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∗We thank Inácio Bó, Yeon-Koo Che, Julien Combe, Kenzo Imamura, Mengling Li, Vikram
Manjunath, Franz Ostrizek, Eduardo Perez-Richet, Olivier Tercieux, M. Utku Ünver, and M. Bumin
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1 Introduction

Reserve systems with minimum beneficiary-share guarantees—requirements that tar-

geted matches constitute at least a specified percentage of total matches—are perva-

sive in modern allocation problems. From vaccine distribution during health crises

to university admissions, from disability employment mandates to broadcasting con-

tent regulations, policymakers frequently require that targeted matches constitute at

least a specified percentage of total matches.1 While such mandates aim to ensure

representation for priority groups and address historical inequities, they create an

inherent trade-off: guaranteeing minimum shares for specific beneficiaries necessarily

constrains the matching process, potentially reducing the total number of success-

ful allocations. This tension manifests when reserved positions go unfilled due to

a lack of qualified candidates from targeted groups, while non-targeted candidates

who could have been matched are excluded.2 Despite the ubiquity of such reserve

systems, we lack a framework for understanding the complete spectrum of achievable

outcomes and the precise nature of trade-offs between beneficiary representation and

total match maximization.

We study allocation problems where the social planner aims to prioritize certain

matches while the matching entities themselves remain indifferent among acceptable

candidates. We characterize this framework by distinguishing between two key con-

cepts: candidates whom matching entities consider eligible represent the complete set

1Examples include: COVID-19 vaccine distribution requiring proportional allocation to minor-
ity groups (CDC, 2021); Indian universities reserving 2–5% for athletes and disadvantaged groups
(Delhi University, 2025); Germany’s 5% disability employment quota (iGlobal Law, 2013) and U.S.
federal contractors’ 7% requirement (DPI Staffing, 2013); and 35–55% local content requirements in
Canadian and Australian broadcasting (Conversation, 2016).

2Common failures include vaccine expiration in priority categories while other regions face short-
ages (CDC, 2021), vacant reserved university seats, firms paying non-compliance penalties rather
than meeting disability targets (iGlobal Law, 2013), and broadcasters producing substandard “quota
quickies” to meet requirements (UNSW, 2023).
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of acceptable matches from the entity’s perspective, while matches the social planner

wishes to promote for each entity are those deemed beneficial to that entity from

a societal standpoint. However, when social planners impose these additional pri-

oritization constraints, matching entities typically achieve fewer total matches than

they would under their own preferences (see Example 1). This creates a fundamental

trade-off: improving match quality from the social planner’s perspective often reduces

match quantity from the entities’ operational perspective. Our focus on maximizing

total matches—what Ashlagi et al. (2020) term “allocative efficiency” in their study

of school choice with distributional constraints—reflects the primary concern in many

reserve systems: ensuring that positions do not go unfilled.3

The existing literature typically addresses this tension through lexicographic ap-

proaches that prioritize one objective over the other: either maximizing the targeted

matches among all matchings that achieve the maximum total number of matches, or

conversely, maximizing total matches among those that reach the maximum number

of targeted matches (Evren, 2023). We introduce the flexibility of allowing the plan-

ner to specify a target percentage of beneficiary matches within the total matching.

This percentage-based framework encompasses lexicographic approaches as special

cases.4

We consider a two-sided market where individuals on one side seek to be matched

with entities on the other—such as vaccines, kindergartens, institutions, or enter-

3Ashlagi et al. (2020) develop mechanisms that assign at least as many students as the optimal
fractional solution (their OPT benchmark) while violating each constraint by at most |T | (the number
of types). Our characterization complements their approach by explicitly quantifying how much this
allocative efficiency must decrease to guarantee any given beneficiary share, providing the complete
frontier rather than focusing on a single operating point.

4For any matching problem, there exists a specific percentage threshold that corresponds to the
“maximize beneficiary matches subject to maximum total matches” solution, and another threshold
that yields the “maximize total matches subject to maximum beneficiary matches” outcome. More-
over, when we constrain solutions to lie on a Pareto-like frontier of targeted and total matches, these
extreme lexicographic cases can be approximated using percentage targets of 0 and 100.

3



prises. Each entity can only match with certain eligible individuals, and within

this eligible pool, some individuals are designated as beneficiaries—the group that

policymakers particularly want to prioritize. Different entities may target different

beneficiary groups, and these groups can overlap across entities. To ensure adequate

access for beneficiaries, the social planner establishes a minimum threshold for the

share of matches that must go to beneficiaries relative to the total number of matches

made. Different entities may target different beneficiary groups, and these groups can

overlap across entities.

To analyze this market, we introduce the concept of non-domination: a matching

is non-dominated if no other matching achieves both more total eligible matches (e)

and more beneficiary matches (b). The set of all such non-dominated matchings

forms what we call the non-domination frontier—essentially the efficient boundary of

possible (e, b) combinations. We show that this frontier can be characterized through a

new structure we term minimal cycles (Definition 2). These are cycles similar to those

in Top Trading Cycles (TTC) mechanisms, but with a specific property: applying a

minimal cycle increases the total number of matches by one while minimizing the

reduction in beneficiary matches (see Theorem 1).

The non-domination frontier follows a predictable pattern: it forms a concave

curve where each additional eligible match comes at an increasing cost in beneficiary

matches—a classic case of diminishing returns (Theorem 2). Perhaps most strikingly,

we prove that prioritizing beneficiaries never reduces total matching capacity by more

than half. Specifically, when we switch from maximizing all eligible matches to max-

imizing beneficiary matches, the total number of matches falls by at most 50%, and

this bound cannot be improved (Proposition 1). These structural properties hold

universally, regardless of the specific market data. This means policymakers can

understand the fundamental trade-offs of beneficiary-share requirements even before
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collecting detailed information about their particular matching market.

We develop the Repeated Hungarian Algorithm (RHA) to compute all frontier

points efficiently, with a runtime of O(n4) for n individuals (Algorithm 2, Theorem 3).

This transforms our theoretical framework into a practical tool capable of solving real-

world allocation problems at scale.

Our analysis reveals an important insight about beneficiary-share requirements:

strictly enforcing them can actually lead to dominated outcomes. When a matching

exactly meets the beneficiary-share target, it often lies below the non-domination

frontier—meaning we could serve more people overall without reducing beneficiary

access (Example 3). This motivates our approach of “approximate” compliance: we

find the frontier matching that exceeds the beneficiary-share target by the smallest

amount. Crucially, any such frontier matching dominates all matchings that meet the

target exactly, delivering better outcomes for both beneficiaries and non-beneficiaries

(Proposition 2).

We can extend this framework to respect priority orderings while maintaining

approximate beneficiary-share compliance on the frontier (Proposition 3). However,

there’s an inherent limitation: these mechanisms cannot satisfy path-independence—the

property that the final matching remains the same whether we consider all candidates

at once or first select from subgroups and then choose from those selected candidates.

This impossibility holds even without priority constraints, highlighting a fundamental

tension between staying on the non-domination frontier and maintaining this proce-

dural consistency (Theorem 4).

Our framework provides a principled approach to understanding the fundamental

trade-offs inherent in allocation policies that prioritize specific groups. Across diverse

contexts—from disability employment requirements, to corporate board gender man-

dates, to broadcasting content regulations, policymakers must balance representation
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goals against overall efficiency.5 The non-domination frontier we characterize reveals

the precise nature of these trade-offs: how much total matching capacity must be

sacrificed to achieve any given beneficiary-share target. Our finding that this sac-

rifice never exceeds 50% of total matches provides a crucial benchmark for policy

design. This allows policymakers to assess, before implementation, whether a pro-

posed beneficiary-share requirement will maintain viability or risk driving participants

away from the market altogether. Rather than discovering these trade-offs through

costly trial and error, our framework enables informed policy decisions that balance

equity objectives with practical sustainability.

Related Literature. Our work advances the literature on reserve systems and choice

rules by fully characterizing the trade-off frontier between beneficiary representation

and total match capacity, building on recent theoretical developments and practical

applications in market design.

