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Binocular Directional Forecasting:

A Cross-Attention Fusion Approach

Abstract

We develop a binocular directional forecasting framework that jointly leverages informa-

tion from equity and option markets through a multimodal deep learning architecture.

Realized price and trading dynamics, together with option-implied volatility information,

are encoded as two-dimensional images and processed using convolutional neural net-

works (CNNs), then integrated through a cross-attention mechanism with an adaptive

gating network. This design enables bidirectional information flow across markets and

state-dependent weighting of heterogeneous signals. Using U.S. equity and option daily

data from 1996 to 2023, we show that the binocular model significantly outperforms stock-

only benchmarks in out-of-sample directional prediction at both monthly and quarterly

horizons. Trading strategies based on the fused forecasts achieve higher Sharpe ratios and

lower turnover than traditional momentum and reversal strategies. Performance gains

are most pronounced during periods of elevated market uncertainty and weak historical

predictability, highlighting the incremental value of forward-looking option-implied expec-

tations. Overall, our findings demonstrate that cross-attention provides an effective and

scalable approach for integrating realized and expectations-based information in financial

forecasting.
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1 Introduction

Financial markets generate multiple distinct informational signals about the same underly-

ing asset. Focusing on a single informational channel may leave complementary signals from

related markets unexploited. Yet empirical frameworks that coherently integrate heterogeneous

information into a single, economically meaningful predictor remain relatively scarce.

To address this gap, we introduce a novel binocular directional forecasting framework that

fuses complementary information sources within a unified multimodal deep learning model.

Recent work in empirical asset pricing has shown that flexible machine learning methods

are well suited for modeling complex and nonlinear relationships in financial data (Gu et al.,

2020; Chen et al., 2024). Building on this insight, a growing and influential literature pioneers

the use of convolutional neural networks (CNNs) and image-based representations to extract

rich predictive signals from financial markets, including historical price and trading patterns

(Jiang et al., 2023; Murray et al., 2024) and option-implied volatility surfaces (Kelly et al., 2023).

Extending these important contributions, we show that jointly modeling these distinct yet

complementary information sources can enhance directional return prediction.

This paper is motivated by the observation that a single asset can be viewed through two

complementary informational views. In binocular vision, depth perception arises from the

interaction of two eyes rather than from either eye alone. By the same logic, more reliable

directional forecasts emerge from jointly modeling stock price dynamics and option-implied

information. The equity market provides a backward-looking view, summarizing realized stock

prices and historical trading dynamics. The options market offers a forward-looking view that

reflects market expectations about future risk and uncertainty. Each view contains relevant

but incomplete information for predicting return direction on its own. Treating these signals

separately ignores their interaction and limits predictive performance.
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Specifically, we develop a unified mixture-of-experts forecasting architecture that integrates

heterogeneous signals from the stock and option markets through a cross-attention fusion layer

and an adaptive gating mechanism. The cross-attention layer enables bidirectional interaction

between stock-based and option-based representations, allowing information from each market

to be interpreted in the context of the other. Building on these context-aware representations,

the adaptive gating mechanism governs how information from the two sources is combined.

Rather than relying on fixed linear aggregation or a prespecified interaction structure, the gating

network assigns state-dependent weights to the stock-based and option-based expert branches,

which allows their relative importance to adjust across market conditions.

The framework represents stock price histories and option-implied volatility surfaces as

two complementary image-based inputs. Following Jiang et al. (2023), we encode realized

stock price dynamics as two-dimensional images constructed from Open–High–Low–Close

(OHLC) bars, moving average overlays, and trading volume, providing a transparent and

well-established benchmark for the historical information channel. In parallel, we introduce

option-implied volatility images, a novel forward-looking representation that maps the im-

plied volatility surface at a maturity matched to the forecast horizon into a standardized

two-dimensional image parameterized by option delta. While the stock price images summa-

rize recent realized price and trading dynamics, the option images capture market expectations

about future risk and asymmetry embedded in option prices.

Our empirical analysis combines daily stock market data from CRSP with option-implied

volatility surface data from OptionMetrics over the period January 1996 to December 2023,

focusing on stocks for which both price and option data are available. We evaluate three classes

of predictive models: a Stock Only Model based on image representations of historical price

and trading dynamics, an Option Only Model based on implied volatility images, and a Fusion

Model that jointly incorporates both information sources. Across all specifications, stock image
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lookback windows and option maturities are aligned with the return prediction horizon to

ensure temporal consistency between inputs and targets. All models are trained using data from

January 1996 to December 2005, with a random 70/30 split between training and validation,

and are evaluated exclusively out of sample over the period January 2006 to December 2023.

This design allows us to isolate the incremental predictive value of option-implied information

and assess the economic relevance of multimodal fusion.

Our empirical results show that integrating option-implied volatility with historical stock

price and trading information delivers substantial and robust improvements in cross-sectional

return direction prediction. Across both monthly and quarterly horizons, the Fusion Model con-

sistently outperforms stock-only benchmarks in terms of returns, Sharpe ratios, and cumulative

performance, while exhibiting equal or lower portfolio turnover. The gains are largest when

short-horizon price images are combined with horizon-matched option information, indicating

that forward-looking option-implied expectations are especially valuable when historical price

signals are noisy or slow to adjust. The Fusion Model also dominates traditional momentum and

reversal strategies, whose predictive power decays rapidly at longer horizons. Although option-

implied volatility alone contains economically meaningful predictive content, its strongest

and most persistent value emerges when combined with historical price dynamics. Overall,

the evidence demonstrates that multimodal fusion of backward-looking price patterns and

forward-looking option information yields more stable, persistent, and economically significant

return predictability, particularly during periods of elevated market uncertainty.

Our work builds upon a broad foundation of financial literature regarding market efficiency

and information theory. The predictive power of historical price dynamics we leverage is well-

documented, spanning from short-term (monthly and weekly) reversals (Jegadeesh, 1990;

Lehmann, 1990) to medium-term momentum (Jegadeesh and Titman, 1993). Theoretical work

suggests these price sequences allow for the inference of private information (Treynor and
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Ferguson, 1985; Brown and Jennings, 1989; Blume et al., 1994), which can be captured via

automated pattern recognition (Brock et al., 1992; Lo et al., 2000; Neely et al., 2014; Han et al.,

2016). Similarly, our use of the option-implied volatility surface is grounded in the literature

showing that the cross-section of option prices identifies the risk-neutral return distributions

(Jackwerth and Rubinstein, 1996; Aït-Sahalia and Lo, 1998). Previous studies confirm that

a steeper volatility smirk, negative skewness, and even higher-order moments like kurtosis

significantly forecast future returns (Bakshi et al., 2003; Xing et al., 2010; Diavatopoulos et al.,

2012; Christoffersen et al., 2013). Furthermore, we bridge findings that discrepancies between

call and put IVs identify informed sentiment (Ofek et al., 2004; Cremers and Weinbaum, 2010)

with recent advancements in deep learning for asset pricing (Chen et al., 2024). By demonstrating

that cross-attention mechanisms can bridge the semantic gap between temporal and structural

financial data, we provide a scalable blueprint for the next generation of multimodal financial

prediction models.

The remainder of the paper is organized as follows. Section 2 describes the image represen-

tation and the multimodal deep learning architecture. Section 3 presents the data and empirical

results. Section 4 concludes.
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2 Methodology

This section presents the methodological framework for binocular directional forecasting

based on the joint use of stock price images and option-implied volatility images. For each stock

i at date t, we construct two complementary image-based representations that serve as inputs to

a single predictive model: a stock price image summarizing recent historical price dynamics and

an option-implied volatility image capturing contemporaneous market expectations derived

from options written on the same underlying stock.

