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1 Introduction

Identifying which risk factors truly survive rigorous empirical scrutiny remains a central
challenge in asset pricing. Since the seminal work by Lustig et al. (2011), the literature has
proposed a large and growing set of candidate factors in the international currency (FX) market.
While this expansion underscores the economic richness of currency risk compensation, it also
complicates disciplined model evaluation. A key unresolved question is whether all proposed
currency risk factors represent distinct sources of priced risk. Asset pricing theory implies the
existence of a stochastic discount factor (SDF) that prices the cross-section of currency returns.
Only factors that enter the SDF directly should command independent risk premia, whereas
factors that are correlated with returns but spanned by the SDF are redundant. Recent evidence
suggests that such redundancy may be substantial in the foreign exchange market. For example,
Nucera et al. (2024) show that a small number of latent factors resembling dollar, carry, and
momentum can explain a large cross-section of currency returns, while Chernov et al. (2024)
find that a sizable fraction of emerging market currency volatility is unpriced. Consequently,
distinguishing true sources of risk compensation from spurious or spanned factors in the FX

market is essential for understanding the economic structure of currency risk premia.

To answer this question, the international asset pricing literature typically relies on stan-
dard empirical approaches, including time-series regressions, Fama—-MacBeth procedures, Gib-
bons-Ross-Shanken (GRS) tests, and Generalized Method of Moments (GMM) methods, applied
to prespecified currency portfolios formed from specific trading strategies. However, conclu-
sions drawn from these methods are often sensitive to the choice of test assets, the ordering of
tests, and distributional assumptions, leading to unstable model rankings across samples and
test assets. These limitations are particularly pronounced in currency markets, where strong
exchange rate comovement and heavy-tailed return behavior undermine conventional pricing

tests based on Gaussian assumptions and stable second moments. Moreover, most newly



proposed currency factors mainly focus on comparisons with the carry factor (Lustig et al.,
2011) to justify their uniqueness in explaining currency returns, lacking assessment among the
remaining currency risk factors. The proliferation of currency risk factors makes it more difficult
to distinguish genuinely robust sources of risk compensation from factors whose success can be

driven by sampling variation or favorable modeling assumptions.

This paper approaches factor identification as a comprehensive model comparison problem
rather than a sequence of isolated hypothesis tests. Building on the Bayesian model comparison
framework of Chib and Zeng (2020) and Chib et al. (2020), we evaluate economically motivated
currency factor combinations as competing specifications of the stochastic discount factor (SDF).
Models are treated symmetrically ex ante, and the data determine which specifications best
balance pricing performance and parsimony. Our empirical implementation follows comparison
protocols similar to those in Chib et al. (2024) and Qiao et al. (2022), which demonstrate the
effectiveness of Bayesian model comparison in disciplining large factor spaces in U.S. and
international equity markets. A key advantage of this framework is that it does not require
exogenously specified test assets; instead, potentially redundant factors themselves serve as the

objects to be spanned, yielding an internally consistent assessment of factor relevance.

A central feature of our analysis is the explicit modeling of heavy-tailed currency return
dynamics. Ignoring tail risk is not merely a technical misspecification in international asset
pricing; it obscures a fundamental source of risk compensation in the FX market associated
with global downside risk and extreme macroeconomic shocks as documented in Dobrynskaya
(2014), Lettau et al. (2014) and Galsband and Nitschka (2014). We therefore implement the
Bayesian model scan under both Gaussian and Student-¢ specifications, allowing the data to
discipline the role of tail risk in currency factor pricing. This approach yields more robust

inference and sharper discrimination among competing models.

Applying this methodology to a broad set of widely used currency factors, we find that a



parsimonious three-factor structure consisting of the dollar factor (DOL), the carry factor (CAR),
and the business cycle or output gap factor (GAP) consistently dominates the model space. The
DOL-CAR-GAP specification emerges as a survival-of-the-fittest model across distributional
assumptions, pricing tests, and economic performance evaluations. Its relative advantage is
especially pronounced under the Student-¢ specification, highlighting the economic importance
of modeling heavy-tailed risks in currency markets. Taken together, our results provide a
unified and economically interpretable benchmark for currency risk compensation and offer a

disciplined foundation for future research in international asset pricing.

Our paper contributes to the literature documenting a broard set of currency risk factors,
including dollar and carry factors (Lustig et al., 2011), momentum (Menkhoff et al., 2012b),
value (Menkhoff et al., 2017), dollar beta (Verdelhan, 2018), FX correlation (Mueller et al., 2017),
global imbalances (Corte et al., 2016), business cycles (Colacito et al., 2020), global volatility
(Menkhoff et al., 2012a), downside risk (Dobrynskaya, 2014; Lettau et al., 2014; Galsband and
Nitschka, 2014), liquidity risk (Mancini et al., 2013), sovereign risk (Corte et al., 2022), and FX
trade volume (Cespa et al., 2022), among others. While existing studies typically assess these
factors using traditional asset pricing tests, we evaluate competing factor combinations within
a uniform Bayesian model comparison framework. To the best of our knowledge, this paper is
the first to apply such a Bayesian approach to systematic factor evaluation in currency markets.
In addition, our results provide direct supporting evidence for the role of business-cycle-related

risk emphasized by Colacito et al. (2020), obtained through a novel empirical methodology.

The remainder of the paper is organized as follows. Section 2 introduces the currency
pricing framework and the Bayesian model comparison methodology. Section 3 describes the
data and presents the empirical results. Section 4 evaluates the economic performance of the

best specification, the DOL-CAR-GAP model. Section 5 concludes.



2 Methodology

This section describes the Bayesian model scan framework used to identify the set of
pricing factors entering the stochastic discount factor (SDF). Building on Chib and Zeng (2020)
and Chib et al. (2020), we conduct a comprehensive comparison over all factor combinations.
Each candidate specification corresponds to a distinct stochastic discount factor, and models
are evaluated using posterior model probabilities and marginal likelihoods under alternative
distributional assumptions. Treating factor identification as a model comparison problem

provides a unified and internally consistent criterion for ranking competing pricing kernels

2.1 Model Specification

Formally, consider a universe of N candidate currency factors. We specify a candidate
model M, indexed by s = 1,...,5, as a unique partition of these factors into two disjoint

vectors:

1. The vector of pricing factors: z; € R"#, and

2. The vector of remaining factors: q; € R",

satisfying the condition N = n, + n4. Given the theoretical requirement that a valid SDF

must contain at least one pricing factor (i.e., n, > 1), the total number of competing models is

S=2N_1.

Let f, = (2}, q,) denote the joint factor vector. The central tenet of our analysis is that the
no-arbitrage condition imposes a strict structural restriction on the data generating process of f,.

Specifically, under the hypothesis that z; constitutes the true pricing kernel, the reduced-form



model for specification M is governed by the following system of equations:

z =6+e? (1)
q, =Bz +€l1? )

where J represents the vector of risk premia for the pricing factors.

The defining feature of this system is the absence of an intercept vector (or ) in Equation
(2). This zero-intercept restriction is not an arbitrary statistical assumption; it is a direct deriva-
tion from the fundamental pricing condition E[M, f,] = 0. Because the redundant factors g,
do not enter the SDF independently, their expected excess returns must be fully spanned by
the pricing factors z;. Consequently, any non-zero intercept in Equation (2) would imply an

arbitrage opportunity, contradicting the premise that z; serves as the sole pricing kernel.

To implement this framework empirically, we model the joint distribution of the candidate

factors f, under two distinct distributional assumptions to ensure robustness.

(i) Gaussian Framework Under the assumption of multivariate normality, the errors follow a

block-diagonal normal distribution:

ey 0 3,

Here, X, is the covariance matrix of pricing factors while 3, € R"*" is the conditional

qlz
covariance matrix of nonpricing factors. The block-diagonal structure implies that, conditional

on the pricing factors z;, the residuals of the nonpricing factors contain no further pricing

information.

(ii) Student-t Framework To allow for fat tails and greater robustness to outliers, we also

consider the case where the joint distribution of the currency factor vector follows a multivariate



Student-t distribution:

ftNSt(“7V7V)7 (4)

where 1 € RY is the mean vector and V € RV*V

is a positive definite scale matrix. The
degrees of freedom parameter v is fixed. Using the scale mixture representation of the Student-¢

distribution, we rewrite the model hierarchically. We introduce a latent scaling variable w; such

that:

filwe~N(p,w'V) (5)

we ~ Gamma(v/2,v/2) (6)

In this setup, the linear pricing restrictions defined in the previous subsection remain identical,
but the error residuals are now conditionally Gaussian given wy:

siz) ) . 0
Wt ~ N 07 wt_ (7)

qu |2) 0 Eq\z
where the scalar w; captures time-varying volatility and outlier events. The conditional covari-

ance X, relates to the scale matrix V via the identity X, = Vg, — V. V_'V/ .

qlz z

Our objective is to estimate the parameters of both the Gaussian and Student-t specifica-

tions and compare them using the Bayesian approach.
2.2 Prior Specification

To ensure an unbiased "survival of the fittest" contest, the specification of prior distributions
requires careful theoretical grounding. Following the insight of Chib et al. (2020), we first
observe that the parameters across distinct candidate models are not independent entities;

rather, they are intrinsically related by change-of-variable formulas. Consequently, the priors



for competing specifications should not be defined in isolation, but effectively derived from a
single, common underlying prior. This theoretical consistency is paramount to ensure that the
final comparison results are driven by the data’s support for the pricing restrictions, rather than

by arbitrary differences in prior density heights.

