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1 Introduction

Reserve systems with minimum beneficiary-share guarantees—requirements that tar-
geted matches constitute at least a specified percentage of total matches—are perva-
sive in modern allocation problems. From vaccine distribution during health crises
to university admissions, from disability employment mandates to broadcasting con-
tent regulations, policymakers frequently require that targeted matches constitute at

I 'While such mandates aim to ensure

least a specified percentage of total matches.
representation for priority groups and address historical inequities, they create an
inherent trade-off: guaranteeing minimum shares for specific beneficiaries necessarily
constrains the matching process, potentially reducing the total number of success-
ful allocations. This tension manifests when reserved positions go unfilled due to
a lack of qualified candidates from targeted groups, while non-targeted candidates
who could have been matched are excluded.? Despite the ubiquity of such reserve
systems, we lack a framework for understanding the complete spectrum of achievable
outcomes and the precise nature of trade-offs between beneficiary representation and
total match maximization.

We study allocation problems where the social planner aims to prioritize certain
matches while the matching entities themselves remain indifferent among acceptable

candidates. We characterize this framework by distinguishing between two key con-

cepts: candidates whom matching entities consider eligible represent the complete set

!'Examples include: COVID-19 vaccine distribution requiring proportional allocation to minor-
ity groups (CDC, 2021); Indian universities reserving 2-5% for athletes and disadvantaged groups
(Delhi University, 2025); Germany’s 5% disability employment quota (iGlobal Law, 2013) and U.S.
federal contractors’ 7% requirement (DPI Staffing, 2013); and 35-55% local content requirements in
Canadian and Australian broadcasting (Conversation, 2016).

2Common failures include vaccine expiration in priority categories while other regions face short-
ages (CDC, 2021), vacant reserved university seats, firms paying non-compliance penalties rather
than meeting disability targets (iGlobal Law, 2013), and broadcasters producing substandard “quota
quickies” to meet requirements (UNSW, 2023).


https://www.cdc.gov/mmwr/volumes/70/wr/mm7028a2.htm
https://www.shiksha.com/humanities-social-sciences/articles/how-to-get-du-admissions-under-sports-quota-blogId-17441
https://igloballaw.com/news-and-events/equality-diversity-and-equal-rights/disability/the-world-and-disability-quotas-or-no-quotas/
https://dpistaffing.com/2013/09/17/compliance-new-dol-7-disability-quota/
https://theconversation.com/local-content-quotas-on-tv-are-global-they-just-dont-work-everywhere-60656
https://www.cdc.gov/mmwr/volumes/70/wr/mm7028a2.htm
https://igloballaw.com/news-and-events/equality-diversity-and-equal-rights/disability/the-world-and-disability-quotas-or-no-quotas/
https://www.unsw.edu.au/newsroom/news/2023/04/content-quotas-are-a-start---but-australia-s-screen-industry-nee

of acceptable matches from the entity’s perspective, while matches the social planner
wishes to promote for each entity are those deemed beneficial to that entity from
a societal standpoint. However, when social planners impose these additional pri-
oritization constraints, matching entities typically achieve fewer total matches than
they would under their own preferences (see Example 1). This creates a fundamental
trade-off: improving match quality from the social planner’s perspective often reduces
match quantity from the entities’ operational perspective. Our focus on maximizing
total matches—what Ashlagi et al. (2020) term “allocative efficiency” in their study
of school choice with distributional constraints—reflects the primary concern in many
reserve systems: ensuring that positions do not go unfilled.?

The existing literature typically addresses this tension through lexicographic ap-
proaches that prioritize one objective over the other: either maximizing the targeted
matches among all matchings that achieve the maximum total number of matches, or
conversely, maximizing total matches among those that reach the maximum number
of targeted matches (Evren, 2023). We introduce the flexibility of allowing the plan-
ner to specify a target percentage of beneficiary matches within the total matching.
This percentage-based framework encompasses lexicographic approaches as special
cases.?

We consider a two-sided market where individuals on one side seek to be matched

with entities on the other—such as vaccines, kindergartens, institutions, or enter-

3 Ashlagi et al. (2020) develop mechanisms that assign at least as many students as the optimal
fractional solution (their OPT benchmark) while violating each constraint by at most |T'| (the number
of types). Our characterization complements their approach by explicitly quantifying how much this
allocative efficiency must decrease to guarantee any given beneficiary share, providing the complete
frontier rather than focusing on a single operating point.

4For any matching problem, there exists a specific percentage threshold that corresponds to the
“maximize beneficiary matches subject to maximum total matches” solution, and another threshold
that yields the “maximize total matches subject to maximum beneficiary matches” outcome. More-
over, when we constrain solutions to lie on a Pareto-like frontier of targeted and total matches, these
extreme lexicographic cases can be approximated using percentage targets of 0 and 100.



prises. Each entity can only match with certain eligible individuals, and within
this eligible pool, some individuals are designated as beneficiaries—the group that
policymakers particularly want to prioritize. Different entities may target different
beneficiary groups, and these groups can overlap across entities. To ensure adequate
access for beneficiaries, the social planner establishes a minimum threshold for the
share of matches that must go to beneficiaries relative to the total number of matches
made. Different entities may target different beneficiary groups, and these groups can
overlap across entities.

To analyze this market, we introduce the concept of non-domination: a matching
is non-dominated if no other matching achieves both more total eligible matches (e)
and more beneficiary matches (b). The set of all such non-dominated matchings
forms what we call the non-domination frontier—essentially the efficient boundary of
possible (e, b) combinations. We show that this frontier can be characterized through a
new structure we term minimal cycles (Definition 2). These are cycles similar to those
in Top Trading Cycles (TTC) mechanisms, but with a specific property: applying a
minimal cycle increases the total number of matches by one while minimizing the
reduction in beneficiary matches (see Theorem 1).

The non-domination frontier follows a predictable pattern: it forms a concave
curve where each additional eligible match comes at an increasing cost in beneficiary
matches—a classic case of diminishing returns (Theorem 2). Perhaps most strikingly,
we prove that prioritizing beneficiaries never reduces total matching capacity by more
than half. Specifically, when we switch from maximizing all eligible matches to max-
imizing beneficiary matches, the total number of matches falls by at most 50%, and
this bound cannot be improved (Proposition 1). These structural properties hold
universally, regardless of the specific market data. This means policymakers can

understand the fundamental trade-offs of beneficiary-share requirements even before



collecting detailed information about their particular matching market.

We develop the Repeated Hungarian Algorithm (RHA) to compute all frontier
points efficiently, with a runtime of O(n*) for n individuals (Algorithm 2, Theorem 3).
This transforms our theoretical framework into a practical tool capable of solving real-
world allocation problems at scale.

Our analysis reveals an important insight about beneficiary-share requirements:
strictly enforcing them can actually lead to dominated outcomes. When a matching
exactly meets the beneficiary-share target, it often lies below the non-domination
frontier—meaning we could serve more people overall without reducing beneficiary
access (Example 3). This motivates our approach of “approximate” compliance: we
find the frontier matching that exceeds the beneficiary-share target by the smallest
amount. Crucially, any such frontier matching dominates all matchings that meet the
target exactly, delivering better outcomes for both beneficiaries and non-beneficiaries
(Proposition 2).

We can extend this framework to respect priority orderings while maintaining
approximate beneficiary-share compliance on the frontier (Proposition 3). However,
there’s an inherent limitation: these mechanisms cannot satisfy path-independence—the
property that the final matching remains the same whether we consider all candidates
at once or first select from subgroups and then choose from those selected candidates.
This impossibility holds even without priority constraints, highlighting a fundamental
tension between staying on the non-domination frontier and maintaining this proce-
dural consistency (Theorem 4).