The prediction target is defined as the binary directional indicator

yi,t+T = 1{ri,t+T > 0}, (1)

where ri,t+T denotes the cumulative holding-period return from date t to t+T , with T ∈ {20, 60}

trading days. The stock price image encodes realized price dynamics over the lookback window

[t− s, t], with s ∈ {5, 20, 60} trading days, while the option-implied volatility image provides a

cross-sectional snapshot of the implied volatility surface for the same stock observed at date t.

t− s t t+ T

Price Dynamics [t− s, t]

Option-Implied Volatility at t

Target: yi,t+T = 1{ri,t+T > 0}

The above figure illustrates the temporal alignment between the model inputs and the

prediction target. At each date t for each stock, that date serves simultaneously as the final

observation in the stock price image and as the date at which the option-implied volatility image

is constructed. This alignment ensures that both input modalities reflect the same underlying

market information set at time t.

5



To integrate the two image-based representations, we employ a single deep learning model

that uses a cross-attention fusion architecture. Rather than simply combining features from

the two sources, cross-attention allows information from the stock-based and option-based

views to interact dynamically and in both directions. We further incorporate an adaptive gating

mechanism that controls the relative influence of stock-based and option-based features in the

final representation, allowing the model to place greater weight on the more informative view

under different market conditions.

The remainder of this section first describes the construction of the stock price and option-

implied volatility images, and then introduces the cross-attention and gating mechanisms used

to fuse these representations for directional forecasting.

2.1 Image Representations

2.1.1 Stock Price Images

As the historical component of our binocular framework, a stock price image captures the

realized price dynamics of the underlying asset. To ensure a clean benchmark and to isolate

the incremental contribution of option market information, we construct stock price images

by closely following the image transformation approach proposed by Jiang et al. (2023). This

design choice ensures that any subsequent performance differences can be attributed to the

integration of option-based information rather than to differences in stock image construction.

For each trading day, the opening, high, low, and closing prices are represented as a single

OHLC bar in a grayscale image. The high and low prices define the endpoints of a vertical

line, while the opening and closing prices are indicated by short horizontal ticks on the left and

right sides of the vertical line, respectively. Each OHLC bar is rendered in white against a black

background and has a fixed width of three pixels: one pixel for the vertical line and one pixel

for each horizontal tick. This pixel-level standardization ensures a consistent visual encoding of
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daily price movements across assets and time.

By concatenating OHLC bars across consecutive trading days, we obtain a grayscale stock

price image whose total width equals 3s pixels for an s-trading-day lookback window. We

construct stock images using window lengths of s ∈ {5, 20, 60} trading days, corresponding

approximately to one week, one month, and one quarter, respectively. For a given window

length, the image height is fixed across all stocks and dates to ensure consistent input dimensions.

Within each image, the vertical scale is normalized so that the top and bottom pixel rows

correspond to the highest and lowest prices observed over the window, allowing relative price

levels to be encoded by vertical pixel position.

Consistent with Jiang et al. (2023), we further enrich the stock price images by incorporating

moving average price lines and trading volume information. A moving average line, computed

using the same window length as the image, is overlaid on the OHLC bars and rendered in

white with a thickness of one pixel. Trading volume is displayed in the bottom one-fifth of the

image, while the remaining four-fifths are allocated to price information. Each volume bar is

rendered in white, centered beneath its corresponding OHLC bar, and scaled proportionally to

that day’s trading volume relative to the maximum volume observed within the window.

Taken together, these elements form a two-dimensional (2D) stock price image that sum-

marizes recent price dynamics and trading volume over the given lookback window. Figure 1

illustrates an example constructed using a 20-trading-day lookback window.

2.1.2 Option-Implied Volatility Images

As the forward-looking component of our binocular framework, an option-implied volatil-

ity image captures market expectations about future price movements and risk embedded

in option prices. While the stock price images summarize realized historical price dynamics,

the option-implied volatility images provide a contemporaneous snapshot of the market’s
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assessment of uncertainty, tail risk, and asymmetry in the return distribution. Together, these

two representations offer complementary views of the same underlying stock.

From an economic perspective, option data form an implied volatility surface, a three-

dimensional (3D) object defined over option moneyness and time to maturity. Although the

Black–Scholes–Merton (Black and Scholes (1973); Merton (1973)) framework assumes constant

volatility across strikes and maturities, empirical option prices exhibit systematic variation in

implied volatility, giving rise to well-documented smile and skew patterns (Rubinstein, 1985,

1994; Bates, 1991). In this study, we parameterize the moneyness dimension using option delta.

Following common practice in equity and foreign exchange derivatives markets (Campa et al.,

1998; Gatheral, 2011; Mingone, 2023), delta provides a scale-free and economically meaningful

ordering of options that facilitates comparison across assets and over time.

Building on recent work that represents the implied volatility (IV) surface as an image

(Kelly et al., 2023), we exploit option data in a way that is explicitly aligned with our return

directional forecasting horizon. While the option market provides a full three-dimensional IV

surface over deltas and maturities at each date, we construct a two-dimensional (2D) represen-

tation by fixing maturity at a horizon consistent with the forecast window. This avoids pooling

information across maturities, which would dilute horizon-specific signals.

For prediction horizons T ∈ {20, 60} trading days, we use options with maturities closest

to 30 and 90 calendar days, respectively. At each stock–date pair, implied volatilities at the

selected maturity are collected across delta levels and arranged into a grayscale image, with

delta on the horizontal axis and implied volatility on the vertical axis. As with stock price

images, the vertical scale is normalized within each image to emphasize relative shape rather

than absolute level, allowing the model to focus on option-implied asymmetries relevant for

directional forecasting. All option images have a fixed height of 32 pixels and a fixed width of

34 pixels, corresponding to delta levels from −0.90 to 0.90 in increments of 0.05.
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Figure 2 illustrates two representative examples of the resulting option-implied volatility

images. In the resulting images, the left portion corresponds to negative-delta options (puts),

while the right portion corresponds to positive-delta options (calls). The vertical structure of

the image captures cross-sectional variation in implied volatility across delta levels, reflecting

asymmetries between downside and upside risk as well as the overall shape of the implied

volatility surface.

2.2 Deep Learning Model: A Cross-Attention Fusion Approach

We employ a deep learning architecture that integrates stock price images and option-

implied volatility images through a cross-attention fusion mechanism. The model consists of

three main components: (i) modality-specific convolutional neural networks (CNNs) for feature

extraction, (ii) a bidirectional cross-attention module for cross-modal interaction, and (iii) an

adaptive gating network that regulates the contribution of each modality in the final prediction.

CNN Feature Extraction. We begin by using two independent CNNs to extract high-level

representations from the stock price images and the option-implied volatility images, respec-

tively. CNNs are well suited for image-based financial prediction tasks because weight sharing

substantially reduces parameterization, making them easier to train with limited data, while

convolution and pooling operations provide robustness to shifts, scale changes, and local de-

formations in the input. These properties allow CNNs to automatically extract localized and

nonlinear spatial patterns from images without manual feature engineering (Jiang et al., 2023).

A CNN processes an input image through stacked convolutional blocks, each comprising

a convolutional layer, a nonlinear activation function, and a pooling operation. Convolutional

layers slide filters across the image to summarize local pixel patterns, activation functions

such as Leaky ReLU introduce nonlinearity, and max-pooling layers reduce dimensionality by

retaining the most informative local features. Through this hierarchical structure, the network
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transforms raw pixel values into increasingly abstract and informative representations.

For stock price images, we adopt the CNN architecture proposed by Jiang et al. (2023),

which uses different network depths for 5-day, 20-day, and 60-day images to capture price

patterns at multiple time scales. This specification serves as our Stock Only Model, providing

a benchmark for evaluating the incremental value of option-based information. For option

implied volatility images, which have lower spatial resolution, we design a lighter CNN with

two convolutional blocks. This network produces predicted return probabilities and is referred

to as the Option Only Model. The corresponding architectures are illustrated in Figures 3 and 4.

Cross-Attention Fusion. Our main model replaces the final fully connected layers of the stock

and option CNNs with linear projection layers that map each input to a d-dimensional feature

vector, where d = 64 in our implementation. Let X ∈ RN×d and Y ∈ RN×d denote the resulting

feature matrices extracted from the stock and option CNNs, respectively. Here, N = 128 denotes

the batch size.