Reserve systems originated with Hafalir et al. (2013), who demonstrated that

(minority) reserve categories could implement affirmative action in school choice more

effectively than (majority) quota-based approaches (Kojima (2012)).

The theory of reserve systems emerged from Hafalir et al. (2013), who demon-

strated how reserve categories could effectively implement affirmative action in school

choice, addressing limitations of quota-based systems shown by Kojima (2012). Sönmez

and Yenmez (2022) expanded this framework to handle overlapping reserves and de-

veloped the meritorious horizontal choice rule. During the COVID-19 pandemic,

Pathak et al. (2023b) demonstrated how reserves could balance multiple ethical prin-

ciples in medical resource allocation. Most recently, Evren (2023) proposed the

5Examples include: companies choosing between meeting 1.5–7% disability targets or paying
substantial fines (iGlobal Law, 2013); firms facing 33–40% board gender quotas that may compromise
optimal composition or prompt delisting (Smith & Von Essen, 2025); and broadcasters producing
low-quality “quota quickies” to meet 35–60% local content requirements (UNSW, 2023).

6

https://igloballaw.com/news-and-events/equality-diversity-and-equal-rights/disability/the-world-and-disability-quotas-or-no-quotas/
https://wol.iza.org/articles/gender-quotas-on-corporate-boards-of-directors/long
https://www.unsw.edu.au/newsroom/news/2023/04/content-quotas-are-a-start---but-australia-s-screen-industry-nee


Threshold Reserve Model and Smart Pipeline Matching Mechanism, achieving the

max-in-max property (see Remark 1) while maintaining independent priority order-

ings across categories. Our work extends this line of research by fully characterizing

the non-domination frontier, revealing all feasible trade-offs between beneficiary rep-

resentation and total match capacity.

Real-world implementations reveal the complexity of reserve systems—from Boston’s

school walk zones (Dur et al., 2018) to H-1B visa reforms (Pathak et al., 2025)—high-

lighting the importance of understanding feasible outcomes before policy deployment.

Pathak et al. (2023a) demonstrate through incentivized experiments that 40% of par-

ticipants fail to appreciate how processing order affects reserve system outcomes,

mistakenly treating minimum guarantees (reserves processed first) as equivalent to

over-and-above allocations (reserves processed last).6 Experience with Indian col-

leges’ affirmative action policies reinforces this lesson, prompting several theoretical

advances: Manocha and Turhan (2025) extended gradual matching to complex affir-

mative action settings, while Aygün and Turhan (2017), Aygün and Turhan (2020),

and Aygün and Turhan (2022) examined large-scale implementations, dynamic re-

serves, and de-reservation through choice rules. Our frontier characterization directly

addresses these implementation concerns by revealing the precise trade-offs policy-

makers face. Specifically, we prove that transitioning from maximum eligibility to

maximum beneficiary matching reduces eligible matches by at most 50%, quantifying

this fundamental constraint for policy design.

Our work connects to the broader literature on choice rule design, which encom-

passes characterizing substitutability (Aygün and Sönmez, 2013), developing affir-

mative action schemes (Echenique and Yenmez, 2015; Imamura, 2025), preserving

6This misunderstanding persists even among educated participants, suggesting that subtle fea-
tures of reserve systems—like the distinction between minimum guarantees and additional seats—are
systematically overlooked by stakeholders who must approve and oversee these policies.
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substitutability under slot-specific priorities (Kominers and Sönmez, 2016), and in-

corporating diverse policy objectives (Doğan et al., 2025; Yokote et al., 2023). Doğan

et al. (2025) recently emphasized the importance of path-independent choice rules

(Chambers and Yenmez, 2017; Plott, 1973) in market design. We demonstrate that

pursuing non-domination while approximately maintaining beneficiary-share guaran-

tees necessarily yields choice rules that violate substitutability—and therefore path-

independence—revealing an inherent tension between these desirable properties.

Nguyen and Vohra (2019) examined how much proportionality must be sacrificed

to achieve stability, treating proportionality as a soft constraint and deriving bounds

on necessary violations. While they quantify stability’s cost in terms of proportion-

ality violations, we measure the cost in total match capacity. Moreover, our setup

differs from standard approaches in that beneficiary status is category-specific: the

same individual may be a beneficiary for some categories but not others.

The paper is organized as follows. Section 2 presents the model and defines the

frontier concept. Section 3 characterizes the frontier and introduces our Repeated

Hungarian Algorithm with complexity analysis. Section 4 examines key allocation

criteria. Section 5 concludes. Omitted proofs appear in the appendix.

2 Model

Following Pathak et al. (2023b), we model vaccine allocation using a reserve system

with beneficiary-share guarantees comprising:

1. A finite set of categories C = {c1, c2, ...},

2. A finite set of patients P = {p1, p2, ...},

3. Eligible patient sets E = (Ec)c∈C where Ec ⊆ P ,
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4. Beneficiary patient sets B = (Bc)c∈C where Bc ⊆ Ec ⊆ P ,

5. Category quotas q = (qp)p∈C ∈ N|C|,

6. A beneficiary-share guarantee β∗ ∈ [0, 1].

We call tuples (C,P ,q, E ,B) and (C,P ,q, E ,B, β∗) an instance and a problem

respectively. For any instance, a correspondence µ : C ∪ P ⇒ C ∪ P ∪ {∅} is a

matching if: (i) each patient matches to at most one category (|µ(p)| ≤ 1 for all

p ∈ P); (ii) each category’s assignments respect its quota (|µ(c)| ≤ qc for all c ∈ C);

and (iii) assignments are consistent (µ(p) = {c} if and only if p ∈ µ(c)). When

unambiguous, we write µ(p) = c if position p is matched to category c, and µ(p) = ∅

if p is unmatched. A matching µ is eligible if µ(p) = c ∈ C =⇒ p ∈ Ec. We consider

only eligible matchings unless stated otherwise.

For matching µ, we define beneficiary matches as B(µ) = {(p, c) | p ∈ P , c ∈ C,

p ∈ µ(c) ∩ Bc}, and for category c, Bµ(c) = {(p, c) | p ∈ µ(c) ∩Bc}. Similarly,

eligible matches are E(µ) = {(p, c) | p ∈ P , c ∈ C, p ∈ µ(c) ∩ Ec}, and Eµ(c) =

{(p, c) | p ∈ µ(c) ∩ Ec}. When context is clear, we use these terms to refer to either

the sets or their cardinalities, use “targeted matches” interchangeably with “benefi-

ciary matches”, and use “total matches” interchangeably with “eligible matches”.

For any non-empty matching µ, its beneficiary-share is β(µ) = |B(µ)|
|E(µ)| . The

policymaker mandates that beneficiary matches constitute at least β∗ × 100% of

eligible matches, requiring β(µ) ≥ β∗.

A mechanism φ : (C,P ,q, E ,B, β∗) 7→ µ is a function which takes a problem

(C,P ,q, E ,B, β∗) as input and outputs an eligible matching µ.
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2.1 The Frontier

Two competing objectives arise in allocation: maximizing eligible matches for broad

access versus maximizing beneficiary matches for targeted priorities. These goals

typically conflict, requiring trade-offs between coverage and targeting.

To address this tension, Evren (2023) proposed max-in-max, which lexicographi-

cally prioritizes objectives: selecting the matching with maximum beneficiary matches

among those maximizing eligible matches.

However, lexicographic maximization can entirely neglect one objective:

Example 1. Consider patients P = p1, p2 and categories C = c1, c2. Patient p1 is

eligible for both categories and a beneficiary of c2; patient p2 is eligible only for c2.

The unique eligible-maximizing matching assigns µ(p1) = c1 and µ(p2) = c2, yielding

zero beneficiary matches.7,8

While lexicographic solutions prove problematic, the underlying principle remains

appealing: conditional on eligible matches, maximize beneficiary matches; conditional

on beneficiary matches, maximize eligible matches. We formalize this idea in the

following definition.

