation effort. Unlike CMA, which

emphasizes investment levels, and the IA, which captures physical investment intensity,

this bundle focuses on the quality and efficiency of investment. Moreover, because R&D

value is only imperfectly reflected on the balance sheet, these exposures do not fully overlap

with the HML or the CMA. Consequently, anomalies in this channel retain a meaningful

likelihood of remaining unspanned under both reasonable benchmark choices.
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The third channel, valuation level, gauges price relative to fundamentals and is proxied

by two shareholder cash-flow yields: free-cash-flow yield (fcf_me) and dividend yield

(div12m_me). These measures quantify, at the prevailing market capitalization, cash that

is actually distributed or feasibly distributable to shareholders. Because they are cash-

based, they are less sensitive to noncash accounting charges (for example, depreciation)

and more cleanly reflect the firm’s value-creation capacity.

The fourth channel, market behavior and patterns, abstracts from firm fundamentals

and focuses on pricing regularities driven by market microstructure and investor flows.

It comprises short-horizon reversal (rmax5_rvol_21d), which reflects overreaction to

extreme news followed by mean reversion, and long-lag seasonality (seas_6_10an,

seas_11_15an), which is plausibly linked to calendar effects and institutional rebal-

ancing cycles. These signals are not the mirror image of MOM: momentum captures

intermediate-horizon trends, whereas short-horizon reversal reflects contrarian liquidity

provision around temporary order-imbalance shocks, and seasonality reflects systematic

timing in flows. These exposures are not a mirror image or simple re-expression of

BAB. Their persistence indicates departures from frictionless, fully efficient markets; the

associated risks, arising from trading frictions, behavioral biases, and flow dynamics, are

absorbed only imperfectly by standard factor models.

Taken together, the final set of survivors sharpens the economic map of what the

two benchmarks miss: fundamental quality, corporate policies and financing/investment

choices, valuation, and market microstructure and flow-driven patterns. These dimensions

can be considered robust to benchmark re-specification, deliver state-contingent insurance

in high-marginal-utility states, and constitute disciplined candidates for augmenting the

SDF beyond the benchmark menu.
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4.3. Out-of-sample Evaluation

Essentially, the set formed by the final survivors together with FF6 (or NewB6)

constitutes a candidate factor menu that may enter the SDF. Therefore, we have:

x∗ = λx∗︸︷︷︸
(6+21)×1

+ϵx∗,t, ϵx∗,t ∼ N27(0,Ωx∗) (48)

For simplicity, we present only the results combined with FF6. We first consider the

OOS performance of tangency portfolios composed only of combinations of these potential

risk factors. Following the process in Chib et al. (2024), for each factor combination, we

recursively calculate the tangency portfolio for the following month; for each OOS month,

we calculate the realized return of optimal risk factor tangency portfolios constructed in

the previous month. We use these OOS realized returns to calculate the OOS Sharpe ratio

for that set of factor combinations. We continue to use the first 25% of the sample to obtain

prior information, and the final 120 months as the out-of-sample (OOS) evaluation window.

Thus, the OOS period spans from January 2015 to December 2024, totaling 120 months.

We compute the out-of-sample Sharpe ratio (OOS SR) for FF6 under this setup.

We then enumerate several classes of factor combinations of (x,FF6), compute the

corresponding OOS SR statistics, and summarize their distributions. Figure 6 plots these

distributions. As the number of added factors increases, both the mean and the maximum

of the OOS SR distribution rise (the mean increases from 1.07 to 1.25) while the share of

models with OOS SR below that of FF6 declines. Moreover, even when augmenting FF6

with a single x (Panel (a)), the mean OOS SR (1.07) exceeds that of FF6 alone (0.93). With

five x added, the maximum attainable OOS SR reaches about 1.76.

Following Chib et al. (2024), we recover the marginal posteriors of the market-price

vector Ω−1
x∗ λx∗ ; Table 7 reports the summaries. On average, absolute market prices are

largest for the quality-theme anomalies and the smallest for value-theme anomalies.

Among the benchmark factors, Mkt, RMW, CMA, and MOM have 95% credible intervals

that exclude zero, indicating strong evidence that they enter the SDF. Within the last-stage
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Figure 6 Distributions of Annualized Out-of-Sample Sharpe Ratios.
Note: This figure displays the distributions of the annualized OOS SR ratios for the factor
combinations consisting of FF6 and last-stage anomalies based on 10,000 MCMC sample. We
consider model classes formed by combining different numbers of x with the benchmark.
Specifically, (1x,FF6) denotes the 21 models obtained by augmenting FF6 with each single x
in turn; for each model, we compute the corresponding OOS Sharpe ratio and then construct the
reported statistic. The specifications (2x,FF6) and higher orders are defined analogously. The red
dashed line denotes the average OOS SR, and the blue dotted line shows the OOS SR obtained
when using FF6 alone as the factor model.
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anomalies, seas_6_10an, seas_11_15an, rd_me, and rmax5_rvol_21d have 95%

credible intervals that exclude zero. This evidence suggests that, relative to the remaining

factors, these eight are more likely to be part of the true SDF.

Table 7 Posterior Statistics of the Market Prices of Factor Risks of FF6 and Last-stage
Anomalies.

Note: This table reports the posterior statistics, that is, posterior mean, posterior standard deviation,
posterior median, 2.5% and 97.5% quantiles for the market prices of factor risks Ω−1

x∗ λx∗ .

Name Theme Post. mean Post. std. Post. median 2.5% qtile 97.5% qtile
Panel A. Benchmark
Mkt 6.5 2.1 6.5 2.4 10.7
SMB 4.9 3.1 4.8 -1.3 11.1
HML -0.1 4.1 -0.1 -8.2 8.0
RMW 18.4 5.5 18.3 7.8 29.3
CMA 16.5 5.1 16.5 6.8 26.6
MOM 4.8 2.0 4.8 0.9 8.7