To integrate these representations, we employ a cross-attention mechanism that allows

information from one modality to selectively attend to relevant features in the other. Cross-

attention, originally introduced in Vaswani et al. (2017), enables dynamic and directional

interaction between feature sets and is well suited for multimodal fusion. In our setting, it

allows the model to adaptively determine when forward-looking option information should

dominate and when realized price patterns are more informative.

Focusing on the stock-to-option direction, the query, key, and value matrices are obtained

through learned linear projections:

Q = XWQ, K = YWK , V = YWV , (2)

where WQ,WK ,WV ∈ Rd×d are trainable parameter matrices. The cross-attention weights are
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computed using scaled dot-product attention:

α = Softmax
(
QK⊤
√
d

)
, (3)

where α ∈ RN×N is the normalized attention matrix and the scaling factor
√
d stabilizes

gradients. The attended representation is given by αV ∈ RN×d.

To increase representational capacity, we implement multi-head attention with H = 8

heads, each operating on a subspace of dimension dh = d/H = 8. For head h = 1, . . . ,H , the

projections are WQ
h ,WK

h ,W V
h ∈ Rd×dh , and the head-specific outputs are

αh = Softmax

(
(XWQ

h )(YWK
h )⊤√

dh

)
, (4)

zh = αh(YW V
h ). (5)

The outputs z1, . . . , zH are concatenated and projected back to a d-dimensional space through a

linear transformation. Residual connections and layer normalization are applied to stabilize

training and preserve representation integrity, following standard practice in attention-based

architectures (Vaswani et al., 2017; Ba et al., 2016). An analogous attention module is constructed

in the opposite direction by reversing the roles of X and Y . Additional implementation details

are provided in Appendix A.2.

Adaptive Gating Network. While cross-attention captures rich interaction patterns between

modalities, it does not explicitly regulate their relative importance in the final prediction. To

address this, we introduce an adaptive gating network that controls the contribution of each

modality at the fusion stage. As emphasized by Arevalo et al. (2017) and Tsai et al. (2019),

attention and gating serve distinct roles: attention allocates weights within a feature set, whereas

gating allocates weights across modalities.
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Consistent with mixture-of-experts models (Jacobs et al., 1991; Shazeer et al., 2017), the

gating network functions as a learned expert-weighting mechanism. Let Zs ∈ RN×d and Zo ∈

RN×d denote the bidirectionally attended stock and option feature matrices. We concatenate

these features as f = [Zs, Zo] ∈ RN×2d and pass them through a two-layer gating network:

g = Softmax(W2σ(W1f + b1) + b2) , (6)

where W1 ∈ Rh×2d, W2 ∈ R2×h, and σ(·) denotes the ReLU activation function. The resulting

weights gs and go correspond to the stock and option modalities, respectively. The final fused

representation is computed as

Zf = gs ⊙ Zs + go ⊙ Zo, (7)

where ⊙ denotes element-wise multiplication. This gating mechanism allows the model to

dynamically emphasize the modality that provides more informative signals for each prediction

instance. The fused representation Zf is finally mapped to the predicted probabilities associated

with the directional target yt,T via a fully connected softmax layer.

2.3 Training and Validation Procedure

To ensure a fair comparison with the benchmark Stock Only Model of Jiang et al. (2023), we

closely follow their training protocol. The full sample spans January 1996 through December

2023 and is partitioned into training, validation, and testing sets. The in-sample cover the initial

ten-year period from January 1996 to December 2005. Within this in-sample data, we randomly

assign 70% of observations to the training set and the remaining 30% to the validation set.

Random splitting helps maintain a balanced distribution of positive and negative labels in both

sets, which is important for classification tasks. Across all prediction horizons considered, the

resulting class distribution is approximately balanced, with positive outcomes accounting for

roughly 50–55% of observations. The testing set covers January 2006 to December 2023 and is
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reserved exclusively for out-of-sample performance evaluation.

Following Jiang et al. (2023), we formulate stock return direction forecasting as a binary

classification problem, with the target variable defined in Equation 1. For notational simplicity,

we suppress time and stock subscripts when no confusion arises. Model training minimizes the

binary cross-entropy loss,

L(y, ŷ) = −y log(ŷ)− (1− y) log(1− ŷ), (8)

where y ∈ {0, 1} denotes the true label and ŷ ∈ {0, 1} denotes the predicted class label obtained

from the softmax output.

We adopt the regularization and optimization strategy proposed by Gu et al. (2020) and

implemented by Jiang et al. (2023), with minor adaptations to accommodate our architecture.

All network parameters are initialized using the Xavier initializer (Glorot and Bengio, 2010) to

stabilize the variance of activations across layers.

Model training employs the Adam optimizer (Kingma and Ba, 2014) with an initial learning

rate of 1 × 10−5 and mini-batches of size N = 128. Each convolutional block includes batch

normalization (Ioffe and Szegedy, 2015) prior to the nonlinear activation to improve convergence

stability. To mitigate overfitting, we apply a dropout rate of 50% to the fully connected layer,

consistent with the recommendations of Gu et al. (2020). Training is terminated early when the

validation loss fails to improve for two consecutive epochs.

Because parameter initialization and optimization are stochastic, we repeat the training

procedure five times and average the resulting forecasts, following Gu et al. (2020).

2.4 Out-of-Sample Performance Evaluation Measures

We evaluate out-of-sample performance using cross-sectional long–short portfolios formed

on model-predicted return probabilities. At each rebalancing date, stocks are sorted into deciles
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based on their predicted probability of a positive return. The top decile constitutes the long

portfolio, while the bottom decile constitutes the short portfolio, yielding an equal-weighted

long–short strategy.

The portfolio holding period matches the prediction horizon and begins immediately after

the final observation used to construct the stock price image. Portfolios are rebalanced monthly

for T = 20 trading-day forecasts and quarterly for T = 60 trading-day forecasts, ensuring

consistency between portfolio formation, rebalancing frequency, and the forecasting task.

Portfolio performance is summarized using annualized returns, Sharpe ratios, and portfo-

lio turnover. Annualized returns are computed by scaling average returns by 12 for monthly

portfolios and by 4 for quarterly portfolios. The annualized Sharpe ratio is defined as

Sharpe Ratio =
Annualized Return

Std(Annualized Return)
, (9)

where Std(Annualized Return) denotes the standard deviation of annualized portfolio returns.

To assess trading intensity and implementability, we compute portfolio turnover. Let wi,t

denote the weight of stock i at the beginning of rebalancing period t, and let ri,t+T denote

its return over the subsequent holding period. The normalized portfolio weight prior to

rebalancing is

w̃i,t+T =
wi,t(1 + ri,t+T )

1 +
∑

j wj,trj,t+T
. (10)

Turnover in period t is computed as

Turnovert =
∑
i

|wi,t+T − w̃i,t+T | , (11)
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and average monthly turnover is defined as

Turnover =
1

M

1

T

T∑
t=1

Turnovert, (12)

where M denotes the number of months per holding period (e.g., M = 1 for monthly portfolios

and M = 3 for quarterly portfolios). Under this definition, a strategy that fully reconstitutes

its holdings each period attains a maximum turnover of 200%/M , whereas a buy-and-hold

strategy has zero turnover.

To illustrate performance dynamics, we plot cumulative log returns of the high–minus–low

(H–L) portfolios. At each rebalancing date t, the realized return Rp,t is transformed into a log

return, log(1 +Rp,t), and cumulative log returns up to time τ are computed as

CumLogRetτ =
∑
t≤τ

log(1 +Rp,t). (13)

Log returns are additive over time and yield numerically stable equity curves for long-horizon

comparisons; accordingly, all cumulative performance figures report cumulative log returns

rather than compounded simple returns.

