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1 Introduction

Many economists view the rise of globalization, particularly in terms of cross-border trade, as a

new “stylized” fact of economic development (Jones and Romer, 2010). However, after decades of

trade liberalization especially since the Uruguay Round (Caliendo, Feenstra, Romalis and Taylor,

2015), this trend has slowed recently, largely due to escalating trade conflicts. A notable event is the

US-China trade war, which began as the Trump administration imposed tariffs on imported steel

and aluminum in early 2018 and subsequently imposed additional tariffs on Chinese goods and

export sanctions on specific Chinese firms, particularly in high-tech and industrial sectors (Bown,

2021). The primary aim of this trade conflict was to address what the US considered unfair prac-

tices by China, such as intellectual property theft, forced technology transfer, and trade imbalances,

while also considering national security concerns about China’s technological advancements. In

retaliation, China imposed higher tariffs on US products, particularly agricultural products.

Given that technology is a key point of contention in the conflict and innovation acts as a pivotal

catalyst for technological progress, this paper aims to investigate the following two questions:

What impact does the US import tariff have on the innovation intensity and trajectory of Chinese

firms? How does the tariff shape the performance of Chinese firms through the innovation channel?

To address these two questions, this paper first constructs a matched dataset that contains com-

prehensive details on the operational activities, patent filings, and export and import volumes of

all publicly listed Chinese firms for each year from 2000 to 2021.1 We utilize the number of

patent applications as an indicator of firms’ innovation intensity and take firms’ R&D cost in their

annual report as a complementary measure. In order to assess the technological trajectory of Chi-

nese firms’ innovations, we adopt a novel text-based metric that evaluates the similarity between

Chinese patents and patents from other major patenting regions worldwide, such as the US, Eu-

rope, Japan, and South Korea. Specifically, we employ the Term Frequency-Inverse Document

Frequency (TF-IDF) method, a widely recognized statistical technique in the field of natural lan-

guage processing, to transform patent abstracts into vectors, which correspond to the frequency

distribution of informative technical terms. Subsequently, we calculate the cosine similarity be-

tween vectors of patents filed by Chinese firms and those originating from other countries. This

text-based metric sheds light on the technological alignment between Chinese and foreign patents,

providing valuable insights into the trajectory of Chinese innovation progress.

1The export and import volumes are drawn from China’s Customs Trade Data and are available only for the period
between 2000 and 2016.
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To empirically assess the impact of US import tariffs on Chinese firms’ innovation intensity and

direction, we follow the prior literature (e.g., Fajgelbaum, Goldberg, Kennedy and Khandelwal,

2020) by leveraging the quasi-experimental setting of the trade war, while accounting for other

aspects of this trade conflict. We measure firm-level exposure to the trade war using changes in

US import tariffs, China’s retaliatory tariffs, the number of products subject to US export controls,

and an indicator for whether a firm was sanctioned by the US government. The analysis employs

a First-Difference approach, defining trade shocks as the changes in average tariff rates, export

control coverage, and sanction status between the post–trade war period (2018–2021) and the

pre–trade war baseline (2014–2017). To address potential endogeneity arising from trade volume

responses, tariff exposure is calculated based on firms’ pre-war trade composition by product.

Our regression analysis reveals that increases in US import tariffs significantly reduce the inno-

vation intensity of Chinese listed firms and contribute to technological divergence from US patents.

Specifically, a 10-percentage-point increase in export-weighted US tariffs leads to a 10.88% de-

cline in firms’ patent filings and a 9.51% decline in R&D expenditures. It also reduces the simi-

larity between Chinese patents and US patents filed in the preceding five years by 2.58% relative

to the historical average. This divergence is especially pronounced with respect to more recent

US patents, suggesting a stronger departure from the technological frontier. These findings indi-

cate that the demand shock induced by US tariffs weakens Chinese firms’ incentives to maintain

competitiveness in the US market.

Allowing for heterogeneous effects of the trade war, we find that the adverse impact of US

import tariffs on both patent filings and technological similarity intensifies over time, leading to

a widening divergence in the innovation trajectories of the two countries. By contrast, China’s

retaliatory tariffs do not significantly influence Chinese firms’ patent output or their technological

similarity with recent or historical US patents.

We further examine the impact of rising US import tariffs on the similarity between Chinese

patents and those originating from Europe, Japan, and South Korea, while controlling for changes

in tariffs directly with these regions. The results show a decline in patent similarity with varying

magnitudes, indicating the multi-dimensional nature of innovation. Specifically, a 10-percentage-

point increase in US import tariffs leads to a 2.69% decrease in similarity to European patents

filed in the past five years, a 2.46% decrease in similarity to Japanese patents, and a statistically

insignificant 1.49% decrease in similarity to South Korean patents. However, after controlling

for the firm’s innovation similarity to the US, the effect on patent similarity with other regions
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disappears. This suggests that the growing divergence between Chinese innovation and that of

other regions is largely driven by the widening gap between Chinese and US innovations, aligning

with recent findings that highlight the importance of securing innovation approval in the US for

gaining access to global markets (Gong, Li, Manova and Sun, 2023).

Which technological domains are Chinese firms diverging from, and which type of Chinese

firms are most affected to higher US import tariffs? Our analysis finds that patent similarity be-

tween Chinese firms and the leading US innovators—defined as the 20 largest patentees in each

IPC class—declines most sharply when tariffs rise. Moreover, Chinese firms of lower TFP wit-

ness a greater reduction in patent applications, and their innovation activities shift further away

from those of the leading US innovators. The results indicate that divergence is sharpest at the US

technological frontier, with less productive firms particularly vulnerable to US import tariffs.

A notable example of a shift in innovation direction is DJI, the world’s largest civilian-drone

maker. After US Section 301 actions raised the tariff burden on Chinese drones—from an ini-

tial 25% in 2018 to a cumulative rate of roughly 170% by 2025— DJI channeled its camera and

video transmission systems emphasizing high-resolution imaging and long-distance transmission

suited to professional filmmaking and expansive urban or rural environments in the US to em-

phasizing low-latency performance and signal stability. DJI also channeled its R&D away from

hobby-grade quadcopters aimed at American consumers and toward agricultural and enterprise

platforms serving precision-farming markets in Asia, Latin America, and Europe.2 This example

illustrates how a firm’s innovation strategy is heavily influenced by the preferences of the markets

it serves. To systematically examine how tariff shocks affect firms’ innovation activities, we de-

velop a model featuring multi-product, multi-destination firms that face heterogeneous consumer

preferences across export markets, building on the heterogeneous-firm framework of trade and

innovation proposed by Atkeson and Burstein (2010). In the model, each of firms’ products is

represented by a vector of features, which correspond to the vectorized patent texts in the TF-IDF

method. The productivity of each feature is contingent upon both the firm’s overall innovation in-

tensity and the innovation direction on the vector space. Firms make decisions on both the intensity

and direction of innovation and their participation in the export market for each product. Unlike

conventional trade models that assume symmetric preferences across destination countries, our

model integrates distinct country-specific tastes for each product’s feature. Consequently, changes

in import tariffs directed at specific destinations not only influence the overall level of innovation

2The company doubled its domestic sales of crop-spray Agras drones in the first year after the tariff hike and
continued to expand the line; by the end of 2024, over 400 000 DJI agricultural drones were operating worldwide.
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intensity through shifts in the total market size but also redistribute innovation efforts across differ-

ent product features. Specifically, our model predicts that an increase in tariffs on Chinese exports

to the US would reduce innovation intensity among Chinese firms and prompt a reorientation of

Chinese innovations away from US consumers’ preferences.

To evaluate the effectiveness of the model in explaining the impact of the tariff shock and to

assess the role of innovation decisions in shaping firms’ performance in response to the trade shock,

we conduct a quantitative analysis based on the model. We calibrate the model to the data moments

before the trade war, with heterogeneity in consumers’ preferences inferred from the initial TF-

IDF vectors of firms’ patent applications and firms’ product sales across three destination markets

(China, the US, and the Rest of World). We then perform simulation exercises to understand firms’

decision-making with and without the unexpected changes in tariffs during the trade-war period.

The model predicts a 0.56% decline in Chinese patents’ similarity to US innovations, following a

10% increase in US import tariffs, compared to a 2.58% decline observed empirically. Thus, the

demand channel as specified in the model explains 21% of the observed divergence in innovation

direction between China and the US.

Further counterfactual analysis highlights the significant role of firms’ innovation decisions in

determining their export performance in response to tariff shocks. By 2021, changes in innovation

intensity and direction result in a 3.3% decline in Chinese firms’ export sales to the US, with 14%

of this decline—equivalent to a 0.5% reduction—driven by shifts in R&D direction. Moreover,

the adverse effect of innovation on export performance intensifies over time, indicating that the

innovation channel both prolongs and amplifies the trade war’s negative impact.

Related Literature. Our paper is related to several strands of the literature. First, this paper

closely connects with the growing literature on understanding the effects of the trade war (e.g.,

Amiti, Redding and Weinstein, 2019; Fajgelbaum et al., 2020; Fajgelbaum, Goldberg, Kennedy,

Khandelwal and Taglioni, 2023; Bonadio, Huo, Kang, Levchenko, Pandalai-Nayar, Toma and

Topalova, 2024; Chor and Li, 2024), especially from the perspective of Chinese firms (e.g., Ben-

guria, Choi, Swenson and Xu, 2022; Jiao, Liu, Tian and Wang, 2022; Ju, Ma, Wang and Zhu, 2024;

Benguria and Saffie, 2025). Most of these existing studies focus on its impact on global trade pat-

terns and welfare, taking a short-run perspective by presuming firms’ productivity as given, largely

due to the data limitations.3 The longer-term effects of the trade war are still not fully understood,

3One exception is Benguria et al. (2022), who show that higher trade policy uncertainty induced by the trade war
affects firm investments.
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especially from reductions in investments and capacities (see Fajgelbaum and Khandelwal, 2022,

for a review). Our paper contributes to this literature by examining the dynamic impact of the trade

war on firm production capacity through innovation. Analyzing patent data with a textual analysis

approach, we show that the trade war affects both the quantity and, more novelly, the direction

of innovations, and demonstrate that accounting for productivity dynamics amplifies its negative

effects on firms’ trade behavior.

Our paper contributes to the directed-technological-change (DTC) tradition that links market

size to the orientation of innovation (Acemoglu and Linn, 2004). Empirically, trade liberalization

has been shown to shape R&D and productivity for US producers (Autor, Dorn, Hanson, Pisano

and Shu, 2020), Canadian firms (Lileeva and Trefler, 2010), and European companies (Bloom,

Draca and Van Reenen, 2015; Aghion, Bergeaud, Lequien and Melitz, 2018), while impacting

the quantity and quality of Chinese patents (Liu and Qiu, 2016; Bombardini, Li and Wang, 2017;

Liu, Lu, Lu and Luong, 2021). We extend this literature by examining the reverse shock—US

import tariff hikes that shrink a major export market—and by moving from coarse patent counts

to a TF-IDF embedding of patent abstracts that pinpoints where in technology space firms inno-

vate. Theoretically, this fine-grained approach extends DTC analysis from factor- or sector-biased

change to the micro-level allocation of innovation within technology space.

Finally, our paper contributes to the literature on patent content measurement by integrating

textual analysis into a quantitative economic model using a hedonic demand approach (Lancaster,

1966; Pellegrino, 2025). Previous studies on patents have largely focused on structural information,

such as patent counts, citations, and technology classifications (Hu and Jefferson, 2009; Lerner

and Seru, 2017). Correspondingly, innovation models have primarily emphasized the quantity or

quality of innovation. However, a wealth of information is embedded in the unstructured data

of patent texts. Recent research has begun to develop new measures by analyzing text similarity

between patents and product files, as well as between earlier and later patents, to assess their

scientific or commercial value and direction (Comin and Hobijn, 2010; Hoberg and Phillips, 2016;

Gentzkow, Kelly and Taddy, 2019; Bloom, Hassan, Kalyani, Lerner and Tahoun, 2021; Kelly,

Papanikolaou, Seru and Taddy, 2021). To our knowledge, no study has yet mapped the outcomes

of textual analysis algorithms onto economic models. Our paper bridges this gap by linking word

frequencies from the TF-IDF method to the preferences of the markets where firms sell their goods.

This allows for a direct quantification and evaluation of how shifts in market preferences, driven by

tariff shocks, influence the direction of innovation. Additionally, this paper expands the literature
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by incorporating patents from multiple patent offices, including those in China, Japan, Korea,

and Europe, and develops a text-based metric to assess technological similarities between patents

across countries beyond the US.

The rest of the paper is organized as follows. Section 2 describes the background of the US-

China trade war, the data sources, and the methods to construct key variables in the empirical

analysis. Section 3 introduces the empirical strategy and presents the impact of the trade war on

Chinese firms’ innovation intensity and direction. Section 4 lays out a quantitative model to unveil

the mechanisms in the empirical analysis. Using the calibrated model, we quantify the impact of

the trade war through the demand channel in Section 5. Section 6 concludes.

2 Context and Data

In this section, we begin by outlining the background of the US-China trade war. Next, we discuss

the data sources and detail how the key measures used in the empirical analysis are constructed.

2.1 Products Affected in the US-China Trade War

We provide a brief summary of the main rounds of tariff escalation during the trade war in Ap-

pendix A. Table 1 presents the products most significantly affected by the tariff escalation. The

products are defined by the Harmonized System (HS) codes, a standardized numerical method of

classifying traded goods. We compute the difference between the average tariff from 2018 to 2021

and the 2017 tariff for each 8-digit HS code, identifying the products with the largest positive

changes. This analysis is conducted for both exports to the US and exports to China. As shown in

Table 1, among Chinese goods exported to the US, manufacturing products, especially electrical

and power equipment, experienced the largest increase in tariffs. Among US goods exported to

China, agricultural products were imposed the highest tariff increases.

In addition to tariffs, the US government—under the authority of the Export Control Reform

Act of 2018 (ECRA)—implemented export controls through the Commerce Control List (CCL)

and imposed sanctions on Chinese firms via the Entity List. These measures aim to restrict Chinese

companies from purchasing US-origin goods and technologies, particularly those with potential

military applications or those that could enhance China’s surveillance capabilities.
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Table 1: Products with Largest Increases in Tariff, in Percentage Points

Export to the US Export to China
HS Product Tariff Change HS Product Tariff Change
Generators 45.0% Meat, of swine 55.0%
Electric accumulators 45.0% Offal, edible 55.0%
Electrical apparatus 35.6% Aluminum 50.0%
Iron 32.5% Nuts, edible 45.0%
Steel 32.5% Fruit, edible 45.0%

Notes: This table shows the products (measured by the 8-digit HS code) that experienced the largest increase in
tariffs due to the trade war. The left panel lists the exporting goods from China to the US and the corresponding
percent increase in tariffs; and the right panel lists the exporting goods from the US to China and the corresponding
percent increase in tariffs.

2.2 Data Sources

We construct a matched dataset with information on Chinese listed firms’ operations, patents, and

trade from 2000 to 2021. This dataset is compiled from four different sources, enabling us to

conduct a comprehensive study on the effect of the trade war on Chinese listed firms.

The first dataset, the China Stock Market & Accounting Research Database (CSMAR), pro-

vides financial reports for all firms listed on Chinese stock exchanges. From this source, we col-

lect information on firm name, industry classification, ownership type, sales, employment, capital

stock, R&D expenditures, and export destinations. We follow the procedures outlined in Tan, Tian,

Zhang and Zhao (2020) to clean firm-level characteristics and financial data from CSMAR.

The second source is the China Customs Trade Data (CCTD). This dataset offers detailed in-

formation about firm-level trade transactions from 2000 to 2016, including information on firms’

names, trade destination countries (for exports) and origin countries (for imports), 8-digit HS prod-

uct codes, and the value of their exports and imports in US dollars. We merge the CCTD data with

the listed firm data using firm names (see Appendix B.1 for details), and the CCTD data will aid

us in constructing the listed firms’ exposure to tariff changes during the trade war period.

The third dataset comprises Chinese patent data from the China National Intellectual Property

Administration (CNIPA) and US patent data from the United States Patent and Trademark Office

(USPTO). The CNIPA data cover all invention patent filings from 1985 to 2023, including infor-

mation on the applicant’s bibliographic details, filing and grant dates, abstracts, and cited patent

references. English translations of the abstracts are also provided and will be used to compute

similarity with US patents. We merge the CNIPA data with the listed firm data using consolidated

firm names. The USPTO dataset includes records of granted patents since 1976 and patent ap-
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plications since 2000, from which we extract the same set of indicators as for the Chinese data.

Additionally, for supplementary analysis, we collect patent filing records for European countries,

Japan, and Korea from the PATSTAT Global 2023 Autumn Edition. The data-cleaning procedures

are described in detail in the following section.

For our analysis, we utilize tariff data from Bown (2021) to construct the US tariff rates on

imports from China and China’s tariff rates on imports from the US during the trade war period

between 2017 and 2021. The raw data is based on 10-digit Harmonized System (HS) products for

the US and 8-digit HS products for China. To determine the tariff rate for each year, we calculate

the tariff rate on December 31 of that year, taking into account all tariff changes throughout the

year. In order to measure tariff rates prior to the trade war, we rely on reported tariff data from the

World Integrated Trade Solution (WITS) between 2014 and 2016, which is based on 6-digit HS

products. To ensure consistency in product classification across different data sets, we aggregate

the tariff data from Bown (2021) into 6-digit HS products using trade volume as weights. Further-

more, we converted the 6-digit HS codes in 2017–2021 into the version used during 2014–2016 by

employing the concordances provided by WITS.

To control for the effects of other potential non-tariff measures adopted by the US government

during the trade war, we collect the information from the Entity List and Commercial Control List

from the Bureau of Industry and Security (BIS) and assess firms’ exposure to these restrictions. The

Entity List is a trade restriction tool designed to prevent foreign entities from accessing sensitive

US technologies that could threaten national security or foreign policy interests. Companies on

the list face strict export controls, requiring US suppliers to obtain special licenses—often subject

to a “presumption of denial”—before shipping regulated goods, software, or technology to them.

For firms that are not restricted by the Entity List, they still face restrictions on importing certain

products from the US, which are governed by the Commercial Control List. Each product on

the list is assigned a five-character Export Control Classification Number (ECCN) that describes

its nature and the reasons for control, such as anti-terrorism, nuclear non-proliferation, or regional

stability. When a Chinese firm wants to import products on the list, it must file a license application

with the BIS, specifying the destination, end-user, and end-use. We construct two measures to

control for firms’ exposure to non-tariff restrictions. On one hand, we determine whether a firm has

been added to the Entity List. On the other hand, we identify the HS codes of products included

in the Commercial Control List and construct a measure of each firm’s exposure to US export

controls. The details of exposure to non-tariff restrictions are presented in Appendix B.5.
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2.3 Text-based Patent Similarity

In order to properly measure the similarities between Chinese patents and patents in foreign coun-

tries, we first define the scope of Chinese patents and US patents. In the USPTO and CNIPA, both

domestic residents and foreigners can apply for patents. Simply treating the patents filed in CNIPA

as the Chinese patents and patents filed in USPTO as the US patents is misleading. Thus, we define

Chinese patents as those that are filed in CNIPA by Chinese domestic residents, including firms,

individuals, universities, and research institutes. We apply a similar rule for patents filed in the

USPTO to identify patents filed by US domestic residents.