Our framework provides a principled approach to understanding the fundamental
trade-offs inherent in allocation policies that prioritize specific groups. Across diverse
contexts—from disability employment requirements, to corporate board gender man-

dates, to broadcasting content regulations, policymakers must balance representation



goals against overall efficiency.” The non-domination frontier we characterize reveals
the precise nature of these trade-offs: how much total matching capacity must be
sacrificed to achieve any given beneficiary-share target. Our finding that this sac-
rifice never exceeds 50% of total matches provides a crucial benchmark for policy
design. This allows policymakers to assess, before implementation, whether a pro-
posed beneficiary-share requirement will maintain viability or risk driving participants
away from the market altogether. Rather than discovering these trade-offs through
costly trial and error, our framework enables informed policy decisions that balance
equity objectives with practical sustainability.

Related Literature. Our work advances the literature on reserve systems and choice
rules by fully characterizing the trade-off frontier between beneficiary representation
and total match capacity, building on recent theoretical developments and practical
applications in market design.

Reserve systems originated with Hafalir et al. (2013), who demonstrated that
(minority) reserve categories could implement affirmative action in school choice more
effectively than (majority) quota-based approaches (Kojima (2012)).

The theory of reserve systems emerged from Hafalir et al. (2013), who demon-
strated how reserve categories could effectively implement affirmative action in school
choice, addressing limitations of quota-based systems shown by Kojima (2012). Sonmez
and Yenmez (2022) expanded this framework to handle overlapping reserves and de-
veloped the meritorious horizontal choice rule. During the COVID-19 pandemic,
Pathak et al. (2023b) demonstrated how reserves could balance multiple ethical prin-

ciples in medical resource allocation. Most recently, Evren (2023) proposed the

5Examples include: companies choosing between meeting 1.5-7% disability targets or paying
substantial fines (iGlobal Law, 2013); firms facing 33-40% board gender quotas that may compromise
optimal composition or prompt delisting (Smith & Von Essen, 2025); and broadcasters producing
low-quality “quota quickies” to meet 35-60% local content requirements (UNSW, 2023).


https://igloballaw.com/news-and-events/equality-diversity-and-equal-rights/disability/the-world-and-disability-quotas-or-no-quotas/
https://wol.iza.org/articles/gender-quotas-on-corporate-boards-of-directors/long
https://www.unsw.edu.au/newsroom/news/2023/04/content-quotas-are-a-start---but-australia-s-screen-industry-nee

Threshold Reserve Model and Smart Pipeline Matching Mechanism, achieving the
max-in-max property (see Remark 1) while maintaining independent priority order-
ings across categories. Our work extends this line of research by fully characterizing
the non-domination frontier, revealing all feasible trade-offs between beneficiary rep-
resentation and total match capacity.

Real-world implementations reveal the complexity of reserve systems—from Boston’s
school walk zones (Dur et al., 2018) to H-1B visa reforms (Pathak et al., 2025)—high-
lighting the importance of understanding feasible outcomes before policy deployment.
Pathak et al. (2023a) demonstrate through incentivized experiments that 40% of par-
ticipants fail to appreciate how processing order affects reserve system outcomes,
mistakenly treating minimum guarantees (reserves processed first) as equivalent to
over-and-above allocations (reserves processed last).® Experience with Indian col-
leges’ affirmative action policies reinforces this lesson, prompting several theoretical
advances: Manocha and Turhan (2025) extended gradual matching to complex affir-
mative action settings, while Aygiin and Turhan (2017), Aygiin and Turhan (2020),
and Aygiin and Turhan (2022) examined large-scale implementations, dynamic re-
serves, and de-reservation through choice rules. Our frontier characterization directly
addresses these implementation concerns by revealing the precise trade-offs policy-
makers face. Specifically, we prove that transitioning from maximum eligibility to
maximum beneficiary matching reduces eligible matches by at most 50%, quantifying
this fundamental constraint for policy design.

Our work connects to the broader literature on choice rule design, which encom-
passes characterizing substitutability (Aygiin and Sénmez, 2013), developing affir-

mative action schemes (Echenique and Yenmez, 2015; Imamura, 2025), preserving

6This misunderstanding persists even among educated participants, suggesting that subtle fea-
tures of reserve systems—Ilike the distinction between minimum guarantees and additional seats—are
systematically overlooked by stakeholders who must approve and oversee these policies.



substitutability under slot-specific priorities (Kominers and Sénmez, 2016), and in-
corporating diverse policy objectives (Dogan et al., 2025; Yokote et al., 2023). Dogan
et al. (2025) recently emphasized the importance of path-independent choice rules
(Chambers and Yenmez, 2017; Plott, 1973) in market design. We demonstrate that
pursuing non-domination while approximately maintaining beneficiary-share guaran-
tees necessarily yields choice rules that violate substitutability—and therefore path-
independence—revealing an inherent tension between these desirable properties.

Nguyen and Vohra (2019) examined how much proportionality must be sacrificed
to achieve stability, treating proportionality as a soft constraint and deriving bounds
on necessary violations. While they quantify stability’s cost in terms of proportion-
ality violations, we measure the cost in total match capacity. Moreover, our setup
differs from standard approaches in that beneficiary status is category-specific: the
same individual may be a beneficiary for some categories but not others.

The paper is organized as follows. Section 2 presents the model and defines the
frontier concept. Section 3 characterizes the frontier and introduces our Repeated
Hungarian Algorithm with complexity analysis. Section 4 examines key allocation

criteria. Section 5 concludes. Omitted proofs appear in the appendix.

2 Model

Following Pathak et al. (2023b), we model vaccine allocation using a reserve system

with beneficiary-share guarantees comprising:
1. A finite set of categories C = {c1, ¢o, ...},
2. A finite set of patients P = {p1, po, ...},

3. Eligible patient sets £ = (E.)ccc where E,. C P,



4. Beneficiary patient sets B = (B,).cc where B. C E. C P,

5. Category quotas q = (q,)pec € NI°I,

6. A beneficiary-share guarantee §* € [0, 1].

We call tuples (C,P,q,&,B) and (C,P,q,&, B, *) an instance and a problem
respectively. For any instance, a correspondence p : CUP = C U P U {D} is a
matching if: (i) each patient matches to at most one category (|u(p)] < 1 for all
p € P); (ii) each category’s assignments respect its quota (|u(c)| < g. for all ¢ € C);
and (iii) assignments are consistent (u(p) = {c} if and only if p € p(c)). When
unambiguous, we write u(p) = c¢ if position p is matched to category ¢, and u(p) = 0
if p is unmatched. A matching p is eligible if u(p) = c € C = p € E.. We consider
only eligible matchings unless stated otherwise.

For matching i, we define beneficiary matches as B(u) = {(p,¢) | p € P,c € C,
p € u(c) N B.}, and for category ¢, B,(c) = {(p,c)|p € p(c)N B.}. Similarly,
eligible matches are E(u) = {(p,c) |[p€P,ceC,pe pulc)NE.}, and E,(c) =
{(p,c) | p € p(c) N E.}. When context is clear, we use these terms to refer to either
the sets or their cardinalities, use “targeted matches” interchangeably with “benefi-
ciary matches”, and use “total matches” interchangeably with “eligible matches”.