Taken together, the methodology integrates image-based representations of historical price

dynamics and option-implied volatility through a cross-attention fusion architecture, with

model training and validation conducted in a fixed in-sample period and economic relevance

assessed through out-of-sample portfolio tests.
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3 Empirical Analysis

This section presents the empirical analysis. We begin by describing the data sources,

sample construction, and model configurations used in the analysis. We then report the main

out-of-sample results comparing the Fusion Model with the Stock Only Model, which serves as

our primary benchmark and isolates the incremental value of incorporating option-implied

information. Next, we evaluate the Fusion Model against traditional historical return based

predictors widely studied in the asset-pricing literature. Finally, we examine the performance of

the Option Only Model to assess the predictive content of option-implied volatility information

in isolation and to highlight the complementary role of multimodal fusion.

3.1 Data

We use daily stock return and price data from the Center for Research in Security Prices

(CRSP) and option-implied volatility data from the OptionMetrics Volatility Surface file. The

full sample spans January 1996 through December 2023, reflecting the earliest availability of

OptionMetrics data in January 1996.

Matching CRSP and OptionMetrics yields a sample of 7,786 unique stocks with linked

stock and option data. For each stock, we construct three types of stock price images based

on historical windows of 5, 20, and 60 trading days. In parallel, we construct two types of

option-implied volatility images using options with maturities closest to 30-calendar-day and

90-calendar-day horizons, respectively. The prediction target is a binary indicator equal to one

if the stock’s holding-period return over the subsequent 20 or 60 trading days is positive and

zero otherwise.

We retain only those observations for which both stock price data and option data are avail-

able, ensuring that all image representations can be constructed consistently across modalities.
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3.2 Model Configurations and Experimental Design

This subsection describes the set of predictive models evaluated in the empirical analysis

and clarifies how input horizons and prediction targets are aligned across model specifications.

The Stock Only Model comprises six separately trained versions, corresponding to all

combinations of the three stock image lookback windows (5, 20, and 60 trading days) and the

two return prediction horizons (20 and 60 trading days). The Option Only Model consists of

two versions: one using 30-calendar-day maturity option implied volatility images to predict

20-trading-day returns, and the other using 90-calendar-day maturity option-implied volatility

images to predict 60-trading-day returns.

The Fusion Model mirrors the stock-only setup and also contains six versions, in which

option-implied information is aligned with the return prediction horizon. Specifically, a 5-

day stock image used to predict 20-trading-day returns is combined with a 30-calendar-day

maturity option-implied volatility image, while a 60-trading-day return prediction is paired

with a 90-calendar-day maturity option-implied volatility image. This horizon matching ensures

that option-implied information reflects market expectations over a time scale comparable to

the stock return forecast window.

For notational convenience, we denote model configurations as “Is/RT ,” where s indicates

the stock image lookback window and T denotes the return prediction horizon. Under this

notation, “I5/R20” refers to a model that uses 5-trading-day stock images to predict 20-trading-

day ahead returns. For the Fusion Model, this notation additionally implies that the option image

is constructed from options observed on the last day of the stock image window and with a

maturity matched to the prediction horizon. For the Option Only Model, we use “RT” to denote

the prediction horizon, as there is a unique option image type for each horizon.

Our empirical analysis combines daily stock market data from CRSP with option-implied
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volatility surface data from OptionMetrics over the period January 1996 to December 2023. We

restrict attention to stocks for which both price and option data are available, yielding a large

and representative cross section of stocks. The analysis evaluates three classes of predictive

models: a Stock Only Model benchmark based on image representations of historical price

and trading dynamics, an Option Only Model based on implied volatility images, and a Fusion

Model that jointly incorporates both information sources. Across specifications, stock image

lookback windows and option maturities are explicitly aligned with the return prediction

horizon to ensure temporal consistency between inputs and targets. All models are trained

using a fixed in-sample period and evaluated exclusively out of sample, allowing us to isolate

the incremental predictive value of option-implied information and to assess the economic

relevance of multimodal fusion relative to established historical return–based predictors.

All models are trained once using data from January 1996 to December 2005. Within this

period, 70% of observations are randomly assigned to the training set, with the remaining 30%

reserved for validation. Out-of-sample performance is then evaluated over the period from

January 2006 through December 2023, using the models estimated during the initial training

phase.

3.3 Performance of the Fusion Model versus the Stock Only Benchmark

We begin the empirical analysis by comparing the Fusion Model with the Stock Only

Model, which serves as our primary benchmark and isolates the incremental economic value

of incorporating option-implied information beyond historical stock price dynamics. From an

investment perspective, this comparison asks whether forward-looking information embedded

in option markets improves the profitability and risk-adjusted performance of trading strategies

formed on image-based stock price signals.

Tables 1 and 2 report the out-of-sample performance of long–short portfolios constructed

from the two models’ predicted return directions over 20-trading-day and 60-trading-day
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horizons, respectively. Performance is evaluated using annualized returns, Sharpe ratios, and

portfolio turnover, allowing us to assess not only economic profitability but also risk adjustment

and implementability.

One-month-ahead return direction prediction. Table 1 summarizes the comparison results

for the 20-trading-day (one-month-ahead) prediction horizon. Across all stock image lookback

windows, the Fusion Model consistently outperforms the corresponding Stock Only Model in

terms of both economic profitability and risk-adjusted performance. This finding suggests

that forward-looking information embedded in option markets contains incremental predictive

content beyond that captured by historical price patterns alone.

Among all specifications, the Fusion Model based on 5-day stock images (I5/R20) delivers

the strongest performance, generating the largest high-minus-low (H–L) portfolio returns, the

highest t-statistics, and the most favorable Sharpe ratios. Quantitatively, the I5/R20 Fusion

specification achieves an annualized return of approximately 9% with a Sharpe ratio of 0.85,

compared with an annualized return of about 5% and a Sharpe ratio of 0.51 for the corresponding

Stock Only Model. Similar, albeit slightly smaller, improvements are observed for the 20-day

and 60-day stock image horizons, indicating that the economic benefits of incorporating option-

implied volatility are robust to the choice of historical price window rather than driven by a

single configuration.

In addition to higher returns, the Fusion Model exhibits slightly lower portfolio turnover

across all stock image horizons. From an economic perspective, this reduction in turnover

suggests that option-implied volatility information helps stabilize trading signals by anchoring

price-based patterns to market expectations about future risk. As a result, the Fusion Model re-

duces excessive rebalancing while delivering stronger risk-adjusted returns, thereby improving

implementability and mitigating concerns related to transaction costs.
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One-quarter-ahead return direction prediction. Table 2 reports the results for the 60-trading-day

(one-quarter-ahead) prediction horizon. Consistent with the shorter-horizon findings, the Fu-

sion Model uniformly outperforms the Stock Only Model in terms of annualized returns and

Sharpe ratios across all stock image horizons, while maintaining comparable or lower portfolio

turnover. This evidence indicates that the incremental information embedded in option-implied

volatility remains economically relevant even as the forecast horizon lengthens.

Although the absolute magnitude of returns is lower at the quarterly horizon, the relative

performance ranking of the models is unchanged, underscoring the robustness of the fusion

framework across prediction horizons. From an economic perspective, this pattern suggests

that option-implied volatility captures persistent market expectations about future risk that

extend beyond short-term price dynamics, allowing the Fusion Model to retain predictive power

when purely price-based signals begin to decay.

Cumulative performance and dynamics. Beyond summary statistics, Figures 6 and 7 plot the

cumulative log returns of the high–minus–low (H–L) portfolios constructed from the Fusion

Model and the Stock Only Model. These cumulative return profiles provide insight into the

temporal stability and economic persistence of the models’ predictive signals, beyond what is

captured by average returns and Sharpe ratios.

For the 20-trading-day return prediction task (Figure 6), the Fusion Model consistently

dominates the Stock Only benchmark across all three stock image horizons. The performance

gap widens steadily over time, indicating that the economic gains from incorporating option-

implied volatility information accumulate gradually rather than arising from a small number

of extreme observations. This pattern suggests that option-implied information enhances the

reliability of return signals on an ongoing basis, rather than merely improving performance

during isolated market episodes. The gains are most pronounced for shorter stock image hori-

zons, with the I5/R20 Fusion specification achieving the highest cumulative return among all
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models. Economically, this finding implies that forward-looking option market expectations are

particularly valuable when historical price signals are short-term and potentially contaminated

by transitory noise.