Furthermore, in the context of marginal likelihood comparison, proper and informative
priors are strictly superior to arbitrary non-informative (improper) priors. The use of diffuse or
improper priors leads to "Bartlett’s Paradox," where the marginal likelihood becomes sensitive

to undefined normalization constants, rendering Bayes factors indeterminate.

To satisfy these requirements, we adopt the Training Sample Prior (TSP) approach. We
partition the full dataset D into two disjoint sets: a training sample Dy (comprising the first Tj
observations) and an estimation sample D.,; (comprising the remaining 7" — T observations).
By anchoring the priors in the same initial data subset Dy for all models, this method natu-
rally enforces the necessary change-of-variable consistency. Analytically, this implies that the
marginal likelihood is interpreted as the predictive density of the estimation sample, conditional

on the information in the training sample.

2.3 Model Comparison

The final ranking of models is determined by the marginal likelihood, m(Des: | M),
s =1,2,...,5, which represents the probability of observing the estimation data under model
M, integrated over all parameter uncertainty. We assume a uniform prior over the model

space, Pr(M;) = 1/5, ensuring the ranking is driven solely by data fit.

Gaussian Framework (Analytical Solution) A major computational advantage of the Gaussian

framework under the TSP is the existence of a closed-form solution. The log-marginal likelihood



for a specific model M can be decomposed into two intuitive components:

Inmg(Dest | M)

Tn. . T+n.;—N T+n.;—N
=2 g " (T, 4 1)~ T |+ T, (S
5 5 9 2,4 )
_ . ®)
ricing Kernel Fit
N — NT — . N — . T T
_< nz,]>2< ") e — 5L W] = 1| + Ty, <2)

Spanning Efficiency‘(;f Remaining Factors

where &, is chosen by the prior, ¥, measures the sum of squared errors for the pricing factors,

and U? measures the residual variance of the nonpricing factors.

¢ The first component rewards the model for explaining the dynamics of the chosen pricing

factors z; parsimoniously.

* The second component penalizes the model if the nonpricing factors g; are not well-
spanned by z;. If the "redundant" factors have large alphas (large U?), this term drops,

lowering the model’s rank.

Student-t Framework (MCMC Algorithm) In the Student-t framework, the presence of the
latent volatility variable w; precludes a closed-form solution. Instead, we estimate the log-
marginal likelihood using the method developed by Chib (1995). This approach rearranges
Bayes’ theorem to evaluate the marginal likelihood at a specific high-density point 8* (typically

the posterior mean):

Inp(Dest | Ms) =Inp(Dest | 0, M) +Inm(0% | M) —Inp(0* | Dest, Ms) 9)

Log Likelihood Log Prior Log Posterior

The likelihood and prior ordinates are calculated analytically, while the posterior ordinate
Inp(0* | Dest, Do, M) is estimated via the output of the MCMC simulation using the reduced-

run method. This rigorous computation ensures that our selection of the "fittest" model is robust



to the distributional realities of currency markets, such as heavy tails and volatility clustering.

We conclude the methodology by summarizing the selection criterion. For each candidate
model M, we compute the marginal likelihood m(Dest | M) under both the Gaussian and
Student-t specifications using the training-sample prior. Given the uniform prior over the model
space, Pr(M;) = 1/5, the posterior model probabilities are proportional to these marginal
likelihoods, so that ranking models by posterior probability is equivalent to ranking them by
log marginal likelihood. This Bayesian model scan therefore delivers a definitive, data-driven
hierarchy of competing specifications in which the “fittest” model is the one that maximizes the
marginal likelihood, balancing goodness-of-fit, parsimony, and spanning efficiency. In the next
section, we apply this framework to the currency factor zoo and determine which subset of

factors is most strongly supported by the data under this Bayesian model comparison approach.

3 Empirical Results

3.1 Candidate Currency Factors

In our empirical analysis, we consider nine candidate currency factors: DOL, DDOL, CAR,
MOM, DB, VAL, FXC, GAP, and IMB, with detailed description, construction and reference
provided in Table 1. These factors are widely used in the international finance literature as
key sources of risk compensation and are hypothesized to capture distinct yet complementary
economic mechanisms underlying currency excess returns. Taken together, they are designed to
span global risk sentiment, monetary policy divergence, valuation adjustments, macroeconomic

momentum, and systemic funding vulnerabilities.

The Dollar factor (DOL) and its conditional counterpart, the Dollar Carry factor (DDOL),
serve as the baseline global market factors in our analysis. DOL measures the global price of
shorting U.S. dollar while longing all foreign currencies, reflecting the broad risk sentiment

between them (Lustig et al., 2011). DDOL refines this strategy by conditioning on the sign of



the global interest-rate differential (Lustig et al., 2014), highlighting the cyclical nature of DOL
by switching between long and short positions depending on funding conditions. Given that
DDOL is a conditional transformation of the aggregate market factor, we treat DOL and DDOL

as alternative benchmarks and preclude their simultaneous inclusion in any model specification.

Distinct from market-average risks, the Carry factor (CAR) compensates investors for
providing capital to high—interest-rate currencies that become particularly risky in global
downturns, consistent with violations of uncovered interest parity (Lustig et al., 2011). The
Momentum factor (MOM) reflects investor under-reaction and trend-chasing behavior: curren-
cies with strong past performance continue to appreciate while previous losers underperform,
generating a persistent return spread (Menkhoff et al., 2012b). The Dollar Beta factor (DB)
captures heterogeneous exposure to systematic dollar risk; currencies with high sensitivity to
DOL behave analogously to high-beta equities and therefore command higher expected returns
when global risk aversion rises (Verdelhan, 2018). The Value factor (VAL) reflects currency
misalignment relative to purchasing power parity, as undervalued currencies tend to appreciate

when economic fundamentals revert toward long-run equilibrium (Menkhoff et al., 2017).

The remaining macro-structural factors link currency returns to broader sources of systemic
risk. The FX Correlation factor (FXC) prices variation in co-movement across currencies, which
increases sharply during crises and erodes diversification benefits when they are most valuable
(Mueller et al., 2017). The business cycle or Output Gap factor (GAP) relates exchange rate
dynamics to business-cycle fluctuations, rewarding currencies issued by economies operating
above potential output and penalizing those tied to recessionary conditions (Colacito et al.,
2020). Finally, the Global Imbalance factor (IMB) differentiates safe-haven currencies from
risky debtor-country currencies and compensates investors for exposure to external funding

stress and current-account fragility (Corte et al., 2016).

Currency excess returns are calculated using future spot rates and current forward rates as

10



follows:

Ti1 = ft — St41, (10)

where ;11 denotes the currency excess return earned by investors who short the U.S. dollar and
go long foreign currency in month ¢; s;; is the logarithm of the spot exchange rate in month
t +1; and f; is the logarithm of the one-month forward rate in month ¢. Spot and forward rates
are obtained from Reuters and Barclays via Datastream. We exclude turmoil episodes during
which the data are deemed unreliable, following Lustig et al. (2011). Both spot and forward
rates are defined as the amount of foreign currency per unit of U.S. dollar. Thus, an increase in
the exchange rate indicates an appreciation of the U.S. dollar and a depreciation of the foreign

currency.

The countries or regions included in our sample are Australia, Austria, Belgium, Brazil,
Canada, Croatia, Cyprus, the Czech Republic, Denmark, the euro area, Finland, France, Ger-
many, Greece, Hong Kong SAR, Hungary, Iceland, India, Indonesia, Ireland, Israel, Italy, Japan,
Kuwait, Malaysia, Mexico, the Netherlands, New Zealand, Norway, the Philippines, Poland,
Portugal, Russia, Saudi Arabia, Singapore, Slovakia, Slovenia, South Africa, South Korea, Spain,
Sweden, Switzerland, Thailand, and the United Kingdom. Upon joining the euro area, countries

are automatically removed from the sample, with only the euro retained.

Our empirical analysis draws on a comprehensive monthly dataset spanning January 1991
through March 2024. Table 2 reports the descriptive statistics for currency returns of the candi-
date factors above, including their annualized means, standard deviations, skewness, kurtosis,
maximum and minimum values in percentage, which are comparable to the empirical evidence
documented in the literature. Notably, across all factors, the kurtosis values substantially exceed
three, indicating pronounced tail thickness. This is a well-documented feature of currency
return series, a finding illustrated, for example, by the carry portfolios in Dobrynskaya (2014).