Panel B. Last-stage Anomalies
cowc_gr1a Accruals 1.5 5.0 1.5 -8.3 11.4
oaccruals_at Accruals -6.5 7.0 -6.5 -20.2 7.1
oaccruals_ni Accruals 8.7 6.7 8.6 -4.3 21.8
noa_at Debt issuance 3.6 5.2 3.6 -6.5 13.8
cash_at Low leverage 5.8 6.3 5.8 -6.6 18.3
netdebt_me Low leverage 5.9 6.2 5.9 -6.2 17.9
rd_sale Low leverage 5.9 5.3 5.9 -4.5 16.3
rd5_at Low leverage -10.8 5.5 -10.7 -21.5 -0.2
sale_emp_gr1 Profit growth -5.4 3.9 -5.4 -13.2 2.2
cop_at Quality -0.3 14.2 -0.3 -28.2 27.4
cop_atl1 Quality 18.0 14.4 18.0 -10.1 46.3
gp_at Quality -23.7 8.2 -23.7 -40.0 -7.7
qmj Quality 8.6 6.2 8.6 -3.5 21.0
qmj_safety Quality -1.7 5.2 -1.7 -12.0 8.6
sale_bev Quality 11.0 6.8 11.0 -2.2 24.3
seas_6_10an Seasonality 8.6 2.6 8.6 3.5 13.8
seas_11_15an Seasonality 7.2 3.1 7.1 1.1 13.4
rd_me Size 8.7 3.3 8.7 2.3 15.3
rmax5_rvol_21d Short-term reversal 6.7 2.4 6.7 2.0 11.6
fcf_me Value 4.8 4.0 4.8 -2.9 12.7
div12m_me Value -1.3 5.4 -1.3 -11.8 9.3
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5. Conclusion

Motivated by the roots of the “replication crisis,” we emphasize a simple but often

overlooked point: in an environment of anomaly proliferation and multiple testing,

establishing that a signal is not spanned would require knowledge of the true SDF, an

object that is essentially unattainable in practice. In contrast, establishing that a signal

is spanned only requires exhibiting a factor set that linearly spans it (i.e., zero-intercept

pricing). Building on this shift in the burden of proof, we develop a framework centered

on Bayesian model partitioning and marginal likelihood, coupled with EFDR control

and a stepwise scan. We place benchmark factors and candidate anomalies in a common

model space, enumerate all partitions into “unspanned/spanned,” and compute for each

anomaly its posterior probability of being spanned. We then apply an EFDR threshold

and iteratively filter out anomalies that are statistically spanned. In this way, the question

moves from “Is this anomaly an anomaly” to “Can this anomaly be spanned?”

Methodologically, our novel approach tackles two challenges at once. First, model

uncertainty. Rather than a binary comparison of the FF benchmark with and without

intercept, we integrate over all spanned/unspanned partitions and summarize the

evidence via posterior model probabilities. Second, multiplicity. We control EFDR and

select the set of spanned anomalies. Crucially, the workflow is deliberately asymmetric

toward establishing span, conservative with respect to declaring true anomalies. As a

result, failure to be spanned by the current benchmark is not mistaken for evidence of

anomaly, and conclusions about the replication crisis do not hinge on a fragile optimal-

benchmark assumption.

Using the 153 U.S. factors (Jensen et al., 2023) from 1985 to 2024, our framework

delivers clear evidence. With FF6 as the benchmark, the stepwise scan proceeds as follows:

steps 1, 2, 4, and 5 filter 21, 87, 5, and 13 fake anomalies, respectively (step 3 selects

none), stabilizing at 126 spanned and 27 unspanned anomalies. These findings are not

mere statistical artifacts: under basic frequentist and Bayesian tests, FF6 plus 1 to 5 of

the x explain all 126 fake anomalies. On the investment side, portfolios consisting of
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FF6 plus 5 or 6 of the last-stage anomalies deliver in-sample and out-of-sample tangency-

portfolio Sharpe ratios and cross-sectional fit for industry, bi-sort, and P-Tree test assets

that systematically exceed those of fake anomaly sets of the same size.

We find that the cross-benchmark (FF6 and NewB6) union of spanned anomalies

equals 132, leaving a residual of 21 anomalies in the unspanned set. The intersection of the

two benchmark results closely matches the FF6-based set, indicating that the economic

content we isolate largely corresponds to what FF6 fails to span and that the finding

is robust to reasonable benchmark re-specification. Furthermore, we find eight factors,

four from FF6 and four from the 21 anomalies, whose credible intervals of the posterior

distributions of the market prices of risk are strictly positive (excluding 0), indicating that

these eight factors are the strongest candidates to enter the true SDF.

Moreover, the 21 survivors cohere along four economically linked yet only partially

overlapping channels. The stability and economic coherence of these 21 survivors indicate

non-redundant SDF exposures. These deliver state-contingent insurance in high-marginal-

utility states and generate verifiable incremental cross-sectional pricing power. As such,

they constitute candidates for augmenting the SDF beyond the standard benchmark menu.

In summary, the paper makes three contributions to the replication-crisis literature.

First, we transform the untestable claim of anomaly existence into a testable claim about

spanning, and supply reproducible decision rules based on posterior model probabilities

and EFDR. Second, we introduce an implementable stepwise scan that enables systematic

screening in a high-dimensional anomaly zoo. Third, we provide broad-based and robust

evidence that most reported signals are spanned in a benchmark plus a few anomalies

setting, while the small set of stable survivors exhibits a coherent economic structure and

interpretable risk-friction channels.
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Appendix

Table A.1 Candidate Splits for Factor Decomposition (Benchmark: FF6; one at a time).
Shading key: gray (shaded) rows are models where the candidate anomaly ai is spanned
(i.e., ai ∈ w); unshaded rows are models where it is unspanned (i.e., ai ∈ x).