We then clean patent abstract data following standard procedures in the literature (Bloom et al.,

2021). We first remove symbols and numbers and only keep English letters in abstracts. Then, we

lemmatize all nouns and verbs with Standard CoreNLP 4.5.4 (Manning, Surdeanu, Bauer, Finkel,

Bethard and McClosky, 2014), which converts nouns from plural to singular and converts verbs

to bare infinitives. These procedures turn each piece of patent abstract into a list of tokens, where

each token is a lemmatized word.

With all patent abstracts cleaned, we adopt the TF-IDF algorithm to vectorize each piece of

abstract. In Section 5, we demonstrate that the results of the TF-IDF algorithm can be interpreted

using a quantitative model, offering an advantage over other textual analysis methods. This ap-

proach is also widely adopted in the literature (e.g., Acemoglu, Yang and Zhou, 2022; Kelly et al.,

2021; Autor, Chin, Salomons and Seegmiller, 2024). Before vectorization, we calculate the doc-

ument frequency of each word, which is the count of a word’s appearance in different pieces of

abstracts. We remove too-frequent words and too-infrequent words. If a word appears in too many

patents, it means that this word is not informative in representing the technical features of patents.

If a word only appears in a few patents, it is likely to be a typo or man-made word, which is also

not informative in representing the technical features of patents. In this paper, we put Chinese and

US patents together and drop words with a document frequency larger than 100,000 and lower

than 20, following Bloom et al. (2021). Then, we apply the TF-IDF method to vectorize all patent

abstracts. The size of the vector is the total number of unique tokens (words). Each element in the

vector is the term frequency of a word, which is the count of the appearance of a word within a

patent abstract divided by its document frequency. Intuitively, each vector captures the technical

characteristics of a patent by emphasizing words with relatively high term frequency compared to

their document frequency. Consequently, the textual similarity between two patents serves as a

good proxy for their technical similarity.
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Then, we construct similarity measures between Chinese and US patents. Specifically, we

calculate the cosine similarity between each Chinese and US patent filed in the same technology

class, defined at the 3-digit IPC level. We restrict comparisons to patents within the same technol-

ogy class, as it is not meaningful to compare technical features across unrelated fields—such as

biology and semiconductors. Within-class text similarity allows us to precisely capture differences

in technological trajectories between Chinese and US patents. The cosine similarity between a

Chinese patent p filed in year t and technology class x, and a US patent p′ filed in year τ and the

same class x, is defined by Equation (1):

Simp,p′,t,τ,x = Cos {Vp,t,x,Vp′,τ,x} =
(Vp,t,x)

TVp′,τ,x

[(Vp,t,x)TVp,t,x]
1/2 [(Vp′,τ,x)TVp′,τ,x]

1/2
, (1)

where Vp,t,x and Vp′,τ,x are corresponding vectors for two patents, and VT represents the transpose

of vector V. We apply this procedure to obtain a set of similarity scores for each Chinese patent,

comparing it to all US patents filed in the same technology class x between 2000 and 2021.

We derive firm-level and country-level similarity measures by aggregating patent-level similar-

ities. Specifically, to compute the similarity between a Chinese listed firm i in year t and the US

patents in year τ within technology class x, we average the pairwise cosine similarities between

all patents filed by firm i in year t and class x, and all US patents filed in year τ and the same class x:

Simi,t,τ,x =
1

Ni,t,x

1

MUS,τ,x

∑
p∈i

∑
p′∈US

Cos{Vp,t,x,Vp′,τ,x}. (2)

In this equation, Ni,t,x denotes the number of patents filed by firm i in technology class x in year

t, while MUS,τ,x represents the number of US patents in class x in year τ .

The firm-level similarity of firm i to US patents is calculated as the weighted average of

its patent similarities across technology classes x, with weights corresponding to the number of

patents firm i holds in each class x. Similarly, the country-level similarity is computed as the

weighted average of patent similarities across all technology classes for Chinese patents filed in

year t, using patent counts as weights. To assess the representativeness of listed firms in our

sample, we compare the average similarity to US patents over time for both listed and non-listed

Chinese firms. As illustrated in Figure A-1, the similarities calculated for the two groups follow

similar trends and are highly correlated, supporting the validity of using listed firms as a proxy for
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China’s overall innovation trajectory. Further details on how these measures are constructed can

be found in Appendix B.

2.4 Exposure to Trade Shocks

To measure the extent to which Chinese listed firms were affected by tariffs during the trade war

period, we utilize tariff and customs data. More specifically, for each firm i, we calculate its

exposure to the US tariffs by relying on its export composition during the pre-trade-war period

(2014-2016, based on available data). This calculation is performed using the following formula:

exposure to US tariffi,t =
∑
j

exporti,j,14−16∑
j exporti,j,14−16

tariffUS
j,t . (3)

Our firm-level customs data allows us to designate exporti,j,14−16 as the value of exports for firm

i regarding 6-digit HS product j to the US between 2014 and 2016. tariffUS
j,t indicates the tariff

rate that the US imposed on the import of product j from China during year t. By this formula,

we gauge the extent to which firm i is exposed to US tariffs, which portrays the average tariff rates

faced by the firm when exporting to the US in year t based on its pre-trade-war export structure.

As a response to the deteriorating trade environment in the US, China implemented retaliatory

measures by increasing tariffs on imports from the US. This escalation in import tariffs could

potentially impact Chinese listed firms, particularly through changing the competition in firms’

output market and the prices of imported inputs (Brandt, Van Biesebroeck, Wang and Zhang,

2017). Given that we consistently account for industry fixed effects in our regression analyses,

any changes in competition within firms’ industries are already captured. To control the impact

of China’s import tariffs imposed on the US on the listed firms, specifically through the prices of

imported inputs, we rely on their import composition prior to the commencement of the trade war:

exposure to China’s tariffi,t =
∑
j

importi,j,14−16∑
j importi,j,14−16

tariffCN
j,t , (4)

where importi,j,14−16 is the amount of imports for firm i regarding 6-digit HS product j from the

US between 2014 and 2016. tariffCN
j,t indicates the tariff rate that China imposed on the import of

product j from the US during year t. By this formula, we measure the average tariff rates faced by

the firm when importing from the US in year t based on its pre-trade-war import structure.
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3 Empirical Analysis

In this section, we examine the impact of US import tariff changes during the trade war on Chinese

firms’ innovation. We begin by presenting evidence on the tariff adjustments and the corresponding

changes in aggregate patent similarity between Chinese and US patents. Then, we conduct a formal

empirical analysis to assess these effects more rigorously.

3.1 First Glance at Data

Figure 1 presents the overall trends in tariff rates during the trade war period, consistent with the

findings of previous studies (e.g., Chor and Li, 2024). Specifically, the US imposed a tariff increase

of approximately 20 percentage points (averaged across 6-digit HS products) on China’s exports,

while China raised tariffs on US exports by around 15 percentage points.

Figure 2 illustrates the distribution of Chinese listed firms’ exposure to tariffs imposed by the

US and China, calculated using Equations (3) and Equation (4). The data reveals a significant rise

and substantial diversity in changes experienced during the trade war. This variability allows for

variation in firms’ exposure to the trade war, a factor that will be explored in our empirical analysis.

Figure 1: Average Tariff Rates across 6-digit HS Products

Notes: The figure displays the average US tariffs on China’s export (solid blue curve) and the average China’s
tariff on US export (dashed red curve) from 2014 to 2021. Post-2016 data points are based upon the trading
composition between 2014-2016 and the actual tariff rates across the 6-digit HS products. The shaded area is the
trade-war period.
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Figure 2: Distribution of Listed Firms’ Exposure to US Tariffs

(a) Exposure to US Tariffs (b) Exposure to China’s Tariffs

Notes: The figure shows the distribution of Chinese listed firms’ exposure to tariffs on exports to the US (Panel
(a)) and tariffs on imports from the US (Panel (b)). The years 2017 and 2019 represent the periods immediately
before and after the onset of the trade war, respectively.

Figure 3 shows the aggregate similarity between Chinese and US patents in the “ICT” and

“Electrical Computers and Digital Processing Systems” technology fields. Patents in each field

are first identified separately from the Chinese and US patent offices, and pairwise similarities are

then computed.4 Each pixel of Figure 3 represents the similarity between Chinese patents filed in

year t and US patents filed in year τ . Under the assumption that the US leads in technological

advancement, for ease of description, we restrict the visualization to Chinese patents filed in year

t and US patents filed in year τ ≤ t. In the heatmap, Chinese patents are sorted by filing year

along the rows and US patents along the columns. The pixel in the southwest corner indicates the

similarity between Chinese patents filed in 2021 and US patents filed in 2000, while the southeast

corner reflects the similarity with US patents filed in 2021. The diagonal elements represent the

similarity between patents filed in the same year. Both panels in Figure 3 reveal a marked decline

in the similarity between Chinese and US patents after the onset of the trade war, reversing the

earlier upward trend. This pattern suggests a potential shift in firms’ innovation trajectories—an

effect we examine more formally in the sections that follow.

4The “ICT” field includes four subfields: telecommunications, consumer electronics, computers, office machin-
ery, and other ICTs. The definition of “Electrical Computers and Digital Processing Systems” field is available at
https://www.uspto.gov/web/offices/ac/ido/oeip/taf/reports.htm.
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Figure 3: Similarity between Chinese and US Patents in Two Technology Fields

(a) ICT (b) Electrical Computers-Digital Processing Systems

Notes: The figure visually presents the aggregate similarity between Chinese patents filed in a given year along
the x-axis and corresponding US patents filed in the year along the y-axis. The degree of similarity is indicated
by the darkness of each square, with darker shades denoting higher levels of similarity.

3.2 Identification Strategy

As shown in the previous section, the trade war led to a substantial increase in tariffs on Chinese

exports to the United States. During the same period, the previously rising trend in industry-level

similarities between Chinese and US patents came to a halt. To identify the effect of US import

tariffs on Chinese innovation activity, we adopt the approach proposed by Bertrand, Duflo and

Mullainathan (2004), which addresses the issue of serial correlation—particularly relevant here,

as post-2016 tariffs are constructed based on data from 2014 to 2016. We collapse the data into a

“pre” period (2014–2017) and a “post” period (2018–2021) of the trade war. Then, we estimate

the following model using first differences of the average variable values in the two periods,

∆Yis =β1∆ln(1 + TariffUS
i ) + β2∆ln(1 + TariffCN

i ) + β3∆Export ControlUS
i +

β4∆Sanctioni + γXi,14−17 + µ+ θs + ϵis.
(5)

In Equation (5), i indexes firms and s denotes the firm’s 3-digit industry code. The dependent

variable, ∆Yis, captures changes in both the quantity and direction of innovation at the firm level.

Innovation intensity is proxied by the natural logarithm of one plus the number of patent applica-

tions filed by the firm. As a complementary measure, we also use the natural logarithm of one plus
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the firm’s R&D expenditure in their annual report. Innovation direction is proxied by the firm-level

similarity measure developed in this paper. Specifically, we use the demeaned average similarity

to US patents granted within the most recent 0–5 years (i.e., 1
5

∑t+5
τ=t Simi,t,τ ), assigning missing

values to firms with no patent applications in the baseline regression.

The key independent variables related to the trade war include: the firm-specific change in

exposure to US import tariffs, ∆ ln(1 + TariffUS
i ); the change in exposure to China’s retaliatory

import tariffs, ∆ ln(1+TariffCN
i ); the change in the number of HS codes in the firm’s import basket

that appear on the Commerce Control List, ∆Export Controli; and the change in a dummy variable

indicating whether the firm was sanctioned via the Entity List, ∆Sanctioni.

We control for pre-trade-war firm characteristics in Xi,14–17, which includes the natural loga-

rithm of employment and total assets, as well as profit share (profit as a percentage of total revenue)

measured in the pre-period (2014–2017). In the regressions focused on innovation direction, we

also control for the change in the number of patent applications to ensure that any observed effect

of the trade war on patent similarity is not driven by changes in patenting intensity. The constant

term, µ, captures aggregate changes in the economy between the two periods, while the industry

fixed effect, θs, accounts for time-varying differences across industries.

The sample used for the regression analysis consists of all publicly listed firms in China that

applied for at least one patent between 2000 and 2021 and were active in both the pre- and post-

trade-war periods. The requirement of having filed at least one patent ensures that the sample

reflects innovating firms. Approximately 75% of Chinese listed firms meet this criterion. Sum-

mary statistics for the key variables are reported in Table 2, with exporting and non-exporting

firms presented separately to highlight their distinct patterns. A firm is classified as an exporter

if it reported a positive export value during the 2014–2017 period. On average, exporters saw

a smaller rise in patent applications and generated patents that were less similar to those from

other advanced economies compared to non-exporters following the trade war. After the trade war,

non-exporters either showed an increase or only a modest decline in patent similarity to foreign

technologies. During this period, import tariffs rose significantly in both China and the United

States. However, the average number of HS codes subject to export controls in each firm’s product

portfolio increased only slightly. Additionally, approximately 2.4% of observations were subject

to sanctions during the 2018–2021 period, compared to none in the pre-trade-war period.
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Table 2: Summary Statistics

2014–2017 2018–2021
mean sd count mean sd count

Exporting Firms
Patent Application Number 23.313 161.551 1328 31.722 256.551 1328
R&D Cost (Yuan) 1.64e+08 6.36e+08 1328 3.25e+08 1.31e+09 1328
Similarity to US Patents (0-5 Years) .930 .463 1209 .917 .435 1209
Similarity to EU Patents (0-5 Years) .980 .512 1209 .927 .438 1209
Similarity to JP Patents (0-5 Years) .986 .500 1209 .930 .435 1209
Similarity to KR Patents (0-5 Years) .947 .499 1209 .927 .419 1209

Non-exporting Firms
Patent Application Number 13.717 152.781 1341 23.578 185.169 1341
R&D Cost (Yuan) 1.28e+08 5.59e+08 1341 2.64e+08 1.17e+09 1341
Similarity to US Patents (0-5 Years) .934 .511 877 .942 .459 877
Similarity to EU Patents (0-5 Years) .958 .539 877 .935 .434 877
Similarity to JP Patents (0-5 Years) .960 .520 877 .935 .434 877
Similarity to KR Patents (0-5 Years) .972 .537 877 .999 .441 877

Trade Shock
Change in US Import Tariff .831 2.042 2669 6.857 10.885 2669
Change in CN Import Tariff 1.714 3.304 2669 4.947 8.798 2669
US Export Controls 1.429 4.800 2669 1.439 4.812 2669
Sanctioned 0 0 2669 .024 .154 2669

Notes: This table reports the summary statistics of the main dependent and independent variables in the “pre” and
“post” periods of the regression sample.

3.3 Impact of the US Import Tariff on China’s Innovation

The effects of US import tariffs on Chinese firms’ innovation intensity (Columns (1)–(4)) and

innovation direction (Columns (5)–(8)) are reported in Table 3. Columns (1) and (5) include only

trade-related shocks. Columns (2) and (6) add industry fixed effects, while Columns (3) and (7)

further control for firm-level characteristics measured prior to the trade war. Column (4) replaces

the patent count with firms’ R&D expenditure as the dependent variable, and Column (8) includes

the change in the number of patent applications as a control. The first four columns show that a 10-

percentage-point increase in US import tariffs is associated with an approximately 10.88 percent

reduction in the number of patent applications filed by Chinese firms. A similar effect is observed

when using R&D expenditures as the dependent variable, with a decline of 9.51 percent. The last

four columns indicate that a 10-percentage-point increase in US tariffs on Chinese exports reduces

the similarity of Chinese patents to US patents by 2.58 percent of their historical average. The

estimated coefficients remain stable across different model specifications.

Additional analyses are provided in the Appendix. Appendix Table A-1 reports results for (i) a

subsample of exporting firms and (ii) the full sample with an interaction term between the US tariff
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Table 3: Impact of the Trade War on Chinese Firms’ Innovation Intensity and Direction

Intensity Direction
∆ Patent Number ∆ R&D Cost ∆ Similarity to US Patents

(1) (2) (3) (4) (5) (6) (7) (8)
∆ US Import Tariff -0.900*** -0.969*** -1.088*** -0.951* -0.222** -0.266** -0.252** -0.258**

(0.203) (0.187) (0.189) (0.534) (0.0995) (0.125) (0.108) (0.111)
∆ CN Import Tariff -0.412 -0.228 -0.339 0.713 0.164 0.124 0.0830 0.0807

(0.296) (0.321) (0.320) (0.872) (0.174) (0.182) (0.178) (0.177)
∆ US Export Controls -0.423** -0.446** -0.411* -0.836* -0.154 -0.0898 -0.0977 -0.100

(0.192) (0.210) (0.213) (0.499) (0.101) (0.128) (0.121) (0.121)
∆ US Sanctions 0.259** 0.202* 0.166 -0.298 -0.0670 -0.0317 -0.0365 -0.0359

(0.117) (0.106) (0.100) (0.276) (0.0947) (0.0998) (0.101) (0.102)

∆ Patent Number / / / / N N N Y
Firm Characteristics N N Y Y N N Y Y
Industry Fixed Effect N Y Y Y N Y Y Y
Observations 2,669 2,661 2,542 2,542 2,086 2,077 1,984 1,984
R-squared 0.014 0.068 0.090 0.158 0.002 0.027 0.029 0.029

Notes: Standard errors are clustered at the firm level. ∆ denotes the change in variable values between the pre-
trade-war period (2014–2017) and the post-trade-war period (2018–2021). Firm-level controls include the natural
logarithm of employment, total assets, and the profit-to-revenue ratio before the trade war. Industries are defined
at the 3-digit level.
*** Significant at the 1% level; ** Significant at the 5% level; * Significant at the 10% level.

change and firms’ pre-trade-war export share. Appendix Table A-2 presents results that account

for the share of processing trade in firms’ exposure to China’s retaliatory import tariffs. Appendix

Table A-3 shows results restricted to manufacturing firms. Appendix Table A-4 displays the trade-

war effect on innovation direction, based on similarity between Chinese and US patents within the

same 4-digit IPC class for finer granularity. Across all specifications, we consistently find negative

impacts of US import tariffs on Chinese firms’ innovation intensity and similarity with US patents.

Table 3 also shows that changes in Chinese import tariffs have no statistically significant im-

pact on firms’ patenting intensity or the direction of innovation. In contrast, US export controls

are associated with a reduction in Chinese innovation intensity, while sanctions are occasionally

positively correlated with innovation activity—possibly due to selection effects.