For any non-empty matching pu, its beneficiary-share is f(u) = %. The
policymaker mandates that beneficiary matches constitute at least f* x 100% of
eligible matches, requiring B(u) > 5*.

A mechanism ¢ : (C,P,q,&,B,5*) — p is a function which takes a problem

(C,P,q,&,B,5*) as input and outputs an eligible matching p.



2.1 The Frontier

Two competing objectives arise in allocation: maximizing eligible matches for broad
access versus maximizing beneficiary matches for targeted priorities. These goals
typically conflict, requiring trade-offs between coverage and targeting.

To address this tension, Evren (2023) proposed max-in-max, which lexicographi-
cally prioritizes objectives: selecting the matching with maximum beneficiary matches
among those maximizing eligible matches.

However, lexicographic maximization can entirely neglect one objective:

Example 1. Consider patients P = py1,p2 and categories C = ¢y, co. Patient py is
eligible for both categories and a beneficiary of co; patient py is eligible only for cs.
The unique eligible-mazimizing matching assigns pu(p1) = ¢1 and u(ps) = ¢, yielding

zero beneficiary matches.”®

While lexicographic solutions prove problematic, the underlying principle remains
appealing: conditional on eligible matches, maximize beneficiary matches; conditional
on beneficiary matches, maximize eligible matches. We formalize this idea in the

following definition.

Definition 1 (Domination and Frontier). For any instance, a matching p is domsi-

nated by matching 1’ if:

|EW)| 2 [E(w)] and  |B(u)] = |B(p),

7Although patient p; is a beneficiary for ¢y, their match to ¢; in the eligible-maximizing alloca-
tion does not count as a beneficiary match—beneficiary status only applies when matched to the
designated category. In vaccine allocation, this captures the policy goal of prioritizing local frontline
workers (medical staff, first responders) for their own district’s vaccine supply. A frontline worker
from District A receiving District B’s vaccine dose represents a successful match but not a beneficiary
match, as it fails to achieve the intended local protection priority.

8The cost of prioritizing total matches can be severe: our construction in Example 4 shows that
maximizing eligible matches first can sacrifice arbitrarily many beneficiary matches—the loss grows
unboundedly with market size.

10



with at least one strict inequality.” By definition, domination is a transitive rela-
tion. A matching is non-dominated if no other matching dominates it. A mechanism
¢ is non-dominated if it always produces non-dominated matchings. The non-

domination frontier is:
F={(|E(p)|,|B(u)|) € N? : u is non-dominated }.

A non-dominated matching p corresponds to point (e,b) € F if |[E(u)| = e and

B(u)| =b.

Remark 1. The maz-in-maz solution (Evren, 2023) lies on the frontier but captures

only one extreme point.

Non-domination provides both a normative criterion and a practical framework
for understanding trade-offs between eligible and beneficiary matches. The non-
domination frontier, combined with a ray at the angle corresponding to the beneficiary-
share guarantee, delimits feasible allocations. Section 3 characterizes the frontier and
develops algorithms for its computation. Section 4 examines how non-domination

interacts with other key allocation criteria.

3 Characterization and Computation of Frontier

We characterize the non-domination frontier and present a polynomial-time algorithm

for its computation.

9Unlike the roommate problem domination in Molis and Veszteg (2024), where matchings domi-
nate via blocking pair chains, our definition operates at the aggregate level and allows indifference.

11



3.1 Cycle Characterization

We characterize the frontier using minimal cycles that link consecutive frontier
points.

Without loss of generality, assume unit quotas, allowing us to write u(c) = {p}
as u(c) = p and p(c) = {0} as p(c) = @ (with slight abuse of notation). We call
unit-quota categories seats. For non-dominated matching pu, the associated graph
G.(P,C,E,) is a directed bipartite graph with patients P and categories C as vertex
sets.

The edge set E,, contains: an edge from p to c if p € E. and p(p) # c¢; an edge
from c to p if p(c) = p or p(p) = p(c) = 0.

A cycle in G, is a sequence ¢ = (p1,¢1, ..., Dn, Cn, P1) Where consecutive vertices
are connected by directed edges. Cycle c is applicable if p; and ¢, are the unique
unmatched patient and seat under pu, respectively.

Applying an applicable cycle ¢ (in G,) to p reassigns each patient p, to category

¢k, yielding matching c(u) where:

if c
(1)) = pwp) ifpé¢

Cr if p = px € c for some k.

The resulting matching remains eligible by construction. Consider the following ex-

ample:

Example 2. Consider patients P = {p1,pa2, p3} and categories C = {cy, ca,c3} with

unit quotas. The eligibility sets are:
L Ecl = {plap2}
o E., = {p2,p3}

12



o B, = {pl}

Under matching j: pu(p1) = c1, p(p2) = c2, p(ps) = 0.
The cycle ¢ = (ps3, c2,p2, €1, P1,C3, P3) 1S applicable since ps and c3 are the unique

unmatched patient and category, respectively.

P C P C

Iy ®
- . Apply Cycle ¢
=<7 ’@ @

A

e . Y
S

Figure 1: Left: Original associated graph G,. Right: New matching after applying
cycle ¢. Blue: matching edges (¢ — p), Red dashed: eligibility edges (p — ¢), Black
dashed: unmatched edge (¢ — p).

Applying cycle ¢ yields: c(i)(p1) = cs, c()(p2) = c1, e()(ps) = ca, demonstrat-

g how cycles transform matchings while preserving eligibility.

While the above definitions are standard in the matching literature, we now in-
troduce minimal cycles, which are tailored to our two-tier environment and char-

acterize the non-domination frontier.

Definition 2. The beneficiary loss of applying applicable cycle ¢ to non-dominated
matching p is A. = |B(u)| — |B(c(p))] > 0. An applicable cycle is minimal if it

achieves the smallest beneficiary loss among all applicable cycles in G,,.
Minimal cycles connect consecutive frontier points:

Theorem 1. Applying any minimal cycle ¢ to any non-dominated matching jg yields

a non-dominated matching py = c(fp).

13



Proof. We prove by contradiction. Suppose p; is dominated, then it must be domi-
nated by some non-dominated matching o with |E(ug)| > |E(p1)|. As py is achieved
by applying ¢ to po, |E(p1)| = [E(uo)| + 1. Therefore, |E(u2)| = [E(u1)| > [E(uo)]-

We require the following result:

Lemma 1. For frontier points fi = (e1,b1), fo = (ex — k,by) where k € N, and
any non-dominated matching ps corresponding to fo, there exist k disjoint applicable
cycles in G, that transform po to a non-dominated matching corresponding to f.

Each cycle has strictly positive beneficiary loss.

By Lemma 1, there exists 3 with the same eligible and beneficiary match counts
as [12, obtained by applying disjoint applicable cycles cq,...,c, to po, each with
strictly positive beneficiary loss. Thus p3 also dominates p;. The relationships are

illustrated below:

ly c
apply [
A
apply ci,...,c, dominates
Y
5 > 2

same (e, b) value

If |[E(u5)] > |E(p1), then n > 2. This yields |B(u3)| = [B(uo)| — Y 7_; Ae; <
|B(o)] — Ae, < |B(po)| — Ae = |B(u1)|, contradicting that pi dominates .

If |[E(ud)| = |E(u11)], thenn = 1 and |B(p3)| > |B(u1)|. But this means Ag, < A,
contradicting the minimality of c.