Model x w

M(i)
1 Mkt SMB, HML, RMW, CMA, MOM, ai

M(i)
2 SMB Mkt, HML, RMW, CMA, MOM, ai

M(i)
3 HML Mkt, SMB, RMW, CMA, MOM, ai

M(i)
4 RMW Mkt, SMB, HML, CMA, MOM, ai

M(i)
5 CMA Mkt, SMB, HML, RMW, MOM, ai

M(i)
6 MOM Mkt, SMB, HML, RMW, CMA, ai

M(i)
7 ai Mkt, SMB, HML, RMW, CMA, MOM

M(i)
8 Mkt, SMB HML, RMW, CMA, MOM, ai

M(i)
9 Mkt, HML SMB, RMW, CMA, MOM, ai

M(i)
10 Mkt, RMW SMB, HML, CMA, MOM, ai

M(i)
11 Mkt, CMA SMB, HML, RMW, MOM, ai

M(i)
12 Mkt, MOM SMB, HML, RMW, CMA, ai

M(i)
13 Mkt, ai SMB, HML, RMW, CMA, MOM

M(i)
14 SMB, HML Mkt, RMW, CMA, MOM, ai

M(i)
15 SMB, RMW Mkt, HML, CMA, MOM, ai

M(i)
16 SMB, CMA Mkt, HML, RMW, MOM, ai

M(i)
17 SMB, MOM Mkt, HML, RMW, CMA, ai

M(i)
18 SMB, ai Mkt, HML, RMW, CMA, MOM

M(i)
19 HML, RMW Mkt, SMB, CMA, MOM, ai

M(i)
20 HML, CMA Mkt, SMB, RMW, MOM, ai

M(i)
21 HML, MOM Mkt, SMB, RMW, CMA, ai

M(i)
22 HML, ai Mkt, SMB, RMW, CMA, MOM

M(i)
23 RMW, CMA Mkt, SMB, HML, MOM, ai

M(i)
24 RMW, MOM Mkt, SMB, HML, CMA, ai

M(i)
25 RMW, ai Mkt, SMB, HML, CMA, MOM

M(i)
26 CMA, MOM Mkt, SMB, HML, RMW, ai

M(i)
27 CMA, ai Mkt, SMB, HML, RMW, MOM

M(i)
28 MOM, ai Mkt, SMB, HML, RMW, CMA

M(i)
29 Mkt, SMB, HML RMW, CMA, MOM, ai

M(i)
30 Mkt, SMB, RMW HML, CMA, MOM, ai

M(i)
31 Mkt, SMB, CMA HML, RMW, MOM, ai

M(i)
32 Mkt, SMB, MOM HML, RMW, CMA, ai

M(i)
33 Mkt, SMB, ai HML, RMW, CMA, MOM

M(i)
34 Mkt, HML, RMW SMB, CMA, MOM, ai

M(i)
35 Mkt, HML, CMA SMB, RMW, MOM, ai

M(i)
36 Mkt, HML, MOM SMB, RMW, CMA, ai

M(i)
37 Mkt, HML, ai SMB, RMW, CMA, MOM

M(i)
38 Mkt, RMW, CMA SMB, HML, MOM, ai
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Table A.1 (continued)

Model x w

M(i)
39 Mkt, RMW, MOM SMB, HML, CMA, ai

M(i)
40 Mkt, RMW, ai SMB, HML, CMA, MOM

M(i)
41 Mkt, CMA, MOM SMB, HML, RMW, ai

M(i)
42 Mkt, CMA, ai SMB, HML, RMW, MOM

M(i)
43 Mkt, MOM, ai SMB, HML, RMW, CMA

M(i)
44 SMB, HML, RMW Mkt, CMA, MOM, ai

M(i)
45 SMB, HML, CMA Mkt, RMW, MOM, ai

M(i)
46 SMB, HML, MOM Mkt, RMW, CMA, ai

M(i)
47 SMB, HML, ai Mkt, RMW, CMA, MOM

M(i)
48 SMB, RMW, CMA Mkt, HML, MOM, ai

M(i)
49 SMB, RMW, MOM Mkt, HML, CMA, ai

M(i)
50 SMB, RMW, ai Mkt, HML, CMA, MOM

M(i)
51 SMB, CMA, MOM Mkt, HML, RMW, ai

M(i)
52 SMB, CMA, ai Mkt, HML, RMW, MOM

M(i)
53 SMB, MOM, ai Mkt, HML, RMW, CMA

M(i)
54 HML, RMW, CMA Mkt, SMB, MOM, ai

M(i)
55 HML, RMW, MOM Mkt, SMB, CMA, ai

M(i)
56 HML, RMW, ai Mkt, SMB, CMA, MOM

M(i)
57 HML, CMA, MOM Mkt, SMB, RMW, ai

M(i)
58 HML, CMA, ai Mkt, SMB, RMW, MOM

M(i)
59 HML, MOM, ai Mkt, SMB, RMW, CMA

M(i)
60 RMW, CMA, MOM Mkt, SMB, HML, ai

M(i)
61 RMW, CMA, ai Mkt, SMB, HML, MOM

M(i)
62 RMW, MOM, ai Mkt, SMB, HML, CMA

M(i)
63 CMA, MOM, ai Mkt, SMB, HML, RMW

M(i)
64 Mkt, SMB, HML, RMW CMA, MOM, ai

M(i)
65 Mkt, SMB, HML, CMA RMW, MOM, ai

M(i)
66 Mkt, SMB, HML, MOM RMW, CMA, ai

M(i)
67 Mkt, SMB, HML, ai RMW, CMA, MOM

M(i)
68 Mkt, SMB, RMW, CMA HML, MOM, ai

M(i)
69 Mkt, SMB, RMW, MOM HML, CMA, ai

M(i)
70 Mkt, SMB, RMW, ai HML, CMA, MOM

M(i)
71 Mkt, SMB, CMA, MOM HML, RMW, ai

M(i)
72 Mkt, SMB, CMA, ai HML, RMW, MOM

M(i)
73 Mkt, SMB, MOM, ai HML, RMW, CMA

M(i)
74 Mkt, HML, RMW, CMA SMB, MOM, ai

M(i)
75 Mkt, HML, RMW, MOM SMB, CMA, ai

M(i)
76 Mkt, HML, RMW, ai SMB, CMA, MOM

M(i)
77 Mkt, HML, CMA, MOM SMB, RMW, ai

M(i)
78 Mkt, HML, CMA, ai SMB, RMW, MOM

M(i)
79 Mkt, HML, MOM, ai SMB, RMW, CMA

M(i)
80 Mkt, RMW, CMA, MOM SMB, HML, ai

M(i)
81 Mkt, RMW, CMA, ai SMB, HML, MOM

M(i)
82 Mkt, RMW, MOM, ai SMB, HML, CMA

M(i)
83 Mkt, CMA, MOM, ai SMB, HML, RMW
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Table A.1 (continued)