This systematic departure from Gaussian behavior provides a clear rationale for employing a

11



heavy-tailed assumption to capture extreme movements more accurately.

For the purposes of out-of-sample evaluation, the final twelve months of data (April 2023
to March 2024) are reserved for predictive ability analysis. From the remaining observations,
the first 15% constitute the training sample used to construct the prior distributions, while
the subsequent observations form the estimation sample for posterior inference and model

comparison.

3.2 Economically Motivated Model Scan

Having established the full set of nine candidate currency factors, we now describe the
economically motivated model scan underpinning our Bayesian model comparison. Because
DOL and DDOL represent alternative proxies for the global market factor, we treat them as
substitutes. To maintain a consistent benchmark, our primary analysis focuses on the candidate
set containing DOL and the seven characteristic-based factors (IV = 8), reserving DDOL for
separate robustness checks. This design ensures that the model space spans a wide range of
theoretically grounded currency risk exposures while avoiding redundancy across overlapping

market proxies.

Although the Bayesian framework permits a fully agnostic search over all nonempty
subsets of these factors, our main analysis imposes an economically motivated structure consis-
tent with prevailing empirical practice. As emphasized by Corte et al. (2016), leading studies
routinely employ a two-factor stochastic discount factor (SDF) in which an average market
component, proxied by the average excess return on a long-foreign—short-dollar position (DOL),
plays a central and indispensable role. This currency market risk factor is viewed as the primary
driver of common variation in currency excess returns and therefore forms the backbone of

most empirical pricing models.

In line with this literature, we require DOL to be included in every candidate specification.!

!Related treatments in the equity market literature also maintain the market factor in all candidate specifications,

12



The remaining seven factors are freely selectable, allowing the Bayesian procedure to determine
whether they contribute incremental explanatory power beyond the market component. This
restriction yields a feasible space of S = 27 = 128 distinct model specifications, in contrast to a

fully unrestricted search of the candidate set that would involve 28 — 1 combinations.

Each model is estimated under both Gaussian and Student-¢ assumptions, with degrees of
freedom fixed at v = 5.2 This economically motivated yet comprehensive model space provides
a disciplined platform for identifying whether a specific model consistently dominates across

varying distributional frameworks.

The Best Model: DOL-CAR-GAP To identify the most informative combination of currency
risk factors, we conduct a comprehensive Bayesian model comparison over the restricted model
space that enforces inclusion of the dollar factor (DOL) in every specification. Each model
among the 128 feasible models is evaluated using its marginal likelihood, which quantifies its
ability to explain the observed cross-section of currency excess returns after integrating out
uncertainty in model parameters. By comparing marginal likelihoods across all candidates, the
Bayesian framework provides a principled mechanism for balancing model fit and complexity,

thereby selecting the specification with the highest degree of support from the data.

As noted in the methodology section, the prior probability assigned to each model in the
restricted model space is uniform, given by P(M,) = 1/128 ~ 0.78%. After computing the (log)

marginal likelihoods for all candidate models, the posterior model probabilities are obtained as

ms (Dest ‘ MS)
2;181 ms (Dest | Ms) ’

P(MS ’ Dest) = 9 Ly ety 1287 (11)

where my(Des, | Ms) denotes the marginal likelihood of the estimation sample D,y under

as discussed in Barillas and Shanken (2018) and Chib et al. (2020).

*We adopt v = 5 as our baseline for the Student-t specification, providing a flexible yet empirically stable
representation of heavy tails in currency returns. Robustness checks with alternative values of v yield qualitatively
similar results.

13



model M. Figure 1 displays the resulting posterior probabilities for all ranked models under
the DOL-restricted scan across both the Gaussian and Student-t specifications, providing a
transparent view of how the data update the uniform prior beliefs over the economically

prior—driven restricted model space.

In both distributional settings, the posterior distribution is sharply concentrated on a
small set of leading models, providing strong Bayesian evidence against model dispersion and
indicating that only a limited number of factor combinations receive economically meaningful
probability mass. A single specification, the three-factor DOL-CAR-GAP model, dominates the
posterior distribution under both distributional specifications. Under the Gaussian specification
in subplot (a), the posterior probability of the DOL-CAR-GAP model exceeds 15%, nearly
twenty times its uniform prior benchmark. Under the Student-¢ specification in subplot (b), the
concentration is even stronger, with posterior probability exceeding 25%. This dramatic amplifi-
cation from prior to posterior delivers compelling evidence for the stability and dominance of
the DOL-CAR-GAP model as the leading explanation for cross-sectional variation in currency

excess returns.

Beyond the best model, the remaining top-ranked alternatives include minor extensions
such as augmenting the specification with DB or VAL. However, their posterior weights de-
cline sharply, and no competing model comes close to the probability mass assigned to the
DOL-CAR-GAP specification under either distributional assumption. The stability of this
pattern across both Gaussian and Student-t specifications indicates that the prominence of the
DOL-CAR-GAP model is not an artifact of distributional assumptions or sampling variability,
but rather reflects genuine explanatory power in capturing the cross-sectional variation in

currency excess returns.

Taken together, these results establish the DOL-CAR-GAP specification as the uniquely

dominant factor model within the economically motivated model scan.

14



Comparison with competing models To gauge whether the Bayesian best model reflects mean-
ingful economic structure rather than a statistical artifact, we benchmark it against prominent
currency factor specifications proposed in the literature. These include the DOL-CAR model of
Lustig et al. (2011), the DOL-MOM and DOL-CAR-MOM models of Menkhoff et al. (2012b)
and Nucera et al. (2024), and the DOL-IMB model of Corte et al. (2016), among others. Most of
these specifications are nested within our DOL-restricted model space, while a small number of
alternatives that replace DOL with another factor (such as DB) lie in the corresponding unre-
stricted space. In all cases, the models are evaluated under the same prior structure, allowing

us to compute marginal likelihoods on a comparable basis.

Table 3 reports the resulting log marginal likelihood values for the Bayesian best model
and the competitors. The DOL-CAR-GAP model attains the highest log marginal likelihood
of 6408.038 under the Gaussian specification and 6560.042 under the Student-¢ specification,
confirming its ranking as the Bayesian best model within the economically prior-driven can-
didate set. Relative to the competing models, DOL-CAR-GAP achieves uniformly higher log
marginal likelihoods: it dominates the classical DOL-CAR benchmark, the DOL-MOM and
DOL-CAR-MOM models, and the DOL-IMB model, as well as alternative structures that sub-
stitute DOL with DB. No competing model approaches the posterior probability or marginal

likelihood of DOL-CAR-GAP under either distributional assumption.

Evidence for Heavy Tails The fact that the DOL-CAR-GAP specification remains the best-
performing model under both Gaussian and Student-t likelihoods, and attains a noticeably
higher log marginal likelihood under the Student-t specification, provides direct evidence that
heavy-tailed behavior is an important feature of currency factor dynamics. In other words,
allowing for fat tails in the return distribution does not change the identity of the preferred
model, but it strengthens the degree of Bayesian support in its favor. This pattern is consistent

with the well-documented empirical properties of currency returns and evidence in Table 2,

15



which typically exhibit excess kurtosis and pronounced tail risk. By accommodating these
features through a Student-t specification, the model better captures extreme movements in
factor returns, particularly those associated with episodes of funding stress or sudden shifts in
global risk sentiment. Overall, the comparison across marginal likelihoods suggests that heavy-
tailed distributions offer a more realistic description of currency factor returns and that the
dominance of the DOL-CAR-GAP specification is, if anything, understated under the Gaussian

benchmark.

Choice of v We also examine the robustness of our benchmark Student-t specification with
respect to the choice of the degrees of freedom parameter v. Our baseline model scan adopts a

Student-t likelihood with v = 5, a value commonly used in the empirical asset pricing literature.

To evaluate the sensitivity of our findings, Table 4 reports the log-marginal likelihood of
the DOL-CAR-GAP model under Student-t distributions with degrees of freedom ranging from
2.1 to oo (the Gaussian limit). As v increases, the log-marginal likelihood first rises and then
declines, displaying an inverted U-shaped pattern. The highest values occur around v = 4.5
and v = 5, which supports our baseline choice of v = 5 in the benchmark scan. At the same
time, the log-marginal likelihood does not fluctuate dramatically across a wide range of v: the
DOL-CAR-GAP model continues to deliver log-marginal likelihoods above 6500 for v between

3 and 10.

Overall, these results indicate that our main conclusions are not sensitive to a finely tuned
choice of the tail parameter. The DOL-CAR-GAP specification remains the best-performing
model over a broad and empirically plausible range of degrees of freedom, and the evidence in

favor of a heavy-tailed Student-¢ specification is robust.