The significant impact of US import tariffs on China’s innovation activity likely reflects the role

of shifting demand. Reduced demand from the US market may lower Chinese firms’ incentives to

imitate US patents, as the returns to gaining a cost or quality advantage over US products decline.

This effect is expected to be strongest for patents closely resembling recent US innovations, where

competitive pressure is greatest at the technological frontier. To evaluate this hypothesis, we com-

pute the similarity between Chinese patents filed in year t and US patents from three distinct filing

windows: (i) the current and previous years (t and t− 1); (ii) two to three years earlier (t− 2 and

t−3); and (iii) four to five years earlier (t−4 and t−5). For each window, firm-level similarities are
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demeaned to purge year fixed effects. The similarity to the most recent US patents therefore cap-

tures a firm’s alignment with the cutting edge of technologies competing for US demand, whereas

the similarity to older US patents should be less affected by demand-driven competitive pressures.

The impact of the trade war on the similarity of Chinese patents to US patents of different

vintages is reported in Table 4. Divergence is most pronounced for new US technologies. A 10-

percentage-point rise in US import tariffs lowers the similarity to US patents filed in the current

or previous year by 2.69%, and to those filed two or three years earlier by 2.88%. By contrast,

the decline in the similarity to older US patents is 2.11%. This pattern is robust across alternative

regression specifications and indicates that the demand shock primarily weakens Chinese firms’

alignment with recent US innovations.

Table 4: Impact of the Trade War on Chinese Patents’ Similarity to US Patents by Filing Period

∆ Similarity to US Patents
Recent 0-1 Years Recent 2-3 Years Recent 4-5 Years

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

∆ US Import Tariff -0.219** -0.271** -0.267** -0.269** -0.265** -0.298** -0.275** -0.288** -0.171* -0.214* -0.207** -0.211**
(0.106) (0.129) (0.112) (0.116) (0.108) (0.132) (0.116) (0.119) (0.0947) (0.116) (0.0989) (0.102)

∆ CN Import Tariff 0.164 0.128 0.0694 0.0685 0.187 0.137 0.0915 0.0869 0.126 0.102 0.0820 0.0803
(0.159) (0.166) (0.157) (0.157) (0.194) (0.201) (0.195) (0.195) (0.183) (0.194) (0.202) (0.202)

∆ US Export Controls -0.140 -0.0821 -0.0925 -0.0936 -0.119 -0.0528 -0.0562 -0.0620 -0.172* -0.104 -0.111 -0.113
(0.103) (0.126) (0.118) (0.118) (0.110) (0.140) (0.131) (0.133) (0.101) (0.129) (0.124) (0.124)

∆ Sanctions -0.0714 -0.0313 -0.0414 -0.0412 -0.0680 -0.0301 -0.0357 -0.0346 -0.0629 -0.0336 -0.0300 -0.0295
(0.104) (0.110) (0.112) (0.112) (0.0963) (0.101) (0.102) (0.103) (0.0834) (0.0880) (0.0891) (0.0897)

∆ Patent Number N N N Y N N N Y N N N Y
Firm Characteristics N N Y Y N N Y Y N N Y Y
Industry Fixed Effect N Y Y Y N Y Y Y N Y Y Y
Observations 2,086 2,077 1,984 1,984 2,086 2,077 1,984 1,984 2,086 2,077 1,984 1,984
R-squared 0.002 0.028 0.029 0.029 0.003 0.030 0.031 0.032 0.002 0.025 0.029 0.029

Notes: Standard errors are clustered at the firm level. ∆ denotes the change in variable values between the pre-
trade-war period (2014–2017) and the post-trade-war period (2018–2021). Firm-level controls include the natural
logarithm of employment, total assets, and the profit-to-revenue ratio before the trade war. Industries are defined
at the 3-digit level.
*** Significant at the 1% level; ** Significant at the 5% level; * Significant at the 10% level.

3.4 The Gradual Impact of the US Import Tariff

The effects of the tariff shocks may not materialize immediately, as firms typically require time

to adjust their innovation activities. To examine the dynamics and persistence of these effects,

separate treatment indicators are constructed for increases in US import tariffs and in Chinese

import tariffs, with the associated coefficients allowed to vary over time. Each “Treated” dummy

equals one for a firm whose applicable tariff rate rose after 2018 and zero otherwise. The analysis
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employs the following regression specification:

Yist =
2021∑

τ=2014

β1τ1(t = τ)TreatedUS
i +

2021∑
τ=2014

β2τ1(t = τ)TreatedCN
i +

β3Export Controlsist + β4Sanctionist + γXist−1 + αi + µt + θst + ϵist,

(6)

where 1(t = τ) is an indicator function that equals one if year t is equal to τ , and zero otherwise.5

Figure 4 below plots the coefficients β1τ along with their 90 percent confidence intervals, illustrat-

ing the time-varying effects of US import tariffs. The dependent variables are, respectively, the

logarithm of one plus the firm’s patent application counts and the similarity to US patents filed in

the past 5 years. The Poisson regression of patent application counts and the regression using the

logarithm of firms’ R&D spending yield similar results, as reported in Figure A-4. We control for

firm-level characteristics in Xit−1, which includes the natural logarithm of the firm’s employment

and total assets, and the share of profits as a percentage of total revenue in year t − 1. In the

regression on innovation direction, we add the logarithm of the number of patent applications as

a control variable. The term αi accounts for firm fixed effects, capturing unobserved firm-level

heterogeneity. The term µt represents year fixed effects, reflecting time variation in the aggregate

economy. The term θst denotes the industry-by-year fixed effects, capturing variations in industry-

level characteristics over time. Therefore, the aggregate effect over years correspond to Columns

(3) and (8) in Table 3 multiplied by the total increase in tariff rates.

Figure 4 illustrates the gradual and persistent effects of US import tariff increases on both the

intensity and direction of innovation in China. Panel (a) shows that the negative impact on Chinese

firms’ patenting activity has intensified over time. Panel (b) highlights a progressive decline in the

alignment between Chinese innovation and US technological trajectories. The decline in patent

applications began as early as 2017, suggesting that firms may have anticipated the tariff shock

and strategically scaled back patent filings in advance.6 Firms’ R&D spending started to decline

in 2018, as shown in Figure A-4. A noticeable drop in patent similarity emerged in 2019 and

persisted thereafter, pointing to a sustained divergence in innovation trajectories between China

and the United States.
5Among firms that experienced an increase in US import tariffs, 97.2% of the increase occurred in 2018; the

corresponding share for China’s import tariffs is 98.5%. Therefore, the regression by calendar year yields results very
similar to those from an event study.

6In August of 2017, the US Trade Representative launched a high-profile Section 301 investigation into Chinese
intellectual property and technology practices—a clear signal of imminent policy escalation. Earlier in mid-2017, a
proposed 100-day trade-deficit reduction plan between the US and China collapsed, further undermining expectations
of a cooperative path forward. This backdrop of rising rhetoric, official scrutiny, and media coverage of a looming
trade confrontation may have dampened firms’ willingness to filing patents ahead of formal tariffs.
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Figure 4: Effect of US Import Tariff over Years

(a) Effect on Patent Application Number
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Notes: The figure illustrates the time-varying effects of US import tariffs on Chinese firms’ innovation intensity
and their similarity to US patents from 2014 onward. Both point estimates and 90 percent confidence intervals
are shown, with standard errors clustered at the firm level. Firm-level controls include the natural logarithm of
employment, total assets, and the profit-to-revenue ratio from the previous year. For the regressions on patent
similarity, the number of patent applications is also controlled for. All regressions include firm fixed effects, year
fixed effects, and industry-by-year fixed effects.

3.5 Robustness Checks

Two major concerns arise regarding the regression results presented in the previous sections. First,

firms with higher growth potential in innovation intensity and greater similarity to US innovations

may be more exposed to the US import tariff shock. In other words, there may be heterogeneous

pre-existing trends that could lead to endogeneity. Second, the decrease in the similarity between

Chinese and US patents might not indicate a divergence in innovation direction; instead, it could

reflect strategic changes in the wording of patent abstracts to avoid tariff increases.

To address the first concern, we conduct placebo tests using data from 2012 to 2017, with

2012–2014 defined as the “pre” period and 2015–2017 as the “post” period. In this placebo setting,

we apply the actual trade-related shocks—measured as the difference between the average values

in 2018–2021 and 2014–2017—as counterfactual trade shocks. We then re-estimate regression

Equation (5) using this placebo sample. The results, reported in Appendix Table A-5, show that

the estimated effects of the counterfactual US import shocks on firms’ innovation intensity and

direction are statistically insignificant. This finding suggests that the baseline results are not driven

by pre-existing trends and supports the identification strategy.

The second concern regarding the potential strategic wording of patent abstracts can be evalu-

ated by focusing exclusively on patents without Patent Cooperation Treaty (PCT) applications. A

PCT application allows an applicant to seek patent protection in multiple PCT member countries
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through a single international filing. Both China and the US are members of the PCT. Applicants

who file under the PCT have the option of requesting an International Preliminary Examination,

which provides an early indication of the patentability of the invention in certain member coun-

tries before their patent offices conduct their own examinations. This preliminary examination can

help guide strategic decisions about where to pursue patent protection. Given the cost efficiency

and additional guidance provided by the PCT application process, it is often the preferred option

for applicants seeking protection outside their home country. Consequently, patents with PCT

applications are more likely to be intended for international publication and are more inclined to

strategically adjust their wording to align with the requirements of patent offices in other countries.

By recalculating patent similarity using only a firm’s patents that exclude PCT applications and re-

estimating the regression in Equation (4), we can assess the impact of the trade war on patent

similarity in a way that is less affected by strategic wording behavior than in the baseline setting.

Appendix Table A-6 shows that the results remain highly consistent with the baseline, which helps

mitigate the concern that our findings are merely driven by disclosure strategies.

3.6 China’s Innovation Similarity to Other Countries

Has the similarity in innovation between China and other countries shifted following the rise in US

import tariffs on Chinese goods? Furthermore, how does the similarity between Chinese patents

and those of other countries relate to the level of similarity between China and the US? To ad-

dress these questions, we examine the impact of the US-China trade war on the similarity between

Chinese patents and those from other leading innovation economies. Besides the US and China,

Europe, Japan, and South Korea are regions with substantial patenting activities. We assess the im-

pact of the trade war on China’s patent similarity with these regions with the following regression:

∆Y ∗
is =β1∆ln(1 + TariffUS

i ) + β2∆ln(1 + TariffCN
i ) + β3∆Export ControlUS

i + β4∆Sanctioni+

β5∆ln(1 + Tariff∗i ) + β6∆ln(1 + TariffCN,∗
i ) + γXi,14−17 + µ+ θs + ϵis.

(7)

where ∗ ∈ {EU, JP,KR}. The dependent variable (∆Y ∗
is) represents the change in the simi-

larity of Chinese firms’ patents to those in Europe, Japan, and South Korea filed in different periods

(namely, the past 0-5 years, 0-1 years, 2-3 years, and 4-5 years). In addition to the control variables

specified in the baseline regression (Equation (5)), this analysis includes changes in import tariffs
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on Chinese goods imposed by the respective regions, ∆ln(1 + Tariff∗i ), and China’s import tariffs

on goods from the respective regions, ∆ln(1 + TariffCN,∗
i ). The effect of increasing US import

tariffs on Chinese firms is captured by the value of β1. To further investigate whether the effect

is driven by patent similarity between China and the US, we compare the estimates of β1 from

regressions that exclude and include changes in the similarity between Chinese firms’ patents and

US patents filed during the trade war period.

Table 5: Impact of the Export Tariff on Chinese Patents’ Similarity to other Regions

VARIABLES ∆ Similarity to Patents in other Regions
0-5 Years 0-1 Years 2-3 Years 4-5 Years 0-5 Years 0-1 Years 2-3 Years 4-5 Years

(1) (2) (3) (4) (5) (6) (7) (8)

Europe
∆ US Import Tariff -0.269* -0.202 -0.293* -0.295** -0.0424 0.0237 -0.0630 -0.0699

(0.145) (0.152) (0.149) (0.142) (0.0955) (0.117) (0.100) (0.0858)
∆ Similarity to US 0.835*** 0.832*** 0.851*** 0.831***

(0.0311) (0.0313) (0.0322) (0.0308)
Japan
∆ US Import Tariff -0.246** -0.242** -0.285** -0.215* -0.0426 -0.0391 -0.0792 -0.0142

(0.110) (0.114) (0.109) (0.114) (0.0790) (0.0841) (0.0741) (0.0874)
∆ Similarity to US 0.769*** 0.768*** 0.779*** 0.759***

(0.0319) (0.0335) (0.0314) (0.0325)
South Korea
∆ US Import Tariff -0.149 -0.154 -0.182 -0.124 0.0160 0.0132 -0.0174 0.0389

(0.0991) (0.120) (0.113) (0.0819) (0.0786) (0.102) (0.0872) (0.0712)
∆ Similarity to US 0.749*** 0.758*** 0.747*** 0.740***

(0.0361) (0.0329) (0.0376) (0.0410)

∆ Patent Number Y Y Y Y Y Y Y Y
Firm Characteristics Y Y Y Y Y Y Y Y
Industry Fixed Effect Y Y Y Y Y Y Y Y

Notes: Standard errors are clustered at the firm level. ∆ denotes the change in variable values between the pre-
trade-war period (2014–2017) and the post-trade-war period (2018–2021). Firm-level controls include the natural
logarithm of the firm’s employment, total assets, and the share of profits as a proportion of total revenue in the
previous year. We also control for changes in the number of patent applications. Columns (1)–(4) do not control
for the overall similarity between a firm’s patents and US patents filed during the corresponding periods, whereas
Columns (5)–(8) include this control. Industries are defined at the 3-digit level, and industry fixed effects are
included in all specifications.
*** Significant at the 1 percent level; ** Significant at the 5 percent level; * Significant at the 10 percent level.

Table 5 presents the results on patent similarity with the three other economies. Columns (1)–

(4) do not control for the overall similarity between a firm’s patents and US patents filed during

the corresponding periods, whereas Columns (5)–(8) include this control. The results indicate

that the similarity of Chinese patents to those from other regions decreases to varying extents.

A 10-percentage-point increase in the US import tariff leads to a 2.69 percent decrease from the

historical average in the similarity of Chinese patents to European patents filed over the past five

years, as shown in Column (1). This effect is similar in magnitude to the decline observed in
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the similarity with US patents, which decreases by 2.58 percent. The negative impact on the

similarity to Japanese patents is slightly smaller at 2.46 percent, while the effect on South Korean

patents is even smaller and statistically insignificant. Columns (5)–(8) reveal that the impact of the

export shock almost vanishes after controlling for the similarity to US patents, suggesting that the

divergence in China’s innovation activities from the US is the primary reason for the divergence

from other regions. In other words, once the distance between Chinese and US patents is accounted

for, Chinese patents do not exhibit further divergence from those of other regions. Moreover, the

impact of US import tariffs on patent similarity with other regions is positively associated with the

extent to which that similarity is explained by the degree of similarity to US patents.

The different changes in patent similarity across regions underscore the complex and mul-

tifaceted nature of innovation. While patent counts offer a basic measure of innovation output, a

more nuanced understanding emerges from textual analysis of patent content, which reveals deeper

insights into the specific directions of technological development.

3.7 Heterogeneity in Trade Shock Impact

Do Chinese firms’ innovations diverge further from those of the most innovative US firms? Which

types of Chinese firms are more sensitive to the increase in US import tariffs? In this subsection,

we evaluate heterogeneity in the responses of firms’ innovation to the trade war.

To answer the first question, we calculate the patent similarity between Chinese firms and the

most innovative US firms in each IPC, which is defined as the top 20 firms with the highest number

of patent applications in that IPC. The results are reported in Columns (1)–(4) of Table 6. Relative

to the baseline coefficient estimates in Tables 3 and 4, the impact of US import tariff changes on

patent similarity is now more pronounced, indicating that Chinese firms’ innovation activities are

diverging further from the technological frontier in the United States.

To answer the second question, we classify Chinese firms into two groups based on their aver-

age TFP from 2014 to 2017, the period before the trade war. High-TFP firms are defined as those

with above-median TFP within their industry. Columns (5)–(10) of Table 6 illustrate the trade

war’s impact on innovation intensity and direction among these TFP groups. Columns (5) and (6)

show that low-TFP firms experience a slightly larger decline in the number of patent applications

in response to US import tariff shocks. Additionally, as shown in Columns (7) and (8), patent

similarity with US patents decreases for both high- and low-TFP firms. Furthermore, Columns (9)

and (10) indicate that innovation activities in low-TFP Chinese firms diverge even more from those

23



of the most innovative US firms, suggesting that lower-productivity firms are more susceptible to

trade-induced technological decoupling.

Table 6: Heterogeneous Impact of the Trade War by Innovativeness and TFP

Innovation of Chinese Firms Innovation by TFP of Chinese Firms
∆ Similarity to Top US Patents ∆ Patent Number ∆ Similarity to All US Patents ∆ Similarity to Top US Patents

0-5 Years 0-1 Years 2-3 Years 4-5 Years High TFP Low TFP High TFP Low TFP High TFP Low TFP
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

∆ US Import Tariff -0.357** -0.491** -0.476*** -0.208* -1.008*** -1.241*** -0.289* -0.261 -0.299** -0.468*
(0.149) (0.202) (0.171) (0.111) (0.187) (0.325) (0.146) (0.186) (0.140) (0.276)

∆ CN Import Tariff -0.0726 0.0227 -0.0999 -0.0460 -0.260 -0.499 -0.0665 0.0992 -0.509* 0.263
(0.235) (0.209) (0.275) (0.277) (0.357) (0.466) (0.204) (0.304) (0.280) (0.367)

∆ US Export Controls 0.0432 0.0552 0.0532 0.0548 -0.463* -0.504 0.183 -0.438*** 0.358 -0.323
(0.158) (0.166) (0.168) (0.158) (0.244) (0.323) (0.217) (0.154) (0.251) (0.200)

∆ Sanctions -0.136 -0.145 -0.0960 -0.152 0.119 0.293** -0.0334 -0.0277 -0.134 -0.159
(0.136) (0.133) (0.129) (0.158) (0.128) (0.116) (0.0920) (0.224) (0.108) (0.287)

∆ Patent Number Y Y Y Y / / Y Y Y Y
Firm Characteristics Y Y Y Y Y Y Y Y Y Y
Industry Fixed Effect Y Y Y Y Y Y Y Y Y Y
Observations 1,980 1,981 1,981 1,981 1,247 1,277 998 975 996 973
R-squared 0.042 0.037 0.048 0.043 0.133 0.093 0.046 0.062 0.067 0.065

Notes: Standard errors are clustered at the firm level. ∆ denotes the change in variable values between the
pre-trade-war period (2014–2017) and the post-trade-war period (2018–2021). Columns (1)–(4) explores the
impact of the trade war on patent similarity between Chinese firms and the most innovative US firms in each IPC,
defined as the top 20 firms with the highest number of patent applications in that IPC. Columns (5)–(10) explore
the impact of the trade war on Chinese firms’ innovation intensity and directions by their average TFP level in
2014–2017. The dependent variables are, respectively, patent numbers in Columns (5)–(6), similarity to all US
patents in Columns (7)–(8), and similarity to the most innovative US firms in each IPC in Columns (9)–(10).
Firm-level controls include the natural logarithm of the firm’s employment, total assets, and the share of profits
as a proportion of total revenue before the trade war. Industries are defined at the 3-digit level, and industry fixed
effects are included in all specifications.
*** Significant at the 1 percent level; ** Significant at the 5 percent level; * Significant at the 10 percent level.