Model x w

M(i)
84 SMB, HML, RMW, CMA Mkt, MOM, ai

M(i)
85 SMB, HML, RMW, MOM Mkt, CMA, ai

M(i)
86 SMB, HML, RMW, ai Mkt, CMA, MOM

M(i)
87 SMB, HML, CMA, MOM Mkt, RMW, ai

M(i)
88 SMB, HML, CMA, ai Mkt, RMW, MOM

M(i)
89 SMB, HML, MOM, ai Mkt, RMW, CMA

M(i)
90 SMB, RMW, CMA, MOM Mkt, HML, ai

M(i)
91 SMB, RMW, CMA, ai Mkt, HML, MOM

M(i)
92 SMB, RMW, MOM, ai Mkt, HML, CMA

M(i)
93 SMB, CMA, MOM, ai Mkt, HML, RMW

M(i)
94 HML, RMW, CMA, MOM Mkt, SMB, ai

M(i)
95 HML, RMW, CMA, ai Mkt, SMB, MOM

M(i)
96 HML, RMW, MOM, ai Mkt, SMB, CMA

M(i)
97 HML, CMA, MOM, ai Mkt, SMB, RMW

M(i)
98 RMW, CMA, MOM, ai Mkt, SMB, HML

M(i)
99 Mkt, SMB, HML, RMW, CMA MOM, ai

M(i)
100 Mkt, SMB, HML, RMW, MOM CMA, ai

M(i)
101 Mkt, SMB, HML, RMW, ai CMA, MOM

M(i)
102 Mkt, SMB, HML, CMA, MOM RMW, ai

M(i)
103 Mkt, SMB, HML, CMA, ai RMW, MOM

M(i)
104 Mkt, SMB, HML, MOM, ai RMW, CMA

M(i)
105 Mkt, SMB, RMW, CMA, MOM HML, ai

M(i)
106 Mkt, SMB, RMW, CMA, ai HML, MOM

M(i)
107 Mkt, SMB, RMW, MOM, ai HML, CMA

M(i)
108 Mkt, SMB, CMA, MOM, ai HML, RMW

M(i)
109 Mkt, HML, RMW, CMA, MOM SMB, ai

M(i)
110 Mkt, HML, RMW, CMA, ai SMB, MOM

M(i)
111 Mkt, HML, RMW, MOM, ai SMB, CMA

M(i)
112 Mkt, HML, CMA, MOM, ai SMB, RMW

M(i)
113 Mkt, RMW, CMA, MOM, ai SMB, HML

M(i)
114 SMB, HML, RMW, CMA, MOM Mkt, ai

M(i)
115 SMB, HML, RMW, CMA, ai Mkt, MOM

M(i)
116 SMB, HML, RMW, MOM, ai Mkt, CMA

M(i)
117 SMB, HML, CMA, MOM, ai Mkt, RMW

M(i)
118 SMB, RMW, CMA, MOM, ai Mkt, HML

M(i)
119 HML, RMW, CMA, MOM, ai Mkt, SMB

M(i)
120 Mkt, SMB, HML, RMW, CMA, MOM ai

M(i)
121 Mkt, SMB, HML, RMW, CMA, ai MOM

M(i)
122 Mkt, SMB, HML, RMW, MOM, ai CMA

M(i)
123 Mkt, SMB, HML, CMA, MOM, ai RMW

M(i)
124 Mkt, SMB, RMW, CMA, MOM, ai HML

M(i)
125 Mkt, HML, RMW, CMA, MOM, ai SMB

M(i)
126 SMB, HML, RMW, CMA, MOM, ai Mkt

M(i)
127 Mkt, SMB, HML, RMW, CMA, MOM, ai ∅
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Table A.2 Candidate Splits for Factor Decomposition (Benchmark: FF6; two at a time).
Shading key: gray (shaded) rows are models where the pair (bi, bk) is jointly spanned
({bi, bk} ⊆ w); unshaded rows are models where they are jointly unspanned ({bi, bk} ⊆ x).
Mixed configurations are excluded.

Model x w

M(i,k)
1 Mkt SMB, HML, RMW, CMA, MOM, bi, bk

M(i,k)
2 SMB Mkt, HML, RMW, CMA, MOM, bi, bk

M(i,k)
3 HML Mkt, SMB, RMW, CMA, MOM, bi, bk

M(i,k)
4 RMW Mkt, SMB, HML, CMA, MOM, bi, bk

M(i,k)
5 CMA Mkt, SMB, HML, RMW, MOM, bi, bk

M(i,k)
6 MOM Mkt, SMB, HML, RMW, CMA, bi, bk

M(i,k)
7 bi, bk Mkt, SMB, HML, RMW, CMA, MOM

M(i,k)
8 Mkt, SMB HML, RMW, CMA, MOM, bi, bk

M(i,k)
9 Mkt, HML SMB, RMW, CMA, MOM, bi, bk

M(i,k)
10 Mkt, RMW SMB, HML, CMA, MOM, bi, bk

M(i,k)
11 Mkt, CMA SMB, HML, RMW, MOM, bi, bk

M(i,k)
12 Mkt, MOM SMB, HML, RMW, CMA, bi, bk

M(i,k)
13 Mkt, bi, bk SMB, HML, RMW, CMA, MOM

M(i,k)
14 SMB, HML Mkt, RMW, CMA, MOM, bi, bk

M(i,k)
15 SMB, RMW Mkt, HML, CMA, MOM, bi, bk

M(i,k)
16 SMB, CMA Mkt, HML, RMW, MOM, bi, bk

M(i,k)
17 SMB, MOM Mkt, HML, RMW, CMA, bi, bk

M(i,k)
18 SMB, bi, bk Mkt, HML, RMW, CMA, MOM

M(i,k)
19 HML, RMW Mkt, SMB, CMA, MOM, bi, bk

M(i,k)
20 HML, CMA Mkt, SMB, RMW, MOM, bi, bk

M(i,k)
21 HML, MOM Mkt, SMB, RMW, CMA, bi, bk

M(i,k)
22 HML, bi, bk Mkt, SMB, RMW, CMA, MOM

M(i,k)
23 RMW, CMA Mkt, SMB, HML, MOM, bi, bk

M(i,k)
24 RMW, MOM Mkt, SMB, HML, CMA, bi, bk

M(i,k)
25 RMW, bi, bk Mkt, SMB, HML, CMA, MOM

M(i,k)
26 CMA, MOM Mkt, SMB, HML, RMW, bi, bk

M(i,k)
27 CMA, bi, bk Mkt, SMB, HML, RMW, MOM

M(i,k)
28 MOM, bi, bk Mkt, SMB, HML, RMW, CMA

M(i,k)
29 Mkt, SMB, HML RMW, CMA, MOM, bi, bk

M(i,k)
30 Mkt, SMB, RMW HML, CMA, MOM, bi, bk

M(i,k)
31 Mkt, SMB, CMA HML, RMW, MOM, bi, bk

M(i,k)
32 Mkt, SMB, MOM HML, RMW, CMA, bi, bk

M(i,k)
33 Mkt, SMB, bi, bk HML, RMW, CMA, MOM

M(i,k)
34 Mkt, HML, RMW SMB, CMA, MOM, bi, bk

M(i,k)
35 Mkt, HML, CMA SMB, RMW, MOM, bi, bk

M(i,k)
36 Mkt, HML, MOM SMB, RMW, CMA, bi, bk

M(i,k)
37 Mkt, HML, bi, bk SMB, RMW, CMA, MOM

M(i,k)
38 Mkt, RMW, CMA SMB, HML, MOM, bi, bk

M(i,k)
39 Mkt, RMW, MOM SMB, HML, CMA, bi, bk

M(i,k)
40 Mkt, RMW, bi, bk SMB, HML, CMA, MOM

M(i,k)
41 Mkt, CMA, MOM SMB, HML, RMW, bi, bk
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Table A.2 (continued)