A similar, though attenuated, pattern emerges for the 60-trading-day horizon (Figure 7).

Although cumulative returns are generally lower than those observed at the shorter horizon,

Fusion Models continue to outperform their Stock Only counterparts across all stock image

horizons, with the performance advantage again being most evident for the I5/R60 specification.

Moreover, Fusion-based portfolios exhibit smoother return trajectories over time, consistent

with superior risk-adjusted performance and reduced exposure to episodic drawdowns. Taken

together, these dynamics suggest that combining backward-looking price patterns with forward-

looking option-implied volatility improves both the persistence and the stability of return

predictability across forecast horizons.

Performance during market stress. An informative contrast emerges during periods of height-

ened market stress, most notably around the COVID-19 shock in 2020. While the I20/R60

and I60/R60 portfolios—under both the Stock Only and Fusion specifications—experience

pronounced drawdowns, the I5/R60 portfolios remain comparatively resilient. This pattern

indicates that short-horizon price images, which place greater weight on recent market in-

formation, adjust more rapidly to abrupt changes in economic conditions and therefore offer

improved downside protection during turbulent periods.

In contrast, longer-horizon price representations appear slower to adapt to sudden regime

shifts. Although incorporating option-implied volatility improves performance on average,

option-based information alone does not fully offset the inertia inherent in long-horizon histori-

cal price signals during sharp market dislocations. Taken together, these findings underscore the

importance of information timeliness—alongside information richness—for achieving robust

performance under extreme market conditions.
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Overall, the results in this subsection provide strong evidence that integrating option-

implied volatility into an image-based forecasting framework yields economically and statis-

tically meaningful improvements over models that rely solely on historical stock prices and

trading patterns. The gains are particularly pronounced for short-horizon price images and

during periods of elevated market uncertainty, suggesting that option-implied information

supplies complementary forward-looking signals rather than redundant noise.

3.4 Performance of the Fusion Model versus Traditional Prior Return-Based Predictors

While the preceding analysis demonstrates that the Fusion Model outperforms the Stock

Only benchmark, an important remaining question is whether these improvements simply

reflect exposure to well-known return predictors embedded in historical price dynamics. To

address this concern, we benchmark the Fusion Model against a set of traditional price-based

trading strategies that have been extensively studied in the asset pricing literature.

Specifically, we compare the out-of-sample performance of the Fusion Model with three

widely used return predictors: the 2–12 momentum (MOM) strategy, the one-month short-

term reversal (STR) strategy, and the one-week short-term reversal (WSTR) strategy. Because

these benchmarks rely exclusively on historical price information, they provide a natural and

economically meaningful basis for assessing whether the Fusion Model delivers incremental

predictive power beyond established price-based return regularities.

Table 3 reports the results for the 20-trading-day return prediction horizon. The Fusion

Model substantially outperforms all traditional price-based strategies in terms of risk-adjusted

performance, with particularly strong gains for specifications based on short-horizon price

images. Among all strategies, the I5/R20 Fusion specification achieves the highest Sharpe ratio,

exceeding those of the MOM, STR, and WSTR benchmarks by a wide margin. Although the

WSTR strategy generates statistically significant excess returns, its performance is accompanied

by considerably higher return volatility, resulting in inferior Sharpe ratios. These results
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indicate that the Fusion Model delivers more stable excess returns, rather than merely amplifying

short-term price fluctuations.

Differences in portfolio turnover further illuminate the economic nature of the Fusion

Model’s performance gains. The I5/R20 Fusion specification exhibits turnover comparable

to STR and WSTR, and higher than that of MOM, reflecting its reliance on short-horizon

information. Importantly, this higher trading intensity is accompanied by markedly superior

Sharpe ratios, suggesting that the improved performance is driven by more informative return

signals rather than by excessive trading activity.

Table 4 extends the comparison to the 60-trading-day horizon. In contrast to traditional

strategies, whose predictive power largely dissipates as the forecast horizon lengthens, the

Fusion Model remains both economically and statistically significant. Notably, the I5/R60 Fusion

specification is the only strategy that delivers a statistically significant long–short return at this

horizon. This pattern highlights a key limitation of purely price-based predictors: their signals

decay rapidly over longer horizons. By incorporating option-implied volatility, which reflects

forward-looking market expectations about risk, the Fusion Model retains predictive power even

when historical price information becomes less informative.

Turnover comparisons at the longer horizon reinforce this conclusion. Although the

Fusion Model exhibits higher turnover than the MOM benchmark, its trading intensity remains

comparable to STR and WSTR while delivering substantially higher Sharpe ratios. This trade-off

suggests that the Fusion Model achieves superior performance through enhanced information

content rather than increased trading frequency.

Overall, the evidence demonstrates that the Fusion Model does not merely replicate well-

known momentum or reversal effects. Instead, it extracts incremental predictive information

from the interaction between historical price and trading dynamics and option-implied volatility.

By combining backward-looking price patterns with forward-looking market expectations, the
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Fusion Model delivers more robust and persistent return predictability than traditional single-

modality strategies.

3.5 Performance of the Option Only Model

We conclude the empirical analysis by isolating the predictive content of the options

market. Specifically, we evaluate the Option Only Model, which uses option-implied volatility

(IV) images as the sole input to forecast the direction of future holding-period stock returns.

This exercise serves two complementary roles. First, it provides a direct test of whether IV

surfaces contain standalone information that is economically meaningful out of sample. Second,

it helps interpret the performance of the Fusion Model by distinguishing pure option-driven

predictability from gains that arise only when option information is combined with historical

price dynamics.

Table 5 reports out-of-sample results for T = 20 and T = 60 trading-day horizons. At

the 20-day horizon, portfolios formed on option-based signals exhibit a clear cross-sectional

spread: average returns increase across deciles, and the high-minus-low (H–L) portfolio delivers

economically meaningful performance with strong risk-adjusted returns. The monotone pattern

across deciles indicates that variation in the shape of the IV profile contains systematic informa-

tion about the cross-section of subsequent stock return direction, rather than reflecting isolated

episodes. At the 60-day horizon, the Option Only strategy remains profitable, though perfor-

mance attenuates relative to T = 20. The H–L return spread is still statistically meaningful and

the decile ordering remains broadly stable, suggesting that option-implied expectations contain

predictive content that extends beyond very short horizons, albeit with weaker signal-to-noise.

Turnover patterns indicate that IV-based signals are not purely transitory. Monthly

turnover for the Option Only strategy is comparable to the other benchmarks, implying that

its performance is not mechanically driven by excessive rebalancing. This stability improves

implementability and is consistent with the interpretation that option-implied information
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reflects persistent shifts in market beliefs about risk and return asymmetry.

Figure 8 plots the cumulative log returns of the high–minus–low (H–L) portfolios for the

Fusion Model (best-performing specifications at each horizon, I5/R20 and I5/R60) and the Option

Only Model (R20 and R60). The Option Only portfolios exhibit a steadily increasing cumulative

return profile over the full out-of-sample period, confirming that option-implied volatility alone

supports a persistent long–short return spread. Moreover, the relatively smooth evolution of

these equity curves suggests that option-based signals generate stable performance over time,

which may be attractive to volatility-sensitive investors.

At the same time, the Fusion Model consistently dominates the Option Only Model in cumu-

lative performance at both horizons, with the performance gap widening over time. This pattern

highlights the incremental value of integrating forward-looking option-implied expectations

with backward-looking price and trading dynamics through the fusion architecture. Overall,

while option-implied volatility contains economically meaningful standalone directional in-

formation, the most reliable and persistent predictability arises when option-based signals are

combined with historical price information in a unified multimodal framework.