3.8 Equilibrium Effect of US Export Controls and China’s Import Tariff

In addition to the direct demand shock induced by US import tariffs on Chinese goods, US export

controls and China’s import tariffs on US goods may also affect market demand through market-

equilibrium channels. Specifically, increased difficulty in importing goods from the US may raise

the prices of those goods in domestic markets, potentially encouraging firms innovating in the same

technological fields to invest more in R&D.

To examine this effect, we compute each firm’s technological exposure to China’s import tariffs

and US export controls using the distribution of the firm’s patenting activity across technological

fields prior to the trade war (2000–2017):
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Tech exposure to Import tariffi,t =
∑
j

patent numberi,j,00−17∑
j patent numberi,j,00−17

TariffI,US
j,t (8)

Tech exposure to Export Controlsi,t =
∑
j

patent numberi,j,00−17∑
j patent numberi,j,00−17

Export Controlj,t (9)

where i indexes firms and j represents 3-digit IPC technology fields. We aggregate HS-product-

level tariffs and export controls into IPC-level measures using the concordance between IPC and

HS products based on customs and patent data.7

The changes in these exposure measures between the pre– and post–trade war periods are

incorporated into the regression model specified in Equation (5), with the results presented in

Table 7. Technological exposure to China’s import tariffs on US goods is associated with an

increase in the number of patent applications by Chinese firms. However, no significant effect is

observed on patent similarity, suggesting that China’s import tariffs and US export controls may

not significantly alter the direction of innovation among Chinese firms. Since market equilibrium

may influence innovation outcomes, we will account for its effects in the quantitative analysis.

Table 7: Market-Equilibrium Effect of US Export Controls and China’s Import Tariff

∆ Patent Number ∆ Similarity to US Patents
0-5 Years 0-1 Years 2-3 Years 4-5 Years

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

∆ US Import Tariff -1.023*** -1.148*** -0.250* -0.245** -0.258* -0.258** -0.281* -0.275** -0.196 -0.195*
(0.182) (0.189) (0.132) (0.116) (0.135) (0.120) (0.141) (0.126) (0.122) (0.105)

∆ CN Import Tariff -0.238 -0.353 0.126 0.0815 0.128 0.0694 0.139 0.0876 0.104 0.0811
(0.317) (0.312) (0.182) (0.177) (0.167) (0.157) (0.201) (0.195) (0.194) (0.201)

∆ US Export Controls -0.454** -0.420** -0.0862 -0.0981 -0.0802 -0.0924 -0.0486 -0.0592 -0.0992 -0.110
(0.207) (0.209) (0.125) (0.118) (0.123) (0.115) (0.135) (0.129) (0.125) (0.120)

∆ Import Tariff (Tech Exp.) 1.503** 1.704** -0.480 -0.362 -0.381 -0.289 -0.516 -0.361 -0.569 -0.471
(0.654) (0.669) (0.573) (0.620) (0.536) (0.597) (0.620) (0.660) (0.624) (0.659)

∆ US Export Controls (Tech Exp.) -0.129 -0.125 -0.0926 0.0262 0.0537 0.146 -0.148 -0.0268 -0.167 -0.0301
(0.461) (0.420) (0.338) (0.374) (0.367) (0.420) (0.381) (0.404) (0.292) (0.326)

∆ Patent Number / / N Y N Y N Y N Y
Firm Characteristics N Y N Y N Y N Y N Y
Industry Fixed Effect Y Y Y Y Y Y Y Y Y Y
Observations 2,546 2,539 1,994 1,984 1,994 1,984 1,994 1,984 1,994 1,984
R-squared 0.040 0.092 0.004 0.029 0.004 0.029 0.004 0.032 0.004 0.029

Notes: Standard errors are clustered at the firm level. ∆ denotes the change in variable values between the pre-
trade-war period (2014–2017) and the post-trade-war period (2018–2021). Firm-level controls include the natural
logarithm of employment, total assets, and the profit-to-revenue ratio before the trade war. Industries are defined
at the 3-digit level.
*** Significant at the 1 percent level; ** Significant at the 5 percent level; * Significant at the 10 percent level.

7The detailed procedure for calculating IPC-level trade conflicts is presented in Appendix D.3.
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4 Quantitative Model

While the empirical analysis provides robust evidence that US import tariffs are associated with

declines in both innovation intensity and similarity to US patents, the findings cannot fully rule

out the possibility of strategic patenting or wording behavior. To address it, we complement the

reduced-form evidence with a quantitative model that explicitly captures the role of the demand

channel. This model enables us to quantify the extent to which the observed decline in innovation

intensity and the divergence in patent similarity are driven by shifts in market demand, and to

assess how these reallocations of innovation affect firms’ export performance. Specifically, the

model incorporates the TF-IDF algorithm and focuses on the joint decision-making of Chinese

listed firms (hereafter “domestic firms”) regarding innovation and exporting.

4.1 Model Setup

4.1.1 Preferences and Market Demand

We consider a world with many destination markets indexed by n = 0, 1, 2, .., N , where n = 0

represents the domestic market. There are a set of I products that can be potentially produced,

and each firm ω can produce a subset of products I(ω) ⊂ I. Each product i has a set of features

Ki (e.g., engines and air-conditioning for a car). Firms producing the same product can differ in

the product’s features (e.g., distinct car models), and we treat each firm’s product as a variety. We

assume that within a product market, different varieties are engaged in monopolistic competition.

Consumers in each destination n have the following preferences:

Un
t =

∏
i∈I

(Qn
it)

γn
i ,

Qn
it =

[∑
ω

(qnit(ω))
σ−1
σ

] σ
σ−1

, where qnit(ω) =

(∑
k∈Ki

(γnik)
1
ϵ qnikt(ω)

ϵ−1
ϵ

) ϵ
ϵ−1

,

where the upper-level preferences are Cobb-Douglas preferences over product-level composite

goods Qn
it, with γni governing the expenditure share and

∑
i γ

n
i = 1. Within each product, con-

sumers have a nested CES preference over different varieties with the elasticity of substitution

σ > 1. Under monopolistic competition, we compute the demand for a variety produced by firm

ω as given by qnit(ω) = (pnit(ω))
−σ(P n

it)
σ−1γni E

n
t , where pnit(ω) is the price charged by firm ω for
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each unit of qnit(ω). P
n
it is the aggregate price index of the composite good of product i in country

n, and En
t is country n’s total expenditure. Each firm’s product is a bundle of different features,

with variable qnikt(ω) denoting the quantity level of feature k offered by firm ω. Parameter γnik cap-

tures the taste of consumers from country n for feature k of product i: for example, US consumers

usually prefer SUVs to sedans, while the opposite is true for Chinese consumers. The parameter

ϵ > 1 is the elasticity of substitution between different features of a variety.

4.1.2 Domestic Firms’ Production and Trade Costs

There is a total of Mt domestic firms. If a domestic firm is endowed with the technology for

product i ∈ I(ω), it produces different features of product i using the following equation:

qikt(ω) = zikt(ω)
1

ϵ−1 likt(ω), k ∈ Ki.

zikt(ω) is feature-specific productivity level, and likt(ω) captures the amount of labor hired in pro-

ducing feature k. We introduce the exponent 1
ϵ−1

on zikt(ω) to simplify the derivation. Additionally,

it is noteworthy that in the special case where there is only one feature (#Mi = 1) with elasticity

ϵ = σ, revenue becomes proportional to productivity, pnitq
n
it ∝ znit, which aligns with a common

assumption in the growth literature (e.g., Akcigit, Celik and Greenwood, 2016).8

Given the production function, the firm will minimize the cost of producing each unit of qnit(ω)

(after accounting for consumers’ preferences toward different features in market n), and thus we

can compute the marginal cost of qnit(ω) as:

cnit(ω) =

[∑
k∈Ki

γnikzikt(ω)

] 1
1−ϵ

w0
t ,

where w0
t is the wage rate in the home country.

To serve market n, a firm must incur iceberg costs (inclusive of tariff costs) denoted by τnit ≥ 1.9

We allow τnit to vary over time to account for changes in tariff policies. Moreover, exporting a

certain product incurs fixed export costs fn
i (Melitz, 2003) in units of labor, with the costs of the

local market being τ 0it = 1 and f 0
i = 0.

8In the following derivation, we assume that innovation enhances the level of zikt(ω). If, instead, we assume that
innovation directly improves the level of zikt(ω)

1
ϵ−1 , this would result in excessively high innovation returns (since

revenues are elastic with respect to zikt(ω)
1

ϵ−1 ) and could lead to the risk of explosive solutions.
9In this model, we do not explicitly account for tariff revenues or the government budget constraint.

27



4.1.3 Innovation and Evolution of Domestic Firms’ Productivity

We assume that firms’ productivity levels evolve over time as follows:

zik,t+1(ω)︸ ︷︷ ︸
next-period feature-specific productivity

= (1− δ)zikt(ω)︸ ︷︷ ︸
current-period productivity

+ [sikt(ω)ait(ω)]
ϕ︸ ︷︷ ︸

increment from innovation

. (10)

The term ait(ω) represents the number of inventions by firm ω related to product i at time t,

while sikt(ω) denotes the share of innovation directed towards feature k, with the condition that∑
k∈Ki

sikt(ω) = 1. The existing literature on directed technology change, such as the works by

Acemoglu (2010) and Acemoglu, Aghion, Bursztyn and Hemous (2012), examines factor-biased

or sector-biased technological change. Our study broadens this scope by exploring how firms can

allocate their innovation efforts across various features of a product. We follow the literature (e.g.,

Bloom, Romer, Terry and Van Reenen, 2020) to assume that innovation efforts exhibit diminishing

returns, with 0 < ϕ < 1. Incurring an invention would cost ψ units of labor.10

4.1.4 Market Equilibrium

To close the model, we must also consider the sales of foreign firms in each market. Given the

lack of data and the fact that China represented only a small portion of foreign demand, we as-

sume that the behavior of foreign firms is not influenced by Chinese firms.11 Specifically, for each

product, we follow Krugman (1991) to assume that there is a unit measure of firms that produce

differentiated varieties in each foreign country m ∈ {1, ..., N}, and all these firms are exporters.

The firm’s unit cost of production to serve market n is cn,mit . Let τn,mit be the iceberg costs from

foreign country m ∈ {1, ..., N} to destination n, then the market equilibrium in destination n is:

Mt

∫
1n
it(ω)p

n
it(ω)

1−σdω(P n
it)

σ−1γni E
n
t +

N∑
m=1

(σ̃τn,mit cn,mit )1−σ(P n
it)

σ−1γni E
n
t = γni E

n
t , (11)

where export choice 1n
it(ω) ∈ {0, 1} and domestic firms’ price pnit(ω) will be solved below. Due

to monopolistic competition, the foreign firm’s price is σ̃ = σ
σ−1

over the marginal costs. The

10Assuming diminishing returns to innovation and linear innovation costs is analogous to assuming linear returns
to innovation and convex innovation costs (e.g., Acemoglu, Akcigit, Bloom and Kerr, 2018).

11Although China is often seen as the “world factory,” the proportion of foreign manufacturing expenditures spent
on Chinese goods was only about 5% in 2015, according to the OECD Inter-Country Input-Output Table, reflecting
cross-border trade barriers. Therefore, we assume that changes in China have minimal effects on firm behavior in other
countries, while still considering the impact of Chinese firms’ export activities on foreign aggregate price indices as
shown in Equation (12).
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left-hand side of Equation (11) is the supply of product i to market n (aggregated across origins),

while the right-hand side represents the total demand for product i in market n. Canceling out the

common terms, we obtain:

Mt

∫
1n
it(ω)p

n
it(ω)

1−σdω +
N∑

m=1

(σ̃τn,mit cn,mit )1−σ = (P n
it)

1−σ. (12)

By Equation (12), we consider the market equilibrium in each product market, taking into account

the impact of trade war on aggregate price indices, following a similar practice by Handley and

Limão (2017), with computation details provided in Appendix D.4.12

We follow the literature (e.g., Costinot, Donaldson and Smith, 2016; Antràs, Fort and Tintelnot,

2017) to assume that there is an outside sector, which absorbs labor and produces goods that are

freely tradable across countries, leading to exogenously determined wage rates in all countries. We

also assume that expenditures are exogenously given in all countries.13

4.2 Solving Domestic Firms’ Problem

4.2.1 Static Problem: Choosing Export Price and Status.

Given productivity levels, we first solve a domestic firm ω’s optimal prices and export status at

each time t. As the production function exhibits constant returns to scale, the export decisions are

independent across destinations. The firm chooses the price to maximize variable profits for each

market n:

max
{1n

it(ω),p}
πn
it(ω) = 1n

it(ω)
[
(p− τnitc

n
it(ω)) p

−σ(P n
it)

σ−1γni E
n
t − w0

t f
n
i

]
.

From the first-order condition regarding the price, we can solve price pnit(ω) = σ̃τnitc
n
it(ω) if the

firm exports to market n. The corresponding profits are given by:

πn
it(ω) = 1n

it(ω)

[
1

σ
(σ̃τnitc

n
it(ω))

1−σ (P n
it)

σ−1γni E
n
t − w0

t f
n
i

]
= 1n

it(ω)
[
ζnitc

n
it(ω)

1−σ − w0
t f

n
i

]
,

(13)
12Handley and Limão (2017) consider heterogeneity in foreign firms’ productivity and the fixed costs of entering

markets, which can lead to changes in the export entry cutoff in response to economic shocks. However, due to the
absence of data on the export behavior of foreign firms and the computational complexity of calibrating the multi-
dimensional productivity distribution across foreign countries, we abstract from firm heterogeneity and assume that
all foreign firms are homogeneous and exporters (Krugman, 1991).

13One way to derive exogenous expenditures is to assume that workers allocate a fixed proportion of their income
to spending on the heterogeneous-good sector.
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where ζnit =
1
σ
(σ̃τnit)

1−σ (P n
it)

σ−1γni E
n
t represents aggregate demand factor from market n for prod-

uct i. The firm exports to destination n (1n
it(ω) = 1) if and only if ζnitc

n
it(ω)

1−σ ≥ wtf
n
i .

4.2.2 Dynamic Problem: Innovation Choices.

We can then solve the firm’s innovation choices to maximize the value for product i:

Vit(zit(ω)) = max
{sikt(ω),ait(ω)}

N∑
n=0

πn
it(ω)− ψw0

t ait(ω) +
1

1 + r
Vit+1(zit+1(ω))

s.t. zik,t+1(ω) = (1− δ)zikt(ω) + [sikt(ω)ait(ω)]
ϕ∑

k∈Ki

sikt(ω) = 1.

The first-order conditions regarding the share of inventions devoted to feature k, sikt(ω), imply:

sik′t(ω)

sikt(ω)
=

[
∂Vit(zit(ω))/∂zik′t+1(ω)

∂Vit(zit(ω))/∂zikt+1(ω)

] 1
1−ϕ

. (14)

Here, ∂Vit(zit(ω))/∂zik′t+1(ω) captures the marginal return from improving the productivity of

feature k:

∂Vit(zit(ω))

∂zikt+1(ω)
=

∞∑
x=t+1

(
1− δ

1 + r

)x−t
1− σ

(1− ϵ)(1− δ)
(w0

x)
1−σ

N∑
n=0

1n
ix(ω)ζ

n
ix(c

n
ix(ω))

ϵ−σγnik.

The reliance of marginal benefits on
∑N

n=0 1
n
ix(ω)ζ

n
ix(c

n
ix(ω))

ϵ−σγnik indicates that demand for a

particular feature k, as captured by the weighted average destination’s taste for a certain feature γnik,

would affect the firm’s proportion of innovation devoted to that feature. Consequently, if foreign

consumers prefer feature k and the firm serve these consumers (higher γnik for some foreign market

n with 1n
ix(ω) = 1), this optimal scenario suggests that the firm would allocate more effort toward

feature k across all its innovations.

Using the first-order condition with regard to innovation quantity ait(ω), we can also obtain the

following solutions for the number of inventions:

ait(ω) =

(∑
k∈Ki

ϕ(sikt(ω))
ϕ∂Vit(zit)/∂zikt+1

w0
tψ

) 1
1−ϕ

. (15)

Now, consider the impact of permanently higher tariff rates in market n, which raise iceberg
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costs τnit , thereby reducing export revenues ζnix (x ≥ t) for all future periods. According to Equation

(14), if the firm is actively producing good i and exporting to market n, the decline in export

revenues ζnix will shift the focus of innovations in product i away from the preferences of consumers

in country n (γnik). Additionally, Equation (15) suggests that the lower export revenues ζnix will also

decrease the total quantity of innovation, ait(ω), assuming that the firm exports to market n.

Finally, suppose that distinct product features correspond to different words in the patent text

(we provide empirical support for this assumption in Section 5.1.1). We can thus compute the

similarity between firm ω’s innovation vector ait(ω) = [aikt] and another vector of innovations

characterized by the vector bit = [bikt] in product i across features:

Sim(ait(ω),bit) =

∑
k∈Ki

aikt(ω)bikt[∑
k∈Ki

(aikt(ω))2
]1/2 [∑

k∈Ki
(bikt)2

]1/2 . (16)

5 Quantitative Analysis

To assess the significance of accounting for both the intensity and direction of innovation when

evaluating the impact of trade shocks on firm performance, we conduct a quantitative analysis

using the US-China trade war as a case study. In this section, we first calibrate the model using

data from 2016, and then simulate the effects of the trade war that unfolded after 2018.

Since our primary objective is to examine how trade shocks influence firms’ innovation choices

and their aggregate effects, we focus on innovative listed firms—specifically, those that filed at least

one patent between 2000 and 2016 and were active both before and after the trade war. This results

in a sample of 2,057 innovative firms, which we will simulate in our quantitative analysis. Given

that this subset represents a relatively small share of the overall labor market, we abstract from

general equilibrium effects on wages and aggregate demand. However, we do account for market

equilibrium in each product market, which leads to product-level price adjustments, following the

approach of Handley and Limão (2017).

5.1 Calibration

We now describe how we calibrate the model to the data. The calibration includes three countries:

China, the US, and a constructed Rest of the World (ROW), which aggregates all other countries.