Economic interpretation Economically, the DOL-CAR-GAP model incorporates three distinct
sources of priced currency risk. DOL, the dollar factor, captures broad risk sentiment and

flight-to-safety dynamics. CAR the carry factor, which is proxied by the excess return of longing
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currencies with high interest rates while shorting those with low interest rates, compensates
investors for exposure to volatility risk in bad times (Lustig et al., 2011). GAP, constructed by
longing currencies with high output gaps and shorting those with low gaps, captures global
business-cycle divergence and macroeconomic momentum (Colacito et al., 2020). Thus, al-
though selected through a fully data—driven Bayesian search, the best—performing specification
corresponds to a theoretically coherent structure directly aligned with recent advances in cur-
rency asset pricing research. Furthermore, our results underscore the importance of modeling
the distributional tails: the marginal likelihoods decisively favor the Student-t specification, a
finding consistent with the heavy-tailed data patterns and frequent extreme shocks observed in

global currency markets.

3.3 DPosterior Risk Premia Distributions for the Selected Factors

Having identified DOL-CAR-GAP as the Bayesian best specification, we next examine the
posterior distributions of the associated risk premia to verify whether these factors command
statistically significant compensation for risk. While this objective parallels the standard Fama
and MacBeth (1973) procedure, our Bayesian framework offers the distinct advantage of flexible
distributional modeling. Throughout this analysis, we work under the Student-t likelihood
with v = 5, which is favored by the model comparison results presented earlier. The higher
marginal likelihoods obtained under the Student-¢ specification indicate that heavy-tailed
innovations provide a more realistic description of currency factor returns; accordingly, all

posterior inference on the risk premia is reported under this preferred heavy-tailed setting.

Figure 2 displays the posterior distributions of the monthly risk premia for the three
currency factors in the DOL-CAR-GAP model. Each panel shows the posterior density of a
given component of § together with its posterior mean (vertical red dashed line). All three
distributions are tightly centered on positive values and exhibit relatively limited dispersion,

implying that the bulk of the posterior mass lies well away from zero. In particular, the
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posterior credible intervals for the risk premia of DOL, and specifically CAR and GAP, exclude
zero with high probability, providing strong evidence that each factor, especially CAR and GAP,

commands a statistically and economically meaningful price of risk in the FX market.

From an inferential perspective, examining these posterior risk premia plays a role anal-
ogous to the second-stage regressions in the Fama and MacBeth procedure. In a frequentist
setting, the significance of the price-of-risk parameters ¢ is assessed via t-statistics and their
associated p-values. In our Bayesian framework, significance is instead evaluated through the
shape of the posterior distributions, specifically by whether the posterior mass for each compo-
nent of § is concentrated away from zero and by the extent to which credible intervals exclude
zero. Thus, Figure 2 provides a fully probabilistic assessment of factor pricing, confirming that
the three pillars of the selected model, the dollar, carry risk, and business-cycle gap risk, are

each robustly compensated in equilibrium.

3.4 Internal Spanning Test of the Losing Factors

Our Bayesian, economically prior—driven model scan naturally partitions the candidate
currency factors into two groups: the “winning” factors that constitute the optimal pricing
kernel {DOL, CAR, GAP}, and the complementary set of “losing” (remaining or redundant)
factors given by {MOM, DB, VAL, FXC, IMB}. Within our framework, these losing factors serve
as natural internal test assets. If the DOL-CAR-GAP specification effectively spans the currency
pricing kernel, the losing factors should not earn systematic residual returns (alphas) once
projected onto the three winners. We test this implication using both a direct Bayesian model

comparison and the classical frequentist GRS test.
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Bayesian spanning test For each excluded factor g;;, we compare two competing regressions

on the winning factors. The unrestricted model allows for a non—zero intercept (alpha),

M1 g = aj + BjpoL DOL; + Bj.car CAR; + Bjcar GAP; + €54, (12)

while the restricted model imposes the pricing restriction a;; = 0,

Mo qj¢ = BjpoL DOL; + B car CAR; + Bj.cap GAP; + €5 ;. (13)

In line with our results in Section 3.2, we model the error terms with a Student-¢ distribution
with v = 5 degrees of freedom to capture the heavy tails in candidate factor returns. Let my and
m1 denote the marginal likelihoods of M and M, for a given losing factor. The Bayes factor in
favor of the pricing restriction is

mo

BFy = —. (14)

m1

Values BFy; > 1 indicate that the data favor the zero—-alpha restriction; equivalently, In(BFg;) > 0

implies support for spanning.

Table 5 reports the log marginal likelihoods and the implied Bayes factors for all excluded
factors. For each of MOM, DB, VAL, FXC, and IMB, the restricted model M attains a higher
marginal likelihood than the unrestricted model, so that BFy; > 1 as well as In(BFy;) > 0 in
every case. The evidence is strongest for the Momentum factor (MOM), with a Bayes factor
of about 6.99, and more moderate but still larger than 1 for the remaining factors (Bayes
factors between roughly 1.36 and 2.31). Taken together, these results indicate that the data
systematically prefer the zero—alpha specification and that the losing factors are well spanned

by the DOL-CAR-GAP kernel.
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GRS test To complement the Bayesian analysis with a standard frequentist benchmark, we
implement the multivariate spanning test of Gibbons et al. (1989) (GRS). For each excluded

factor ¢;; € {MOM, DB, VAL, FXC,IMB}, we estimate

¢t = o + B por, DOL; + Bj.car CAR; + B cap GAP; + uj¢, (15)

where u;; ~ N (0, 032) represents the Gaussian pricing error. We test the joint null hypothesis

that all intercepts are zero:

Hy : apmom = app = aval, = apxc = amvs = 0. (16)

In our in-sample data, the GRS statistic equals 1.79 with degrees of freedom (df;, dfs) =
(5,379), yielding a p—value of 0.114. We therefore fail to reject the joint zero—alpha null at
conventional significance levels (5% or 10%). From a frequentist perspective, there is no
evidence that the losing factors earn abnormal returns once their exposures to DOL, CAR, and

GAP are taken into account.

Synthesis of spanning evidence. The Bayesian model comparison and the GRS spanning
test lead to a coherent conclusion. The DOL-CAR-GAP specification not only maximizes the
marginal likelihood over the currency factor zoo, but also successfully prices the complementary
factors in the sense that their residual alphas are jointly indistinguishable from zero. This inter-
nal consistency strengthens the interpretation of the losing factors as genuinely redundant and
reinforces the view that DOL-CAR-GAP provides an efficient and parsimonious representation

of the currency pricing kernel.
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3.5 Out-of-sample (OOS) Predictive Performance

Following Chib et al. (2024), we evaluate the out-of-sample (OOS) predictive performance
of alternative factor specifications using the predictive likelihood, which is the standard Bayesian

measure of forecast performance.’

Table 6 reports the OOS log predictive likelihoods for the in-sample Bayesian best model
and the main competing currency factor specifications using the reserved final 12 months
(April 2023 to March 2024) observations. Consistent with the in-sample evidence in Table 3, the
three-factor DOL-CAR-GAP model achieves the highest predictive likelihood under both the
Gaussian and Student-t assumptions. Taken together, the in-sample and out-of-sample results
demonstrate that the DOL-CAR-GAP specification selected by the Bayesian model scan not only
provides the best fit to the historical data, but also delivers superior predictive performance

relative to other leading currency factor models.

3.6 Robustness Check: Replacing DOL with DDOL in the Model Scan

As a robustness exercise, we replicate the economically motivated model scan after re-
placing the dollar factor DOL with its conditional counterpart DDOL. Figure 3 reports the
resulting posterior model probabilities under both the Gaussian and Student-¢ likelihoods.
Across specifications, the highest posterior probability model is consistently DDOL-CAR-GAP.
This outcome closely mirrors the original model scan results based on DOL, indicating that our

main findings are not sensitive to the particular choice of the dollar factor.

More broadly, the stability of the selected three-factor model confirms that the explanatory
role of the Carry and Output Gap factors is intrinsic to the data rather than an artifact of how

the global currency component is measured.

3For a given realization of future data, the predictive likelihood, like the marginal likelihood, evaluates to a scalar
and thus provides a natural basis for ranking models across the candidate space.
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Summary of Empirical Results

In this section, we introduced a comprehensive set of nine candidate currency factors. We
documented that their return distributions display strong excess kurtosis, which motivates the
use of a Student-¢ specification in our Bayesian framework. Within an economically motivated
model space that always includes the dollar factor DOL, the Bayesian model scan selects
DOL-CAR-GAP as the clear best model under both Gaussian and Student-t assumptions. Its
posterior probability far exceeds its uniform prior weight, and its marginal likelihood is higher
than those of leading benchmark models such as DOL-CAR, DOL-MOM, DOL-CAR-MOM,,
and DOL-IMB. The result is robust to alternative tail parameters and to replacing DOL with its

conditional analogue DDOL.

We further show that all three factors in the DOL-CAR-GAP model, especially the carry
and output gap factors, command positive and precisely estimated risk premia under the
Student-t specification. In contrast, the remaining “losing” factors are well explained by this
pricing kernel: Bayesian spanning tests indicate no intercepts, while the GRS test fails to reject
the joint null hypothesis that pricing errors are zero. Out-of-sample predictive likelihoods
further confirm that DOL-CAR-GAP delivers the strongest forecasting performance among
competing models. Taken together, these findings establish DOL-CAR-GAP as a parsimonious,

statistically strong, and economically meaningful benchmark.