Definition 1 (Domination and Frontier). For any instance, a matching µ is domi-

nated by matching µ′ if:

|E(µ′)| ≥ |E(µ)| and |B(µ′)| ≥ |B(µ)|,
7Although patient p1 is a beneficiary for c2, their match to c1 in the eligible-maximizing alloca-

tion does not count as a beneficiary match—beneficiary status only applies when matched to the
designated category. In vaccine allocation, this captures the policy goal of prioritizing local frontline
workers (medical staff, first responders) for their own district’s vaccine supply. A frontline worker
from District A receiving District B’s vaccine dose represents a successful match but not a beneficiary
match, as it fails to achieve the intended local protection priority.

8The cost of prioritizing total matches can be severe: our construction in Example 4 shows that
maximizing eligible matches first can sacrifice arbitrarily many beneficiary matches—the loss grows
unboundedly with market size.
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with at least one strict inequality.9 By definition, domination is a transitive rela-

tion. A matching is non-dominated if no other matching dominates it. A mechanism

φ is non-dominated if it always produces non-dominated matchings. The non-

domination frontier is:

F = {(|E(µ)|, |B(µ)|) ∈ N2 : µ is non-dominated }.

A non-dominated matching µ corresponds to point (e, b) ∈ F if |E(µ)| = e and

|B(µ)| = b.

Remark 1. The max-in-max solution (Evren, 2023) lies on the frontier but captures

only one extreme point.

Non-domination provides both a normative criterion and a practical framework

for understanding trade-offs between eligible and beneficiary matches. The non-

domination frontier, combined with a ray at the angle corresponding to the beneficiary-

share guarantee, delimits feasible allocations. Section 3 characterizes the frontier and

develops algorithms for its computation. Section 4 examines how non-domination

interacts with other key allocation criteria.

3 Characterization and Computation of Frontier

We characterize the non-domination frontier and present a polynomial-time algorithm

for its computation.

9Unlike the roommate problem domination in Molis and Veszteg (2024), where matchings domi-
nate via blocking pair chains, our definition operates at the aggregate level and allows indifference.
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3.1 Cycle Characterization

We characterize the frontier using minimal cycles that link consecutive frontier

points.

Without loss of generality, assume unit quotas, allowing us to write µ(c) = {p}

as µ(c) = p and µ(c) = {∅} as µ(c) = ∅ (with slight abuse of notation). We call

unit-quota categories seats. For non-dominated matching µ, the associated graph

Gµ(P , C, Eµ) is a directed bipartite graph with patients P and categories C as vertex

sets.

The edge set Eµ contains: an edge from p to c if p ∈ Ec and µ(p) ̸= c; an edge

from c to p if µ(c) = p or µ(p) = µ(c) = ∅.

A cycle in Gµ is a sequence c = (p1, c1, . . . , pn, cn, p1) where consecutive vertices

are connected by directed edges. Cycle c is applicable if p1 and cn are the unique

unmatched patient and seat under µ, respectively.

Applying an applicable cycle c (in Gµ) to µ reassigns each patient pk to category

ck, yielding matching c(µ) where:

c(µ)(p) =


µ(p) if p /∈ c

ck if p = pk ∈ c for some k.

The resulting matching remains eligible by construction. Consider the following ex-

ample:

Example 2. Consider patients P = {p1, p2, p3} and categories C = {c1, c2, c3} with

unit quotas. The eligibility sets are:

• Ec1 = {p1, p2}

• Ec2 = {p2, p3}
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• Ec3 = {p1}

Under matching µ: µ(p1) = c1, µ(p2) = c2, µ(p3) = ∅.

The cycle c = (p3, c2, p2, c1, p1, c3, p3) is applicable since p3 and c3 are the unique

unmatched patient and category, respectively.

p1

p2

p3

c1

c2

c3

P C

Apply Cycle c

p1

p2

p3

c1

c2

c3

P C

Figure 1: Left: Original associated graph Gµ. Right: New matching after applying
cycle c. Blue: matching edges (c → p), Red dashed: eligibility edges (p → c), Black
dashed: unmatched edge (c→ p).

Applying cycle c yields: c(µ)(p1) = c3, c(µ)(p2) = c1, c(µ)(p3) = c2, demonstrat-

ing how cycles transform matchings while preserving eligibility.

While the above definitions are standard in the matching literature, we now in-

troduce minimal cycles, which are tailored to our two-tier environment and char-

acterize the non-domination frontier.

Definition 2. The beneficiary loss of applying applicable cycle c to non-dominated

matching µ is ∆c = |B(µ)| − |B(c(µ))| > 0. An applicable cycle is minimal if it

achieves the smallest beneficiary loss among all applicable cycles in Gµ.

Minimal cycles connect consecutive frontier points:

Theorem 1. Applying any minimal cycle c to any non-dominated matching µ0 yields

a non-dominated matching µ1 = c(µ0).
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Proof. We prove by contradiction. Suppose µ1 is dominated, then it must be domi-

nated by some non-dominated matching µ2 with |E(µ2)| ≥ |E(µ1)|. As µ1 is achieved

by applying c to µ0, |E(µ1)| = |E(µ0)|+ 1. Therefore, |E(µ2)| ≥ |E(µ1)| > |E(µ0)|.

We require the following result:

Lemma 1. For frontier points f1 = (e1, b1), f2 = (e1 − k, b2) where k ∈ N, and

any non-dominated matching µ2 corresponding to f2, there exist k disjoint applicable

cycles in Gµ2 that transform µ2 to a non-dominated matching corresponding to f1.

Each cycle has strictly positive beneficiary loss.

By Lemma 1, there exists µ∗
2 with the same eligible and beneficiary match counts

as µ2, obtained by applying disjoint applicable cycles c1, . . . , cn to µ0, each with

strictly positive beneficiary loss. Thus µ∗
2 also dominates µ1. The relationships are

illustrated below:

µ0 µ1

µ∗
2

µ2

apply c

apply c1, . . . , cn dominates

same (e, b) value

If |E(µ∗
2)| > |E(µ1)|, then n ≥ 2. This yields |B(µ∗

2)| = |B(µ0)| −
∑n

j=1∆cj <

|B(µ0)| −∆c1 ≤ |B(µ0)| −∆c = |B(µ1)|, contradicting that µ∗
2 dominates µ1.

If |E(µ∗
2)| = |E(µ1)|, then n = 1 and |B(µ∗

2)| > |B(µ1)|. But this means ∆c1 < ∆c,

contradicting the minimality of c.

Therefore, µ1 is non-dominated.
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After applying a minimal cycle to a non-dominated matching, the resulting match-

ing has exactly one additional eligible match, corresponding to the next consecutive

point on the frontier. Can we find the entire non-domination frontier by starting from

an appropriate matching? The natural candidates are the frontier’s endpoints.

A matching is max-bene then max-elig if it maximizes eligible matches among

all matchings that maximize beneficiary matches. Let µBE denote the set of such

matchings:

µBE = argmax
µ∈M

|E(µ)| where M = argmax
µ
|B(µ)|.

While µBE may contain multiple matchings, they share identical properties in our

setting. We abuse notation and let µBE denote an arbitrary fixed element from this

set.

Analogously, a max-elig then max-bene matching µEB maximizes beneficiary

matches among all matchings that maximize eligible matches. This corresponds to

the solution in Evren (2023).

These matchings correspond to the frontier’s endpoints. Since the frontier cap-

tures the complete trade-off between maximizing total matches and maximizing target

matches, the endpoints represent the extremes of prioritizing each goal.

The following theorem establishes that repeatedly applying minimal cycles to µBE

generates all frontier points:

Theorem 2. Starting from µBE and iteratively applying minimal cycles until no

applicable cycles remain generates matchings corresponding to all frontier points. The

frontier is dense in eligible matches: it contains points for every integer value of total

matches from |E(µBE)| to |E(µEB)|. Moreover, beneficiary loss increases weakly along

this sequence, yielding a frontier with a negative, decreasing slope.