Accordingly, we define the country index as n ∈ {0, 1, 2}, where n = 0 corresponds to China,

n = 1 to the United States, and n = 2 to the ROW.
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5.1.1 Mapping Patent Words to Product Features

In the quantitative analysis, we focus on 120 products, each corresponding to a three-digit IPC

category. In our earlier empirical work, similarity was measured using word-level information. To

map the data to the model and compute similarity according to Equation (16), we interpret each

patent word as a product feature in the model. To support this interpretation, Figure 5 presents

word clouds constructed from Chinese and US self-driving patents filed during 2014–2017 and

2018–2021. The keywords extracted from patent texts align closely with the actual functional fea-

tures of self-driving vehicles. Specifically, Chinese patents often emphasize parking and navigation

technologies, reflecting a focus on urban mobility and driver-assistance functions suited to China’s

dense traffic conditions and complex parking environments. In contrast, US patents more fre-

quently highlight lidar (Light Detection and Ranging) and autonomous control systems. Appendix

D.1 provides additional details and discussions, illustrating the divergence between Chinese and

US self-driving patents by visualizing their trajectories of change.

A key challenge in conducting the quantitative analysis lies in the high dimensionality of patent

words—exceeding 10,000 due to the richness of patent texts—which poses substantial computa-

tional burdens and requires estimating a large number of parameters. To address this issue, we

apply Non-negative Matrix Factorization (NMF) to reduce dimensionality by clustering semanti-

cally related words into 256 features, with details of the NMF method in Appendix D.2.14

5.1.2 Calibration Procedure

We classify the model parameters into three groups. The first group is calibrated using aggregate

statistics or values from the existing literature. The second group is directly estimated from the

micro-level data. The third group is jointly calibrated using the simulated model.

Panel A of Table 8 reports the parameters in the first group, {I,K, σ, ϵ, δ, ϕ}. As discussed

earlier, we consider I = 120 products and #K = 256 features. The elasticity of substitution

between different varieties, σ, and the elasticity of substitution between different features, ϵ, both

take the value of 5, following Head and Mayer (2014).15 The depreciation rate of technology, δ, is

0.08, consistent with Holmes, McGrattan and Prescott (2015). The elasticity of innovation output

14Regressing patent similarity on trade shocks (Equation 5) using these low-dimensional embeddings yields results
that closely match those reported in Tables 3 and 4.

15In our model, σ − 1 represents the trade elasticity. Accordingly, we set σ = 5, following common estimates of
trade elasticity in the literature (e.g., Head and Mayer, 2014; Simonovska and Waugh, 2014). Due to limited empirical
evidence on the elasticity of substitution ϵ between different features, we assume it to be equal to the elasticity of
substitution across varieties. We perform robustness checks regarding the value of ϵ in Section 5.2.2.
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Figure 5: Word Cloud of Self-Driving Vehicle Patents: CN vs. US

(a) CN: 2014-2017 (b) CN: 2018-2021

(c) US: 2014-2021 (d) US: 2018-2021

This figure presents word cloud visualizations of keywords from Chinese and US self-driving patents. Panels (a)
and (b) display the word clouds for Chinese patents filed during 2014–2017 and 2018–2021, respectively, while
panels (c) and (d) present the corresponding word clouds for US patents over the same periods.

with regard to cost, ϕ, is set to be 0.5, which is commonly used by the growth literature and based

on empirical findings (see Acemoglu et al., 2018, for a review).

The parameters in the second group, {γnik, zik,2016(ω)}, are directly estimated from the data.

Since γnik reflects the preference of consumers in country n for feature k of product i, we calibrate

γnik using each country’s share of patent text devoted to each feature within each IPC category

from 2000 to 2016—a period unaffected by the trade war.16 zik,2016(ω) represents firm ω’s initial

productivity in feature k of product i. It is determined by the firm’s accumulated number of patents

from 2000 to 2016, weighted by the share of patent text devoted to feature k, and calculated using

16Specifically, for each country, the majority of firm sales occurred in the domestic market. From Equation (14), we
observe that for firms selling exclusively in their home market, sik ∝ (γnik)

1/(1−ϕ). Therefore, we use each country’s
IPC-feature share between 2000 and 2016, sik, to infer γnik, imposing the normalization

∑
k γ

n
ik = 1.
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Table 8: Parameter Values

Notation Definition Value Source

Panel A: Parameters Set from Aggregate Data and Literature

I Number of products 120 Data
Ki Number of features 256 Data
σ Elasticity of substitution over different varieties 5 Head and Mayer (2014)
ϵ Elasticity of substitution over different features 5 Head and Mayer (2014)
δ Depreciation rate of technology 0.08 Holmes et al. (2015)
ϕ Decreasing return rate of innovation 0.5 Bloom et al.(2020)

Panel B: Parameters Set from Micro-level Data

γn=0
ik Domestic product-feature-specific preferences 0.004 (3.66e-5)
γn=1
ik US product-feature-specific preferences 0.004 (6.35e-5)
γn=2
ik ROW product-feature-specific preferences 0.004 (6.07e-5)
zik,2016(ω) Firm-feature-specific initial productivity 0.20 (0.05)

Panel C: Parameters Set Using Method of Moments

ζn=0
i Aggregate demand factor from domestic market for each product 62.19 (82.35)
ζn=1
i Aggregate demand factor from US market for each product 3.34 (3.93)
ζn=2
i Aggregate demand factor from ROW market for each product 12.38 (10.59)
fn=1
i Fixed export costs to the US for each product 8.93 (11.07)
fn=2
i Fixed export costs to the ROW for each product 25.76 (24.28)
ψ Innovation costs 225.29
ξ Initial productivity multiplier 2.12

Notes: For the moments with multiple values, we report the average value, with the standard deviation in parentheses.

the evolution Equation (10).

The third group of parameters, {ζni , fn
i , ϕ, ξ}, is jointly calibrated within the model by mini-

mizing the distance between moments in the model and the data. While the estimation is conducted

jointly, we can link specific parameters to particular moments to guide our choice of moment con-

ditions. The parameter ζni captures aggregate demand from market n for product i by Chinese

firms. Since it affects firms’ sales in market n, we discipline ζni using Chinese firms’ exports of

product i to market n in 2016, resulting in N × K = 360 moments. The fixed export costs fn
i

(n = 1, 2) shape the extensive margin of exporting to the US or ROW and are primarily identified

from the share of product-i firms exporting to each destination in 2016. The parameter ψ, which

governs average innovation costs, is informed by the average number of patent applications filed

between 2016 and 2021. Finally, motivated by evidence that much of China’s early productivity

growth was driven by imitation (Wei, Xie and Zhang, 2017), we introduce a productivity multiplier

ξ to scale firms’ initial productivity zik,2016. This adjustment helps the model match the observed

sales growth rate and avoids overstating the contribution of R&D to productivity gains.
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Panel C of Table 8 reports the estimation results for all internally estimated parameters from the

third parameter group. Notably, we find that domestic demand for Chinese firms exceeds demand

from both the US and ROW, consistent with the presence of trade barriers that limit Chinese firms’

access to foreign markets. As shown in Table 9, the estimated parameters allow the model to

closely match the targeted data moments on sales and innovation.

Finally, although market equilibrium for each product depends on production and iceberg costs

faced by foreign producers, we demonstrate in Appendix D.4 that counterfactual product-level

price indices can be derived using Exact-Hat Algebra and observable data moments, without the

need to explicitly identify these parameters for foreign producers, following the approach in Dekle,

Eaton and Kortum (2008).

Table 9: Targeted Moments Generated by Data and Model

Description Data Model

Domestic sales for each product (billion) 536.67 (267.81) 536.87 (267.71)
Exports to US for each product (billion) 29.73 (13.05) 29.73 (13.05)
Exports to ROW for each product (billion) 111.83 (48.18) 111.77 (48.20)
Share of exporters (US) among all firms producing each product 0.64 (0.12) 0.64 (0.13)
Share of exporters (ROW) among all firms producing each product 0.79 (0.11) 0.79 (0.11)
Average number of patent applications for each firm 35.6 35.6
Growth rate of total sales of listed firms between 2016 and 2017 0.17 0.17

5.2 Understanding the Quantitative Impact of the Trade War

We now apply our calibrated model to examine the impact of the trade war, focusing in particular

on how it influences export sales to the US through shifting innovation decisions by Chinese firms.

5.2.1 The Effect of 2018 Trade War

To assess the impact of the US–China trade war during the 2018–2019 period, we simulate the cal-

ibrated model over the 2016–2021 horizon. We proceed in two steps. First, we simulate the model

without any tariff shocks to generate a baseline trajectory of firms’ decisions, using the calibrated

aggregate demand ζni for all years. Second, we introduce unexpected tariff increases during the

2018–2021 trade war period, including US tariffs imposed on China and China’s retaliatory tariffs,

as well as observed tariff changes in the ROW.17 In this scenario, we adjust aggregate demand for

17In response to the trade war, the Chinese government reduced import tariffs on goods from the ROW.
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Figure 6: Patent Similarity to Domestic and US Innovations

Notes: The figure illustrates the similarity of Chinese patents to domestic innovations (red line), US innovations
(blue line) and ROW innovations (black line), using 2016 as the base year. The dashed curve represents the
simulation results without unexpected export tariff shocks, while the solid curve represents the results with the
shocks.

Chinese firms to ζ̂ni = ζni

(
τnit

τnipre

)1−σ (
P̂n
it

Pn
it

)σ−1

. Here, x̂ denotes the counterfactual value of vari-

able x. The term
(

τnit
τnipre

)
captures tariff changes attributable to the trade war, while

(
P̂n
it

Pn
it

)
reflects

the endogenous adjustment in product-level price indices, computed by applying the Exact-Hat

algebra to the product-level market equilibrium detailed in Appendix D.4. Finally, we compare the

outcomes from the two simulations to quantify the trade war’s effects.

It is important to note that firms’ innovation choices—ait(ω) and sikt(ω)—depend on their ex-

pected future export status, 1n
ix(ω) for x = t+1, t+2, . . . (see Equations 14 and 15). Conversely,

export decisions are influenced by past innovation choices through their effect on firm productivity

(see Equation 13). As a result, we iteratively solve for the time paths of innovation and export de-

cisions for each firm until convergence is achieved. When analyzing the impact of the 2018–2019

trade war, we assume that tariff rates remain constant at their 2021 levels from 2022 onward.18 Al-

though we report results for the 2016–2021 period, the model is simulated through 2030 to account

for firms’ forward-looking innovation decisions, which depend on expected future profits.19

Figure 6 depicts the evolution of patent similarity between Chinese firms and domestic, US,

18The second phase of the trade war was unexpected and not anticipated before 2024.
19Beyond 2030, firm profits are assumed to remain constant at their 2030 levels.
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and ROW innovations over time. The similarity measures in the scenario of no trade shocks are

normalized to 1, so that the solid lines indicate relative changes in similarity with trade shocks,

respectively. The simulations show rising similarity with domestic innovations, accompanied by

declining similarity with US and ROW innovations, consistent with our empirical results.

The simulation shows that in the presence of the trade war, export sales to the US declined by

68% through 2021, as illustrated in the left panel of Figure 7. This finding aligns with empirical

estimates from Jiao et al. (2022), who indicate that a 1-percentage-point increase in US tariffs led

to a 4% decline in Chinese exports to the US (as noted in Section 3.1, US tariffs on Chinese goods

rose by about 20 percentage points between 2018 and 2019). According to WTO data, China’s

share of total US imports gradually fell from 22% in 2016 to 13% in 2024. This decline is smaller

than what our model predicts, potentially due to mitigating factors such as tariff exemptions (Cen,

Cohen, Wu and Zhang, 2024), tariff evasion (Che, Lin and Zhang, 2025), and trade rerouting.

To assess the role of innovation in shaping the aggregate impact, we conduct two counterfactual

exercises. In the first, we hold both firms’ innovation intensity (ait(ω)) and direction (sikt, k ∈
K(ω)) fixed at their levels in the calibrated model without trade shocks, and then introduce tariff

shocks. Comparing this outcome to the simulation result that incorporates innovation adjustments

allows us to isolate the impact of changes in R&D decisions induced by the trade war. In the

second exercise, we decompose this effect into contributions from changes in innovation intensity

versus changes in innovation direction. The basic idea is to alternately hold one dimension fixed

while allowing the other to adjust, so that we can separate their respective roles.20 The results are

shown in the right panel of Figure 7.

We find that, relative to a scenario in which firms maintain their R&D behavior—both in quan-

tity and direction—throughout the trade war, changes in R&D lead to a 3.3% decline in export

sales to the US by 2021. Of this decline, 14% (approximately 0.5 percentage points) is attributable

to changes in R&D direction. This indicates that trade-war-induced shifts in innovation direction

have a meaningful impact on firm performance.

20To be specific, we implement this by two complementary approaches. First, we fix innovation intensity at its
no-shock level while allowing direction and tariffs to vary, and compare the outcome to both the no-shock model and
the model with trade shocks and innovation adjustments along both dimensions; this isolates the effect of direction.
Second, we fix direction at its no-shock level while allowing intensity and tariffs to vary; the difference then isolates
the effect of intensity, with the residual explained by direction. We take the average of the two approaches.
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Figure 7: Changes in Export Sales due to Innovation Decisions

Notes: The figure shows the change in Chinese firms’ export sales to the US due to export tariff shocks (the left panel) and the impact of firms’
innovation choices (the right panel). In the right panel, the solid curve represents the combined contribution of both innovation intensity and
direction, while the dashed curve isolates the contribution of innovation direction alone.

5.2.2 Model Fit and Robustness Check

We demonstrate the reliability of our model’s estimation and prediction from two perspectives.

First, we show its fit by replicating several empirical regularities identified in our analysis that

were not explicitly targeted during calibration. Second, we test the sensitivity of the results to

changes in key model parameters.

Model Fit First, the baseline regression results in Table 3 indicate that a 10-percentage-point

increase in US import tariffs reduces Chinese firms’ patent applications by 10.88% and patent

similarity by 2.58% relative to the historical averages. Columns (2) and (4) of Table 10 report

coefficients by simulating the impact of the same tariff changes in our model, which captures 6.5%

of the estimated decline in innovation intensity and 21% of the estimated drop in similarity to US

patents. Columns (5)–(8) further incorporate firms’ technological exposure to China’s import tar-

iffs, which could influence product-level competition in the domestic market. The coefficients on

US import tariffs remain largely unchanged, suggesting that our model reproduces the direction

of the empirical patterns: higher US tariffs reduce both the intensity of Chinese innovation and its

similarity to US patents. The simulated effects are smaller than the empirical estimates, indicat-

ing that additional factors beyond the demand channel are at play. Examples include knowledge

diffusion through global R&D networks (Liu and Ma, 2021), strategic notching at specific sales

thresholds (Chen, Liu, Serrato and Xu, 2021), and strategic patenting or wording of abstracts in re-
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sponse to geopolitical considerations.21 These mechanisms, too, may be shaped by trade tensions.

Table 10: Non-targeted Moments: Trade Shock and Innovation

∆ Patent Number ∆ Similarity to US Patents ∆ Patent Number ∆ Similarity to US Patents

(1) data (2) model (3) data (4) model (5) data (6) model (7) data (8) model

∆ US Import Tariff -1.088*** -0.071*** -0.258** -0.055*** -1.148*** -0.085*** -0.245** -0.044***
(0.189) (0.017) (0.111) (0.005) (0.189) (0.023) (0.116) (0.008)

∆ Tech Exposure (Import Tariff) 1.704** 0.032 -0.362 -0.026**
(0.669) (0.039) (0.620) (0.012)

Notes: This table replicates Table 3 using the model-generated data, along with the original empirical results from Table 3.

Second, Table 5 indicates that the decline in the similarity between Chinese patents and those

from the ROW can be largely attributed to a reduction in their similarity with US patents. Consis-

tently, our calibrated model reproduces a similar pattern: as shown in Columns (1) to (4) of Table

11, when similarity to the US is additionally included in the regression on Chinese patent similarity

to the ROW, the estimated coefficient on the US import tariff declines substantially.

Table 11: Non-targeted Moments: Trade Shock and Innovation Direction (Other Countries)

∆ Similarity to ROW Patents

(1) data (2) data (3) model (4) model

∆ US Import Tariff -0.222* -0.023 -0.040*** -0.007***
(0.123) (0.064) (0.004) (0.002)

∆ Similarity to US 0.784*** 0.601***
(0.021) (0.007)

Notes: This table replicates Table 5 using the model-generated data, along with the original empirical results from Table 5.

Robustness Check In our simulation, we account for both changes in US import tariffs and

China’s retaliatory tariffs. It is likely that innovation among Chinese firms is influenced by China’s

retaliatory tariffs: higher Chinese import tariffs increase the cost of foreign goods, shifting demand

toward domestic alternatives. This shift boosts domestic firms’ incentives to innovate, partially

mitigating the negative impact of higher US tariffs. To isolate this effect, we conduct a counter-

factual analysis holding Chinese tariffs constant. The results, shown in the second row of Table

12, indicate that without the change in Chinese tariffs, the predicted decline in export sales to the

US—as well as the declines linked to changes in R&D intensity and direction—is only slightly

larger. This supports the conclusion that the increase in US tariffs is the primary driver of the over-

all export contraction, consistent with Table 1, which shows that China’s retaliatory tariffs were

largely concentrated in agricultural products and might have little impact on innovation.
21Some Chinese firms may deliberately scale back innovation to avoid drawing scrutiny from US authorities.
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Table 12: Changes in Export Sales
(No Import Tariff Change, Varying Elasticity of Substitution over Features and R&D costs)

Export decline to the US (%)

Total
(2021)

Due to innovation
(2021)

Due to innovation
direction (2021)

Baseline -67.740 -3.349 -0.476
Without import tariff change -67.741 -3.351 -0.476
ϵ = 4 -42.894 -2.348 -0.494
ϵ = 6 -72.779 -2.350 -0.283
R&D costs change (5%) -68.377 -5.267 -0.367
R&D costs change (10%) -69.198 -7.803 -0.440
R&D costs change (25%) -70.793 -12.600 -0.413
R&D costs change (50%) -72.761 -18.536 -0.571

Notes: “Total (2021)” reports the decline in the predicted export sales to the US relative to a no–trade-war counterfactual. “Due to Innovation”
compares outcomes with and without firms’ endogenous R&D responses. The last column isolates the contribution of changes in innovation
direction in 2021. The definitions of these three variables are the same as those in Figure 7.

An additional concern is the limited empirical evidence on the elasticity of substitution across

features. We assume it equals the elasticity of substitution across varieties in our baseline es-

timation. However, consumers may be more sensitive to within-product features, implying that

feature-level elasticity could be higher. To test this, Rows (3) and (4) report results using smaller

and larger values of ϵ, respectively. The outcomes show only small changes, suggesting robustness

to alternative assumptions about ϵ.

Lastly, following the trade war, China may learn less from the United States, thereby making

innovation more difficult. Incorporating the global knowledge-flow network directly into the model

would require a substantially more complex structure, and thus instead we examine the sensitivity

of our predictions to higher R&D costs. Rows (5) through (8) of Table 12 increase the R&D cost

parameter ψ by 5%, 10%, 25%, and 50% after 2018, and report the resulting predicted decline

in export sales to the US. As expected, higher R&D costs amplify the overall export decline and

magnify the effect of R&D adjustments.