4 Economic Performance of the DOL-CAR-GAP Model

In the previous section, our Bayesian model comparison identified the specification com-
prising the dollar (DOL), carry (CAR), and output gap (GAP) factors as the statistically dominant
candidate. The Student-¢ specification with fat tails delivers higher marginal likelihoods than
the Gaussian benchmark, and the main findings are robust to alternative degrees of freedom as

well as to model scans based on DDOL or without inclusion restrictions. We also showed that
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the winning three-factor model successfully spans the remaining currency factors from both
Bayesian and frequentist perspectives, and that it achieves superior out-of-sample predictive

performance as measured by the predictive likelihood.

However, statistical dominance alone does not guarantee economic significance or struc-
tural stability. In this section, we therefore conduct a comprehensive economic evaluation of
the DOL-CAR-GAP model relative to the leading currency factor models in the literature.*
We first examine its pricing performance using Bayesian spanning tests and regression-based
diagnostics, respectively. We then evaluate its investment performance both in-sample by
comparing Minimum-Variance Efficient Frontiers across different model specifications and

out-of-sample by assessing predictive consistency through out-of-sample Sharpe ratios.

4.1 Pricing Performance

As noted in the introduction, a distinguishing feature of our Bayesian model scan is that
the selection of the superior specification is independent of the specific test assets employed for
evaluation. Although the DOL-CAR-GAP model was selected based on marginal likelihoods of
the factors themselves, we must still rigorously validate its ability to price external currency

portfolios.

We employ a comprehensive universe of K = 34 test portfolios to challenge the model.
These assets represent a diverse set of currency strategies, ensuring that our results are not
driven by a specific anomaly. The test set comprises: 5 Carry, 5 Value, 5 Momentum, 4 FX
Correlation, 6 Dollar Beta, 4 Imbalance, and 5 Output Gap portfolios. Their constructions are

described below:

Carry portfolios (Lustig et al., 2011): We sort currencies into five portfolios based on forward

discounts (interest rate differentials).

*For completeness, we also report parallel results for the DDOL-based analogue of the model.
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Value portfolios (Menkhoff et al., 2017): We sort currencies into five portfolios based on 5-year

changes in real exchange rates.

Momentum portfolios (Menkhoff et al., 2012b): We sort currencies into five portfolios based

on past 1-month currency returns.

FX correlation portfolios (Mueller et al., 2017): We sort currencies into four portfolios based on

the loadings of currency returns on innovations in the FX correlation dispersion measure.

Dollar Beta portfolios (Verdelhan, 2018): We sort currencies into six portfolios based on load-
ings on the DOL factor. Each portfolio takes a long (short) position if the median forward

discount rate of developed currencies is positive (negative).

Imbalance portfolios (Corte et al., 2016): We first sort currencies into two portfolios based on
the net foreign asset to GDP ratio, and subsequently sort each portfolio into two baskets

using the share of foreign liabilities in domestic currency.

Output Gap portfolios (Colacito et al., 2020): We sort currencies into five portfolios based on

output gaps.

Our full sample dataset spans the period from January 1991 to March 2024, yielding a
monthly panel that is fully aligned with the candidate currency factors introduced in Sec-
tion 3.1. For each month in this sample, we observe returns of both the nine candidate currency
factors (including the two market-proxy series DOL and DDOL) and the 34 test portfolios
described above, all constructed using the same underlying currency universe and data filters.
Throughout this section, all pricing tests for the benchmark DOL-CAR-GAP model, its ana-
logue DDOL-CAR-GAP, and the competing specifications are conducted on this full sample of
monthly excess returns, so that comparisons are made on a common information set and are

directly comparable across models.
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4.1.1 Bayesian Spanning Test

To rigorously assess the pricing performance of the DOL-CAR-GAP model and its closely
related alternative DDOL-CAR-GAP, we employ a Bayesian model comparison framework.
Consistent with our analysis in Section 3.2, we consider both a Gaussian specification and a
Student-t specification for the error terms, fixing the degrees of freedom at v = 5 to accommo-

date the heavy tails observed in currency returns.

Take the DOL-CAR-GAP model as an example, for each external test asset rj ¢, where
k=1,..., K, we compare the marginal likelihoods of two competing regression specifications.

The unrestricted model, denoted M, allows for a non-zero pricing error (alpha) and is given by

M1 1y = o+ BrpoL DOL; + Bi car CAR; + Br.cap GAP; + €4, (17)

while the competing restricted model, denoted M), imposes the asset pricing restriction a;, = 0:

Mo 7 = Br,poL DOL; + Br.car CAR; + Bi.cap GAP; + - (18)

For each test asset we compute the Bayes factor BFy; as the ratio of the marginal likelihood of
the restricted model to that of the unrestricted model, following the definition in Section 3.4.
Evidence in favor of My (i.e., a higher marginal likelihood for the restricted model) implies that

the DOL-CAR-GAP model successfully spans the test asset ry, ;.

Given the large cross-section of K = 34 currency portfolios, we summarize the results by
reporting, for each specification, the percentage of test assets for which spanning is supported
under both error distributions. Table 7 reports these spanning percentages for the full sample
of monthly observations from January 1991 to March 2024, using the same in-sample training

window as in the model scan.
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Under the Gaussian specification, the DOL-CAR-GAP benchmark spans about 85% of
the test assets, and this fraction rises to roughly 94% under the Student-t specification. The
alternative specification DDOL-CAR-GAP delivers very similar spanning rates: around 76%
under Gaussian errors and 94% under Student-t errors, reinforcing the interpretation of a
market-carry—output gap structure. The remaining specifications in the table (DOL-CAR,
DB-CAR, DOL-CAR-MOM, DOL-MOM, DOL-VAL, DOL-IMB, and DOL-CAR-IMB) serve
as competing models. None of these alternative models dominate the DOL-CAR-GAP and
DDOL-CAR-GAP structures uniformly across both Gaussian and Student-t error specifications.
Overall, the evidence points to a robust role for a market proxy, carry, and the output gap in

jointly pricing the cross-section of currency portfolios.

4.1.2 Frequentist Pricing Test

To evaluate the asset pricing performance from a frequentist perspective, we employ
standard time-series regressions estimated by ordinary least squares (OLS). In contrast to the
Bayesian framework in Section 4.1.1, which analyzes the models under both Gaussian and
Student—¢ specifications, this benchmark analysis assumes that the regression errors follow a
Gaussian distribution. Moreover, because the frequentist analysis does not rely on a separate
training sample for prior construction, it lends itself naturally to direct subsample estimation.
We therefore conduct a series of subsample analyses across alternative observation horizons
to assess the temporal stability of pricing performance and to examine whether the leading

specification identified in the full sample remains robust across subsamples.

Taking the DOL-CAR-GAP model as an illustrative example, for each test portfolio %,

k=1,..., K, we estimate the following factor pricing regression:

Tkt = ai + Br.porL DOL; + Br.car CAR; + Br.cap GAP; + uy ¢, (19)
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where 7, ; denotes the excess return of portfolio £ at time ¢, and the regression disturbance is
assumed to be Gaussian, ug ¢ ~ N (0, 7). The intercept oy, captures the pricing error, while the

slope coefficients measure the portfolio’s exposure to systematic risk factors.

To evaluate the overall economic magnitude of pricing errors and the explanatory power
of the model across the cross section of K = 34 currency portfolios, we report the following

cross-sectional average performance measures:

Average Absolute Alpha (Ja|): The cross-sectional mean of the absolute pricing errors. This
metric summarizes the average magnitude of unexplained returns across test assets;

smaller values reflect better pricing performance.

Average Alpha Standard Error (SE(«)): The cross-sectional mean of the standard errors of the
estimated pricing errors. This measure captures the typical statistical precision with which

alphas are estimated; smaller values indicate more precise inference.

Relative Absolute Alpha (|a|/|7[): The ratio of the average absolute pricing error to the average
absolute mean return across test assets. This adjusts the magnitude of mispricing relative

to the economic scale of typical returns.

Relative Squared Alpha (a2/72): The ratio of the average squared pricing error to the average
squared mean return across assets. By penalizing large pricing errors quadratically, this

metric places greater weight on severe mispricing.

RMSE of Pricing Errors (RM SE,): A root-mean-square measure of pricing errors constructed
as

RMSE, = \/a2 + SE(a)2.

This statistic aggregates both the cross-sectional magnitude of pricing errors and their
estimation uncertainty, and summarizes the overall scale of pricing deviations implied by

the model.
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Adjusted R? (dej): The cross-sectional average of the adjusted R? from the time-series re-
gressions, reported in percentage terms. A higher value indicates stronger time-series

explanatory power of the factor model.

GRS Test p-Value (GRS,): The p-value of the GRS test for the joint null hypothesis that all
pricing errors are zero, Hy : &y = --- = ag = 0. A small p-value indicates rejection of the

model’s ability to jointly price all test assets.