Proof. By Lemma 1, every non-dominated matching except µEB has an applicable
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cycle. By Theorem 1, applying a minimal cycle to a non-dominated matching yields

another non-dominated matching with one additional eligible match. Since no other

non-dominated matching can exist between these two matchings, they are consecutive

points on the frontier. Combined the above arguments, repeatedly applying minimal

cycles generates all non-dominated matchings. Consequently, the frontier contains a

point for every feasible integer value of total matches between E(µBE) and E(µ(EB)).

For the concavity of the frontier, consider the non-trivial case with three consec-

utive frontier points (e1, b1), (e1 +1, b2), (e1 +2, b3) and any non-dominated matching

µ1 corresponding to (e1, b1). By Lemma 1, there exist disjoint applicable cycles c1, c2

in Gµ1 such that b3 = b1 − ∆c1 − ∆c2 . By Theorem 1, there exists a minimal cycle

c3 in Gµ1 with b2 = b1 − ∆c3 where ∆c3 ≤ min{∆c1 ,∆c2} (because it is minimal).

Therefore, b2 − b3 = ∆c1 +∆c2 −∆c3 ≥ ∆c3 = b1 − b2.

With this result, we can quantify the worst-case resource sacrifice when prioritizing

beneficiary matches.

Proposition 1. For any instance (C,P , q, E ,B):

|E(µEB)| − |E(µBE)|
|P|

≤ |E(µEB)| − |E(µBE)|
min(|P| ,

∑
i qi)

≤ |E(µEB)| − |E(µBE)|
|E(µEB)|

≤ 1

2
.

This bound is tight: Example 1 achieves |E(µEB)|−|E(µBE)|
|P| = 1

2
.

Proof. Let K = |E(µEB)| − |E(µBE)|. By Lemma 1, there exist K disjoint applicable

cycles transforming µBE to some max-elig then max-bene matching µ1. Each cycle

contains at least two patients—a single-patient cycle would allow increasing eligible

matches without changing other matches, contradicting that µBE is non-dominated.
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Therefore, µ1 matches at least 2K distinct patients, yielding:

|E(µEB)| − |E(µBE)|
|E(µEB)|

≤ 1

2
.

The result follows since |P| ≥ min(|P| ,
∑

i qi) ≥ |E(µEB)| .

This bound has profound policy implications: among non-dominated matchings,

at most half the matched positions can be sacrificed under any policy prioritizing

targeted matches—whether through quotas, beneficiary-share guarantees, or weighted

objectives combining total and targeted matches.

3.2 Repeated Hungarian Algorithm

While directly identifying minimal cycles to calculate the frontier becomes computa-

tionally challenging as the number of patients and seats grows, the characterization

enabled by these cycles allows for a novel approach to frontier calculation,10 through

repeated application of the Hungarian algorithm.

While identifying minimal cycles becomes computationally challenging as the

number of patients and seats grows, our characterization enables a novel frontier

calculation through repeated application of the Hungarian algorithm.

From Theorem 2, the non-domination frontier has decreasing slope and hence is

concave. To find all frontier points, we first identify kinks where the slope changes,

then exploit density to fill intermediate points by linear interpolation.11

To find all the kinks, we employ the Hungarian algorithm, typically used to com-

10Alternatively, consider it as a linear programming problem: loop over the number of total
matches e, maximize the number of beneficiary matches subject to the number of total matches
being greater or equal than the current e.

11That is, since the frontier is dense in eligible matches, we fill in intermediate points at every
unit interval in eligible matches by extending the same slope between them.
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pute a maximum-weight matching in a bipartite graph (Kuhn, 1955a,b).12 Our bipar-

tite graph has patients P on one side, categories C on the other, with edges connecting

eligible patient-category pairs regardless of beneficiary status. Edge weights deter-

mine which frontier kink is identified—the algorithm finds points where supporting

lines of different slopes meet the frontier.13

The complete algorithm follows:

Algorithm 2 Repeated Hungarian Algorithm (RHA)

1: Initialize frontier ← ∅
2: Set n← max(|P|,

∑
i qi)

3: Set m← 0 (Counter of kinks)
4: for k ← 1 to n do
5: Assign weights:
6: Eligible but not beneficiary: welig ← 1
7: Beneficiary: wbene ← 1 + 1

k
+ 1

n2

8: Run Hungarian algorithm to maximize welig · |E(µ)−B(µ)|+ wbene · |B(µ)|
9: Compute e← |E(µ)|
10: Compute b← |B(µ)|
11: if m = 0 or (e, b) ̸= (em, bm) then
12: m← m+ 1
13: (em, bm)← (e, b) (Add kink (e, b) to frontier)
14: end if
15: end for
16: for k ← 1 to m− 1 do
17: (Insert intermediate points between kink (ek, bk) and kink (ek+1, bk+1))
18: for j ← 1 to ek+1 − ek − 1 do
19: Add (ek + j, bk+1 + j · (bk − bk+1)/(ek+1 − ek)) to frontier
20: end for
21: end for

To establish correctness of this algorithm, note that by Theorem 2, the frontier F

12While the classical Hungarian algorithm formulation assumes equal-sized partitions, the stan-
dard solution for unbalanced cases involves adding dummy vertices connected by zero-weight edges
to create an equivalent balanced bipartite graph, thus enabling the algorithm’s application.

13A supporting line touches the frontier at exactly one point.
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for any instance takes the form:

F =

{
(e, b), (e− 1, b+∆b1), . . . , (e−K, b+

K∑
i=1

∆bi)

}

whereK = |E(µEB)|−|E(µBE)|. This frontier containsK+1 points. The starting

point (e, b) corresponds to µEB, while the endpoint (e−K, b+
∑K

i=1∆bi) corresponds

to µBE. The beneficiary differences satisfy ∆b1 ≥ ∆b2 ≥ · · · ≥ ∆bK ≥ 1.

Point j is a kink when ∆bj ̸= ∆bj+1. At kink (e− j, b+
∑j

i=1∆bi), the marginal

trade-off changes from ∆bj to ∆bj+1 beneficiary matches per eligible match. This

point lies on the supporting line with slope in (−∆bj,−∆bj+1), which corresponds to

beneficiary weight wB = 1 + 1
∆bj

+ 1
n2 in the algorithm.

Lemma 2. The Repeated Hungarian Algorithm (RHA) satisfies:

1. In the first loop, the first and last iterations compute µBE and µEB respectively.

2. For any interior frontier point fj = (e− j, b+
∑j

i=1 ∆bi) (excluding endpoints)

with ∆bj > ∆bj+1, the RHA computes this point in iteration ∆bj of the first

loop.

We now establish the algorithm’s properties.

Theorem 3. The Repeated Hungarian Algorithm (RHA) satisfies:

1. Completeness: RHA generates the entire non-domination frontier.

2. Computational Complexity: RHA runs in O (n4) time, where n = max(|P|,
∑

i qi).

Proof. For completeness, Lemma 2 establishes that the first loop identifies all kinks

(points where slope changes) and both endpoints. Any remaining frontier points lie

on constant-slope segments and are filled by linear interpolation in the second loop.
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The complexity bound follows from the first loop, which runs at most n iterations

(since ∆bi ≥ 1 and there are at most n possible values), with each iteration executing

the Hungarian algorithm in O(n3) time (Kuhn, 1955a). The second loop performs

only linear interpolation in O(n) time. Thus, the total complexity is O(n4).

Remark 2. Frontier concavity is essential for our approach. Suppose the frontier

is not concave (but is still dense in eligibility), that is, there exists three hypothetical

points f1 = (e, b), f2 = (e−1, b+∆b1), and f3 = (e−2, b+∆b1+∆b2) with ∆b1 < ∆b2.

To identify f2 in RHA, there exists beneficiary weight w ∈ R2
++ at which f2 exceeds

both f1 and f3 in weighted value, requiring

w(∆b1)− 1 > 0 and 1− w(∆b2) > 0.

These inequalities cannot hold simultaneously when ∆b1 < ∆b2. Thus, without con-

cavity, RHA cannot identify all the kinks and fails to generate the complete frontier.