Therefore, j1; is non-dominated. [l

14



After applying a minimal cycle to a non-dominated matching, the resulting match-
ing has exactly one additional eligible match, corresponding to the next consecutive
point on the frontier. Can we find the entire non-domination frontier by starting from
an appropriate matching? The natural candidates are the frontier’s endpoints.

A matching is max-bene then max-elig if it maximizes eligible matches among
all matchings that maximize beneficiary matches. Let pupp denote the set of such
matchings:

pupe = argmax|FE(u)| where M = argmax|B(u)|.
HEM B

While ppr may contain multiple matchings, they share identical properties in our
setting. We abuse notation and let pupp denote an arbitrary fixed element from this
set.

Analogously, a max-elig then max-bene matching ypp maximizes beneficiary
matches among all matchings that maximize eligible matches. This corresponds to
the solution in Evren (2023).

These matchings correspond to the frontier’s endpoints. Since the frontier cap-
tures the complete trade-off between maximizing total matches and maximizing target
matches, the endpoints represent the extremes of prioritizing each goal.

The following theorem establishes that repeatedly applying minimal cycles to ugg

generates all frontier points:

Theorem 2. Starting from ppg and iteratively applying minimal cycles until no
applicable cycles remain generates matchings corresponding to all frontier points. The
frontier is dense in eligible matches: it contains points for every integer value of total
matches from |E(ugg)| to |E(uep)|. Moreover, beneficiary loss increases weakly along

this sequence, yielding a frontier with a negative, decreasing slope.

Proof. By Lemma 1, every non-dominated matching except pugpp has an applicable

15



cycle. By Theorem 1, applying a minimal cycle to a non-dominated matching yields
another non-dominated matching with one additional eligible match. Since no other
non-dominated matching can exist between these two matchings, they are consecutive
points on the frontier. Combined the above arguments, repeatedly applying minimal
cycles generates all non-dominated matchings. Consequently, the frontier contains a
point for every feasible integer value of total matches between E(upg) and E(uEB)).

For the concavity of the frontier, consider the non-trivial case with three consec-
utive frontier points (e, by), (e1 + 1,bs), (€1 + 2, b3) and any non-dominated matching
1 corresponding to (eq, by). By Lemma 1, there exist disjoint applicable cycles ¢, ¢y
in G, such that by = by — A, — A¢,. By Theorem 1, there exists a minimal cycle
cs in G, with by = by — A¢, where A, < min{A,,Ac,} (because it is minimal).

Therefore, bg — b3 = Acl -+ A02 — AC3 Z AC3 = b1 — bg. ]

With this result, we can quantify the worst-case resource sacrifice when prioritizing

beneficiary matches.

Proposition 1. For any instance (C, P, q,&,B):

|E(pes)| — [E(p1sE)] < |E(pes)| — |E(psE)| < |E(pes)| — |E(usE)|
|P| - omin([PL Y w) T |E(ues)|

1
< -
— 2

E(pep)|—|E(uer)| _ 1
P 2

This bound 1is tight: Fxample 1 achieves |

Proof. Let K = |E(ugg)| — |E(upg)|- By Lemma 1, there exist K disjoint applicable
cycles transforming pgp to some max-elig then max-bene matching ;. Each cycle
contains at least two patients—a single-patient cycle would allow increasing eligible

matches without changing other matches, contradicting that ppg is non-dominated.

16



Therefore, ;1; matches at least 2K distinct patients, yielding:

|E(pes)| — |E(psE)|
|E(peB)|

1
< -
-2

The result follows since |P| > min(|P|, >, ¢:) > |E(1es)| - O

This bound has profound policy implications: among non-dominated matchings,
at most half the matched positions can be sacrificed under any policy prioritizing
targeted matches—whether through quotas, beneficiary-share guarantees, or weighted

objectives combining total and targeted matches.

3.2 Repeated Hungarian Algorithm

While directly identifying minimal cycles to calculate the frontier becomes computa-
tionally challenging as the number of patients and seats grows, the characterization
enabled by these cycles allows for a novel approach to frontier calculation,! through
repeated application of the Hungarian algorithm.

While identifying minimal cycles becomes computationally challenging as the
number of patients and seats grows, our characterization enables a novel frontier
calculation through repeated application of the Hungarian algorithm.

From Theorem 2, the non-domination frontier has decreasing slope and hence is
concave. To find all frontier points, we first identify kinks where the slope changes,
then exploit density to fill intermediate points by linear interpolation.!*

To find all the kinks, we employ the Hungarian algorithm, typically used to com-

10 Alternatively, consider it as a linear programming problem: loop over the number of total
matches e, maximize the number of beneficiary matches subject to the number of total matches
being greater or equal than the current e.

HUThat is, since the frontier is dense in eligible matches, we fill in intermediate points at every
unit interval in eligible matches by extending the same slope between them.
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pute a maximum-weight matching in a bipartite graph (Kuhn, 1955a,b).!? Our bipar-
tite graph has patients P on one side, categories C on the other, with edges connecting
eligible patient-category pairs regardless of beneficiary status. Edge weights deter-
mine which frontier kink is identified—the algorithm finds points where supporting
lines of different slopes meet the frontier.!?

The complete algorithm follows:

Algorithm 2 Repeated Hungarian Algorithm (RHA)

1: Initialize frontier < ()

2: Set n + max(|P|,> . ¢)

3: Set m < 0 (Counter of kinks)

4: for k< 1 ton do

5: Assign weights:

6: Eligible but not beneficiary: wejig < 1

7 Beneficiary: wpepe < 1+ % + n%

8: Run Hungarian algorithm to maximize welg - [E () — B(1t)| + Whene - | B(1)]
9: Compute e + |E(u)|
10: Compute b < |B(p)]
11: if m=0or (e,b) # (ém, by) then
12: m+—m+1
13: (€m,bm) < (e,b) (Add kink (e,b) to frontier)
14: end if
15: end for
16: for k< 1tom —1do

17: (Insert intermediate points between kink (e, by) and kink (exi1,br+1))
18: for j <1 to epy1 — e, —1do

19: Add (ex + j,bks1 + 7 - (by — ber1)/(exs1 — €x)) to frontier

20: end for

21: end for

To establish correctness of this algorithm, note that by Theorem 2, the frontier F

12\While the classical Hungarian algorithm formulation assumes equal-sized partitions, the stan-
dard solution for unbalanced cases involves adding dummy vertices connected by zero-weight edges
to create an equivalent balanced bipartite graph, thus enabling the algorithm’s application.

13 A supporting line touches the frontier at exactly one point.
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for any instance takes the form:
K
F = {(e,b),(e— 1,b+ Aby), ..., (e — K,b+ZAbZ—)}
i=1

where K = |E(ugpp)|—|E(upg)|. This frontier contains K +1 points. The starting
point (e, b) corresponds to pgp, while the endpoint (e — K, b+ Zfil Ab;) corresponds
to upg. The beneficiary differences satisfy Aby > Aby > --- > Abg > 1.

Point j is a kink when Ab; # Ab; ;. At kink (e — j, b+ Zgzl Ab;), the marginal
trade-off changes from Ab; to Abji; beneficiary matches per eligible match. This
point lies on the supporting line with slope in (—Ab;, —Ab;1), which corresponds to

beneficiary weight wp = 1+ 5i- + =5 in the algorithm.
J
Lemma 2. The Repeated Hungarian Algorithm (RHA) satisfies:
1. In the first loop, the first and last iterations compute pupg and pgp respectively.