Taken together, the empirical results demonstrate that incorporating option-implied volatil-

ity into an image-based forecasting framework yields economically meaningful and robust

improvements in directional return predictability. Among all specifications, the I5/R20 Fusion

Model consistently delivers the strongest performance across all evaluation criteria, including

return magnitude, annualized Sharpe ratio, and cumulative performance. This dominance

underscores the importance of combining short-horizon price and trading dynamics with

horizon-matched option-implied expectations, and highlights the economic value of multi-

modal fusion for capturing complementary backward- and forward-looking information in

equity return direction forecasting.
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4 Conclusion

This paper develops a multimodal deep learning framework for cross-sectional equity

return direction prediction that integrates two complementary image-based modalities observed

at the same decision date: a backward-looking stock price image summarizing recent realized

price and trading volume dynamics, and a forward-looking option-implied volatility image

capturing market expectations about future risk. To synthesize these data sources, we employ a

cross-attention fusion architecture that enables bidirectional interaction between stock-based

and option-based feature representations, enhanced by a mixture-of-experts strategy with an

adaptive feature-level gating mechanism. This learned routing system assigns state-dependent

weights to stock and option “experts,” allowing the relative influence of historical price and

trading dynamics and forward-looking volatility expectations to vary across assets and over

time in forming the final directional forecast.

Using daily CRSP stock data and OptionMetrics volatility surface data from January 1996

to December 2023, we evaluate economic relevance through out-of-sample portfolio tests over

the period from January 2006 to December 2023. Across both 20-trading-day and 60-trading-

day prediction horizons and across all stock-image lookback windows, the Fusion Model

consistently outperforms the Stock Only Model in terms of annualized returns and Sharpe

ratios. These improvements persist across horizons and image constructions, indicating that

the incremental value of option-implied information is robust rather than an artifact of model

tuning. The strongest performance is achieved by the short-horizon configuration (I5/R20),

suggesting that option-implied expectations are especially valuable when short-horizon price

and volume signals are most exposed to transitory noise and rapid regime changes.

Benchmarking against traditional prior return-based strategies further clarifies the eco-

nomic content of the fusion signal. Relative to widely studied return-based predictors, fusion-

based portfolios deliver superior risk-adjusted performance and retain predictive power at
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longer horizons, where purely stock-market-based signals tend to weaken. While the Op-

tion Only Model confirms that implied volatility surfaces contain economically meaningful

standalone information, the Fusion Model typically delivers stronger and more stable cumula-

tive performance by combining forward-looking option signals with backward-looking price

information.

Beyond these empirical findings, this paper addresses a broader research question central

to modern quantitative asset management: how to synthesize high-dimensional, heterogeneous

data streams into a coherent predictive signal. As artificial intelligence enables the extraction of

rich technical features from diverse markets and modalities, the primary challenge shifts from

information availability to disciplined integration. Traditional approaches—relying on fixed

linear combinations, prespecified factor structures, or single-market perspectives—are ill-suited

for environments where predictive relevance varies across assets, horizons, and market regimes.

The binocular framework proposed in this paper offers a data-driven response to this

challenge. By formalizing signal integration as a mixture-of-experts problem, the model learns

to dynamically weight and combine information from different modalities through cross-

attention and adaptive gating, avoiding manual calibration of signal importance. While option-

implied volatility serves as a concrete and economically meaningful example of forward-looking

information, the underlying mixture-of-experts architecture remains agnostic to the specific

modalities employed. The empirical results demonstrate that explicitly modeling cross-modal

interactions can translate heterogeneous technical information into economically meaningful

portfolio performance.
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Tables and Figures

Figure 1 Example of Stock Price Image (20-Trading-Day Lookback Window)

(a) Option Image Type A (b) Option Image Type B

Figure 2 Example of Option-Implied Volatility Images
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Figure 3 CNN Architecture for Stock Price Image Processing

Figure 4 CNN Architecture for Option-Implied Volatility Image Processing
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Figure 5 Cross-Attention Fusion Architecture
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Table 1 Fusion vs Stock Only Model Performance for R20 Horizon

Equal-Weight

Fusion Model Stock Only Model

I5/R20 I20/R20 I60/R20 I5/R20 I20/R20 I60/R20

Ret SR Ret SR Ret SR Ret SR Ret SR Ret SR

Low 0.05 0.25 0.07 0.33 0.07 0.33 0.07 0.34 0.08 0.40 0.09 0.40
2 0.07 0.33 0.09 0.44 0.10 0.47 0.09 0.42 0.10 0.46 0.10 0.47
3 0.09 0.44 0.10 0.46 0.10 0.48 0.09 0.44 0.10 0.49 0.11 0.50
4 0.10 0.51 0.09 0.45 0.11 0.54 0.10 0.47 0.10 0.48 0.11 0.51
5 0.10 0.49 0.10 0.46 0.10 0.48 0.09 0.45 0.09 0.44 0.10 0.50
6 0.11 0.51 0.11 0.51 0.10 0.50 0.10 0.50 0.11 0.54 0.10 0.49
7 0.11 0.53 0.12 0.56 0.12 0.57 0.11 0.54 0.11 0.56 0.10 0.49
8 0.11 0.56 0.11 0.53 0.10 0.49 0.11 0.56 0.11 0.55 0.10 0.49
9 0.12 0.58 0.11 0.53 0.11 0.53 0.12 0.56 0.10 0.48 0.11 0.53
High 0.14 0.69 0.12 0.59 0.10 0.50 0.12 0.59 0.10 0.50 0.10 0.51
H-L 0.09*** 0.85 0.05** 0.47 0.03 0.27 0.05** 0.51 0.01 0.17 0.02 0.21
Turnover 1.76 1.79 1.75 1.80 1.81 1.78

Note: This table presents the out-of-sample portfolio performance results comparing the Fusion
Model with Stock Only Model for R20 horizon returns of equal-weighted portfolios using data
from January 2006 through December 2023. Portfolios are formed by sorting stocks into deciles
based on the respective model predictions. Ret represents annualized returns, SR denotes the
Sharpe ratio. H-L shows the hedge portfolio return (High minus Low) with significance levels:
* p<0.10, ** p<0.05, *** p<0.01. Turnover indicates the average monthly portfolio turnover.

Figure 6 Fusion vs Stock Only Model: H-L Portfolio Returns for R20 Horizon

Note: This figure illustrates the out-of-sample cumulative returns of the High-Low (H-L) portfo-
lios formed based on the Fusion Model and Stock Only Model predictions for R20 horizon using
data from January 2006 through December 2023. The dotted line represents the Fusion Model,
while the solid line represents the Stock Only Model. Different stock image horizons are shown
in different colors.
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Table 2 Fusion vs Stock Only Model Performance for R60 Horizon

Equal-Weight

Fusion Model Stock Only Model

I5/R60 I20/R60 I60/R60 I5/R60 I20/R60 I60/R60

Ret SR Ret SR Ret SR Ret SR Ret SR Ret SR

Low 0.07 0.32 0.10 0.39 0.10 0.35 0.07 0.33 0.09 0.38 0.10 0.37
2 0.10 0.44 0.09 0.41 0.11 0.44 0.10 0.41 0.10 0.41 0.13 0.52
3 0.11 0.49 0.11 0.46 0.09 0.40 0.11 0.51 0.11 0.46 0.12 0.48
4 0.10 0.46 0.10 0.44 0.11 0.49 0.11 0.48 0.11 0.46 0.12 0.52
5 0.10 0.47 0.11 0.48 0.10 0.46 0.11 0.49 0.11 0.46 0.10 0.45
6 0.11 0.47 0.10 0.46 0.11 0.49 0.12 0.53 0.12 0.53 0.10 0.46
7 0.12 0.54 0.11 0.50 0.12 0.54 0.11 0.48 0.11 0.51 0.09 0.43
8 0.12 0.52 0.12 0.52 0.11 0.51 0.11 0.50 0.11 0.50 0.11 0.51
9 0.13 0.51 0.11 0.51 0.12 0.55 0.12 0.52 0.12 0.52 0.11 0.51
High 0.13 0.54 0.13 0.61 0.12 0.60 0.12 0.53 0.11 0.55 0.11 0.55
H-L 0.06*** 0.66 0.03 0.21 0.02 0.19 0.05** 0.57 0.02 0.20 0.01 0.10
Turnover 0.59 0.61 0.61 0.60 0.61 0.61

Note: This table presents the out-of-sample portfolio performance results comparing the Fusion
Model with Stock Only Model for R60 horizon returns of equal-weighted portfolios using data
from January 2006 through December 2023. Portfolios are formed by sorting stocks into deciles
based on the respective model predictions. Ret represents annualized returns, SR denotes the
Sharpe ratio. H-L shows the hedge portfolio return (High minus Low) with significance levels:
* p<0.10, ** p<0.05, *** p<0.01. Turnover indicates the average monthly portfolio turnover.