4 Compatibility with Design Objectives

This section examines how the non-domination frontier interacts with key alloca-

tion criteria that arise in practice. We first address the tension between achieving

beneficiary-share guarantees and maintaining non-dominated allocations-the rigorous

enforcement of beneficiary-share might harm the underlying policy goal. We then

explore two important considerations: whether the framework can accommodate pri-

ority orderings (as commonly required in school choice and medical allocation), and

whether the resulting choice rules can satisfy path-independence, a foundational prop-

erty for stable market design.
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4.1 Beneficiary-share guarantee and non-domination

Given a problem (C,P ,q, E ,B, β∗), we say a non-empty matching µ respects beneficiary-

share guarantee if it satisfies:

β(µ) =
|B(µ)|
|E(µ)|

≥ β∗,

meaning beneficiary matches constitute at least β∗ proportion of total matches.

A mechanism φ respects beneficiary-share guarantee if for any problem with

at least one non-empty beneficiary set, the mechanism chooses a matching that re-

spects beneficiary-share guarantee.14

While such mechanisms exist, the beneficiary-share guarantee fundamentally con-

flicts with non-domination, as the following example demonstrates.

Example 3. Consider a problem with patients P = {p1, p2} and categories C =

{c1, c2} with qc1 = qc2 = 1, and beneficiary-share guarantee β∗ = 0.7. Patient p1 is

a beneficiary of c1 but not eligible for c2, while patient p2 is eligible for c2 but not a

beneficiary.

To respect the beneficiary-share guarantee, any mechanism must choose matching

µ with µ(p1) = c1 and µ(p2) = ∅, yielding β(µ) = 1. The alternative matching µ′ with

µ′(p1) = c1 and µ′(p2) = c2 violates the guarantee since β(µ′) = 0.5 < 0.7.

However, µ′ dominates µ by achieving (|E(µ′)|, |B(µ′)|) = (2, 1) versus (|E(µ)|,

|B(µ)|) = (1, 1). In this case, the beneficiary-share guarantee forces selection of a

dominated matching.

Example 3 demonstrates a critical policy limitation: mandating too high a beneficiary-

14For any problem with at least one non-empty beneficiary set, a matching respecting the
beneficiary-share guarantee exists: simply match only within this beneficiary set, achieving β(µ) =
1 ≥ β∗. Thus, mechanisms respecting the beneficiary-share guarantee exist.
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share guarantee can force selection of a matching dominated by µBE. This domina-

tion is unjustifiable—while the beneficiary-share guarantee aims to increase targeted

matches, the resulting matching achieves no more targeted matches than µBE while

strictly fewer total matches.

With this consideration, when non-domination conflicts with the beneficiary-share

guarantee, we prioritize non-domination. We formalize this through the following con-

cept: given a problem, a matching µ respects the beneficiary-share guarantee

approximately on the frontier if:

• When β∗ < β(µBE): µ achieves the beneficiary-share closest to β∗ among all

non-dominated matchings satisfying β(µ) ≥ β∗.

• When β∗ ≥ β(µBE): µ is a max-bene then max-elig matching.

A mechanism respects the beneficiary-share guarantee approximately on

the frontier if it always selects such a matching.15,16 Such mechanisms always exist

by construction.

The following result further justifies this solution concept: when we could choose a

dominated matching µ achieving exactly β∗, selecting instead a matching that respects

the beneficiary-share guarantee approximately on the frontier yields a matching that

dominates µ.

Proposition 2. For any problem (C,P , q, E ,B, β∗), let µ∗ be a matching that respects

the beneficiary-share guarantee approximately on the frontier. If β(µ∗) ̸= β∗, then µ∗

dominates any matching with beneficiary-share β∗.
15By definition, β(µBE) = 0 when all beneficiary sets are empty.
16Our solution concept satisfies constrained Pareto optimality for individual welfare. A matching

µ is Pareto dominated by µ′ if: (i) every participant matched in µ remains matched in µ′ (i.e., µ(p) ̸=
∅ =⇒ µ′(p) ̸= ∅), and (ii) at least one previously unmatched participant becomes matched (i.e.,
∃p′ ∈ P such that µ(p′) = ∅ but µ′(p′) ̸= ∅). Since frontier matchings maximize total matches subject
to the beneficiary-share guarantee, they cannot be Pareto dominated by any other matching that
respects the same guarantee—any additional match would violate the beneficiary-share constraint.
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Proof. Consider the non-trivial case where a matching with beneficiary-share β∗ exists

but all the frontier points do not achieve the exact β∗. Let µ′ be a matching with

β(µ′) = β∗ that maximizes |E(µ)| among all matchings achieving beneficiary-share

β∗. Then µ′ dominates all other matchings with the same beneficiary-share but fewer

total matches. To prove the proposition, it suffices to show that µ∗ dominates µ′. We

consider two cases.

Case 1: |E(µ′)| < |E(µBE)|. Since µ∗ is non-dominated and µBE is the non-

dominated matching with the least eligible matches, we have |E(µ∗)| ≥ |E(µBE)| >

|E(µ′)|. If β(µ∗) > β(µ′), then |B(µ∗)| > |B(µ′)|, so µ∗ clearly dominates µ′. If

instead β(µ∗) < β(µ′), then by definition µ∗ is a max-bene then max-elig matching,

implying |B(µ∗)| ≥ |B(µ′)|. Combined with |E(µ∗)| > |E(µ′)|, we have that µ∗

dominates µ′.

Case 2: |E(µ′)| ≥ E(µBE). By Theorem 2, there exists a non-dominated match-

ing µ′′ with |E(µ′′)| = |E(µ′)| and |B(µ′′)| > |B(µ′)|, implying β(µ′′) > β(µ′) = β∗.

Since µ∗ respects the beneficiary-share guarantee approximately on the frontier and

β(µ∗) ̸= β∗, we must have β(µ∗) > β∗ = β(µ′) and |E(µ∗)| ≥ |E(µ′′)| = |E(µ′)|. This

implies |B(µ∗)| = β(µ∗)|E(µ∗)| > |B(µ′)|. Therefore, µ∗ dominates µ′.

In both cases, µ∗ dominates µ′, completing the proof.

4.2 Respecting Priority

In many real-world allocation systems, reserves operate alongside priority orderings of

patients. This subsection extends our model to incorporate such priorities. Following

Pathak et al. (2023b), we allow category-specific priorities while requiring beneficiary

patients to rank above non-beneficiary patients within each category.

Formally, a list of strict total orders on P , denoted π = (πc)c∈C, is a priority
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order if for any category c:

• For any (p, j) ∈ Bc×(Ec \Bc): pπcj (beneficiaries rank above non-beneficiaries)

• For any (j, k) ∈ Ec × (P \ Ec): jπck (eligible patients rank above ineligible

patients)

We call the vector (C,P ,q, E ,B, β∗, π) a problem with order. With slight abuse

of notation, we retain our terminology for mechanisms, matchings, and respecting the

beneficiary-share guarantee approximately on the frontier when applied to problems

with order.

Given a problem with order, a matching µ respects priority if for every category

c and patients p, p′ ∈ P :

µ(p) = c and µ(j) = ∅ =⇒ pπcp
′.

This condition ensures no unassigned patient has higher priority than an assigned

patient for the same category, preventing justified envy. This definition aligns with

priority-respecting matching in Pathak et al. (2023b). A mechanism φ respects

priority if for any problem with order (C,P ,q, E ,B, β∗, π), the mechanism’s output

respects priority.

The following result establishes that respecting priority is compatible with re-

specting the beneficiary-share guarantee approximately on the frontier.

Proposition 3. There exists a mechanism that respects priority and respects beneficiary-

share guarantee approximately on the frontier.

Proof. For any eligible matching µ, define its rank sum as R(µ) =
∑

µ(p)=cRc(p)

where Rc(p) denotes the position of patient p in category c’s priority order πc (with

Rc(p) = 1 for the highest-priority patient).
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Consider any point (e, b) on the frontier. Among all matchings achieving this

point, the matching with minimum rank sum must respect priority. To see why,

suppose matching µ achieves (e, b) with minimum rank sum but violates priority:

for some category c, we have µ(p) = c and µ(p′) = ∅ with p′πcp. Then swapping

assignments to set µ′(p′) = c and µ′(p) = ∅ would yield another matching achieving

(e, b) with strictly lower rank sum, contradicting minimality.