2. For any interior frontier point f; = (e — j,b+ ZLI Ab;) (excluding endpoints)
with Ab; > Abjyq, the RHA computes this point in iteration Ab; of the first

loop.
We now establish the algorithm’s properties.
Theorem 3. The Repeated Hungarian Algorithm (RHA) satisfies:
1. Completeness: RHA generates the entire non-domination frontier.
2. Computational Complexity: RHA runs in O (n*) time, where n = max(|P|,>_, ¢).

Proof. For completeness, Lemma 2 establishes that the first loop identifies all kinks
(points where slope changes) and both endpoints. Any remaining frontier points lie

on constant-slope segments and are filled by linear interpolation in the second loop.
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The complexity bound follows from the first loop, which runs at most n iterations
(since Ab; > 1 and there are at most n possible values), with each iteration executing
the Hungarian algorithm in O(n?) time (Kuhn, 1955a). The second loop performs

only linear interpolation in O(n) time. Thus, the total complexity is O(n*). O

Remark 2. Frontier concavity is essential for our approach. Suppose the frontier
is not concave (but is still dense in eligibility), that is, there exists three hypothetical
points f1 = (e,b), fo = (e—1,0+Aby), and f3 = (e—2,b+Ab;+Aby) with Aby < Abs.
To identify f» in RHA, there exists beneficiary weight w € R2_ at which fy exceeds

both fi and f3 in weighted value, requiring
w(Ab) —1>0 and 1—w(Aby) > 0.

These inequalities cannot hold simultaneously when Ab; < Abs. Thus, without con-

cavity, RHA cannot identify all the kinks and fails to generate the complete frontier.

4 Compatibility with Design Objectives

This section examines how the non-domination frontier interacts with key alloca-
tion criteria that arise in practice. We first address the tension between achieving
beneficiary-share guarantees and maintaining non-dominated allocations-the rigorous
enforcement of beneficiary-share might harm the underlying policy goal. We then
explore two important considerations: whether the framework can accommodate pri-
ority orderings (as commonly required in school choice and medical allocation), and
whether the resulting choice rules can satisfy path-independence, a foundational prop-

erty for stable market design.
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4.1 Beneficiary-share guarantee and non-domination

Given a problem (C, P, q, £, B, 5*), we say a non-empty matching . respects beneficiary-

share guarantee if it satisfies:

meaning beneficiary matches constitute at least 5* proportion of total matches.

A mechanism ¢ respects beneficiary-share guarantee if for any problem with
at least one non-empty beneficiary set, the mechanism chooses a matching that re-
spects beneficiary-share guarantee.*

While such mechanisms exist, the beneficiary-share guarantee fundamentally con-

flicts with non-domination, as the following example demonstrates.

Example 3. Consider a problem with patients P = {p1,p2} and categories C =
{c1, ¢} with q., = q., = 1, and beneficiary-share gquarantee f* = 0.7. Patient py is
a beneficiary of c¢; but not eligible for co, while patient py is eligible for co but not a
beneficiary.

To respect the beneficiary-share guarantee, any mechanism must choose matching
w with w(py) = ¢1 and p(ps) = 0, yielding B(pu) = 1. The alternative matching p' with
W(p1) =1 and @' (p2) = co violates the guarantee since f(p') = 0.5 < 0.7.

However, 1/ dominates pu by achieving (|[E(u)],|B(p)|) = (2,1) versus (|E(u)],
|B(p)|) = (1,1). In this case, the beneficiary-share guarantee forces selection of a

dominated matching.

Example 3 demonstrates a critical policy limitation: mandating too high a beneficiary-

1For any problem with at least one non-empty beneficiary set, a matching respecting the
beneficiary-share guarantee exists: simply match only within this beneficiary set, achieving S8(u) =
1 > B*. Thus, mechanisms respecting the beneficiary-share guarantee exist.
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share guarantee can force selection of a matching dominated by pgg. This domina-
tion is unjustifiable—while the beneficiary-share guarantee aims to increase targeted
matches, the resulting matching achieves no more targeted matches than ugg while
strictly fewer total matches.

With this consideration, when non-domination conflicts with the beneficiary-share
guarantee, we prioritize non-domination. We formalize this through the following con-
cept: given a problem, a matching p respects the beneficiary-share guarantee

approximately on the frontier if:

e When * < B(upg): p achieves the beneficiary-share closest to 5* among all

non-dominated matchings satisfying S(u) > 5*.

e When 3* > B(upg): p is a max-bene then max-elig matching.

A mechanism respects the beneficiary-share guarantee approximately on
the frontier if it always selects such a matching.'>-'¢ Such mechanisms always exist
by construction.

The following result further justifies this solution concept: when we could choose a
dominated matching u achieving exactly 5%, selecting instead a matching that respects
the beneficiary-share guarantee approximately on the frontier yields a matching that

dominates .

Proposition 2. For any problem (C, P, q,&, B, 5*), let u* be a matching that respects
the beneficiary-share guarantee approzimately on the frontier. If B(u*) # B*, then u*

dominates any matching with beneficiary-share .

5By definition, S(upxr) = 0 when all beneficiary sets are empty.

16Qur solution concept satisfies constrained Pareto optimality for individual welfare. A matching
1 is Pareto dominated by p' if: (i) every participant matched in p remains matched in ¢/ (i.e., u(p) #
0 = ' (p) #0), and (ii) at least one previously unmatched participant becomes matched (i.e.,
Jp’ € P such that u(p’) = @ but ' (p’) # 0). Since frontier matchings maximize total matches subject
to the beneficiary-share guarantee, they cannot be Pareto dominated by any other matching that
respects the same guarantee—any additional match would violate the beneficiary-share constraint.
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Proof. Consider the non-trivial case where a matching with beneficiary-share 5* exists
but all the frontier points do not achieve the exact §*. Let u/ be a matching with
B(y') = f* that maximizes |E(u)| among all matchings achieving beneficiary-share
£*. Then p/ dominates all other matchings with the same beneficiary-share but fewer
total matches. To prove the proposition, it suffices to show that p* dominates u’. We
consider two cases.

Case 1: |E(¢')| < |E(upg)|- Since p* is non-dominated and ppg is the non-
dominated matching with the least eligible matches, we have |E(u*)| > |E(upg)| >
|E(W)]. If B(u*) > B(W'), then |B(p*)| > |B(i')|, so u* clearly dominates p'. If
instead f(u*) < (1), then by definition p* is a max-bene then max-elig matching,
implying |B(p*)| > |B(')|. Combined with |E(u*)| > |E(y')|, we have that p*
dominates p'.

Case 2: |E()| > E(upg). By Theorem 2, there exists a non-dominated match-
ing " with |E(")| = [E(u)| and [B(u")| > |B(a), implying S(u") > B(i) = A"
Since p* respects the beneficiary-share guarantee approximately on the frontier and
B(p*) # 67, we must have 3(p*) > 8* = B(u') and |[E(p*)| = [E(u")| = |E(1)]. This
implies |B(u*)| = B(u*)|E(p*)| > |B(1')|. Therefore, u* dominates p'.

In both cases, u* dominates y', completing the proof. O

4.2 Respecting Priority

In many real-world allocation systems, reserves operate alongside priority orderings of
patients. This subsection extends our model to incorporate such priorities. Following
Pathak et al. (2023b), we allow category-specific priorities while requiring beneficiary
patients to rank above non-beneficiary patients within each category.