Table 8 reports pricing performance across all specifications using the full sample of K = 34
test assets over the period January 1991 to March 2024 at the monthly frequency. Comparing
with other factor models, the DOL-CAR-GAP model delivers the strongest overall pricing
performance across all measures related to pricing errors. It achieves the smallest average
absolute alpha (|a|) and the lowest pricing-error RMSE (RM SE,,), indicating that both the
economic magnitude of mispricing and its estimation uncertainty are minimized under this
specification. Although ranked second smallest, its average alpha standard error (SE(a)) of
0.0588 is very close to the lowest value of 0.0581. The relative absolute and relative squared
alpha measures (|a|/[7| and a?/72) are also the lowest among all competing models, confirming
that mispricing is small not only in absolute terms but also relative to the scale and variability
of currency excess returns. In addition, the DOL-CAR-GAP model attains the highest average

adjusted R? values of around 70.25%, reflecting strong time-series goodness-of-fit across the 34

test portfolios.

From a joint pricing perspective, the GRS test rejects the null hypothesis of zero pricing
errors at the 5% significance level for all competing specifications with p-values below 0.05. The
only exceptions are the DOL-CAR-GAP model, its economically motivated analogue DDOL~
CAR-GAP, and the DB-CAR model, for which the GRS p-values exceed 0.05. While the DB-CAR
model is still rejected at the 10% significance level, the DOL-CAR-GAP model achieves the

highest GRS p-value of 0.2932. These results indicate that joint pricing is statistically rejected
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for most alternative models, whereas the dollar—carry—output gap structure remains the only
specification that cannot be rejected at conventional significance levels within the frequentist

framework.

Table 9 further reports the corresponding frequentist pricing results across three subsam-
ples to assess the temporal stability of these conclusions. Across all three subsamples, the
DOL-CAR-GAP model continues to exhibit consistently strong performance relative to compet-
ing specifications. In the front and middle subsamples reported in Panels A and B, it delivers the
smallest or near-smallest average absolute alpha (|a]) and pricing-error RMSE (RM SE,,) across
all candidate models, together with the highest adjusted R? values, exceeding 69% and 75%,
respectively. In the end subsample reported in Panel C, although overall pricing errors decline
for most specifications, the DOL-CAR-GAP and DOL-CAR-IMB models remain the dominant
specifications across all performance measures, with similar magnitudes. The GRS test also
reveals a clear temporal pattern: most models are strongly rejected in the earlier subsamples,
whereas none of the specifications are rejected in the most recent subsample. Importantly, across
all subperiods, the DOL-CAR-GAP model attains the highest or near-highest GRS p-values,

remaining consistently farther from rejection than alternative models.

Overall, the subsample evidence confirms that the superior pricing performance of the dol-
lar—carry-output gap structure is not driven by any particular period but remains economically

and statistically robust across distinct market regimes.

4.2 Investment Performance

4.2.1 Minimum-Variance Frontiers

While the pricing tests focus on the ability of factor models to explain the cross section of
currency returns, investors ultimately care about the risk-return trade-offs that these factors

deliver in portfolio space. To evaluate the economic value of each model from a portfolio
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allocation perspective, we therefore complement the pricing results with a comparison of their
implied minimum-variance frontiers (MVFs). The MVF characterizes the full set of efficient
portfolios attainable from a given factor set and provides a direct assessment of the maximum
investment opportunities available to minimum-variance investors. By examining how the
frontiers differ across competing specifications, we can assess not only whether a model prices
well statistically, but also whether it offers superior diversification benefits and attainable Sharpe

ratios in economic terms.

Figure 4 reports the Markowitz minimum-variance frontiers implied by the Bayesian best
model and a set of competing currency factor specifications, where DOL and DDOL serve as
alternative proxies for the average market factor. The frontiers are constructed from the sample
moments (sample means and covariance matrices) of the monthly returns on the candidate
currency factors over the period from January 1991 to March 2024. For each model, we compute
the set of minimum-variance portfolios that can be formed from its corresponding factor set.
In the figure, the dot on each curve marks the global minimum-variance portfolio, the solid
segment denotes the efficient portion of the frontier (portfolios with higher expected returns

than the minimum-variance portfolio), and the dashed segment denotes the inefficient portion.

The figure reveals economically meaningful differences in portfolio investment opportu-
nities across models. The Bayesian best specification, the DOL-CAR-GAP three-factor model,
consistently traces out the upper envelope of the frontiers and spans the widest range of attain-
able risk-return combinations, extending toward both lower-risk and higher-return regions
relative to the competing specifications. The alternative global factor specification DDOL-
CAR-GAP delivers a frontier that lies close to that of DOL-CAR-GAP over the central range of
volatilities, indicating that both DOL and DDOL are viable proxies for the global average factor.
However, the DDOL-CAR-GAP frontier is somewhat more compressed, covering a narrower

range of risk-return trade-offs than its DOL-based counterpart.
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Models such as DOL-CAR, DOL-CAR-MOM, and DOL-CAR-IMB generate frontiers that
remain relatively close to the benchmark but are uniformly dominated by DOL-CAR-GAP and
DDOL-CAR-GAP. By contrast, simpler two-factor specifications like DOL-MOM, DOL-VAL
and DOL-IMB trace out noticeably lower frontiers, indicating that they fail to fully span the
cross-section of currency portfolio returns. The DB—CAR specification provides an interesting
contrast: its efficient frontier becomes relevant only at relatively high volatility levels, emerging
to the right of the other curves. Although it attains comparatively high expected returns once it

becomes feasible, these outcomes are achieved only at substantially elevated risk levels.

Overall, the minimum-variance comparison confirms that the DOL-CAR-GAP model and
its DDOL-CAR-GAP analogue not only price currency portfolios well, but also offer the most

attractive risk-return opportunities for a minimum-variance investor over the sample period.

4.2.2 Out-of-Sample Sharpe Ratios

To evaluate the real-time investment performance of alternative factor models, we conduct
an out-of-sample (OOS) portfolio exercise in which trading strategies are updated recursively
at each point in time, following the real-time portfolio evaluation framework of Chib et al.
(2024). At the end of every month, we re-estimate the optimal tangency portfolio using only
the information available up to that date, exactly as a real investor would. These newly
updated portfolio weights are then implemented in the following month to form an ex ante
trading strategy. The resulting realized excess return is recorded, after which the information
set is expanded to include this new observation and the strategy is updated again. This
recursive procedure generates a sequence of realized portfolio returns based entirely on real-

time information, rather than ex post full-sample estimates.

The economic performance of each model is evaluated using the annualized Sharpe ratio
computed from these realized OOS returns. Because portfolio weights are continuously re-

optimized as new data arrive, this metric captures not only each model’s average return and
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risk, but also its ability to adapt dynamically to evolving market conditions. In this sense,
the annualized OOS Sharpe ratio provides a strictly forward-looking and practically relevant
measure of investment performance, directly reflecting the gains and risks that an investor

would have experienced when implementing the trading strategy in real time.

Table 10 reports the one-year out-of-sample annualized Sharpe ratios for the Bayesian best
model and several competing currency factor models under both Gaussian and Student-t return
specifications. The in-sample and training samples used in these evaluations are aligned with
the setup described in Section 3.2. Under the Gaussian specification, the DOL-CAR-GAP model
remains among the top-performing specifications, delivering an OOS Sharpe ratio of 2.4073.
Consistent with this finding, under the Student-t assumption, the Bayesian best DOL-CAR—
GAP three-factor model delivers the strongest out-of-sample performance among all competing
models, achieving the highest annualized Sharpe ratio of 2.9950. This result confirms that the
model selected by the Bayesian framework in-sample also provides the most robust real-time
investment performance out of sample. Other leading specifications, such as DDOL-CAR-GAP,
DOL-CAR, and DOL-CAR-IMB, also exhibit strong but slightly weaker performance, with

Student-t OOS Sharpe ratios of 2.7401, 2.6792, and 2.6973, respectively.

Overall, the out-of-sample evidence strongly reinforces the in-sample model comparison
results. The Bayesian best DOL-CAR-GAP model consistently dominates alternative well-
documented currency factor models in terms of real-time risk-adjusted performance. Its superior
and stable OOS Sharpe ratios demonstrate that this factor combination not only fits the data
well in sample, but also delivers economically meaningful and robust portfolio gains in realistic

trading environments.

Beyond model ranking, the OOS portfolio results also provide complementary economic
evidence in favor of heavy-tailed return dynamics. While the DOL-CAR-GAP specification

remains the best-performing model under both Gaussian and Student-t assumptions, its domi-
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nance is most pronounced under the Student-t framework, where it achieves the highest OOS
Sharpe ratio. This pattern indicates that explicitly accounting for fat-tailed risks is not only statis-
tically relevant, but also economically beneficial from an investor’s perspective. From a portfolio
allocation standpoint, allowing for heavy tails directly affects the assessment of downside risk
and extreme return realizations, which in turn shapes optimal tangency portfolio weights.
The superior OOS performance under the Student-¢ specification suggests that investors who
properly account for tail risk are better compensated in real time, particularly during periods of
elevated market stress and sudden shifts in global risk sentiment. In contrast, Gaussian-based
portfolios tend to understate tail risk and therefore deliver inferior risk-adjusted performance
when exposed to extreme currency movements. Taken together with the earlier marginal
likelihood evidence, these OOS investment results reinforce the conclusion that heavy-tailed
distributions provide a more realistic and economically meaningful description of currency
factor returns and that the dominance of the DOL-CAR-GAP model is, if anything, understated

under the Gaussian benchmark.