Therefore, our mechanism operates as follows: First, identify the frontier point

(e∗, b∗) corresponding to a matching that respects the beneficiary-share guarantee ap-

proximately on the frontier. Then, among all matchings achieving (e∗, b∗), select one

minimizing the rank sum. This matching respects both priority and the beneficiary-

share guarantee approximately on the frontier.

4.3 Path-independence

This subsection analyzes path-independence, a fundamental property of choice rules.

We first define the choice rule induced by a mechanism.

Given a problem (C,P ,q, E ,B, β∗), the choice rule C induced by mechanism φ

is a function from 2P to 2P such that for any X ∈ 2P :

C(X) = {p ∈ X : φ(C, X,q, E ,B, β∗)(p) ̸= ∅}

That is, C(X) consists of all patients in X who receive assignments when the mech-

anism is applied to patient set X.

Given a problem, a choice rule C is path-independent if for all X,X ′ ∈ 2P :

C(X ∪X ′) = C(C(X) ∪X ′).
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This property ensures that choosing from a union can be done sequentially: first

choose from X, then combine those chosen with X ′ and choose again, yields the same

result as choosing directly from X ∪X ′. Path-independence plays a fundamental role

in market design, particularly for choice rule-based deferred acceptance mechanisms

(Doğan et al., 2025). A mechanism is path-independent if the choice rule it induces

is path-independent for every problem.

Theorem 4. There does not exist a mechanism that is path-independent and respects

beneficiary-share guarantee approximately on the frontier.

Proof. Consider a problem where P = {p1, p2, p3, p4, p5, p6}, C = {c1, c2, c3, c4, c5},

each with capacity 1, and β∗ = 0.2. The eligibility and beneficiary relations are given

in the following table, where boxed entries indicate beneficiaries of the corresponding

categories:

c1 c2 c3 c4 c5

p1 p2 p3 p6 p1

p2 p3 p5 p4

Consider X = {p1, p2, p3, p4, p5}. The non-dominated matchings for the subprob-

lem (C, X,q, E ,B,≻, β∗) with patient set X are:

B = 1, E = 4, β = 0.25 : {(c1, p1 ), (c2, p2), (c3, p3), (c4, p4), (c5, ∅)},

{(c1, p1 ), (c2, p2), (c3, p5), (c4, p4), (c5, ∅)},

and {(c1, p1 ), (c2, p3), (c3, p5), (c4, p4), (c5, ∅)}.

B = 0, E = 5, β = 0 : {(c1, p2), (c2, p3), (c3, p5), (c4, p4), (c5, p1)}.

Since β∗ = 0.2 and the first three matchings achieve β = 0.25 > β∗, any mecha-
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nism respecting the beneficiary-share guarantee approximately on the frontier must

select one of these three matchings. Therefore, C(X) ∈ {{p1, p2, p3, p4}, {p1, p2, p4, p5}, {p1, p3, p4, p5}}

Now consider the full patient set P = X ∪ {p6}. The frontier becomes:

B = 2, E = 4, β = 0.5 : {(c1, p1 ), (c2, p2), (c3, p3), (c4, p6 ), (c5, ∅)},

{(c1, p1 ), (c2, p2), (c3, p5), (c4, p6 ), (c5, ∅)},

and {(c1, p1 ), (c2, p3), (c3, p5), (c4, p6 ), (c5, ∅)}.

B = 1, E = 5, β = 0.2 : {(c1, p2), (c2, p3), (c3, p5), (c4, p6 ), (c5, p1)}.

Since the matching with β = 0.2 exactly achieves β∗, the mechanism must select

it. Thus C(P) = {p1, p2, p3, p5, p6}.

However, for any possible C(·), we have:

C({p1, p2, p3, p4, p5, p6}) ∩ {p1, p2, p3, p4, p5} = {p1, p2, p3, p5} ̸⊆ C({p1, p2, p3, p4, p5}),

which violates path-independence.17

5 Conclusion

We characterize the non-domination frontier between total matches and beneficiary

matches through the novel concept of minimal cycles. Our analysis reveals that

the frontier exhibits a concave structure with increasing marginal costs—each addi-

17The example in the proof actually demonstrates a violation of the substitutability (see recent
discussion in Bando et al., 2025), which states that if X ′ ⊆ X, then C(X) ∩ X ′ ⊆ C(X ′). In
our example, we have X ⊆ P with C(P) ∩ X = p1, p2, p3, p5 ⊈ C(X) for any valid C(X). Since
our mechanism violates substitutability, it necessarily violates path-independence (Aizerman and
Malishevski, 1981). The violation occurs because after patient p6 enters, the new chosen matching
is obtained from substituting the matching with B = 0, E = 5 with the new patient, instead from
substituting the matching with B = 1, E = 4 which is chosen without p6.
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tional eligible match requires progressively larger sacrifices in beneficiary matches.

We establish that the relative efficiency loss from beneficiary-share requirements is

bounded by 1
2
, and this bound is tight. The Repeated Hungarian Algorithm we de-

velop generates all frontier points in polynomial time (O(n4)), providing practitioners

with a computationally tractable tool. Our framework demonstrates that respecting

beneficiary-share guarantees approximately on the frontier is compatible with priority

considerations but fundamentally incompatible with path-independence choice rules.

While our analysis focuses on settings with a single beneficiary category, the

minimal cycle approach naturally extends to richer environments. Multiple overlap-

ping beneficiary requirements—such as simultaneous quotas for different demographic

groups in school allocation—present interesting directions for future work. Our char-

acterization moves beyond traditional lexicographic approaches, offering guidance for

balancing competing objectives. The minimal cycle construction we introduce pro-

vides a new analytical tool for matching theory that may prove valuable in broader

reserve system design.
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A Appendix

A.1 Example 4

While it may seem natural to first maximize the total number of matches and then

maximize beneficiary matches among those solutions, this lexicographic approach

can lead to poor outcomes for beneficiaries. We demonstrate that prioritizing total

matches can result in an arbitrarily large loss of beneficiary matches compared to

directly maximizing beneficiary matches.

Example 4. Consider the following market instance with parameter K ∈ Z+:

• P = {p1, p2, . . . , pK+2}.

• C = {c1, c2, . . . , cK+2}, each with a unit quota.

The beneficiary and eligibility sets are defined as follows:

Bcn = {pn} for n = 1, 2, . . . , K + 1, BcK+2
= ∅,

Ecn = {pn, pn−1} for n = 2, . . . , K + 1, Ec1 = {p1, pK+2}, EcK+2
= {pK+1}.

In this construction:

• A max-bene matching µ1 can assign each participant pn (1 ≤ n ≤ K + 1)

to their unique beneficiary category cn, achieving |B(µ1)| = K + 1 beneficiary

matches, with pK+2 remaining unmatched.

• A max-elig-then-max-bene matching µ2 must first maximize total matches.

To match all K + 2 participants, it must assign pK+2 to c1 (its only eligible

category), which displaces p1 to c2, which displaces p2 to c3, and so on, creating
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a chain reaction. The resulting matching assigns pK+1 to cK+2 and achieves

|E(µ2)| = K + 2 total matches but |B(µ2)| = 0 beneficiary matches.

The difference in beneficiary matches is |B(µ1)| − |B(µ2)| = K + 1. Since K

can be chosen arbitrarily large, this demonstrates that the lexicographic approach of

first maximizing eligible matches can sacrifice an unbounded number of beneficiary

matches.

A.2 Proof of Lemma 1

To prove Lemma 1 we need the following lemma:

Lemma A1. Given a matching µ2 corresponding to f2 = (e2, b2) on the frontier, for

any f1 = (e1, b1) with e1 > e2 on the frontier, there exists a matching µ∗ corresponding

to f1 such that any patient matched in µ2 is still matched in µ∗.