Model x w

M(i,k)
42 Mkt, CMA, bi, bk SMB, HML, RMW, MOM

M(i,k)
43 Mkt, MOM, bi, bk SMB, HML, RMW, CMA

M(i,k)
44 SMB, HML, RMW Mkt, CMA, MOM, bi, bk

M(i,k)
45 SMB, HML, CMA Mkt, RMW, MOM, bi, bk

M(i,k)
46 SMB, HML, MOM Mkt, RMW, CMA, bi, bk

M(i,k)
47 SMB, HML, bi, bk Mkt, RMW, CMA, MOM

M(i,k)
48 SMB, RMW, CMA Mkt, HML, MOM, bi, bk

M(i,k)
49 SMB, RMW, MOM Mkt, HML, CMA, bi, bk

M(i,k)
50 SMB, RMW, bi, bk Mkt, HML, CMA, MOM

M(i,k)
51 SMB, CMA, MOM Mkt, HML, RMW, bi, bk

M(i,k)
52 SMB, CMA, bi, bk Mkt, HML, RMW, MOM

M(i,k)
53 SMB, MOM, bi, bk Mkt, HML, RMW, CMA

M(i,k)
54 HML, RMW, CMA Mkt, SMB, MOM, bi, bk

M(i,k)
55 HML, RMW, MOM Mkt, SMB, CMA, bi, bk

M(i,k)
56 HML, RMW, bi, bk Mkt, SMB, CMA, MOM

M(i,k)
57 HML, CMA, MOM Mkt, SMB, RMW, bi, bk

M(i,k)
58 HML, CMA, bi, bk Mkt, SMB, RMW, MOM

M(i,k)
59 HML, MOM, bi, bk Mkt, SMB, RMW, CMA

M(i,k)
60 RMW, CMA, MOM Mkt, SMB, HML, bi, bk

M(i,k)
61 RMW, CMA, bi, bk Mkt, SMB, HML, MOM

M(i,k)
62 RMW, MOM, bi, bk Mkt, SMB, HML, CMA

M(i,k)
63 CMA, MOM, bi, bk Mkt, SMB, HML, RMW

M(i,k)
64 Mkt, SMB, HML, RMW CMA, MOM, bi, bk

M(i,k)
65 Mkt, SMB, HML, CMA RMW, MOM, bi, bk

M(i,k)
66 Mkt, SMB, HML, MOM RMW, CMA, bi, bk

M(i,k)
67 Mkt, SMB, HML, bi, bk RMW, CMA, MOM

M(i,k)
68 Mkt, SMB, RMW, CMA HML, MOM, bi, bk

M(i,k)
69 Mkt, SMB, RMW, MOM HML, CMA, bi, bk

M(i,k)
70 Mkt, SMB, RMW, bi, bk HML, CMA, MOM

M(i,k)
71 Mkt, SMB, CMA, MOM HML, RMW, bi, bk

M(i,k)
72 Mkt, SMB, CMA, bi, bk HML, RMW, MOM

M(i,k)
73 Mkt, SMB, MOM, bi, bk HML, RMW, CMA

M(i,k)
74 Mkt, HML, RMW, CMA SMB, MOM, bi, bk

M(i,k)
75 Mkt, HML, RMW, MOM SMB, CMA, bi, bk

M(i,k)
76 Mkt, HML, RMW, bi, bk SMB, CMA, MOM

M(i,k)
77 Mkt, HML, CMA, MOM SMB, RMW, bi, bk

M(i,k)
78 Mkt, HML, CMA, bi, bk SMB, RMW, MOM

M(i,k)
79 Mkt, HML, MOM, bi, bk SMB, RMW, CMA

M(i,k)
80 Mkt, RMW, CMA, MOM SMB, HML, bi, bk

M(i,k)
81 Mkt, RMW, CMA, bi, bk SMB, HML, MOM

M(i,k)
82 Mkt, RMW, MOM, bi, bk SMB, HML, CMA

M(i,k)
83 Mkt, CMA, MOM, bi, bk SMB, HML, RMW

M(i,k)
84 SMB, HML, RMW, CMA Mkt, MOM, bi, bk

M(i,k)
85 SMB, HML, RMW, MOM Mkt, CMA, bi, bk

M(i,k)
86 SMB, HML, RMW, bi, bk Mkt, CMA, MOM
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Table A.2 (continued)