5.2.3 The Effect of New US Import tariff in 2025

In 2025, Trump’s return to office sparked a renewed wave of tariff disputes—this time marked

by reciprocal trade measures. As documented in Chad Bown’s “Trade War Timeline 2.0,” a 30%

import tariff had already been imposed on China by August 18, 2025.22 We therefore apply our

22https://www.piie.com/blogs/realtime-economics/2025/trumps-trade-war-timeline\
protect\penalty\z@-20-date-guide
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framework to assess the potential economic impact of these new reciprocal tariffs.

Figure 8: Changes in Export Sales due to Innovation Decisions (Plus Reciprocal Tariff)

Notes: The figure illustrates the change in Chinese firms’ export sales to the US resulting from tariff shocks in 2018 alone versus in both 2018
and 2025 (left panel), and the impact of firms’ innovation choices on export sales (right panel). The definitions of the variables are the same
as those in Figure 7.

The red dashed line in the left panel of Figure 8 represents the decline in export sales to the US

due to the 2018 trade war, consistent with the left panel of Figure 7, extended here through 2030.

Without the reciprocal tariff introduced in 2025, the export decline follows a smooth downward

trend, reflecting the accumulated effects of productivity slowdown due to less innovation. By

contrast, the blue solid line depicts the predicted decline in exports to the US when reciprocal

tariffs are imposed in addition to the 2018 US tariff increase. In this case, export sales to the

US are projected to fall sharply—by 97% in 2025 and 99% in 2030. Because we do not account

for other macroeconomic adjustments such as exchange rate movements, tariff exemptions, export

subsidies, or trade rerouting, these results may overstate the magnitude of the trade war’s impact

on export volumes, as they purely isolate the effect of the decline in the aggregate demand due to

tariff increases. The right panel decomposes the contributions of changes in R&D intensity and

R&D direction. Analogous to the left panel, the red lines correspond to the 2018 trade conflict

alone (as in Figure 7), while the blue lines capture the additional effect of a 30% reciprocal tariff in

2025.23 The contributions of both R&D change and direction change only alter slightly relative to

considering the 2018 trade war alone.24 This likely reflects the fact that the initial round of tariffs

23To ensure comparability between the red and blue lines, the blue lines incorporate only the endogenous change
in firms’ R&D decisions under the reciprocal tariff in 2025, while firms’ export decisions are held fixed at the levels
observed under the 2018 trade war alone.

24There are two reasons for the peak in exports to the US due to R&D changes in 2028. First, the persistent decline
in innovation caused by the trade war raises the marginal return to R&D. Second, as firms’ productivity increases, more
firms become exporters. Together, these factors mitigate the decline in export sales resulting from reduced innovation
in each period.
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in 2018 had already substantially reduced exports to the US, leaving subsequent tariff increases

with only a limited additional impact on Chinese firms’ R&D decisions.

6 Conclusion

This paper delves into the impact of the US-China trade war on the innovation strategies of Chinese

firms. Given that China’s technological progress was one of the primary catalysts for the initiation

of the trade conflict by the Trump administration, this study aims to ascertain whether the conflict

has influenced the trajectory of China’s innovation efforts. Leveraging natural language processing

on patent abstracts, we develop a novel metric for measuring patent similarity between China and

the US, complementing the citation-based metrics commonly utilized in the literature (e.g., Han,

Jiang and Mei, 2021). Our findings reveal that a reduction in export tariffs leads to diminished

R&D intensity among publicly listed Chinese firms, alongside a divergence in innovation patterns

between China and the US. To interpret this finding, we develop a model featuring heterogeneous

consumers’ preferences toward product features among destination markets, in which an escalation

in export tariffs to a particular country diminishes the exporter’s incentive to innovate in line with

that country’s consumers’ preferences. Quantitatively, we find that changes in innovation amplify

the damage of the trade war, leading to an additional 3.3% decline in export sales to the US by

2021. Of this decline, 14% is attributable to changes in innovation direction, highlighting the

importance of accounting for innovation direction.

Leveraging natural language models, our study highlights the multi-dimensional nature of inno-

vation in shaping the dynamic effects of reduced foreign demand in the aftermath of the trade war.

Trade conflicts may influence innovation through various channels—such as diminished cross-

country knowledge spillovers and geopolitical concerns about sanctions—that extend beyond di-

rect economic impacts. A promising direction for future research is to quantify the significance of

these alternative channels, which will ultimately enhance our understanding and evaluation of the

long-term consequences of trade disputes.
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Antràs, P., Fort, T. C. and Tintelnot, F. (2017), ‘The margins of global sourcing: Theory and
evidence from us firms’, American Economic Review 107(9), 2514–64.

Arora, S., Hu, W. and Kothari, P. K. (2018), An analysis of the t-sne algorithm for data visualiza-
tion, in ‘Conference on learning theory’, PMLR, pp. 1455–1462.

Atkeson, A. and Burstein, A. T. (2010), ‘Innovation, firm dynamics, and international trade’, Jour-
nal of Political Economy 118(3), 433–484.

Autor, D., Chin, C., Salomons, A. and Seegmiller, B. (2024), ‘New Frontiers: The Origins and
Content of New Work, 1940–2018*’, The Quarterly Journal of Economics 139(3), 1399–1465.

Autor, D., Dorn, D., Hanson, G. H., Pisano, G. and Shu, P. (2020), ‘Foreign competition and do-
mestic innovation: Evidence from us patents’, American Economic Review: Insights 2(3), 357–
74.

Benguria, F., Choi, J., Swenson, D. L. and Xu, M. J. (2022), ‘Anxiety or pain? the impact of
tariffs and uncertainty on chinese firms in the trade war’, Journal of International Economics
137, 103608.

Benguria, F. and Saffie, F. (2025), Beyond Tariffs: How Did China’s State–Owned Enterprises
Shape the US–China Trade War?, Technical report.

Bertrand, M., Duflo, E. and Mullainathan, S. (2004), ‘How much should we trust differences-in-
differences estimates?’, The Quarterly journal of economics 119(1), 249–275.

Bloom, N., Draca, M. and Van Reenen, J. (2015), ‘Trade induced technical change? the impact of
chinese imports on innovation, it and productivity’, The Review of Economic Studies 83(1), 87–
117.

Bloom, N., Hassan, T. A., Kalyani, A., Lerner, J. and Tahoun, A. (2021), The diffusion of disruptive
technologies, Technical report, National Bureau of Economic Research.

Bloom, N., Romer, P., Terry, S. J. and Van Reenen, J. (2020), ‘Trapped Factors and China’s Impact
on Global Growth’, The Economic Journal 131(633), 156–191.

Bombardini, M., Li, B. and Wang, R. (2017), ‘Import Competition and Innovation: Evidence from
China’, Working Paper .

Bonadio, B., Huo, Z., Kang, E., Levchenko, A. A., Pandalai-Nayar, N., Toma, H. and Topalova, P.
(2024), ‘Playing with blocs: Quantifying decoupling’, Working Paper .

Bown, C. P. (2021), ‘The US-China Trade War and Phase One Agreement’, PIIE Working Paper .
Brandt, L., Van Biesebroeck, J., Wang, L. and Zhang, Y. (2017), ‘Wto accession and performance

of chinese manufacturing firms’, American Economic Review 107(9), 2784–2820.
Caliendo, L., Feenstra, R. C., Romalis, J. and Taylor, A. M. (2015), ‘Tariff reductions, entry, and

welfare: Theory and evidence for the last two decades’, NBER Working Paper No. 21768 .

43



Cen, L., Cohen, L., Wu, J. and Zhang, F. (2024), Who benefits from trade wars?, Working Paper
32621, National Bureau of Economic Research.

Che, Y., Lin, D. and Zhang, Y. (2025), ‘Pains or gains: Trade war, trade deficit, and tariff evasion’,
Journal of International Economics 155, 104090.

Chen, Z., Liu, Z., Serrato, J. C. S. and Xu, D. Y. (2021), ‘Notching R&D Investment with Corporate
Income Tax Cuts in China’, American Economic Review 111(7), 2065–2100.

Chor, D. and Li, B. (2024), ‘Illuminating the effects of the us-china tariff war on china’s economy’,
Journal of International Economics 150, 103926.

Comin, D. and Hobijn, B. (2010), ‘An exploration of technology diffusion’, American economic
review 100(5), 2031–2059.

Costinot, A., Donaldson, D. and Smith, C. (2016), ‘Evolving comparative advantage and the im-
pact of climate change in agricultural markets: Evidence from 1.7 million fields around the
world’, Journal of Political Economy 124(1), 205–248.

Dekle, R., Eaton, J. and Kortum, S. (2008), ‘Global rebalancing with gravity: Measuring the
burden of adjustment’, IMF Staff Papers 55(3), 511–40.

Fajgelbaum, P. D., Goldberg, P. K., Kennedy, P. J. and Khandelwal, A. K. (2020), ‘The Return to
Protectionism’, The Quarterly Journal of Economics 135(1), 1–55.

Fajgelbaum, P. D., Goldberg, P., Kennedy, P., Khandelwal, A. and Taglioni, D. (2023), ‘The us-
china trade war and global reallocations’, American Economic Review: Insights forthcoming.

Fajgelbaum, P. D. and Khandelwal, A. K. (2022), ‘The Economic Impacts of the US–China Trade
War’, Annual Review of Economics 14, 205–228.

Gentzkow, M., Kelly, B. and Taddy, M. (2019), ‘Text as data’, Journal of Economic Literature
57(3), 535–74.

Gong, R. K., Li, Y. A., Manova, K. and Sun, S. T. (2023), ‘Tickets to the global market: First us
patent awards and chinese firm exports’, HKUST Business School Research Paper No. 2023-120.

Han, P., Jiang, W. and Mei, D. (2021), ‘Mapping us-china technology decoupling, innovation, and
firm performance’, Innovation, and Firm Performance 2.

Handley, K. and Limão, N. (2017), ‘Policy uncertainty, trade, and welfare: Theory and evidence
for china and the united states’, American Economic Review 107(9), 2731–83.

Head, K. and Mayer, T. (2014), Gravity equations: Workhorse, toolkit, and cookbook, in ‘Hand-
book of international economics’, Vol. 4, Elsevier, pp. 131–195.

Hoberg, G. and Phillips, G. (2016), ‘Text-based network industries and endogenous product dif-
ferentiation’, Journal of Political Economy 124(5), 1423–1465.

Holmes, T. J., McGrattan, E. R. and Prescott, E. C. (2015), ‘Quid pro quo: Technology capital
transfers for market access in china’, The Review of Economic Studies 82(3), 1154–1193.

Hu, A. G. and Jefferson, G. H. (2009), ‘A great wall of patents: What is behind china’s recent
patent explosion?’, Journal of Development Economics 90(1), 57–68.

Jiao, Y., Liu, Z., Tian, Z. and Wang, X. (2022), ‘The Impacts of the U.S. Trade War on Chinese
Exporters’, The Review of Economics and Statistics pp. 1–34.

Jones, C. and Romer, P. (2010), ‘The New Kaldor Facts: Ideas, Institutions, Population, and Hu-
man Capital’, American Economic Journal: Macroeconomics 2(1), 224–245.

Ju, J., Ma, H., Wang, Z. and Zhu, X. (2024), ‘Trade Wars and Industrial Policy Competitions:
Understanding the US-China Economic Conflicts’, Journal of Monetary Economics 141, 42–
58. CARENGIE-ROCHESTER-NYU APRIL 2023 CONFERENCE.

Kelly, B., Papanikolaou, D., Seru, A. and Taddy, M. (2021), ‘Measuring technological innovation
over the long run’, American Economic Review: Insights 3(3), 303–20.

44



Krugman, P. (1991), ‘Increasing returns and economic geography’, Journal of Political Economy
99(3), 483–499.

Lancaster, K. J. (1966), ‘A new approach to consumer theory’, Journal of political economy
74(2), 132–157.

Lee, D. D. and Seung, H. S. (1999), ‘Learning the parts of objects by non-negative matrix factor-
ization’, Nature 401(6755), 788–791.

Lerner, J. and Seru, A. (2017), ‘The use and misuse of patent data: Issues for corporate finance
and beyond’, NBER Working Paper .

Li, Y., Liang, Y., Pan, S. and Tao, H. (2025), ‘Us export controls and corporate innovation: Evi-
dence from china’, working Paper .

Lileeva, A. and Trefler, D. (2010), ‘Improved Access to Foreign Markets Raises Plant-level Pro-
ductivity... For Some Plants’, Quarterly Journal of Economics 125(3), 1051–1099.

Linderman, G. C. and Steinerberger, S. (2019), ‘Clustering with t-sne, provably’, SIAM journal on
mathematics of data science 1(2), 313–332.

Liu, E. and Ma, S. (2021), Innovation networks and r&d allocation, Technical report, National
Bureau of Economic Research.

Liu, Q., Lu, R., Lu, Y. and Luong, T. A. (2021), ‘Import Competition and Firm Innovation: Evi-
dence from China’, Journal of Development Economics 151.

Liu, Q. and Qiu, L. D. (2016), ‘Intermediate Input Imports and Innovations: Evidence from Chi-
nese Firms’ Patent Filings’, Journal of International Economics 103, 166–183.

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J. R., Bethard, S. and McClosky, D. (2014), The
stanford corenlp natural language processing toolkit, in ‘Proceedings of 52nd annual meeting of
the association for computational linguistics: system demonstrations’, pp. 55–60.

Melitz, M. (2003), ‘The Impact of Trade on Intra-Industry Reallocations and Aggregate Industry
Productivity’, Econometrica 71(6), 1695–1725.

Paatero, P. and Tapper, U. (1994), ‘Positive matrix factorization: A non-negative factor model with
optimal utilization of error estimates of data values†’, Environmetrics 5, 111–126.

Pellegrino, B. (2025), ‘Product differentiation and oligopoly: A network approach’, American
Economic Review 115(4), 1170–1225.

Simonovska, I. and Waugh, M. E. (2014), ‘The elasticity of trade: Estimates and evidence’, Journal
of International Economics 92(1), 34–50.

Tan, Y., Tian, X., Zhang, X. and Zhao, H. (2020), ‘The real effect of partial privatization on
corporate innovation: Evidence from china’s split share structure reform’, Journal of Corporate
Finance 64, 101661.

Wang, X. and Ning, H. (2020), Tf-idf keyword extraction method combining context and semantic
classification, in ‘Proceedings of the 3rd international conference on data science and informa-
tion technology’, pp. 123–128.

Wei, S.-J., Xie, Z. and Zhang, X. (2017), ‘From “made in china” to “innovated in china”: Necessity,
prospect, and challenges’, Journal of Economic Perspectives 31(1), 49–70.

Yao, L., Pengzhou, Z. and Chi, Z. (2019), Research on news keyword extraction technology based
on tf-idf and textrank, in ‘2019 IEEE/ACIS 18th International Conference on Computer and
Information Science (ICIS)’, IEEE, pp. 452–455.

45



Online Appendix

A A Brief History of the US-China Trade War

The China–United States trade war began in January 2018 when US President Donald Trump

initiated tariffs and trade barriers against China. The primary goals were to combat what the US

deemed unfair trade practices by China, such as intellectual property theft, the forced transfer

of American technology to Chinese companies, and trade imbalances between the two nations.

Although a phase one agreement was reached in January 2020, the conflict persisted throughout

President Trump’s term. President Joe Biden kept the tariffs in place, and as of 2025, President

Trump has raised tariffs on Chinese exports even further.

The United States imposed tariffs on a wide range of Chinese goods, starting with solar panels

and washing machines in January 2018, and soon extending to various other products including

steel, aluminum, and a variety of other goods across different sectors. The list expanded to cover

technological and industrial goods, particularly focusing on products related to China’s “Made

in China 2025” initiative, which aims to make China dominant in global high-tech industries (Ju

et al., 2024). By July 2018, the US began imposing tariffs on $34 billion worth of Chinese products,

extending to additional $200 billion of imports by September 2018, and eventually covering $250

billion worth of goods by May 2019. In September 2019, the US imposed tariffs on additional

$100 billion worth of goods. The tariffs targeted a broad spectrum of products, from consumer

electronics to textiles and agriculture products.

China retaliated by imposing tariffs on US goods in several rounds, affecting a wide array of

products, including agricultural products, automobiles, and seafood. The Chinese government’s

response was strategically targeted to impact key US industries, particularly those in states with

significant political importance (Fajgelbaum et al., 2020). China’s tariffs were seen as a direct

countermeasure to the US tariffs, aiming to hurt the US economy in areas where it could potentially

influence political pressure on the US administration to change its policies.
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B Data

B.1 Data Preparation

In order to study the effect of the trade war on innovations of Chinese listed firms, we construct a

matched dataset with information on Chinese listed firms’ operations, patents, and trade from 2000

to 2021.

The dataset contains data from several sources. The financial reports of listed firms are col-

lected from the China Stock Market & Accounting Research Database (CSMAR). We collect in-

formation on firm name, industry classification, ownership type, sales, employment, capital stock,

R&D expenditures, and export destinations. The trade transactions are collected from the China

Customs Trade Data (CCTD). It offers detailed information about firm-level trade transactions

from 2000 to 2016, including information on firms’ names, trade destination countries (for ex-

ports) and origin countries (for imports), 8-digit HS product codes, and the value of their exports

and imports in US dollars. The patent data of Chinese listed firms is collected from the Chinese

patent data from the China National Intellectual Property Administration (CNIPA). The CNIPA

data cover all invention patent filings from 1985 to 2023, including information on the applicant’s

bibliographic details, filing and grant dates, abstracts, and cited patent references.

Then, we merge the three datasets through the Chinese Firm Registration Data (CFRD), which

is provided by the State Administration for Industry and Commerce. It provides up-to-date in-

formation on all firms registered in China from 1978 to 2024, including firm names, industry

classifications, year of establishment, and the year of exit, if applicable. Moreover, it offers a

comprehensive change log for every firm, including changes in firm name, registered address, and

industry classification. Therefore, we merge the patent data, listed firm data, and custom trade data

with the firm registration data separately, using the current name and the historical names. As a

result, we obtain a matched data set with operations, patents, and trade information of Chinese

listed firms.

B.2 Sample Representativeness

Comparison between Listed and Non-listed Firms in Patent Similarity. To assess whether

the listed firms in our sample are representative of the broader population of Chinese firms, we

compare the average similarity to US patents over time for both listed and non-listed firms. Specif-
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ically, we compute firm-level similarity for each firm in both groups and then take simple averages

across firms by year. As shown in Figure A-1, the two groups exhibit closely aligned trends, in-

dicating that the innovation patterns of listed firms broadly reflect those of non-listed firms. The

correlation between the two time series is 0.65, supporting the validity of using listed firms as a

proxy for the overall landscape of Chinese innovation in our analysis.