Summary of the Economic Performance of DOL-CAR-GAP

In summary, our economic performance evaluation shows that the DOL-CAR-GAP model
turns its statistical strength into solid economic performance. On the pricing side, the Bayesian
spanning tests show that the dollar—carry—output gap structure spans most external currency
portfolios. The frequentist GRS test leads to the same conclusion for both DOL-CAR-GAP and
DDOL-CAR-GAP, as neither model is rejected. When we examine pricing errors and goodness
of fit, the frequentist regressions clearly identify DOL-CAR-GAP as the best-performing model

specification.

On the investment side, the DOL-CAR-GAP model delivers the most attractive risk-return
trade-offs in the minimum-variance frontier. Under both Gaussian and Student-t assumptions, it

achieves the highest out-of-sample annualized Sharpe ratios, with much stronger performance

33



under the Student-t specification. This pattern highlights the economic value of modeling
heavy-tailed return dynamics and shows that the Student-¢ specification is preferred to the

Gaussian benchmark.

5 Conclusion

This paper views the selection of currency asset-pricing models as a survival-of-the-fittest
exercise. Building on Chib and Zeng (2020) and Chib et al. (2020), we employ a Bayesian
model scan to evaluate combinations of all economically motivated currency risk factors,
allowing the data to identify the strongest performers rather than testing a single prespecified
model. This approach establishes a data-driven criterion based on posterior model probabilities
and marginal likelihoods, jointly analyzing factor dynamics and no-arbitrage conditions to
determine the optimal stochastic discount factor without requiring exogenously given test

assets.

Our analysis identifies the parsimonious three-factor model DOL-CAR-GAP as the domi-
nant pricing kernel. This specification attains the highest marginal likelihoods and concentrates
the posterior mass under both Gaussian and heavy-tailed Student-t assumptions. Importantly,
the model evidence favors the Student-¢ specification, underscoring the relevance of heavy-
tailed return dynamics in currency markets. These results are robust to alternative degrees of
freedom and to replacing DOL with DDOL as the market factor proxy. Posterior analysis further
indicates that the three factors command positive risk premia and effectively span the remain-
ing factors (i.e., MOM, DB, VAL, FXC, and IMB). The out-of-sample predictive performance

corroborates these in-sample findings.

These statistical results translate into economically meaningful gains. We evaluate the
DOL-CAR-GAP model from both pricing and investment perspectives. Using an exogenously
given set of currency portfolios as test assets, we assess pricing performance through Bayesian

model comparison and standard frequentist regressions. While Bayesian analysis and GRS
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tests confirm the spanning ability of both DOL-CAR-GAP and its analogue DDOL-CAR-GAP,
traditional frequentist metrics also clearly favor DOL-CAR-GAP, reflecting lower pricing errors
and superior goodness of fit. From an investment perspective, the minimum-variance frontier
supports the efficiency of the model. Moreover, real-time out-of-sample investment exercises
show that DOL-CAR-GAP delivers the highest annualized Sharpe ratios, particularly under the
Student-t specification, highlighting the economic importance of modeling tail risk in currency

returns.

Methodologically, our findings validate the Bayesian model scan as a scalable and effective
approach to model selection in the presence of a large set of candidate factors. By allowing for
flexible distributional assumptions and avoiding reliance on prespecified test assets, the ap-
proach identifies the survival-of-the-fittest specification in a disciplined and data-driven manner.
While our analysis focuses on currency markets, the methodology provides a versatile blueprint

that can be applied to other asset classes, including equities, commodities, and cryptocurrencies.

Ultimately, both the empirical evidence and the economic performance evaluation point
to a unified and economically interpretable benchmark. Despite the proliferation of proposed
currency factors, we show that risk compensation is best captured by a coherent structure
centered on the dollar (DOL), the carry trade (CAR), and the output gap (GAP) which reflects
the business cycle. The DOL-CAR-GAP model therefore provides a natural reference for
currency risk compensation and a robust foundation for future research in international asset

pricing.
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Tables and Figures

Table1 Definitions and Construction of Candidate Currency Factors

Factor Description

Construction

Reference

DOL  Dollar
DDOL Dollar Carry
CAR Carry

MOM Momentum

DB Dollar Beta

VAL Value

FXC FX Correlation

GAP  Output Gap

Long all foreign currencies and short the US dol-
lar.

Long (Short) DOL when the median forward dis-
count is positive (negative).

Long high-interest-rate currencies and short low-
interest-rate currencies.

Long high-past-return currencies and short low-
past-return currencies.

Long (Short) currencies with high DOL loadings
and short (long) currencies with low DOL load-
ings when the median forward discount is posi-
tive (negative).

Long under-valued currencies and short over-
valued currencies.

Long currencies with high loadings to FX corre-
lation dispersion and short currencies with low
loadings to FX correlation dispersion.

Long high-output gap currencies and short low-
output gap currencies.

IMB  Global Imbalance Long risky currencies and short safe currencies.

Lustig et al. (2011)
Lustig et al. (2014)
Lustig et al. (2011)
Menkhoff et al. (2012b)

Verdelhan (2018)

Menkhoff et al. (2017)

Mueller et al. (2017)

Colacito et al. (2020)

Corte et al. (2016)

Note: This table summarizes the definitions and construction methodologies for the nine
currency factors included in our benchmark model scan. For each factor, we report the standard
abbreviation, a descriptive label, the specific portfolio construction strategy, and the literature

reference.
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Table 2 Descriptive Statistics of Candidate Currency Factors

Factors Mean Std Dev. Skewness Kurtosis Max Min
DOL 0.326 24.110 -0.491 4.349 65.217 -100.217
DDOL 2.999 23.924 -0.231 4.480 100.217 -93.653
CAR 4.657 25.540 -1.049 4.999 55.106 -100.696
MOM 1.860 45.055 -0.386 7.478 198.633  -276.491
DB 4.507 34.883 -0.228 3.341 102.880  -110.807
VAL 1.428 23.528 0.267 3.916 92.715 -84.065
EXC 0.216 23.779 0.041 4.064 82.390 -78.940
GAP 4.140 24.882 -0.130 6.711 102.670  -124.733
IMB 1.951 22.927 -0.713 5.955 77.797 -112.594

Note: This table reports the annualized mean (Mean), standard deviation (Std Dev.), skewness
(Skewness), kurtosis (Kurtosis), maximum (Max) and minimum (Min) values for each currency
factor. Numbers are in percentage. The sample spans from January 1991 to March 2024.
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Specifications with DOL Restriction
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Table 3 Marginal Likelihoods of Selected Currency Factor Models

Model Logmarg

Gaussian Student-t

DOL CAR GAP (Bayesian best model) 6408.038  6560.042

DOL CAR 6406.468  6556.236
DB CAR 6407.150  6556.989
DOL CAR MOM 6404.426  6554.439
DOL MOM 6399.737  6537.475
DOL VAL 6399.942  6537.380
DOL IMB 6401.793  6541.798
DOL CAR IMB 6404.641  6554.412

Note: This table reports the log—marginal likelihoods for the Bayesian best model and a set of
representative competing currency factor models from the literature under both Gaussian and
Student-t specifications. The sample spans January 1991 to April 2023. The first 15% of the data
(January 1991- October 1995) is used as the training sample, while the remaining 329 monthly
observations (November 1995-April 2023) constitute the estimation sample.
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Table 4 Marginal Likelihood of the DOL-CAR-GAP Model Across Degrees of Freedom

1% Logmarg

2.1 6445.009
3 6544.252
3.5 6554.089
4 6558.470
45 6560.099
5 6560.042
5.5 6558.973
6 6557.214
6.5 6555.059
7 6552.603
8 6547.216
9 6541.545
10  6535.898
20 6490.218
30 6462.160
40 6443.751
50  6430.795
60 6421.196
oo 6408.038

Note: This table reports the log marginal likelihoods of the DOL-CAR-GAP three-factor model
under Student-t¢ return distributions with different degrees of freedom v. The case v = oo
corresponds to the Gaussian specification. The highest log marginal likelihoods occur around
v = 4.5 and v = 5 (in bold), supporting the baseline choice of v = 5 while indicating that model
fit is robust over a broad range of tail thickness.
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Table 5 Bayesian Spanning Test Results of Losing Factors by the DOL-CAR-GAP Three-
Factor Model

Losing Factor =~ Logmarg (M) Logmarg (M;) In(BFg;) BFo1

(Restricted) (Unrestricted)
MOM 626.6843 624.7399 1.9444 6.9895
DB 716.2017 715.6674 0.5343 1.7062
VAL 849.9426 849.2896 0.6530 1.9214
FXC 845.1698 844.8657 0.3041 1.3555
IMB 901.9140 901.0756 0.8383 2.3125

Note: This table reports log marginal likelihoods for two competing regression specifications
for each losing factor, where the factor’s excess return is projected on the DOL-CAR-GAP
three-factor model. The restricted model M, imposes zero intercept (exact spanning), while the
unrestricted model M allows for a nonzero intercept. BFy; denotes the Bayes factor in favor of
the restricted model. Values of BFy; > 1 (equivalently, In(BFy;) > 0) indicate that the data favor
the hypothesis that the losing factor is fully spanned by the DOL-CAR-GAP pricing kernel.