Model x w

M(i,k)
87 SMB, HML, CMA, MOM Mkt, RMW, bi, bk

M(i,k)
88 SMB, HML, CMA, bi, bk Mkt, RMW, MOM

M(i,k)
89 SMB, HML, MOM, bi, bk Mkt, RMW, CMA

M(i,k)
90 SMB, RMW, CMA, MOM Mkt, HML, bi, bk

M(i,k)
91 SMB, RMW, CMA, bi, bk Mkt, HML, MOM

M(i,k)
92 SMB, RMW, MOM, bi, bk Mkt, HML, CMA

M(i,k)
93 SMB, CMA, MOM, bi, bk Mkt, HML, RMW

M(i,k)
94 HML, RMW, CMA, MOM Mkt, SMB, bi, bk

M(i,k)
95 HML, RMW, CMA, bi, bk Mkt, SMB, MOM

M(i,k)
96 HML, RMW, MOM, bi, bk Mkt, SMB, CMA

M(i,k)
97 HML, CMA, MOM, bi, bk Mkt, SMB, RMW

M(i,k)
98 RMW, CMA, MOM, bi, bk Mkt, SMB, HML

M(i,k)
99 Mkt, SMB, HML, RMW, CMA MOM, bi, bk

M(i,k)
100 Mkt, SMB, HML, RMW, MOM CMA, bi, bk

M(i,k)
101 Mkt, SMB, HML, RMW, bi, bk CMA, MOM

M(i,k)
102 Mkt, SMB, HML, CMA, MOM RMW, bi, bk

M(i,k)
103 Mkt, SMB, HML, CMA, bi, bk RMW, MOM

M(i,k)
104 Mkt, SMB, HML, MOM, bi, bk RMW, CMA

M(i,k)
105 Mkt, SMB, RMW, CMA, MOM HML, bi, bk

M(i,k)
106 Mkt, SMB, RMW, CMA, bi, bk HML, MOM

M(i,k)
107 Mkt, SMB, RMW, MOM, bi, bk HML, CMA

M(i,k)
108 Mkt, SMB, CMA, MOM, bi, bk HML, RMW

M(i,k)
109 Mkt, HML, RMW, CMA, MOM SMB, bi, bk

M(i,k)
110 Mkt, HML, RMW, CMA, bi, bk SMB, MOM

M(i,k)
111 Mkt, HML, RMW, MOM, bi, bk SMB, CMA

M(i,k)
112 Mkt, HML, CMA, MOM, bi, bk SMB, RMW

M(i,k)
113 Mkt, RMW, CMA, MOM, bi, bk SMB, HML

M(i,k)
114 SMB, HML, RMW, CMA, MOM Mkt, bi, bk

M(i,k)
115 SMB, HML, RMW, CMA, bi, bk Mkt, MOM

M(i,k)
116 SMB, HML, RMW, MOM, bi, bk Mkt, CMA

M(i,k)
117 SMB, HML, CMA, MOM, bi, bk Mkt, RMW

M(i,k)
118 SMB, RMW, CMA, MOM, bi, bk Mkt, HML

M(i,k)
119 HML, RMW, CMA, MOM, bi, bk Mkt, SMB

M(i,k)
120 Mkt, SMB, HML, RMW, CMA, MOM bi, bk

M(i,k)
121 Mkt, SMB, HML, RMW, CMA, bi, bk MOM

M(i,k)
122 Mkt, SMB, HML, RMW, MOM, bi, bk CMA

M(i,k)
123 Mkt, SMB, HML, CMA, MOM, bi, bk RMW

M(i,k)
124 Mkt, SMB, RMW, CMA, MOM, bi, bk HML

M(i,k)
125 Mkt, HML, RMW, CMA, MOM, bi, bk SMB

M(i,k)
126 SMB, HML, RMW, CMA, MOM, bi, bk Mkt

M(i,k)
127 Mkt, SMB, HML, RMW, CMA, MOM, bi, bk ∅
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Table A.3 Candidate Splits for Factor Decomposition (Benchmark: FF6; three at a time).
Shading key: gray (shaded) rows are models where {ci, ck, cℓ} is jointly spanned
({ci, ck, cℓ} ⊂ w); unshaded rows are models where it is jointly unspanned ({ci, ck, cℓ} ⊂ x).