Formally, a list of strict total orders on P, denoted m = (7.).ec, is a priority
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order if for any category c:
e For any (p,j) € B.x (E.\ B.): pr.j (beneficiaries rank above non-beneficiaries)

e For any (j,k) € E. x (P \ E.): jm.k (eligible patients rank above ineligible

patients)

We call the vector (C, P, q, &, B, 3*, ) a problem with order. With slight abuse
of notation, we retain our terminology for mechanisms, matchings, and respecting the
beneficiary-share guarantee approximately on the frontier when applied to problems
with order.

Given a problem with order, a matching u respects priority if for every category

c and patients p,p’ € P:

w(p) = cand pu(j) =0 = prp'.

This condition ensures no unassigned patient has higher priority than an assigned
patient for the same category, preventing justified envy. This definition aligns with
priority-respecting matching in Pathak et al. (2023b). A mechanism ¢ respects
priority if for any problem with order (C,P,q, &, B, 5%, 7), the mechanism’s output
respects priority.

The following result establishes that respecting priority is compatible with re-

specting the beneficiary-share guarantee approximately on the frontier.

Proposition 3. There exists a mechanism that respects priority and respects beneficiary-

share guarantee approximately on the frontier.

Proof. For any eligible matching u, define its rank sum as R(u) = Zu(p):c R.(p)
where R.(p) denotes the position of patient p in category ¢’s priority order 7. (with

R.(p) =1 for the highest-priority patient).
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Consider any point (e,b) on the frontier. Among all matchings achieving this
point, the matching with minimum rank sum must respect priority. To see why,
suppose matching p achieves (e,b) with minimum rank sum but violates priority:
for some category ¢, we have u(p) = ¢ and u(p') = () with p’'m.p. Then swapping
assignments to set u/(p’) = ¢ and p/(p) = ) would yield another matching achieving
(e,b) with strictly lower rank sum, contradicting minimality.

Therefore, our mechanism operates as follows: First, identify the frontier point
(e*,b*) corresponding to a matching that respects the beneficiary-share guarantee ap-
proximately on the frontier. Then, among all matchings achieving (e*, b*), select one
minimizing the rank sum. This matching respects both priority and the beneficiary-

share guarantee approximately on the frontier. O

4.3 Path-independence

This subsection analyzes path-independence, a fundamental property of choice rules.
We first define the choice rule induced by a mechanism.
Given a problem (C,P,q,&, B, 5*), the choice rule C induced by mechanism ¢

is a function from 27 to 2% such that for any X € 2%:

CX)={peX:9(C X,q,EB,3)(p) # 0}

That is, C'(X) consists of all patients in X who receive assignments when the mech-
anism is applied to patient set X.

Given a problem, a choice rule C' is path-independent if for all X, X’ € 2%:

C(XUX)=CCX)uX).
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This property ensures that choosing from a union can be done sequentially: first
choose from X, then combine those chosen with X" and choose again, yields the same
result as choosing directly from X U X’. Path-independence plays a fundamental role
in market design, particularly for choice rule-based deferred acceptance mechanisms
(Dogan et al., 2025). A mechanism is path-independent if the choice rule it induces

is path-independent for every problem.

Theorem 4. There does not exist a mechanism that is path-independent and respects

beneficiary-share guarantee approximately on the frontier.

Proof. Consider a problem where P = {py, pa, ps, pr. 05 Do}, C = {e1, cau s, e, 5,
each with capacity 1, and g* = 0.2. The eligibility and beneficiary relations are given
in the following table, where boxed entries indicate beneficiaries of the corresponding

categories:

Ci C C3 C4 Cp

p2p3p1

P2 P3 DPs D4

Consider X = {p1, p2, p3, P4, p5}. The non-dominated matchings for the subprob-

lem (C, X,q,&, B, =, 3*) with patient set X are:

B=1, E=4, $=025: {(cl,), (c2,p2), (c3,D3), (¢4, p4), (c5,0) },
{(Cla)’ (027192)7 (63,p5), (04,])4), (057 (b)}’
and {(01,), (027]93)7 (037}75)7 (04,]94), <C57 @)}

B = 07 E = 57 5 =0: {(017]92)7 (CZapfﬂ)a (C3ap5)7 (047174)7 (05,]71)}-

Since * = 0.2 and the first three matchings achieve f = 0.25 > §*, any mecha-
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nism respecting the beneficiary-share guarantee approximately on the frontier must

select one of these three matchings. Therefore, C'(X) € {{p1, p2, p3, pa}, {P1, P2, D1, P5}, {1, P3, D1, D5} }

Now consider the full patient set P = X U {ps}. The frontier becomes:

B =2 E=4, =05:{(c,[p1)) (c2,p2), (¢3,p3), (¢, [ps]), (¢5,0)},
{(c1,[p1]), (2, p2), (c3, ps), (e, [ps ), (c5, D)},
and {(c1,[p1]), (c2,p3), (¢5,p5), (ca,[Ps]), (c5, D)}

B=1, E=5, 8=02:{(c1,p2), (c2,p3), (¢s,p5), (ca,[Ps ]), (¢5, 1) }-

Since the matching with § = 0.2 exactly achieves §*, the mechanism must select

it. Thus C(P) = {p1, p2, 3,05, D6}

However, for any possible C(-), we have:

C({p17p27p37p47p57p6}) N {pl’p%p37p47p5} = {p17p27p37p5} Z C({p17p27p37p47p5}>7

which violates path-independence.!” O

5 Conclusion

We characterize the non-domination frontier between total matches and beneficiary
matches through the novel concept of minimal cycles. Our analysis reveals that

the frontier exhibits a concave structure with increasing marginal costs—each addi-

1"The example in the proof actually demonstrates a violation of the substitutability (see recent
discussion in Bando et al., 2025), which states that if X’ C X, then C(X)N X' C C(X’). In
our example, we have X C P with C(P) N X = p1,p2,p3,p5s € C(X) for any valid C(X). Since
our mechanism violates substitutability, it necessarily violates path-independence (Aizerman and
Malishevski, 1981). The violation occurs because after patient pg enters, the new chosen matching
is obtained from substituting the matching with B = 0, F = 5 with the new patient, instead from
substituting the matching with B = 1, E' = 4 which is chosen without pg.
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tional eligible match requires progressively larger sacrifices in beneficiary matches.
We establish that the relative efficiency loss from beneficiary-share requirements is
bounded by %, and this bound is tight. The Repeated Hungarian Algorithm we de-
velop generates all frontier points in polynomial time (O(n?)), providing practitioners
with a computationally tractable tool. Our framework demonstrates that respecting
beneficiary-share guarantees approximately on the frontier is compatible with priority
considerations but fundamentally incompatible with path-independence choice rules.

While our analysis focuses on settings with a single beneficiary category, the
minimal cycle approach naturally extends to richer environments. Multiple overlap-
ping beneficiary requirements—such as simultaneous quotas for different demographic
groups in school allocation—present interesting directions for future work. Our char-
acterization moves beyond traditional lexicographic approaches, offering guidance for
balancing competing objectives. The minimal cycle construction we introduce pro-
vides a new analytical tool for matching theory that may prove valuable in broader

reserve system design.
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A Appendix

A.1 Example 4

While it may seem natural to first maximize the total number of matches and then
maximize beneficiary matches among those solutions, this lexicographic approach
can lead to poor outcomes for beneficiaries. We demonstrate that prioritizing total
matches can result in an arbitrarily large loss of beneficiary matches compared to

directly maximizing beneficiary matches.

Example 4. Consider the following market instance with parameter K € 7™ :

o P = {p17p27 <o 7pK+2}-

e C={ci,0o,...,Cxua}, cach with a unit quota.