Table 6 Out-of-sample Predictive Likelihoods of Selected Currency Factor Models

Model Log Predicted Likelihood
Gaussian Student-t
DOL CAR GAP (Bayesian best model)  255.468 259.474
DOL CAR 255.170 258.651
DB CAR 254.807 258.534
DOL CAR MOM 255.134 258.449
DOL MOM 254.163 256.068
DOL VAL 254.090 256.202
DOL IMB 254.530 256.927
DOL CAR IMB 255.160 258.659

Note: This table reports out-of-sample (OOS) log predictive likelihoods for the Bayesian best
model and a set of representative competing currency factor models from the literature under
both Gaussian and Student-t specifications. The out-of-sample uses data from the last 12 months
in the full sample: April 2023 to March 2024.
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Table 7 Percentage of Test Assets Spanned by Selected Currency Factor Models: Full
Sample

Model Percentage Spanned (Pctq >, )
Gaussian Student-t
DOL CAR GAP 85.29 94.12
DDOL CAR GAP 76.47 94.12
DOL CAR 76.47 88.24
DB CAR 73.53 97.06
DOL CAR MOM 70.59 79.41
DOL MOM 73.53 67.65
DOL VAL 73.53 67.65
DOL IMB 64.71 67.65
DOL CAR IMB 76.47 88.24

Note: This table reports, for each currency factor model, the percentage of test assets that are
spanned, defined as the fraction of test assets for which the intercept-free model My is favored
over the model with an intercept M, in the Bayesian model comparison. The full sample covers
monthly observations from January 1991 to March 2024, and the training sample coincides with
the in-sample training window used in the model scan. We report these percentages separately
under Gaussian and Student-¢ specifications for the error terms.

Table 8 Frequentist Pricing Test Performance of Selected Currency Factor Models:
Full Sample

Model lo]  SE(a) |al/[F] a?/7> RMSE, RZ; GRS,
DOL CAR GAP  0.0623 0.0588 0.5969 0.3672 0.1092  70.2498 0.2932

DDOL CARGAP 0.1223 0.0970 1.1720 09180 0.1706  28.3136 0.2884

DOL CAR 0.0803 0.0599 0.7697 0.6375 0.1330 68.8839 0.0472
DB CAR 0.1324 0.1002 1.2684 1.1273 0.1844 22.1439 0.0611
DOL CARMOM 0.0777 0.0592 0.7442 0.5967 0.1295  69.4627 0.0187
DOL MOM 0.0959 0.0609 0.9190 0.8576  0.1494 67.6072 0.0007
DOL VAL 0.1044 0.0605 1.0002 1.0010 0.1590 68.0725 0.0009
DOL IMB 0.1014 0.0594 0.9711 09080 0.1526  68.7123 0.0045

DOL CAR IMB 0.0807 0.0581 0.7733 0.6431 0.1328 70.2184 0.0485

Note: This table reports frequentist pricing test results for selected currency factor models using
the full sample of K = 34 test assets using monthly observations from January 1991 to March
2024. |a|, SE(a), RMSE,, and Rgdj are reported in percentage terms. |a|/|7| and a2/72 are
unit-free ratios. GRS, denotes the p-value of the GRS test for the joint null hypothesis that all
pricing errors are zero.
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Table 9 Frequentist Pricing Test Performance of Selected Currency Factor Models:
Subsamples

Model [a]  SE(a) [al/|F] o?/7> RMSE, RZ; GRS,
Panel A: Front Subsample (January 1991 — December 2005)

DOL CAR GAP 0.1063 0.0900 0.5281 0.2840 0.1753  69.2043 0.2008
DDOL CAR GAP 0.1539 0.1443 0.7645 0.4691 0.2387  29.3204 0.2480

DOL CAR 0.1612 0.0909 0.8005 0.7384 0.2548 66.3361 0.0114
DB CAR 0.1732  0.1472 0.8600 0.5667  0.2549 221570 0.0288
DOL CARMOM 0.1451 0.0902 0.7206 0.6054 0.2341 67.2089 0.0103
DOL MOM 0.1623 0.0934 0.8060 0.7083  0.2509  64.2448 0.0017
DOL VAL 0.1896 0.0920 0.9418 1.0506 0.2969  65.4001 0.0010
DOL IMB 0.1806 0.0887 0.8972 0.9482 0.2831 66.6203 0.0033

DOL CAR IMB 0.1588 0.0867 0.7889 0.7139  0.2496  68.7455 0.0125

Panel B: Middle Subsample (February 2000 — January 2015)

DOL CAR GAP 0.0832 0.0811 0.4459 0.2491 0.1431 75.2590 0.2572
DDOL CARGAP 0.1027 0.1330 0.5502 0.3201 0.1853  43.5486 0.2375

DOL CAR 0.0940 0.0828 0.5034 0.2927 0.1510 74.3326 0.1294
DB CAR 0.1102 0.1386 0.5903 0.3788 0.1965 36.9657 0.1460
DOL CARMOM 0.0923 0.0818 0.4947 0.2822  0.1487  74.8453 0.1162
DOL MOM 0.0983 0.0834 0.5269 0.3262 0.1559  73.5724 0.0363
DOL VAL 0.1029 0.0827 0.5513 0.3547 0.1602  73.7569 0.0399
DOL IMB 0.1024 0.0826 0.5488 0.3397 0.1581  74.0765 0.0601

DOL CAR IMB 0.0945 0.0812 0.5062 0.2943 0.1507  75.0925 0.1363

Panel C: End Subsample (April 2009 — March 2024)

DOL CAR GAP 0.0502 0.0755 0.6391 0.3651 0.1052  75.3115 0.9009
DDOL CAR GAP 0.1483 0.1338 1.8885 2.7231 0.2163 33.7035 0.8101

DOL CAR 0.0499 0.0775 0.6355 0.3615 0.1062  74.6241 0.8951
DB CAR 0.1712 0.1377 21805 3.5509  0.2367  29.6608 0.8489
DOL CARMOM 0.0501 0.0769 0.6382 0.3835 0.1068  74.9934 0.8802
DOL MOM 0.0772 0.0792 0.9826 1.0002 0.1339  72.3959 0.4917
DOL VAL 0.0747 0.0771 0.9510 0.8987 0.1290  73.6300 0.4870
DOL IMB 0.0772 0.0778 0.9828 0.9227 0.1302 73.4334 0.5788

DOL CAR IMB 0.0492 0.0753 0.6262 0.3498 0.1041 759787 0.9162

Note: This table reports frequentist pricing test results for selected currency factor models across
three subsamples. Panels A, B, and C correspond to the front, middle, and end subsamples,

respectively. |al|, SE(a), RMSE,, and R? q; are reported in percentage terms. |al/|7] and a2 /72
are unit-free ratios. GRS, denotes the p-value of the GRS test for the joint null hypothesis that
all pricing errors are zero.
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Figure 4 Minimum-Variance Frontiers

Note: This figure displays the Markowitz minimum-variance frontiers for portfolios formed
from the factors in selected currency pricing models, using data from January 1991 to March
2024. For each model, the dot marks the global minimum-variance portfolio; solid lines show
the efficient portion of the frontier (portfolios with higher expected returns than the global
minimum-variance portfolio), while dashed lines show the inefficient portion.
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Table 10 Out-of-Sample Annualized Sharpe Ratios for Selected Currency Factor Models

Model Annualized SRoog

Gaussian Student-t

DOL CAR GAP 2.4073 2.9950
DDOL CAR GAP 2.2792 2.7401

DOL CAR 2.2121 2.6792
DB CAR 1.6428 2.3151
DOL CAR MOM 2.1728 2.3229
DOL MOM -0.1521 -0.5426
DOL VAL -0.5876 -0.3208
DOL IMB 1.3137 1.1075
DOL CAR IMB 2.2263 2.6973

Note: This table reports the out-of-sample annualized Sharpe ratios based on recursively
updated portfolio weights and one-month-ahead realized returns. The evaluation is conducted
under both Gaussian and Student-t return specifications. The in-sample and training samples
used for these evaluations are aligned with the setup described in Section 3.1. Sharpe ratios
are annualized using monthly returns. Portfolio weights are determined based on recursively
updated estimation.
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