Proof. Let µ1 be any non-dominated matching corresponding to frontier point f1 =

(e1, b1) , with e1 − e2 = k ∈ N+. We will construct a matching µ∗ from µ1 such that

any patient matched in µ2 is still matched in µ∗ and µ∗ corresponds to f1.

Let A and D be the sets of matched patients in µ2 and µ1, respectively. We

partition A into three disjoint sets A1, A2, A3 such that:

A1 = {p ∈ A : µ1(p) = µ2(p)}, A2 = {p ∈ A : µ1(p) ̸= ∅, µ1(p) ̸= µ2(p)}, and

A3 = {p ∈ A : µ1(p) = ∅}.

Intuitively, we want to replace the patients in µ1 that are only matched in µ1 (p ∈

D\A) with patients that are only matched in µ2 (p ∈ A3). With eligibility constraints,

we cannot do this one-to-one exchange directly. So instead, we first match all the

33



patients in A3, then unmatch patients in D \ A to restore the (e1, b1) requirement.

See the following diagram.

µ1
Match all patients in A3−−−−−−−−−−−−−→

step 1
µ′ Unmatch patients in D \A−−−−−−−−−−−−−−−→

step 2
µ∗.

Step 1. For each patient p0 ∈ A3, we construct a sequence starting with p0,

where each subsequent patient is matched in µ1 to the previous patient’s seat in µ2,

until the sequence ends with an unmatched seat in µ1 or an unmatched patient in µ2.

Formally, the process is as follows.

As µ1 is non-dominated, seat µ2(p0) must be occupied in µ1 by some patient in

D, let p1 = µ1(µ2(p0)) and add p1 to the sequence. If µ2(p1) = ∅, then terminate the

sequence with p1 ∈ D \ A. Else, if µ1(µ2(p1)) = ∅, then terminate the sequence with

p1 ∈ A2; if µ1(µ2(p1)) ̸= ∅, add p2 = µ1(µ2(p1)) to the sequence and continue this

process.

Since q is finite and all seats are visited at most once, the process ends with a

finite sequence (p0, p1, . . . , pN) satisfying: for every 1 ≤ m ≤ N , µ1(pm) = µ2(pm−1);

all intermediate patients pn for 1 ≤ n < N belong to A2; and the terminal patient pN

is either in D \ A with µ2(pN) = ∅, or in A2 with µ1(µ2(pN)) = ∅. We call the latter

case a type 1 sequence, and the former a type 2 sequence.

Given any sequence s = (p0, p1, . . . , pN), define the process of rematching the

patients in s to their seats in µ2 and keeping other patients’ seats in µ1 unchanged as

Rs(µ1). Concretely, for any given sequence s = (p0, p1, . . . , pN),

Rs(µ1)(p) =


µ2(p), if p ∈ s,

µ1(p), if p /∈ s.

The new matching Rs(µ1) is eligible and satisfies the quota constraint. Note that for
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any sequence s of type 1, we have E(Rs(µ1)) = E(µ1)∪ {p0} and thus |E(Rs(µ1))| =

|E(µ1)| + 1, which combined with the non-domination of µ1 means |B(Rs(µ1))| <

|B(µ1)|.

For any s′ of type 2, E(Rs′(µ1)) = E(µ1) ∪ {p0} − {pN} and thus |E(Rs′(µ1))| =

|E(µ1)|. We claim that |B(Rs′(µ1))| = |B(µ1)|. Suppose not. If |B(Rs′(µ1))| >

|B(µ1)|, then µ1 is dominated by Rs′(µ1). If instead |B(µ1)| > |B(Rs′(µ1))|, re-

match the patients in s′ to their seats in µ1 and keep other patients’ seats in µ2

unchanged—the new matching will dominate µ2.

By construction, the sequences initialized by distinct patients in A3 are disjoint.

Suppose there are k1 type 1 sequences and k2 type 2 sequences, then k1 + k2 = |A3|.

Denote the sequences as s1, s2, · · · , s|A3|. Rematch all the patients in all the sequences

to their seats in µ2 and keep other patients’ seats in µ1 unchanged, we obtain a new

matching µ′ = Rs1(Rs2(· · · (Rs|A3|
(µ1))).

Let F be the set of matched patients in µ′ andA′
2 = {p ∈ A : p belongs to some sequence},

then

1. All patients in A are matched in µ′: A ⊂ F ⊆ D∪A3, and |F \A| = |F |− |A| =

k1 + |D| − |A| = k1 + k.

2. F \ A ⊆ D \ A.

3. Only patients in A2 \ A′
2 and F \ A get different seats (including ∅) in µ′ than

in µ2.

4. |E(µ′)| − |E(µ1)| = k1 and |B(µ′)| < |B(µ1)|. Let k3 = |B(µ1)| − |B(µ′)|, then

k3 ≥ k1.

Step 2: With µ′ and µ2, for each patient p′0 ∈ F \ A, we can find a disjoint

cycle that is also an applicable cycle in Gµ2 . We construct the cycle by constructing
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a sequence like in Step 1.

Start from any patient p′0 in F \ A. As µ2 is non-dominated, seat µ′(p′0) must be

taken by some patient under µ2. Let p′1 = µ2(µ
′(p′0)). As all the patients in A are

matched in µ′, µ′(p′1) ̸= ∅. If µ2(µ
′(p′1)) = ∅, then terminate the sequence; else, let

p′2 = µ2(µ
′(p′1)) and continue this process.

After the above process, we have a sequence (p′0, p
′
1..., p

′
N) where µ

′(p′m) = µ2(p
′
m+1)

for all 0 ≤ m < N and µ2(µ
′(p′N)) = ∅. Each patient p′m with 1 ≤ m ≤ N belongs to

A2 \ A′
2, since µ′(p′m) ̸= µ2(p

′
m) and µ2(p

′
m) ̸= ∅.

Given any sequence generated above (p′0, p
′
1..., p

′
N), we construct an applicable

cycle in Gµ2 by linking patient p′m to seat µ′(p′m) and seat µ′(p′m) to patient p′m+1 for

0 ≤ m ≤ N − 1, then linking patient p′N to seat µ′(p′N) and seat µ′(p′N) to patient p′0.

The applicable cycles constructed from different sequences are disjoint. Denote these

cycles as c1, c2, . . . ck+k1 , ordered such that ∆c1 ≤ ∆c2 ≤ · · · ≤ ∆ck+k1
. Moreover, we

have ∆c1 > 0; otherwise, applying c1 to µ2 would yield a matching that dominates

µ2. Therefore, all these disjoint applicable cycles have positive beneficiary loss.

We claim that
∑k1

i=1∆ci = k3. We prove this by contradiction, considering two

cases.

Case 1. Suppose
∑k1

i=1 ∆ci > k3. If we rematch the seats involved in these k1 cycles

to their patients (or ∅) in µ2 while keeping other seats’ patients as in µ′, the

resulting matching would have e1 eligible matches and b1 − k3 +
∑k1

i=1∆ci > b1

beneficiary matches, which dominates µ1, a contradiction.

Case 2. Suppose
∑k1

i=1∆ci < k3.

First, rematch the seats involved in all type 1 sequences to their patients (or to

∅) in µ1 and keep other seats’ patients in µ2. Denote the resulting matching as

µt.
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Second, rematch the seats involved in the cycles c1, c2, . . . , ck1 to their patients

(or to ∅) as in µ′ and keep all other seats’ patients in µt. Note that this

second rematch does not affect any seat or patient that was modified in the

first rematch, because the sequences constructed in Step 1 and the applicable

cycles are disjoint: if p ∈ A lies in some cycle c, then by the generating process

of c, µ′(p) ̸= µ2(p); if p belongs to some sequence s, then by the construction

of µ′, µ′(p) = µ2(p).

The resulting matching has e2 − k1 + k1 = e2 eligible matches and b2 + k3 −∑k1
i=1∆ci > b2 beneficiary matches, thus dominating µ2, a contradiction.