The beneficiary and eligibility sets are defined as follows:

BCn:{pn} forn:1,2,...,K—|—1, BCK+2:(Z)’

Ecn - {pnapn—l} fO’f’ n = 27 ey K + ]-7 Ecl - {plapK—i-Q}v ECK+2 - {pK+1}-

In this construction:

e A mazx-bene matching iy can assign each participant p, (1 <n < K +1)
to their unique beneficiary category c,, achieving |B(u1)| = K + 1 beneficiary

matches, with pg.o remaining unmatched.

o A max-elig-then-max-bene matching > must first maximize total matches.
To match all K + 2 participants, it must assign pxio to c¢1 (its only eligible

category), which displaces py to co, which displaces ps to c3, and so on, creating
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a chain reaction. The resulting matching assigns pxi1 to cxio and achieves

|E(u2)| = K + 2 total matches but |B(uz)| = 0 beneficiary matches.

The difference in beneficiary matches is |B(u)| — |B(ue)| = K + 1. Since K
can be chosen arbitrarily large, this demonstrates that the lexicographic approach of
first mazimizing eligible matches can sacrifice an unbounded number of beneficiary

matches.

A.2 Proof of Lemma 1

To prove Lemma 1 we need the following lemma:

Lemma A1l. Given a matching po corresponding to fo = (e2,bs) on the frontier, for
any f1 = (e1, by) with e; > ey on the frontier, there exists a matching p* corresponding

to f1 such that any patient matched in o is still matched in p*.

Proof. Let p; be any non-dominated matching corresponding to frontier point f; =
(e1,b1) , with e; — ey = k € N,. We will construct a matching p* from gy such that
any patient matched in ps is still matched in p* and p* corresponds to f;.

Let A and D be the sets of matched patients in pus and pup, respectively. We

partition A into three disjoint sets A;, As, A3 such that:

Ay ={peA:m(p) =p(p)}, As={pecA:m(p)#0,ump) # pp)}, and

As={pe A:u(p) =0}

Intuitively, we want to replace the patients in p; that are only matched in p; (p €
D\ A) with patients that are only matched in us (p € Az). With eligibility constraints,

we cannot do this one-to-one exchange directly. So instead, we first match all the
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patients in Az, then unmatch patients in D \ A to restore the (e1,b;) requirement.

See the following diagram.

Match all patients in A3, Unmatch patients in D \ A\ %

>t

H1

step 1 step 2

Step 1. For each patient py € Az, we construct a sequence starting with pg,
where each subsequent patient is matched in p; to the previous patient’s seat in o,
until the sequence ends with an unmatched seat in p; or an unmatched patient in ps.
Formally, the process is as follows.

As p; is non-dominated, seat ps(pg) must be occupied in p; by some patient in
D, let p; = p1(pa(po)) and add p; to the sequence. If ug(py) = 0, then terminate the
sequence with p; € D\ A. Else, if u1(u2(p1)) = 0, then terminate the sequence with
p1 € Ao if py(pe(pr)) # 0, add py = p1(pa(p1)) to the sequence and continue this
process.

Since q is finite and all seats are visited at most once, the process ends with a
finite sequence (po, p1,- .., pn) satisfying: for every 1 < m < N, u1(pm) = po(Pm-1);
all intermediate patients p, for 1 <n < N belong to As; and the terminal patient py
is either in D\ A with pa(py) =0, or in Ay with uy(ua(py)) = 0. We call the latter
case a type 1 sequence, and the former a type 2 sequence.

Given any sequence s = (po,p1,...,pn), define the process of rematching the
patients in s to their seats in py and keeping other patients’ seats in p; unchanged as

Rs(u1). Concretely, for any given sequence s = (po,p1,--.,PN),

2 s if S,
Ry(p1)(p) = e Hp e
p(p), ifp¢s.

The new matching R,(1) is eligible and satisfies the quota constraint. Note that for
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any sequence s of type 1, we have E(Rg(u1)) = E(p1) U{po} and thus |E(Rs(p1))| =
|E(p1)| + 1, which combined with the non-domination of p; means |B(Rs(u1))| <
1B(ur)|

For any s’ of type 2, E(Ry(u1)) = E(p1) U {po} — {pn} and thus |E(Ry ()| =
|E(p1)|. We claim that |B(Rg(p1))| = |B(p1)|- Suppose not. If |B(Ry (1)) >
|B(p1)|, then py is dominated by Ry (u1). If instead |B(u1)| > |B(Rg(p1))|, re-
match the patients in s’ to their seats in p; and keep other patients’ seats in po
unchanged—the new matching will dominate 5.

By construction, the sequences initialized by distinct patients in A3 are disjoint.
Suppose there are ki type 1 sequences and ko type 2 sequences, then ky + ko = | As].
Denote the sequences as s, 8y, -+ ,S|4,. Rematch all the patients in all the sequences
to their seats in s and keep other patients’ seats in p; unchanged, we obtain a new
matching p' = R, (Ro, (- -+ (B, (111)))-

Let F' be the set of matched patients in 4/ and A}, = {p € A : p belongs to some sequence},

then

1. All patients in A are matched in p': A C FFC DUA;, and |F\ A| = |F|—|A| =
ki 4+ |D| — Al = k1 + k.

2. F\ACD\ A.

3. Only patients in Ay \ A} and F'\ A get different seats (including () in g than
in .

4 |E(W)] = [E(um)| = kv and [B(')| < |B(pa)l|. Let ks = [B(u1)| — [B(1)], then
ks > k.
Step 2:  With g/ and puo, for each patient pj € F '\ A, we can find a disjoint

cycle that is also an applicable cycle in G,,. We construct the cycle by constructing
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a sequence like in Step 1.

Start from any patient pf, in F'\ A. As ps is non-dominated, seat p'(pf) must be
taken by some patient under ps. Let p) = po(p/(pf)). As all the patients in A are
matched in p/, ¢/ (py) # 0. If uo(i/(p})) = 0, then terminate the sequence; else, let
ph = ua(p/(p})) and continue this process.

After the above process, we have a sequence (py, p} ..., ply) where 1/ (p;,) = p2(p)4 1)
for all 0 < m < N and po(p/(ply)) = 0. Each patient p/,, with 1 < m < N belongs to
Ao\ A, since 1(pl,) # pa(ply) and pin(ply) # 0.

Given any sequence generated above (pj,p...,ply), we construct an applicable
cycle in G, by linking patient p/, to seat 4/(p],) and seat p'(p),) to patient p{,,, for
0 <m < N — 1, then linking patient p/y to seat p/(ply) and seat y/'(p/y) to patient pj.
The applicable cycles constructed from different sequences are disjoint. Denote these

cycles as ¢y, Ca, ... Cxik,, Ordered such that A, < A, <--- <A Moreover, we

Ck+kq*
have A, > 0; otherwise, applying c; to us would yield a matching that dominates
1o. Therefore, all these disjoint applicable cycles have positive beneficiary loss.

We claim that Zf;l A¢, = k3. We prove this by contradiction, considering two

cases.

Case 1. Suppose Zﬁl A¢, > k3. If we rematch the seats involved in these k; cycles
to their patients (or @) in o while keeping other seats’ patients as in g/, the
resulting matching would have e; eligible matches and b; — k3 + Zf;l Ae, > by

beneficiary matches, which dominates i, a contradiction.

Case 2. Suppose Zﬁl Ae, < ks.