Model x w

M(i,k,ℓ)
1 Mkt SMB, HML, RMW, CMA, MOM, ci, ck , cℓ

M(i,k,ℓ)
2 SMB Mkt, HML, RMW, CMA, MOM, ci, ck , cℓ

M(i,k,ℓ)
3 HML Mkt, SMB, RMW, CMA, MOM, ci, ck , cℓ

M(i,k,ℓ)
4 RMW Mkt, SMB, HML, CMA, MOM, ci, ck , cℓ

M(i,k,ℓ)
5 CMA Mkt, SMB, HML, RMW, MOM, ci, ck , cℓ

M(i,k,ℓ)
6 MOM Mkt, SMB, HML, RMW, CMA, ci, ck , cℓ

M(i,k,ℓ)
7 ci, ck , cℓ Mkt, SMB, HML, RMW, CMA, MOM

M(i,k,ℓ)
8 Mkt, SMB HML, RMW, CMA, MOM, ci, ck , cℓ

M(i,k,ℓ)
9 Mkt, HML SMB, RMW, CMA, MOM, ci, ck , cℓ

M(i,k,ℓ)
10 Mkt, RMW SMB, HML, CMA, MOM, ci, ck , cℓ

M(i,k,ℓ)
11 Mkt, CMA SMB, HML, RMW, MOM, ci, ck , cℓ

M(i,k,ℓ)
12 Mkt, MOM SMB, HML, RMW, CMA, ci, ck , cℓ

M(i,k,ℓ)
13 Mkt, ci, ck , cℓ SMB, HML, RMW, CMA, MOM

M(i,k,ℓ)
14 SMB, HML Mkt, RMW, CMA, MOM, ci, ck , cℓ

M(i,k,ℓ)
15 SMB, RMW Mkt, HML, CMA, MOM, ci, ck , cℓ

M(i,k,ℓ)
16 SMB, CMA Mkt, HML, RMW, MOM, ci, ck , cℓ

M(i,k,ℓ)
17 SMB, MOM Mkt, HML, RMW, CMA, ci, ck , cℓ

M(i,k,ℓ)
18 SMB, ci, ck , cℓ Mkt, HML, RMW, CMA, MOM

M(i,k,ℓ)
19 HML, RMW Mkt, SMB, CMA, MOM, ci, ck , cℓ

M(i,k,ℓ)
20 HML, CMA Mkt, SMB, RMW, MOM, ci, ck , cℓ

M(i,k,ℓ)
21 HML, MOM Mkt, SMB, RMW, CMA, ci, ck , cℓ

M(i,k,ℓ)
22 HML, ci, ck , cℓ Mkt, SMB, RMW, CMA, MOM

M(i,k,ℓ)
23 RMW, CMA Mkt, SMB, HML, MOM, ci, ck , cℓ

M(i,k,ℓ)
24 RMW, MOM Mkt, SMB, HML, CMA, ci, ck , cℓ

M(i,k,ℓ)
25 RMW, ci, ck , cℓ Mkt, SMB, HML, CMA, MOM

M(i,k,ℓ)
26 CMA, MOM Mkt, SMB, HML, RMW, ci, ck , cℓ

M(i,k,ℓ)
27 CMA, ci, ck , cℓ Mkt, SMB, HML, RMW, MOM

M(i,k,ℓ)
28 MOM, ci, ck , cℓ Mkt, SMB, HML, RMW, CMA

M(i,k,ℓ)
29 Mkt, SMB, HML RMW, CMA, MOM, ci, ck , cℓ

M(i,k,ℓ)
30 Mkt, SMB, RMW HML, CMA, MOM, ci, ck , cℓ

M(i,k,ℓ)
31 Mkt, SMB, CMA HML, RMW, MOM, ci, ck , cℓ

M(i,k,ℓ)
32 Mkt, SMB, MOM HML, RMW, CMA, ci, ck , cℓ

M(i,k,ℓ)
33 Mkt, SMB, ci, ck , cℓ HML, RMW, CMA, MOM

M(i,k,ℓ)
34 Mkt, HML, RMW SMB, CMA, MOM, ci, ck , cℓ

M(i,k,ℓ)
35 Mkt, HML, CMA SMB, RMW, MOM, ci, ck , cℓ

M(i,k,ℓ)
36 Mkt, HML, MOM SMB, RMW, CMA, ci, ck , cℓ

M(i,k,ℓ)
37 Mkt, HML, ci, ck , cℓ SMB, RMW, CMA, MOM

M(i,k,ℓ)
38 Mkt, RMW, CMA SMB, HML, MOM, ci, ck , cℓ

M(i,k,ℓ)
39 Mkt, RMW, MOM SMB, HML, CMA, ci, ck , cℓ

M(i,k,ℓ)
40 Mkt, RMW, ci, ck , cℓ SMB, HML, CMA, MOM

M(i,k,ℓ)
41 Mkt, CMA, MOM SMB, HML, RMW, ci, ck , cℓ

M(i,k,ℓ)
42 Mkt, CMA, ci, ck , cℓ SMB, HML, RMW, MOM

continued on next page
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Table A.3 (continued)

Model x w

M(i,k,ℓ)
43 Mkt, MOM, ci, ck , cℓ SMB, HML, RMW, CMA

M(i,k,ℓ)
44 SMB, HML, RMW Mkt, CMA, MOM, ci, ck , cℓ

M(i,k,ℓ)
45 SMB, HML, CMA Mkt, RMW, MOM, ci, ck , cℓ

M(i,k,ℓ)
46 SMB, HML, MOM Mkt, RMW, CMA, ci, ck , cℓ

M(i,k,ℓ)
47 SMB, HML, ci, ck , cℓ Mkt, RMW, CMA, MOM

M(i,k,ℓ)
48 SMB, RMW, CMA Mkt, HML, MOM, ci, ck , cℓ

M(i,k,ℓ)
49 SMB, RMW, MOM Mkt, HML, CMA, ci, ck , cℓ

M(i,k,ℓ)
50 SMB, RMW, ci, ck , cℓ Mkt, HML, CMA, MOM

M(i,k,ℓ)
51 SMB, CMA, MOM Mkt, HML, RMW, ci, ck , cℓ

M(i,k,ℓ)
52 SMB, CMA, ci, ck , cℓ Mkt, HML, RMW, MOM

M(i,k,ℓ)
53 SMB, MOM, ci, ck , cℓ Mkt, HML, RMW, CMA

M(i,k,ℓ)
54 HML, RMW, CMA Mkt, SMB, MOM, ci, ck , cℓ

M(i,k,ℓ)
55 HML, RMW, MOM Mkt, SMB, CMA, ci, ck , cℓ

M(i,k,ℓ)
56 HML, RMW, ci, ck , cℓ Mkt, SMB, CMA, MOM

M(i,k,ℓ)
57 HML, CMA, MOM Mkt, SMB, RMW, ci, ck , cℓ

M(i,k,ℓ)
58 HML, CMA, ci, ck , cℓ Mkt, SMB, RMW, MOM

M(i,k,ℓ)
59 HML, MOM, ci, ck , cℓ Mkt, SMB, RMW, CMA

M(i,k,ℓ)
60 RMW, CMA, MOM Mkt, SMB, HML, ci, ck , cℓ

M(i,k,ℓ)
61 RMW, CMA, ci, ck , cℓ Mkt, SMB, HML, MOM

M(i,k,ℓ)
62 RMW, MOM, ci, ck , cℓ Mkt, SMB, HML, CMA

M(i,k,ℓ)
63 CMA, MOM, ci, ck , cℓ Mkt, SMB, HML, RMW

M(i,k,ℓ)
64 Mkt, SMB, HML, RMW CMA, MOM, ci, ck , cℓ

M(i,k,ℓ)
65 Mkt, SMB, HML, CMA RMW, MOM, ci, ck , cℓ

M(i,k,ℓ)
66 Mkt, SMB, HML, MOM RMW, CMA, ci, ck , cℓ

M(i,k,ℓ)
67 Mkt, SMB, HML, ci, ck , cℓ RMW, CMA, MOM

M(i,k,ℓ)
68 Mkt, SMB, RMW, CMA HML, MOM, ci, ck , cℓ

M(i,k,ℓ)
69 Mkt, SMB, RMW, MOM HML, CMA, ci, ck , cℓ

M(i,k,ℓ)
70 Mkt, SMB, RMW, ci, ck , cℓ HML, CMA, MOM

M(i,k,ℓ)
71 Mkt, SMB, CMA, MOM HML, RMW, ci, ck , cℓ

M(i,k,ℓ)
72 Mkt, SMB, CMA, ci, ck , cℓ HML, RMW, MOM

M(i,k,ℓ)
73 Mkt, SMB, MOM, ci, ck , cℓ HML, RMW, CMA

M(i,k,ℓ)
74 Mkt, HML, RMW, CMA SMB, MOM, ci, ck , cℓ

M(i,k,ℓ)
75 Mkt, HML, RMW, MOM SMB, CMA, ci, ck , cℓ

M(i,k,ℓ)
76 Mkt, HML, RMW, ci, ck , cℓ SMB, CMA, MOM

M(i,k,ℓ)
77 Mkt, HML, CMA, MOM SMB, RMW, ci, ck , cℓ

M(i,k,ℓ)
78 Mkt, HML, CMA, ci, ck , cℓ SMB, RMW, MOM

M(i,k,ℓ)
79 Mkt, HML, MOM, ci, ck , cℓ SMB, RMW, CMA

M(i,k,ℓ)
80 Mkt, RMW, CMA, MOM SMB, HML, ci, ck , cℓ

M(i,k,ℓ)
81 Mkt, RMW, CMA, ci, ck , cℓ SMB, HML, MOM

M(i,k,ℓ)
82 Mkt, RMW, MOM, ci, ck , cℓ SMB, HML, CMA

M(i,k,ℓ)
83 Mkt, CMA, MOM, ci, ck , cℓ SMB, HML, RMW

M(i,k,ℓ)
84 SMB, HML, RMW, CMA Mkt, MOM, ci, ck , cℓ

M(i,k,ℓ)
85 SMB, HML, RMW, MOM Mkt, CMA, ci, ck , cℓ

M(i,k,ℓ)
86 SMB, HML, RMW, ci, ck , cℓ Mkt, CMA, MOM

M(i,k,ℓ)
87 SMB, HML, CMA, MOM Mkt, RMW, ci, ck , cℓ

continued on next page
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Table A.3 (continued)