Figure 7 Fusion vs Stock Only Model: H-L Portfolio Returns for R60 Horizon (2023)

Note: This figure illustrates the cumulative returns of the High-Low (H-L) portfolios formed
based on the Fusion Model and Stock Only Model predictions for R60 horizon. The dotted line
represents the Fusion Model, while the solid line represents the Stock Only Model. Different stock
image horizons are shown in different colors.
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Table 3 Performance Comparison for R20 Horizon of the Fusion Model with Traditional
Prior Return-Based Predictors

Equal-Weight

Fusion Model Traditional Strategy

I5/R20 I20/R20 I60/R20 MOM/R20 STR/R20 WSTR/R20

Ret SR Ret SR Ret SR Ret SR Ret SR Ret SR

Low 0.05 0.25 0.07 0.33 0.07 0.33 0.09 0.27 0.09 0.42 0.08 0.33
2 0.07 0.33 0.09 0.44 0.10 0.47 0.10 0.39 0.10 0.53 0.09 0.44
3 0.09 0.44 0.10 0.46 0.10 0.48 0.11 0.49 0.10 0.54 0.09 0.47
4 0.10 0.51 0.09 0.45 0.11 0.54 0.10 0.53 0.10 0.57 0.09 0.49
5 0.10 0.49 0.10 0.46 0.10 0.48 0.11 0.62 0.10 0.60 0.09 0.52
6 0.11 0.51 0.11 0.51 0.10 0.50 0.11 0.63 0.11 0.60 0.10 0.58
7 0.11 0.53 0.12 0.56 0.12 0.57 0.11 0.63 0.10 0.55 0.12 0.64
8 0.11 0.56 0.11 0.53 0.10 0.49 0.11 0.65 0.11 0.55 0.12 0.60
9 0.12 0.58 0.11 0.53 0.11 0.53 0.12 0.67 0.11 0.46 0.13 0.59
High 0.14 0.69 0.12 0.59 0.10 0.50 0.13 0.61 0.15 0.48 0.18 0.59
H-L 0.09*** 0.85 0.05** 0.47 0.03 0.27 0.05 0.20 0.06 0.28 0.10** 0.58
Turnover 1.76 1.79 1.75 0.66 1.69 1.68

Note: This table presents the out-of-sample portfolio performance results comparing the Fusion
Model with Traditional Prior Return-Base Strategies for R20 horizon returns of equal-weighted
portfolios using data from January 2006 through December 2023. Portfolios are formed by
sorting stocks into deciles based on the respective model predictions. Ret represents annualized
returns, SR denotes the Sharpe ratio. H-L shows the hedge portfolio return (High minus Low)
with significance levels: * p<0.10, ** p<0.05, *** p<0.01. Turnover indicates the average monthly
portfolio turnover.
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Table 4 Performance Comparison for R60 Horizon of the Fusion Model with Traditional
Prior Return-Based Predictors

Equal-Weight

Fusion Model Traditional Strategy

I5/R60 I20/R60 I60/R60 MOM/R60 STR/R60 WSTR/R60

Ret SR Ret SR Ret SR Ret SR Ret SR Ret SR

Low 0.07 0.32 0.10 0.39 0.10 0.35 0.13 0.33 0.09 0.32 0.13 0.43
2 0.10 0.44 0.09 0.41 0.11 0.44 0.12 0.41 0.10 0.46 0.11 0.50
3 0.11 0.49 0.11 0.46 0.09 0.40 0.13 0.52 0.11 0.53 0.09 0.47
4 0.10 0.46 0.10 0.44 0.11 0.49 0.12 0.55 0.10 0.54 0.11 0.56
5 0.10 0.47 0.11 0.48 0.10 0.46 0.12 0.61 0.11 0.59 0.11 0.57
6 0.11 0.47 0.10 0.46 0.11 0.49 0.11 0.59 0.12 0.61 0.11 0.59
7 0.12 0.54 0.11 0.50 0.12 0.54 0.11 0.59 0.11 0.56 0.12 0.57
8 0.12 0.52 0.12 0.52 0.11 0.51 0.11 0.58 0.13 0.56 0.10 0.50
9 0.13 0.51 0.11 0.51 0.12 0.55 0.11 0.57 0.12 0.48 0.12 0.48
High 0.13 0.54 0.13 0.61 0.12 0.60 0.12 0.48 0.14 0.42 0.14 0.43
H-L 0.06*** 0.66 0.03 0.21 0.02 0.19 -0.01 -0.02 0.05 0.22 0.01 0.10
Turnover 0.59 0.61 0.61 0.38 0.57 0.57

Note: This table presents the out-of-sample portfolio performance results comparing the Fusion
Model with Traditional Prior Return-Base Strategies for R60 horizon returns of equal-weighted
portfolios using data from January 2006 through December 2023. Portfolios are formed by
sorting stocks into deciles based on the respective model predictions. Ret represents annualized
returns, SR denotes the Sharpe ratio. H-L shows the hedge portfolio return (High minus Low)
with significance levels: * p<0.10, ** p<0.05, *** p<0.01. Turnover indicates the average monthly
portfolio turnover.
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Table 5 Option Only Model Performance

Equal-Weight

R20 R60

Ret SR Ret SR

Low 0.06 0.30 0.08 0.40
2 0.09 0.41 0.10 0.44
3 0.09 0.42 0.11 0.48
4 0.10 0.49 0.10 0.46
5 0.10 0.48 0.11 0.49
6 0.11 0.53 0.12 0.52
7 0.11 0.56 0.10 0.45
8 0.11 0.53 0.11 0.49
9 0.12 0.57 0.12 0.50
High 0.13 0.64 0.13 0.56
H-L 0.06*** 0.80 0.05*** 0.75
Turnover 1.69 0.59

Note: This table presents the out-of-sample portfolio performance results for the Option Only
Model using data from January 2006 through December 2023. Portfolios are formed by sorting
stocks into deciles based on the model predictions for R20 and R60 horizon returns of equal-
weighted portfolios. Ret represents annualized returns, SR denotes the Sharpe ratio. H-L shows
the hedge portfolio return (High minus Low) with significance levels: * p<0.10, ** p<0.05, ***
p<0.01. Turnover indicates the average monthly portfolio turnover.

Figure 8 Fusion vs Option Only Model: H-L Portfolio Returns for R20 and R60 Horizons

Note: This figure illustrates the cumulative returns of the High-Low (H-L) portfolios formed
based on the Fusion Model (I5/R20 and I5/R60) and Option Only Model (R20 and R60) predic-
tions. The dot lines represent the Fusion Model, while the dashdot lines represent the Option
Only Model. Different prediction horizons are shown in different colors.
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Appendix

A.1 Convolutional Neural Network Architecture

Convolutional Neural Networks (CNNs) are a core methodological tool in this study for

extracting nonlinear features from both stock price images and option-implied volatility (IV)

images. This section systematically introduces the CNN architecture, progressing from its

fundamental building blocks to the overall network structure.

A CNN extracts hierarchical representations from an input image through a sequence

of specialized operations, ultimately mapping these representations to predictive outputs. In

practice, CNNs are composed of a series of modules that share a common structural design

but differ in their hyperparameters, such as filter sizes and channel dimensions. Each module

typically consists of three components: a convolutional layer, a nonlinear activation layer, and a

pooling layer.