First, rematch the seats involved in all type 1 sequences to their patients (or to

() in p1 and keep other seats’ patients in us. Denote the resulting matching as

Mt

36



Second, rematch the seats involved in the cycles ¢y, cs, ..., ¢, to their patients
(or to @) as in ' and keep all other seats’ patients in p,. Note that this
second rematch does not affect any seat or patient that was modified in the
first rematch, because the sequences constructed in Step 1 and the applicable
cycles are disjoint: if p € A lies in some cycle ¢, then by the generating process

of ¢, 1/ (p) # pa(p); if p belongs to some sequence s, then by the construction
of p/, 1/ (p) = p2(p).
The resulting matching has ey — k1 + k1 = ey eligible matches and by + k3 —

Zfil A, > by beneficiary matches, thus dominating p, a contradiction.

Now we construct p*. Rematch all the seats involved in the cycles cq, ..., cy,
to their patients in u, and keep other seats’ patients in p/. We call this process
the reverse application of the applicable cycles. We claim the resulting matching p*
satisfies the requirements. Since S°¥ A, = ks, we have |B(u*)| = |B(u1)| = by.
The fact that |E(u')| — |E(u1)| = ki and that p* is obtained by reversely applying
ki applicable cycles implies |E(u*)| = |E(u1)] = e1. To show that p* matches all the
matched patients in 9, note that p' has all the patients in A matched, and the reverse

application of applicable cycles in Step 2 only unmatches patients in F'\ A. O

Proof of Lemma 1. In this proof, we use some notation from the proof of Lemma A1l.

By Lemma A1, there exists a matching p* corresponding to f; such that any
matched patient in ps is still matched in p*. Partition C into five subsets C,--- | Cs,
separately containing: seats of patients in the k; type-1 sequences; seats in the k
disjoint applicable cycles that have not been used in constructing p*; seats in the k;
disjoint applicable cycles that have been used in constructing p*; seats of patients in

the ko type-2 sequences; and all other seats. The partition is shown below.
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C : seats of patients in the k; type-1 sequences,
Cs : seats in the k disjoint applicable cycles not used in constructing p*,
Partition C into { Cj: seats in the k; disjoint applicable cycles used in constructing p*,

Cy : seats of patients in the ks type-2 sequences,

(5 . other seats.

By construction, the seats in C7, C3, Cy are all matched to the same patients in
w* and po, while the seats in Cy and Cj are all matched to the same patients(or are
both unmatched) in p* and p;.

Apply the k disjoint applicable cycles that have not been used in constructing u*,
proved in Lemma A1 to have positive beneficiary loss, to us, and denote the resulting
matching as p3. Then pz matches seats in C, C5, Cy, C5 to the same patients as in
o, and seats in Cy to the same patients as in py. We will show that ps corresponds
to (e1,b1).

As p* corresponds to (e, by), and p* and pg differ only in the matches of seats in
Cs, it suffices to show that p; and ps have the same numbers of eligible and beneficiary
matches when restricted to seats in Cs.

For simplicity, we will refer to seats of patients in sequences as seats belonging to
those sequences.

Consider any patient involved in a cycle or sequence. If this patient is matched
in both p; and ps, then in each matching it must be matched to a seat belonging
to the same cycle or sequence. Additionally, patients matched only in us belong to

sequences, while patients matched only in p; belong to cycles. As a consequence,
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any patient matched to a seat in Cs under p; must also be matched to a seat in Cs
under po. Therefore, when restricted to Cs, both matchings have the same number
of eligible matches and match the same set of patients.

We claim they also have the same number of beneficiary matches. Suppose for
contradiction, without loss of generality, u; has more beneficiary matches than puo
when restricted to C'5. Consider the matching obtained by rematching the seats in Cj
according to p; while keeping all other seats’ matches as in ps. This new matching
would dominate p9, contradicting its non-domination. Therefore, p; and py have the
same number of beneficiary matches when restricted to C5, which implies that pus

corresponds to (eq, by), completing the proof. ]

A.3 Proof of Lemma 2

Proof. Note that given a weight, a dominated matching will have a smaller weight
sum than the matching that dominates it. Thus only non-dominated matchings can
achieve maximum weight matching in any iteration of the first loop of Algorithm 2.
It suffices to show that in each iteration, the stated non-dominated matching has a

higher weight sum than all other non-dominated matchings.

Proof of Claim 1.
Consider the first and the last iterations of the first loop of Algorithm 2. In the

first iteration (k = 1), the weights are

1 1
weligzlv wbene:1+1+ﬁ:2+ﬁ'
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The weight sum of any max-bene then max-elig matching u is

(e — K)+ (b+§Abi) (1+%>.

Meanwhile, the weight sum of any other non-dominated matching corresponding
to point (e — T, 3, Ab;) for 0 < T < K is
a 1

(e=T)+ b+ Ab)(1+ —)-

=1

Since Ab; > 1 for all i € {1,... K} by Theorem 2, the difference is

(> Abi)(1+%)—(K—T)>O.

i=T+1

Therefore, any max-bene then max-elig matching has a higher weight sum than
other non-dominated matchings (under this weight), so one of the max-bene then
max-elig matching will be chosen in the first iteration.

In the last iteration (k = n) the weights are

1 1
Welig = 17 wbene:1+ﬁ+ﬁ'

The weight sum of any max-elig then max-bene matching is

1 1
n n

The weight sum of any other non-dominated matching corresponding to (e —

7,57 Ab) for 1 <T < K is
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(e—T)+ <b+§:m> <%+%>

Since Z;il Ab; <e—T <n—Tand T > 1, the difference is

_@A@) (Ll eron (b D) =r(ie e D) (14]) =0

Therefore, any max-elig then max-bene matching achieves a higher weight sum
than other non-dominated matchings (under this weight), so one of the max-elig then
max-bene matching will be chosen in the last iteration.

Proof of Claim 2.

Fix a kink f; = (e — 4,0+ .7_, Ab;) on the frontier such that Ab; > Abj,,. We
show that RHA computes its (e, b) values in the Ab;-th iteration.

In the Abj-th iteration, the weights are

1 1
welig:17 wbene—1+_+_

Ab,

We show that any matching corresponding to f; has a higher weight sum than
any matching corresponding to another frontier point f;. We consider two cases.

Case 1. t < j. The difference in weight sums between f; and f; is

( b; nQ)ZAb_ —1) (Alb 1>( t)Ab; —(j—t) = (j—t)%>0.

i=t+1

Thus, any frontier point f; with ¢ < j will not be chosen in the Ab;-th iteration.

Case 2. t > j First consider ¢ = j + 1. The difference in weight sum between f;
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and fj41 is
1 1
(e )

Since - - < < and Ab; > Abj1, we have

b2 Ab; Ab

1 1 1 1 Ab; — Ab; 1 — 1
1=+ = ) Abjyy > 1— Abjyy = —2 >
(Abj * n2> s (Abj * AbjAij) Ak Ab, =0
(1)

Thus, the frontier point f;;; will not be chosen in the Ab;-th iteration.

For any ¢ > j + 1, the difference in weight sums between f; and f; is

(t—j)—(Aiijr%) Xt: Ab;.

i=j+1

Since Abjy1 > Abjig > --- Ab, we have Z Ab; < (t — j)Abj+1. Combined

i=7+1

with Equation 1, this gives
. 1 1 .
(t—7) — ZAb>t— ~an (t — j)Abjy > 0.
i=j+1

Thus, any frontier point f; with ¢ > j+1 will not be chosen in the Ab;-th iteration.
Therefore, the matching corresponding to f; has the highest weight sum in the
Abj-th iteration.
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