Model x w

M(i,k,ℓ)
88 SMB, HML, CMA, ci, ck , cℓ Mkt, RMW, MOM

M(i,k,ℓ)
89 SMB, HML, MOM, ci, ck , cℓ Mkt, RMW, CMA

M(i,k,ℓ)
90 SMB, RMW, CMA, MOM Mkt, HML, ci, ck , cℓ

M(i,k,ℓ)
91 SMB, RMW, CMA, ci, ck , cℓ Mkt, HML, MOM

M(i,k,ℓ)
92 SMB, RMW, MOM, ci, ck , cℓ Mkt, HML, CMA

M(i,k,ℓ)
93 SMB, CMA, MOM, ci, ck , cℓ Mkt, HML, RMW

M(i,k,ℓ)
94 HML, RMW, CMA, MOM Mkt, SMB, ci, ck , cℓ

M(i,k,ℓ)
95 HML, RMW, CMA, ci, ck , cℓ Mkt, SMB, MOM

M(i,k,ℓ)
96 HML, RMW, MOM, ci, ck , cℓ Mkt, SMB, CMA

M(i,k,ℓ)
97 HML, CMA, MOM, ci, ck , cℓ Mkt, SMB, RMW

M(i,k,ℓ)
98 RMW, CMA, MOM, ci, ck , cℓ Mkt, SMB, HML

M(i,k,ℓ)
99 Mkt, SMB, HML, RMW, CMA MOM, ci, ck , cℓ

M(i,k,ℓ)
100 Mkt, SMB, HML, RMW, MOM CMA, ci, ck , cℓ

M(i,k,ℓ)
101 Mkt, SMB, HML, RMW, ci, ck , cℓ CMA, MOM

M(i,k,ℓ)
102 Mkt, SMB, HML, CMA, MOM RMW, ci, ck , cℓ

M(i,k,ℓ)
103 Mkt, SMB, HML, CMA, ci, ck , cℓ RMW, MOM

M(i,k,ℓ)
104 Mkt, SMB, HML, MOM, ci, ck , cℓ RMW, CMA

M(i,k,ℓ)
105 Mkt, SMB, RMW, CMA, MOM HML, ci, ck , cℓ

M(i,k,ℓ)
106 Mkt, SMB, RMW, CMA, ci, ck , cℓ HML, MOM

M(i,k,ℓ)
107 Mkt, SMB, RMW, MOM, ci, ck , cℓ HML, CMA

M(i,k,ℓ)
108 Mkt, SMB, CMA, MOM, ci, ck , cℓ HML, RMW

M(i,k,ℓ)
109 Mkt, HML, RMW, CMA, MOM SMB, ci, ck , cℓ

M(i,k,ℓ)
110 Mkt, HML, RMW, CMA, ci, ck , cℓ SMB, MOM

M(i,k,ℓ)
111 Mkt, HML, RMW, MOM, ci, ck , cℓ SMB, CMA

M(i,k,ℓ)
112 Mkt, HML, CMA, MOM, ci, ck , cℓ SMB, RMW

M(i,k,ℓ)
113 Mkt, RMW, CMA, MOM, ci, ck , cℓ SMB, HML

M(i,k,ℓ)
114 SMB, HML, RMW, CMA, MOM Mkt, ci, ck , cℓ

M(i,k,ℓ)
115 SMB, HML, RMW, CMA, ci, ck , cℓ Mkt, MOM

M(i,k,ℓ)
116 SMB, HML, RMW, MOM, ci, ck , cℓ Mkt, CMA

M(i,k,ℓ)
117 SMB, HML, CMA, MOM, ci, ck , cℓ Mkt, RMW

M(i,k,ℓ)
118 SMB, RMW, CMA, MOM, ci, ck , cℓ Mkt, HML

M(i,k,ℓ)
119 HML, RMW, CMA, MOM, ci, ck , cℓ Mkt, SMB

M(i,k,ℓ)
120 Mkt, SMB, HML, RMW, CMA, MOM ci, ck , cℓ

M(i,k,ℓ)
121 Mkt, SMB, HML, RMW, CMA, ci, ck , cℓ MOM

M(i,k,ℓ)
122 Mkt, SMB, HML, RMW, MOM, ci, ck , cℓ CMA

M(i,k,ℓ)
123 Mkt, SMB, HML, CMA, MOM, ci, ck , cℓ RMW

M(i,k,ℓ)
124 Mkt, SMB, RMW, CMA, MOM, ci, ck , cℓ HML

M(i,k,ℓ)
125 Mkt, HML, RMW, CMA, MOM, ci, ck , cℓ SMB

M(i,k,ℓ)
126 SMB, HML, RMW, CMA, MOM, ci, ck , cℓ Mkt

M(i,k,ℓ)
127 Mkt, SMB, HML, RMW, CMA, MOM, ci, ck , cℓ ∅
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Table A.4 Equity Characteristics

Note: This table lists the description of 20 characteristics used in the empirical study.

No. Characteristics Description Category
1 ABR Abnormal returns around earnings announcement Momentum
2 ACC Operating accruals Investment
3 ADM Advertising expense-to-market Intangibles
4 AGR Asset growth Investment
5 BASPREAD Bid-ask spread (3 months) Frictions
6 BETA Beta (3 months) Frictions
7 BM Book-to-market equity Value-versus-growth
8 CFP Cashflow-to-price Value-versus-growth
9 EP Earnings-to-price Value-versus-growth
10 ME Market equity Frictions
11 MOM1M Previous month return Momentum
12 MOM12M Cumulative returns in the past (2-12) months Momentum
13 NI Net equity issue Investment
14 OP Operating profitability Profitability
15 RDM R&D-to-market Intangibles
16 ROE Return on equity Profitability
17 SEAS1A 1-Year Seasonality Intangibles
18 SP Sales-to-price Value-versus-growth
19 SUE Standardized unexpected quarterly earnings Momentum
20 SVAR Return variance (3 months) Frictions
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Figure A.1 Counts of Fake Anomalies identified under different q thresholds (in q = 0.2
case)
This figure plots, for Steps 1-6, the number of fake anomalies identified when applying EFDR
thresholds of q = 0.10, q = 0.15, and q = 0.20, using the EFDR distributions obtained under the
baseline configuration with q = 0.20.
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Figure A.2 Counts of Fake Anomalies and Remaining Anomalies. (Benchmark: FF6,
q = 0.1).
Note: This figure reports the counts of anomalies classified as w and x by our procedure, using FF6
as the benchmark. Green bars denote remaining anomalies (x), and red bars denote fake anomalies
(w). The threshold q is 0.1.
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