The first component is the convolutional layer, which applies a set of learnable filters that

slide across the input image to capture local spatial patterns. These filters enable the network to

detect salient features such as edges, shapes, and texture-like structures in early layers, and more

abstract patterns in deeper layers. The mathematical principles and operational procedures of

the convolutional layer are illustrated in Figure A.1 and explained as follows.

In Figure A.1, the input image is represented as a 6× 6 matrix and the convolutional filter

as a 3 × 3 matrix. The filter slides over the input image from the top-left to the bottom-right

with a stride of one. At each location, element-wise multiplication is applied between the filter

and the corresponding 3× 3 subregion of the input image, and the resulting values are summed

to produce a single output.

For example, at the initial position, the filter covers the top-left 3× 3 region of the input

image, yielding an output value of zero after multiplication and summation. As the filter
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Figure A.1 Convolutional Operation

continues to move across the image, this operation generates a 4× 4 output feature map that

captures the local spatial patterns detected by the filter.

Also, the channel dimension is important in convolutional layers. For grayscale images,

there is only one channel, while RGB images have three channels (red, green, blue). In the

example of Figure A.1, the input image has one channel, and the filter also has one channel.

If the input image had multiple channels, the filter would have the same number of input

channels, and the convolution operation would involve summing over all channels. The output

channel dimension is determined by the number of filters used in the convolutional layer and

can be adjusted based on the desired feature representation. In this example, two filters are

applied, resulting in an output with two channels. Filter 1 captures horizontal edges, while

Filter 2 captures vertical edges. In our study, we set the number of output channels to 64 for

the first convolutional layer, which allows the model to learn a diverse set of features from the

input images.

Convolution operations offer flexibility in adjusting the "stride" of the filter, which refers to

the number of pixels the filter shifts horizontally or vertically as it slides across the input matrix.
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Specifically, a larger stride results in a coarser-grained convolution output, as the filter covers

fewer local regions of the input. Following the setting of Jiang et al. (2023), our model adopts

a horizontal stride of 1 and a vertical stride of 3: horizontally, the filter moves one pixel at a

time, recalculating the feature value for every position along each row; vertically, the filter skips

three rows between consecutive computations, reducing redundant information capture in the

vertical dimension while preserving key structural features.

To expand the receptive field of the filter without increasing its size, we occasionally

employ "dilated filters" in feature extraction. A dilated filter with a dilation rate k along the

vertical or horizontal dimension (or both) extends its effective coverage by inserting k − 1 zeros

between adjacent elements of the original filter along the corresponding dimensions. This

design allows the filter to capture multi-scale contextual information from the image without

enlarging its parameter count. Consistent with the model of Jiang et al. (2023), our CNN

architecture uses a vertical dilation rate of 2 and no horizontal dilation—this configuration

enhances the model’s ability to detect long-range dependencies in the vertical dimension while

maintaining precise capture of sequential information in the horizontal dimension.

The second layer is the activation layer, which introduces nonlinearity into the model. We

use LeakyReLU as the activation function, defined as:

LeakyReLU(x) =


x, x > 0,

αx, x ≤ 0,

where α is a small constant (typically 0.01) that allows a small, non-zero gradient when the unit

is not active. This helps prevent the "dying ReLU" problem, where neurons become inactive

and stop learning.

The third layer is the pooling layer, which reduces the spatial dimensions of the feature

maps while retaining the most important information. We use max pooling, which takes the
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maximum value from each non-overlapping sub-region of the feature map. This downsampling

operation helps to reduce computational complexity and exempt small noise in the input image

because only the most prominent features are retained.

A key methodological choice that is worth explicitly stating, is that our CNN architecture

retains strict consistency with the baseline of Jiang et al. (2023) except for necessary adaptations

to option IV images. This design choice ensures that any performance improvement in our mul-

timodal model can be attributed to the addition of option IV information (the core innovation

of this study) rather than architectural modifications. Specifically:

• Stock Image CNN: For 5/20/60-day images (32×15, 64×60, 96×180), we use 2-4 convolution-

pooling blocks (more blocks for longer horizon images to capture long-term trends), each

with 5×3 filters (64 channels), and LeakyReLU activation.

• Option-Implied Volatility Image CNN: For fixed 32×34 images, we use 2 convolution-

pooling blocks (matching the volatility surface’s simpler grid structure) with identical

filter size, stride, and dilation settings.

After passing through several convolutional, activation, and pooling layers, the extracted feature

maps are flattened into a one-dimensional vector. This vector is then fed into cross-attention

modules for multimodal fusion and finally into fully connected layers for return prediction.

A.2 Cross-Attention

Cross-attention is the core mechanism enabling dynamic interaction between stock price

image features and option IV image features in this study. Unlike self-attention, which mod-

els dependencies within a single modality, cross-attention facilitates directional information

exchange across two distinct modalities, allowing stock historical trend features to "query"

forward-looking risk signals from options, and vice versa. This section systematically explains

the working principle of cross-attention, starting with scaled dot-product attention and extend-
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ing to the multi-head attention design, while linking each step to the study’s specific multimodal

fusion objectives.

A.2.1 Scaled Dot-Product Attention

Figure A.2 Scaled Dot Product

Scaled dot-product attention (Figure A.2) is the basic building block of cross-attention,

responsible for computing the relevance between "query" features from one modality and

"key-value" features from the other modality. As illustrated in Figure A.2, the cirtical input

consists of three vectors: Query(Q), Key(K), and Value(V) and the computation follows three

squential steps.

The first step is to calculate the similarity between Q and the transpose of K using the dot

product operation to measure the revelance between each element in Q and each element in K.

For 64-dimensional features, this yields a 64x64 similarity matrix, where entry (i, j) represents

the correlation between the i-th dimension of Q and the j-th dimension of K. The second step

is to divide the similarity matrix by the square root of the feature dimension (i.e.,
√
64 = 8) of

Q and K, which mitigates the gradient vanishing problem caused by large dot-product values

when d is large. The third step is to apply the softmax function to the scaled similarity matrix

to obtain normalized attention weights, which sum to 1 per row, then multiply these weights

5



by V to generate the attention weighted value vector. This vector contains the most revelant

information from V aligned with Q. Mathematically, the operation is defined as:

Attention(Q,K, V ) = softmax
(
QKT

√
d

)
V.

A.2.2 Multi-Head Attention

Figure A.3 Multi-Head Attention

While scaled dot-product attention captures basic cross-modal revelance, multi-head atten-

tion (Figure A.3) extends this capability by modeling interactions across multiple "subspaces"

of the feature vectors, which is essential for financial data, where stock and option features may

exhibit complementary patterns in distinct subspaces.

As shown in Figure A.3, the multi-head attention mechanism involves four key steps. First,

Q, K, and V are projected into H independent subspaces via learnable linear layers. Second, each

of the H head-specific Qh,Kh, Vh (8-dimensional) undergoes independent scaled dot-product

attention.
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This parallel computation allows the model to capture 8 distinct types of cross-modal in-

teractions simultaneously. Third, the H attention outputs are concatenated along the dimension

axis to reconstruct the vector, merging the diverse cross-modal patterns captured by individual

heads. Finally, a final learnable linear layer transforms the concatenated vector into an output

to be able to fitted into subsequent network layers. Formally, the multi-head attention operation

is expressed as:

MultiHead(Q,K, V ) = Linear (Concat (head1, . . . ,headH)) ,

where headh = Attention
(
QWQ

h ,KWK
h , V W V

h

)
,

WQ
h ,WK

h ,W V
h denote the projection weights for the h-th head.

To stabilize training and preserve feature integrity, we add residual connections (Vaswani

et al., 2017) and layer normalization (Ba et al., 2016) after the final linear projection.

We now discuss our choice of hyperparameters in the multi-head attention module. We

set the number of attention heads H to 8, which balances model capacity and computational

efficiency. Each head processes 8-dimensional subspaces, allowing the model to capture diverse

cross-modal patterns without excessive complexity.
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