Figure A-1: Comparison of Patent Similarity for Chinese Listed and Non-listed Firms
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B.3 Patent Data Coverage

Although we have up-to-date patent data from the Chinese and US patent offices, we only study

the patents filed before 2021. The reason is that, according to the patent laws in China and the US,

a patent filing can be kept from the public for at most 18 months. After that, the filing materials,

including abstract, claims, reference cited, description, and illustration graphs, should be open to

the public. In this project, we collect patent data from the Patstat Global 2023 Autumn edition,

which covers all patent filings until 2021.

Moreover, we conduct a robustness check by truncating patent data in different publication

years and comparing the changes in aggregate similarities. In Figure A-2, the dark line represents

the average similarity between Chinese and US patents from 2000 to 2021. The data used in the

calculation are the patent filings that were published before Sept. 2023, and it is the benchmark

case in our paper. Then, we manipulate the sample by selecting patents according to their publica-
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Figure A-2: Robustness Check on Truncation of Publication Year

tion year. We selected patent filings that were published before 2021, 2018, 2015, and 2012 and

calculated the similarities between Chinese and US patents with the same methods.

The blue dashed line represents the sample with publication year before 2021, and patents that

were filed in 2020 and 2021 may not be totally included in the sample. Clearly, compared with

the benchmark sample, the similarities in 2020 and 2021 in this truncated sample are substantially

lower due to the missing data. Similarly, we observe under-estimated similarities for the years

around the truncation year in other truncated samples.

Since our patent data includes all patents published before Sept. 2023, the change of similarity

between Chinese and US patents after 2018 is not derived by the data truncation issue.

B.4 Similarity to Other Countries

In this paper, we study the patents of 16 European countries that had joined the European Patent

Convention, including Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland,

Italy, Luxembourg, the Netherlands, Portugal, Spain, Sweden, Switzerland, and the United King-

dom before 2000. Their patent filings account for almost all of the total patent filings in Europe.
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We define the EU domestic patents as those filed in these countries and the European Patent Office

by residents in these countries. For Japanese patents and Korean patents, we adopt the same crite-

ria to identify domestic patents. Since the patent office does not always provide an English version

of the patent abstract, we look for the patents with non-English abstracts in Google Patents and

adopt the English version provided by Google. For only 10.61% of Japanese patents, 20.11% of

Korean patents, and 23.21% of European patents, we need to obtain English abstracts from Google

Patents.

We present the aggregate similarity between Chinese patents and foreign patents in the left

panel of Figure A-3. The statistics are calculated as follows. We first sum up vectors of Chinese

patents by filing year t and three-digit IPC x and construct year-IPC-level patent vectors Vt,x,CN .

Then, we calculate the similarity between the Chinese patent vector Vt,x,CN and foreign patent

vector Vt,x,F for all technology classes x from 2000 to 2021. The average similarity in each year is

measured as the simple average of the similarities across technology classes. Before 2018, despite

a disparity in levels, both Chinese and foreign patents exhibited a comparable upward trajectory,

which ceased thereafter. Similarly, we present the aggregate similarity between Chinese listed

firms’ patents and foreign patents in the right panel of Figure A-3. The statistics are calculated as

follows. We first sum up vectors of Chinese listed firms’ patents by filing year t and three-digit

IPC x and construct year-IPC-level patent vectors Vt,x,CN List. The construction of patent vectors

of foreign patents is a bit different. In order to make both sides comparable, we identify the

patents filed by top inventors in each technology class and sum up their patent vectors to represent

the country-IPC-level patent vector, denoted by Vt,x,F Top. The top inventors in each country and

technology class are defined as the twenty applicants with the highest annual average filing activity

in each three-digit IPC in each country. Despite being considerably more volatile and lacking a

distinct upward trend prior to the trade war, the resemblances between patents held by Chinese

listed firms and those of top inventors from foreign nations demonstrate a downward trajectory for

most countries post-2018.

B.5 Exposure to the US Export Controls

The US export control system regulates the export of commercial and dual-use items (those with

both civilian and military applications) to protect national security and foreign policy interests. A

key component of this system is the Commerce Control List (CCL), maintained by the Bureau

of Industry and Security (BIS) under the Department of Commerce. The CCL is divided into
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Figure A-3: Similarity between Chinese and Foreign Patents

(a) Country-Level Similarity (b) Firm-Level Similarity

10 categories (e.g., nuclear materials, electronics, aerospace) and further into 5 product groups

(e.g., equipment, instrument, materials, software, technology). Each item is assigned an Export

Control Classification Number (ECCN), a 5-character code describing its nature and the reasons

for control.

To assess firms’ exposure to export control, we collect the annual Commerce Control List

between 2014 and 2021 from the BIS and identify the 6-digit HS code for restricted products

under each ECCN code (e.g., Li, Liang, Pan and Tao, 2025). There are multiple restricted products

under each ECCN code, and a product could be restricted due to reasons listed in multiple ECCN

codes. We construct the firm-level measure of exposure to export control with Equation (17):

Exposure to US Export Controli,t =
∑
j

importi,j,14−16∑
j importi,j,14−16

ECCN Numberj,t. (17)

Here, ECCN Numberj,t represents the number of ECCN codes that put restrictions on product j

under the 6-digit HS code in year t. This measure captures both the intensive margin and the

extensive margin of US export control on product j in each year. We then use the import share

between 2014 and 2016 for each firm i as weights in the aggregation to the firm-level measure of

exposure.
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C Additional Empirical Results

C.1 Sample of Only Exporters and Inclusion of Exporting Intensity

The baseline results in Table 3 are based on a sample of listed firms that includes both exporters and

non-exporters. To assess whether the findings are driven by underlying differences between these

two groups, we conduct two complementary analyses. First, we restrict the sample to exporters

and re-estimate the regression specified in Equation (5); the results are reported in Columns (1)–(4)

of Table A-1. Second, using the full sample, we construct an adjusted measure of tariff exposure

by replacing the denominator of Equation (3) with the total sales of each firm in 2014-2016. This

approach allows for variation in shock intensity related to firms’ export-to-sales ratio, with the

results shown in Columns (5)–(8). In both exercises, the negative effects on innovation intensity

and the divergence of Chinese innovation from US technologies remain robust.

Table A-1: Impact of the Trade War on Chinese Firms’ Innovation Intensity and Direction

Only Exporters All Sample
∆ Patent Number ∆ R&D Cost ∆ Similarity ∆ Patent Number ∆ R&D Cost ∆ Similarity

(1) (2) (3) (4) (5) (6) (7) (8)
∆ US Import Tariff -0.533* -0.998** -0.141 -0.143

(0.270) (0.493) (0.113) (0.111)
∆ US Import Tariff (Adjusted) -2.018 -1.870 -2.204* -2.210*

(1.721) (1.530) (1.252) (1.247)
∆ CN Import Tariff 0.190 0.888 -0.0589 -0.0584 -0.830** -0.0958 -0.00707 -0.0113

(0.374) (0.700) (0.226) (0.226) (0.323) (0.739) (0.182) (0.183)
∆ US Export Controls -0.315 -0.666** -0.106 -0.108 -0.384* -0.897* -0.112 -0.114

(0.249) (0.306) (0.122) (0.123) (0.228) (0.531) (0.131) (0.131)
∆ US Sanctions 0.202 -0.108 -0.0193 -0.0189 0.203* -0.308 -0.0263 -0.0256

(0.180) (0.138) (0.141) (0.142) (0.115) (0.294) (0.107) (0.108)

∆ Patent Number / / N Y / / N Y
Firm Characteristics Y Y Y Y Y Y Y Y
Industry Fixed Effect Y Y Y Y Y Y Y Y
Observations 1,270 1,270 1,158 1,158 2,402 2,402 1,850 1,850
R-squared 0.065 0.170 0.050 0.050 0.092 0.158 0.032 0.032

Notes: Standard errors are clustered at the firm level. ∆ denotes the difference between the tariff rates in a
given year to the average rates in 2014–2017. Firm-level controls include the natural logarithm of the firm’s
employment, total assets, and the share of profits as a proportion of total revenue in the previous year. For the
regressions on patent similarity, patent application number is controlled. Industries are defined at the 3-digit level.
*** Significant at the 1 percent level; ** Significant at the 5 percent level; * Significant at the 10 percent level.

C.2 Accounting for Processing Trade

Since Chinese firms engaged in processing trade are not subject to China’s import tariffs, firms’

exposure to China’s retaliatory import tariff shock is recalculated by adjusting the baseline mea-
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sure. Specifically, the baseline exposure is multiplied by one minus the firm’s share of processing

trade during 2014–2016, as follows:

Exposure to Import tariffi,t =
∑
j

importi,j,14−16∑
j importi,j,14−16

(1− process sharei,j,14−16)TariffCN
j,t

Table A-2 presents the results using the adjusted measure. Excluding processing trade from the

regression does not alter the estimated impact of changes in US import tariffs.

Table A-2: Impact of the Trade War on Chinese Firms’ Innovation Intensity and Direction

Intensity Direction
∆ Patent Number ∆ R&D Cost ∆ Similarity to US Patents

(1) (2) (3) (4) (5) (6) (7) (8)
∆ US Import Tariff -0.928*** -0.982*** -1.104*** -1.027* -0.229** -0.270** -0.260** -0.266**

(0.194) (0.174) (0.179) (0.534) (0.0991) (0.123) (0.107) (0.110)
∆ CN Import Tariff -0.333 -0.193 -0.303 1.366 0.239 0.183 0.154 0.151
(Accounting for Processing Trade) (0.310) (0.326) (0.333) (1.036) (0.162) (0.159) (0.159) (0.158)
∆ US Export Controls -0.433** -0.450** -0.416* -0.920* -0.164* -0.0976 -0.107 -0.110

(0.194) (0.211) (0.213) (0.511) (0.0966) (0.123) (0.116) (0.117)
∆ US Sanctions 0.260** 0.203* 0.167 -0.301 -0.0676 -0.0324 -0.0369 -0.0363

(0.117) (0.106) (0.100) (0.276) (0.0947) (0.1000) (0.101) (0.102)

∆ Patent Number / / / / N N N Y
Firm Characteristics N N Y Y N N Y Y
Industry Fixed Effect N Y Y Y N Y Y Y
Observations 2,669 2,661 2,542 2,542 2,086 2,077 1,984 1,984
R-squared 0.014 0.068 0.090 0.158 0.002 0.027 0.029 0.029

Notes: Standard errors are clustered at the firm level. ∆ denotes the change in variable values between the pre-
trade-war period (2014–2017) and the post-trade-war period (2018–2021). Firm-level controls include the natural
logarithm of employment, total assets, and the profit-to-revenue ratio before the trade war. Industries are defined
at the 3-digit level.
*** Significant at the 1% level; ** Significant at the 5% level; * Significant at the 10% level.

C.3 Results in the Manufacturing Sector

The manufacturing sector is the primary target of US import tariffs on China. To examine the trade

war’s impact on this sector, the sample is restricted to manufacturing firms. The corresponding

results are reported in Table A-3. The coefficients are consistent with the baseline results.

C.4 Cosine Similarity at the 4-digit IPC Level

In the baseline regressions (Tables 3 and 4), cosine similarity is measured between Chinese and

US patents within the same 3-digit IPC technology class. To test robustness to the level of techno-
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Table A-3: Impact of the Trade War on Chinese Firms’ Innovation Intensity and Direction
(Manufacturing Industry)

Intensity Direction
∆ Patent Number ∆ R&D Cost ∆ Similarity to US Patents

(1) (2) (3) (4) (5) (6) (7) (8)
US Import Tariff -0.666*** -0.826*** -0.933*** -0.559 -0.251** -0.265** -0.263** -0.274**

(0.203) (0.173) (0.166) (0.484) (0.111) (0.128) (0.112) (0.115)
CN Import Tariff -0.395 -0.398 -0.545 0.537 0.0648 0.0292 -0.0209 -0.0271

(0.322) (0.337) (0.329) (0.490) (0.179) (0.183) (0.178) (0.177)
US Export Controls -0.518** -0.478* -0.473* -0.118 -0.239 -0.241 -0.238* -0.245*

(0.245) (0.244) (0.249) (0.209) (0.142) (0.150) (0.135) (0.139)
US Sanctions 0.336** 0.284*** 0.266*** 0.0227 -0.133 -0.0912 -0.0929 -0.0911

(0.129) (0.0803) (0.0793) (0.0810) (0.110) (0.114) (0.113) (0.115)

Patent Number / / / / N N N Y
Firm Characteristics N N Y Y N N Y Y
Industry Fixed Effect N Y Y Y N Y Y Y
Observations 1,952 1,952 1,857 1,857 1,646 1,646 1,567 1,567
R-squared 0.013 0.038 0.060 0.033 0.005 0.024 0.026 0.026

Notes: Standard errors are clustered at the firm level. ∆ denotes the difference between the tariff rates in a given
year and the average rates in 2014–2017. The sample is restricted to the manufacturing sector. Firm-level controls
include the natural logarithm of the firm’s employment, total assets, and the share of profits as a proportion of
total revenue in the previous year. For the regressions on patent similarity, patent application number is controlled.
Industries are defined at the 3-digit level.
*** Significant at the 1 percent level; ** Significant at the 5 percent level; * Significant at the 10 percent level.

logical granularity, we recalculate similarity within the 4-digit IPC class. The estimated impact of

the trade war on Chinese firms’ patent similarity is close to the baseline, as reported in Table A-4.

C.5 Alternative Measures of Innovation Intensity

We employ two alternative measures of innovation intensity when estimating Equation (6). The

left panel of Figure A-4 presents Poisson estimates based on the raw count of patent applications,

while the right panel uses the logarithm of one plus firms’ R&D spending as the dependent variable.

Both panels indicate a persistent effect of the US import tariff change. Relative to patent counts,

the effect on R&D spending emerges later but is larger in absolute magnitude.

C.6 Checking Pre-existing Trends

To assess whether there were any pre-existing heterogeneous trends among firms prior to the trade

war, we use data from 2012 to 2017, defining 2012–2014 as the “pre” period and 2015–2017 as
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Table A-4: Impact of the Trade War on Patents’ Similarity (IPC4)

Similarity based on similarity between patents within the same IPC4
0-5 Years 0-1 Years 2-3 Years 4-5 Years

(1) (2) (3) (4) (5) (6) (7) (8)

∆ US Import Tariff -0.226* -0.218 -0.256* -0.230 -0.200 -0.201 -0.221* -0.221*
(0.125) (0.131) (0.138) (0.142) (0.135) (0.143) (0.121) (0.125)

∆ China Import Tariff 0.0867 0.0896 0.109 0.118 0.112 0.112 0.0770 0.0767
(0.230) (0.229) (0.218) (0.217) (0.250) (0.249) (0.249) (0.249)

∆ US Export Controls 0.0248 0.0284 0.0441 0.0559 0.0522 0.0515 -0.0141 -0.0144
(0.125) (0.124) (0.132) (0.129) (0.131) (0.130) (0.131) (0.132)

∆ Sanctions -0.0416 -0.0425 -0.0477 -0.0507 -0.0503 -0.0501 -0.0202 -0.0201
(0.0730) (0.0734) (0.0766) (0.0764) (0.0844) (0.0850) (0.0650) (0.0659)

Patent Number N Y N Y N Y N Y
Firm Characteristics Y Y Y Y Y Y Y Y
Industry Fixed Effect Y Y Y Y Y Y Y Y
Observations 1,981 1,981 1,981 1,981 1,981 1,981 1,981 1,981
R-squared 0.029 0.029 0.032 0.034 0.029 0.029 0.033 0.033

Notes: Standard errors are clustered at the firm level. ∆ denotes the change in variable values between the
pre-trade-war period (2014–2017) and the post-trade-war period (2018–2021). The similarity measure is the
weighted average of cosine similarity of patents in the same 4-digit IPC class. Firm-level controls include the
natural logarithm of the firm’s employment, total assets, and the share of profits as a proportion of total revenue
in the previous year. Industries are defined at the 3-digit level.
*** Significant at the 1 percent level; ** Significant at the 5 percent level; * Significant at the 10 percent level.

the “post” period. A corresponding placebo test is then conducted as follows,

∆Y placebo
is =β1∆ln(1 + TariffUS,placebo

i ) + β2∆ln(1 + TariffCN,placebo
i )+

β3∆Export ControlUS,placebo
i + β4∆Sanction,placebo

i + γXi,12−14 + µ+ θs + ϵis.

(18)

The dependent variables include changes between the “pre” and “post” periods in the number

of firms’ patent applications, R&D expenditures in firms’ annual report, and the similarity of their

patents to US patents filed within the past five years. The placebo values for US import tariffs,

∆ ln(1 + tariffUS,placebo
i ), China’s retaliatory import tariffs, ∆ ln(1 + tariffCN,placebo

i ), US export

controls, ∆Export Controlplacebo
i , and sanctions, ∆Sanctionplacebo

i , are defined as the actual changes

in variable values between the pre-trade-war period (2014–2017) and the post-trade-war period

(2018–2021). The results, reported in Table A-5, show no statistically significant differences in

firms’ innovation activities prior to the trade war, suggesting that the estimated effects of US import

tariffs are not driven by pre-existing trends.
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Figure A-4: Effect of US Import Tariff over Years

(a) Effect on Patent Application Number
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(b) Effect on R&D spending
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Notes: The figure illustrates the time-varying effects of US import tariffs on Chinese firms’ innovation intensity
from 2014 onward. Both point estimates and 90 percent confidence intervals are shown, with standard errors
clustered at the firm level. Firm-level controls include the natural logarithm of employment, total assets, and the
profit-to-revenue ratio from the previous year. All regressions include firm fixed effects, year fixed effects, and
industry-by-year fixed effects.

C.7 Strategic Patenting

Patents without the Patent Cooperation Treaty (PCT) applications are less prone to strategic adjust-

ment of their abstract to cater to foreign patent offices. We measure patent similarity based only

on patents without PCT applications and rerun the baseline regressions. The results are presented

in the first four columns of Table A-6. The effects of changes in export and import tariffs on the

similarity of Chinese patents to US patents filed in different periods remain significant and are very

close to the baseline results.
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Table A-5: Placebo Test of the Trade-War Effect on Chinese Firms’ Innovation Intensity and
Direction

Intensity Direction
∆ Patent Number ∆ R&D Cost ∆ Similarity to US Patents

(1) (2) (3) (4) (5) (6) (7) (8)
∆ US Import Tariff -0.0375 -0.258 -0.273 -0.427 -0.0792 -0.102 -0.197 -0.193

(0.181) (0.201) (0.202) (0.485) (0.0935) (0.101) (0.144) (0.144)
∆ CN Import Tariff -0.991*** -1.032*** -1.084*** 1.906 0.203 0.254 0.0768 0.0828

(0.271) (0.297) (0.316) (1.349) (0.190) (0.217) (0.256) (0.255)
∆ US Export Controls 0.164 0.127 0.157 -0.252 -0.0327 -0.0452 -0.165 -0.167

(0.226) (0.227) (0.229) (1.118) (0.160) (0.172) (0.140) (0.140)
∆ US Sanctions 0.190* 0.165 0.138 0.582 0.0501 0.0124 0.0515 0.0495

(0.104) (0.106) (0.106) (0.397) (0.0819) (0.0825) (0.0938) (0.0959)

∆ Patent Number / / / / N N N Y
Firm Characteristics N N Y Y N N Y Y
Industry Fixed Effect N Y Y Y N Y Y Y
Observations 2,669 2,661 2,542 2,542 2,086 2,077 1,984 1,984
R-squared 0.014 0.068 0.090 0.158 0.002 0.027 0.029 0.029

Notes: Standard errors are clustered at the firm level. The dependent variables represent changes in firms’ innova-
tion intensity and direction between the 2012–2014 and 2015–2017 periods. The independent variables are based
on trade-related shocks, measured as changes in variable values between the pre-trade-war period (2014–2017)
and the post-trade-war period (2018–2021). Firm-level controls include the natural logarithm of employment,
total assets, and the profit-to-revenue ratio averaged over 2012–2014. Industries are defined at the 3-digit level.
*** Significant at the 1% level; ** Significant at the 5% level; * Significant at the 10% level.