Now we construct µ∗. Rematch all the seats involved in the cycles c1, . . . , ck1

to their patients in µ2 and keep other seats’ patients in µ′. We call this process

the reverse application of the applicable cycles. We claim the resulting matching µ∗

satisfies the requirements. Since
∑k1

i=1∆ci = k3, we have |B(µ∗)| = |B(µ1)| = b1.

The fact that |E(µ′)| − |E(µ1)| = k1 and that µ∗ is obtained by reversely applying

k1 applicable cycles implies |E(µ∗)| = |E(µ1)| = e1. To show that µ∗ matches all the

matched patients in µ2, note that µ
′ has all the patients in A matched, and the reverse

application of applicable cycles in Step 2 only unmatches patients in F \ A.

Proof of Lemma 1. In this proof, we use some notation from the proof of Lemma A1.

By Lemma A1, there exists a matching µ∗ corresponding to f1 such that any

matched patient in µ2 is still matched in µ∗. Partition C into five subsets C1, · · · , C5,

separately containing: seats of patients in the k1 type-1 sequences; seats in the k

disjoint applicable cycles that have not been used in constructing µ∗; seats in the k1

disjoint applicable cycles that have been used in constructing µ∗; seats of patients in

the k2 type-2 sequences; and all other seats. The partition is shown below.
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Partition C into



C1 : seats of patients in the k1 type-1 sequences,

C2 : seats in the k disjoint applicable cycles not used in constructing µ∗,

C3 : seats in the k1 disjoint applicable cycles used in constructing µ∗,

C4 : seats of patients in the k2 type-2 sequences,

C5 : other seats.

By construction, the seats in C1, C3, C4 are all matched to the same patients in

µ∗ and µ2, while the seats in C2 and C5 are all matched to the same patients(or are

both unmatched) in µ∗ and µ1.

Apply the k disjoint applicable cycles that have not been used in constructing µ∗,

proved in Lemma A1 to have positive beneficiary loss, to µ2, and denote the resulting

matching as µ3. Then µ3 matches seats in C1, C3, C4, C5 to the same patients as in

µ2, and seats in C2 to the same patients as in µ1. We will show that µ3 corresponds

to (e1, b1).

As µ∗ corresponds to (e1, b1), and µ∗ and µ3 differ only in the matches of seats in

C5, it suffices to show that µ1 and µ2 have the same numbers of eligible and beneficiary

matches when restricted to seats in C5.

For simplicity, we will refer to seats of patients in sequences as seats belonging to

those sequences.

Consider any patient involved in a cycle or sequence. If this patient is matched

in both µ1 and µ2, then in each matching it must be matched to a seat belonging

to the same cycle or sequence. Additionally, patients matched only in µ2 belong to

sequences, while patients matched only in µ1 belong to cycles. As a consequence,
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any patient matched to a seat in C5 under µ1 must also be matched to a seat in C5

under µ2. Therefore, when restricted to C5, both matchings have the same number

of eligible matches and match the same set of patients.

We claim they also have the same number of beneficiary matches. Suppose for

contradiction, without loss of generality, µ1 has more beneficiary matches than µ2

when restricted to C5. Consider the matching obtained by rematching the seats in C5

according to µ1 while keeping all other seats’ matches as in µ2. This new matching

would dominate µ2, contradicting its non-domination. Therefore, µ1 and µ2 have the

same number of beneficiary matches when restricted to C5, which implies that µ3

corresponds to (e1, b1), completing the proof.

A.3 Proof of Lemma 2

Proof. Note that given a weight, a dominated matching will have a smaller weight

sum than the matching that dominates it. Thus only non-dominated matchings can

achieve maximum weight matching in any iteration of the first loop of Algorithm 2.

It suffices to show that in each iteration, the stated non-dominated matching has a

higher weight sum than all other non-dominated matchings.

Proof of Claim 1.

Consider the first and the last iterations of the first loop of Algorithm 2. In the

first iteration (k = 1), the weights are

welig = 1, wbene = 1 +
1

1
+

1

n2
= 2 +

1

n2
.
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The weight sum of any max-bene then max-elig matching µ is

(e−K) +

(
b+

K∑
i=1

∆bi

)(
1 +

1

n2

)
.

Meanwhile, the weight sum of any other non-dominated matching corresponding

to point (e− T,
∑T

i=1∆bi) for 0 ≤ T < K is

(e− T ) + (b+
T∑
i=1

∆bi)(1 +
1

n2
).

Since ∆bi ≥ 1 for all i ∈ {1, . . . K} by Theorem 2, the difference is

(
K∑

i=T+1

∆bi)(1 +
1

n2
)− (K − T ) > 0.

Therefore, any max-bene then max-elig matching has a higher weight sum than

other non-dominated matchings (under this weight), so one of the max-bene then

max-elig matching will be chosen in the first iteration.

In the last iteration (k = n) the weights are

welig = 1, wbene = 1 +
1

n
+

1

n2
.

The weight sum of any max-elig then max-bene matching is

e+

(
1

n
+

1

n2

)
b.

The weight sum of any other non-dominated matching corresponding to (e −

T,
∑T

i=1 ∆bi) for 1 ≤ T ≤ K is
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(e− T ) +

(
b+

T∑
i=1

∆bi

)(
1

n
+

1

n2

)
.

Since
∑T

i=1∆bi ≤ e− T ≤ n− T and T ≥ 1, the difference is

T−

(
T∑
i=1

∆bi

)(
1

n
+

1

n2

)
≥ T−(n−T )

(
1

n
+

1

n2

)
= T

(
1 +

1

n
+

1

n2

)
−
(
1 +

1

n

)
> 0.

Therefore, any max-elig then max-bene matching achieves a higher weight sum

than other non-dominated matchings (under this weight), so one of the max-elig then

max-bene matching will be chosen in the last iteration.

Proof of Claim 2.

Fix a kink fj = (e− j, b +
∑j

i=1 ∆bi) on the frontier such that ∆bj > ∆bj+1. We

show that RHA computes its (e, b) values in the ∆bj-th iteration.

In the ∆bj-th iteration, the weights are

welig = 1, wbene = 1 +
1

∆bj
+

1

n2
.

We show that any matching corresponding to fj has a higher weight sum than

any matching corresponding to another frontier point ft. We consider two cases.

Case 1. t < j. The difference in weight sums between fj and ft is

(
1

∆bj
+

1

n2

) j∑
i=t+1

∆bi− (j− t) ≥
(

1

∆bj
+

1

n2

)
(j− t)∆bj− (j− t) = (j− t)

∆bj
n2

> 0.

Thus, any frontier point ft with t < j will not be chosen in the ∆bj-th iteration.

Case 2. t > j First consider t = j + 1. The difference in weight sum between fj
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and fj+1 is

1−
(

1

∆bj
+

1

n2

)
∆bj+1.

Since 1
n2 < 1

∆b2j
< 1

∆bj∆bj+1
and ∆bj > ∆bj+1, we have

1−
(

1

∆bj
+

1

n2

)
∆bj+1 > 1−

(
1

∆bj
+

1

∆bj∆bj+1

)
∆bj+1 =

∆bj −∆bj+1 − 1

∆bj
≥ 0.

(1)

Thus, the frontier point fj+1 will not be chosen in the ∆bj-th iteration.

For any t > j + 1, the difference in weight sums between fj and ft is

(t− j)−
(

1

∆bj
+

1

n2

) t∑
i=j+1

∆bi.

Since ∆bj+1 ≥ ∆bj+2 ≥ · · ·∆bt, we have
∑t

i=j+1 ∆bi ≤ (t − j)∆bj+1. Combined

with Equation 1, this gives

(t− j)−
(

1

∆bj
+

1

n2

) t∑
i=j+1

∆bi ≥ (t− j)−
(

1

∆bj
+

1

n2

)
(t− j)∆bj+1 > 0.

Thus, any frontier point ft with t > j+1 will not be chosen in the ∆bj-th iteration.

Therefore, the matching corresponding to fj has the highest weight sum in the

∆bj-th iteration.
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