Table A-6: Impact of the Trade War on Patents’ Similarity (Non-PCT Applications)

Similarity based on non-PCT Applications
0-5 Years 0-1 Years 2-3 Years 4-5 Years

(1) (2) (3) (4) (5) (6) (7) (8)

∆ US Import Tariff -0.253** -0.266** -0.267** -0.278** -0.273** -0.293** -0.210** -0.220**
(0.112) (0.115) (0.115) (0.119) (0.119) (0.121) (0.104) (0.106)

∆ CN Import Tariff 0.0190 0.0142 0.00638 0.00239 0.0263 0.0189 0.0235 0.0198
(0.180) (0.180) (0.160) (0.161) (0.198) (0.198) (0.204) (0.204)

∆ US Export Controls -0.0826 -0.0884 -0.0779 -0.0827 -0.0391 -0.0479 -0.0948 -0.0993
(0.122) (0.124) (0.119) (0.121) (0.134) (0.136) (0.127) (0.127)

∆ Sanctions -0.0278 -0.0265 -0.0277 -0.0267 -0.0277 -0.0258 -0.0244 -0.0234
(0.107) (0.108) (0.120) (0.121) (0.108) (0.110) (0.0929) (0.0940)

Patent Number N Y N Y N Y N Y
Firm Characteristics Y Y Y Y Y Y Y Y
Industry Fixed Effect Y Y Y Y Y Y Y Y
Observations 2,070 1,978 2,070 1,978 2,070 1,978 2,070 1,978
R-squared 0.024 0.025 0.024 0.024 0.027 0.028 0.024 0.026

Notes: Standard errors are clustered at the firm level. ∆ denotes the change in variable values between the pre-
trade-war period (2014–2017) and the post-trade-war period (2018–2021). The similarity measure is based on
patents without PCT applications. Firm-level controls include the natural logarithm of the firm’s employment,
total assets, and the share of profits as a proportion of total revenue in the previous year. Industries are defined at
the 3-digit level.
*** Significant at the 1 percent level; ** Significant at the 5 percent level; * Significant at the 10 percent level.
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D Additional Results for Quantitative Analysis

D.1 Additional Supporting Evidence

In this section, we illustrate examples of word content and their trajectories of change in Chinese

and US patent abstracts.

First, we provide evidence supporting the mapping between patent vectors and product features.

For each Chinese and US self-driving patent, we extract five keywords with the highest TF–IDF

scores. The TF–IDF metric identifies words that are both frequent within a specific document and

relatively rare across the entire corpus, which is commonly used in the literature (Yao, Pengzhou

and Chi, 2019; Wang and Ning, 2020). In other words, it highlights terms that are distinctive to a

given patent rather than common across all patents, making them effective indicators of the patent’s

core technological content.

We present the results in Figure 5, which visualizes keywords from Chinese and US self-

driving patents using word clouds. Panels (a) and (b) display the word clouds for Chinese patents

filed during the 2014–2017 and 2018–2021 periods, respectively, while panels (c) and (d) show

the corresponding visualizations for US patents over the same periods. The keywords in Chinese

patents evolved gradually over time, with several core terms appearing consistently across both pe-

riods. A similar pattern is observed in the US patents. Another notable observation is the difference

in keyword emphasis between the two countries: Chinese patents frequently feature terms such as

“parking” and “navigation”, whereas US patents emphasize “lidar” (Light Detection and Rang-

ing) and “autonomous”, reflecting distinct technological focuses in their self-driving innovation

trajectories.

Moreover, the keywords extracted from patent texts exhibit a strong correspondence with the

actual functional features of self-driving vehicles. Specifically, Chinese self-driving patents fre-

quently emphasize parking and navigation technologies, reflecting a focus on urban mobility and

driver-assistance functions suited to China’s dense traffic environments and complex parking sce-

narios. In contrast, US patents tend to highlight lidar and autonomous control systems, underscor-

ing the industry’s emphasis on high-precision sensing and full autonomy. These technological pri-

orities are mirrored in the product features of commercially available vehicles in the two markets.

In China, many domestically produced smart vehicles prioritize automated parking, low-speed

navigation, and integration with urban infrastructure. Meanwhile, US models often incorporate

advanced perception systems, such as lidar-based environmental mapping and autonomous high-
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way driving capabilities. This alignment suggests that patent keywords not only capture firms’

technological directions but also reflect their strategic adaptation to local consumer preferences,

regulatory environments, and infrastructural conditions.

Second, we visualize the trajectories of Chinese and US self-driving patents filed over different

time periods using a two-dimensional projection based on the t-distributed Stochastic Neighbor

Embedding (t-SNE) algorithm. The t-SNE algorithm is a nonlinear dimensionality reduction tech-

nique that maps high-dimensional text embeddings into a low-dimensional space while preserving

their local structure (Arora, Hu and Kothari, 2018; Linderman and Steinerberger, 2019). Intu-

itively, patents that share similar technological content or focus on related innovation themes are

positioned closer together in the t-SNE map, whereas dissimilar patents are placed farther apart.

This visualization helps reveal clusters of technological specialization. By comparing the t-SNE

projections for China and the U.S., we can identify how each country’s patenting activities are

concentrated around distinct technological domains and how these patterns evolve over time.

We adopt the t-SNE algorithm to project high-dimensional patent vectors into a two-dimensional

space and show the results in Figure A-5. The small blue dots represent US patents filed in 2013,

2016, 2019, and 2021, while the larger circles indicate the centroid of the patent distribution for

each corresponding year. The black arrow traces the directional shift of these centroids from 2013

to 2021. Similarly, the yellow and orange dots represent Chinese self-driving patents. Two key

insights emerge from this figure. First, Chinese and US self-driving patents form distinct clusters,

with only limited overlap between the blue and orange dots. This pattern suggests that Chinese

and US innovators are focusing on different technological domains within the self-driving field.

Second, the centroids of Chinese and US patents diverged progressively over time, indicating that

their technological trajectories have been increasingly differentiated.

D.2 The NMF Method

In order to generate low-dimensional vector representation for parameter estimation in the quan-

titative model, we adopt the Non-negative Matrix Factorization (NMF) method to reduce the di-

mension of vectors generated by the TF-IDF method.

There have been long-lasting interests in transforming texts into low-dimensional dense embed-

dings. Early works, such as Latent Semantic Indexing (LSA), Latent Dirichlet Allocation (LDA),

and Principal Component Analysis (PCA), have been widely used in computational science and

natural language processing. However, the low-dimensional matrix generated by these methods
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Figure A-5: Visualization of Self-Driving Vehicle Patents: CN vs. US

Notes: This figure visualizes Chinese and US self-driving patents filed in selected years using a two-dimensional
t-SNE projection. The small blue dots represent US patents filed in 2013, 2016, 2019, and 2021, while the larger
circles denote the centroid of the patent distribution in each corresponding year. For visualization purposes, we
only randomly select 1000 patents in each year. The black arrow indicates the directional shift of these centroids
from 2013 to 2021. Similarly, the yellow and orange dots represent the Chinese self-driving patents.
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contains negative values, which may cause trouble in model estimation. As a result, we adopt

the NMF method to lower the dimension of the original TF-IDF matrix, which only returns non-

negative values in the low-dimensional matrix.

The NMF method has been widely used in image processing and natural language processing.

For instance, in order to do facial recognition quickly, the NMF method can lower the pixels of the

original graphs while still keeping the important features, which reduces the time and resource cost

in computation. In text mining, the NMF method can reconstruct the original high-dimensional

bag-of-words matrix to a low-dimensional topic matrix. Therefore, given a set of documents, the

NMF method identifies topics and simultaneously classifies the documents among these different

topics. We briefly present the technical features of the NMF method, and please refer to Paatero

and Tapper (1994) and Lee and Seung (1999) for technical details.

Am×n = Wm×kHk×n (19)

For a matrix A of dimensions m by n generated by the TF-IDF method, where each element

is larger or equal to zero, it can be factorized into two matrices, W and H, as defined in Equation

(19). W matrix is usually labeled as the feature matrix, where k is the number of features. H matrix

is usually labeled as the coefficient matrix, which serves as the bridge between the original high-

dimensional bag of words and the new low-dimensional features. Intuitively, each element of the

new low-dimensional vector is a linear combination of elements of the original high-dimensional

vector with the coefficients in the H matrix.

In our paper, we adopt the NMF method to identify the technical features of each patent, where

we set k = 256. As a result, we transform the original m × n dimensional TF-IDF matrix into a

m × k matrix where m is the number of patents, and n is the count of unique words in the patent

abstracts. The coefficient matrix H obtained here can be used to transform any high-dimensional

bag-of-words vector to a low-dimensional topic vector.

D.3 Computing IPC-level Trade Frictions

The original tariff rates are provided at the HS product level, as we discussed in Section 2. To derive

tariff rates for each IPC category, we utilize patent and export data from listed firms. Specifically,
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the tariff rate for IPC category x is constructed as follows:

exposure to US tariffx,t =
∑
j

∑
i
Ni,x

Ni
exporti,j,14−16∑

i

∑
j
Ni,x

Ni
exporti,j,14−16

tariffUS
j,t . (20)

Ni,x

Ni
exporti,j,14−16 represents firm i’s export volume of product j during the 2014–2016 period,

weighted by the share of the firm’s patents in IPC category x among all its patent holdings up to

2016
(

Ni,x

Ni

)
. Since firms may hold multiple patents that each contribute to sales, this adjustment

allows Ni,x

Ni
exporti,j,14−16 to better reflect the portion of sales attributable to firm i’s patent holdings

in IPC category x. Using this measure, we aggregate across all exporters to obtain the total export

value associated with IPC x,
∑

i
Ni,x

Ni
exporti,j,14−16, and apply these weights to convert HS product-

level tariff rates into IPC-level tariff rates. The underlying intuition is that patent holdings reflect

a firm’s technological capabilities, while exports stem from its production activities—allowing us

to use export patterns to link IPC categories with corresponding HS products.

Using the weights
∑

i
Ni,x

Ni
exporti,j,14−16, we aggregate various product-level US trade barriers

(e.g., export controls) into IPC-level measures. Similarly, we use these weights to convert China’s

product-level tariffs on US imports into IPC-level tariff rates.25

D.4 Endogenous Price Effects

Following Handley and Limão (2017), we account for the possibility that changes in tariffs may

endogenously influence aggregate prices. Note that from the market equilibrium from our model:

Mt

∫
1n
it(ω)p

n
it(ω)

1−σdω(P n
it)

σ−1γni E
n
t︸ ︷︷ ︸

calibrated to match sales by Chinese firms to destination n

+
N∑

m=1

(σ̃τn,mit cn,mit )1−σ(P n
it)

σ−1γni E
n
t = γni E

n
t︸ ︷︷ ︸

calibrated using expenditures in each destination

.

(21)

After matching sales by Chinese firms to destination n and total expenditures in destination n for

product i, we can compute (divide both sides by γni E
n
t ):

N∑
m=1

(σ̃τn,mit cn,mit )1−σ(P n
it)

σ−1 = 1−
Mt

∫
1n
it(ω)p

n
it(ω)

1−σdω(P n
it)

σ−1γni E
n
t

γni E
n
t

, (22)

25In calculating China’s IPC-level tariffs on US imports, we continue to use the concordance based on patent
and export data, rather than import composition, since imports primarily reflect input purchases rather than firms’
production activities.
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which is the share of sales from non-Chinese firms.

We note that aggregate prices satisfy the following condition in the baseline model:

(P n
it)

1−σ =Mt

∫
1n
it(ω)p

n
it(ω)

1−σdω +
N∑

m=1

(σ̃τn,mit cn,mit )1−σ (23)

Given this price index, the share of sales from non-Chinese firms in destination n becomes:

N∑
m=1

(σ̃τn,mit cn,mit )1−σ(P n
it)

σ−1 =

∑N
m=1(σ̃τ

n,m
it cn,mit )1−σ

Mt

∫
1n
it(ω)p

n
it(ω)

1−σdω +
∑N

m=1(σ̃τ
n,m
it cn,mit )1−σ

(24)

Now we consider counterfactual changes in price indices. For clarity, we denote x̂ as the

counterfactual value for variable x. In the counterfactual scenario, the condition for price indices

becomes:

(P̂ n
it)

1−σ =Mt

∫
1̂n
it(ω)p̂

n
it(ω)

1−σdω +
N∑

m=1

(σ̃τ̂n,mit cn,mit )1−σ. (25)

Dividing Equation (25) by Equation (23), we obtain the general situation:

(
P̂ n
it

P n
it

)1−σ

=
Mt

∫
1n
it(ω)p

n
it(ω)

1−σdω

Mt

∫
1n
it(ω)p

n
it(ω)

1−σdω +
∑N

m=1(σ̃τ
n,m
it cn,mit )1−σ︸ ︷︷ ︸

share of Chinese firms’ sales in destination n in baseline

×
Mt

∫
1̂n
it(ω)p̂

n
it(ω)

1−σdω

Mt

∫
1n
it(ω)p

n
it(ω)

1−σdω︸ ︷︷ ︸
proportional change in Chinese firm sales, teasing out agg price effects

+
N∑
m

(σ̃τn,mit cn,mit )1−σ

Mt

∫
1n
it(ω)p

n
it(ω)

1−σdω +
∑N

m=1(σ̃τ
n,m
it cn,mit )1−σ︸ ︷︷ ︸

sales share of firms from m in destination n in baseline

×
(
τ̂n,mit

τn,mit

)1−σ

︸ ︷︷ ︸
proportional change in tariffs

.

(26)

We consider three markets separately:

1. Chinese domestic market: n = 0. In the Chinese market, two components of Equation (26)

change: (1) Chinese firms’ part (even though all Chinese firms sell in domestic markets, their

productivity may evolve differently in counterfactual scenarios); (2) tariff rates on US firms
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change. Therefore, we have (for n = 0):

(
P̂ n
it

P n
it

)1−σ

=
Mt

∫
1n
it(ω)p

n
it(ω)

1−σdω

Mt

∫
1n
it(ω)p

n
it(ω)

1−σdω +
∑N

m=1(σ̃τ
n,m
it cn,mit )1−σ︸ ︷︷ ︸

share of Chinese firms’ sales in destination n in baseline

×
Mt

∫
1̂n
it(ω)p̂

n
it(ω)

1−σdω

Mt

∫
1n
it(ω)p

n
it(ω)

1−σdω︸ ︷︷ ︸
proportional change in Chinese firm sales, teasing out agg price effects

+
(σ̃τn,US

it cn,US
it )1−σ

Mt

∫
1n
it(ω)p

n
it(ω)

1−σdω +
∑N

m=1(σ̃τ
n,m
it cn,mit )1−σ︸ ︷︷ ︸

sales share of firms from US in destination n in baseline

×

(
τ̂n,US
it

τn,US
it

)1−σ

︸ ︷︷ ︸
proportional change in tariffs from China on US

+
∑

m̸=US,m ̸=0

(σ̃τn,mit cn,mit )1−σ

Mt

∫
1n
it(ω)p

n
it(ω)

1−σdω +
∑N

m=1(σ̃τ
n,m
it cn,mit )1−σ︸ ︷︷ ︸

sales share of firms from non-US and non-Chinese firms in destination n in baseline

.

(27)

We compute the last term by deducting sales share of firms from non-Chinese firms in China

(computed from Equation (24)) from sales share of US firms in China. In this way, we take into

account retalitory tariffs by China and US potential export restrictions to China.

2. US market. In the US market, one component of Equation (26) changes: (1) Chinese firms’ part

due to tariffs and different productivity evolution, which change pnit(ω), and different exporting

decisions, which change 1n
it(ω). We have (when n = US):

(
P̂ n
it

P n
it

)1−σ

=
Mt

∫
1n
it(ω)p

n
it(ω)

1−σdω

Mt

∫
1n
it(ω)p

n
it(ω)

1−σdω +
∑N

m=1(σ̃τ
n,m
it cn,mit )1−σ︸ ︷︷ ︸

share of Chinese firms’ sales in destination n in baseline

×
Mt

∫
1̂n
it(ω)p̂

n
it(ω)

1−σdω

Mt

∫
1n
it(ω)p

n
it(ω)

1−σdω︸ ︷︷ ︸
proportional change in Chinese firm sales, teasing out agg price effects

+
N∑
m

(σ̃τn,mit cn,mit )1−σ

Mt

∫
1n
it(ω)p

n
it(ω)

1−σdω +
∑N

m=1(σ̃τ
n,m
it cn,mit )1−σ︸ ︷︷ ︸

sales share of non-Chinese firms in destination n in baseline

.

(28)

3. ROW market. In the ROW market, one component of Equation (26) changes: (1) Chinese

firms’ part due to different productivity evolution, which change pnit(ω), and different exporting
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decisions, which change 1n
it(ω). We have (when n = ROW ):

(
P̂ n
it

P n
it

)1−σ

=
Mt

∫
1n
it(ω)p

n
it(ω)

1−σdω

Mt

∫
1n
it(ω)p

n
it(ω)

1−σdω +
∑N

m=1(σ̃τ
n,m
it cn,mit )1−σ︸ ︷︷ ︸

share of Chinese firms’ sales in destination n in baseline

×
Mt

∫
1̂n
it(ω)p̂

n
it(ω)

1−σdω

Mt

∫
1n
it(ω)p

n
it(ω)

1−σdω︸ ︷︷ ︸
proportional change in Chinese firm sales, teasing out agg price effects

+
N∑
m

(σ̃τn,mit cn,mit )1−σ

Mt

∫
1n
it(ω)p

n
it(ω)

1−σdω +
∑N

m=1(σ̃τ
n,m
it cn,mit )1−σ︸ ︷︷ ︸

sales share of non-Chinese firms in destination n in baseline

.

(29)

We use equations (27)–(29) to calculate endogenous aggregate price adjustments in each prod-

uct market and destination during the counterfactual exercises.
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