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Abstract

Technological imitation may play a crucial role in motivating firms to innovate.
However, theoretical predictions and empirical findings on the role of imitation
have not yet reached a consensus. One major gap in the previous studies is that
the empirical tests are based on samples consisting of only one industry over a
short period of time. This study uses a novel measure of industry-level techno-
logical imitation proxied by quick citations by competitors to examine the rela-
tionship between imitation and innovation. Using US patent data for the period
1977–2005, we find that there are inverted U-shaped relationships between the
degree of industry-level technological imitation and industry-level innovation ac-
tivities and between the degree of industry-level technological imitation and the
value of firm-level innovation. Our results suggest that positive externalities from
the interactions among firms during the innovation process outweigh the negative
effects of free-riding concerns on firms’ innovation activities and incentives to in-
novate up to a high degree of technological imitation, while free-riding concerns
outweigh the positive externalities when the level of technological imitation is ex-
tremely high. The sector-by-sector analyses show that the relationship between
technological imitation and the quantity and market value of innovation are not
very different across Pavitt sectors. A comparative analysis on the role of imi-
tation between agglomerated and non-agglomerated industries suggests that the
positive effect of a moderate level of imitation and the negative effect of an exces-
sive level of imitation are more pronounced for agglomerated industries. The re-
sults suggest that creating innovation clusters, such as Silicon Valley in the United
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States and Shenzhen City in China, and allowing different innovators to cooper-
ate, imitate and compete with each other would be very effective in promoting
corporate innovation. However, an excessively high level of technological imita-
tion is more detrimental for firms in innovation clusters because it lowers those
firms’ incentives to innovate more radically.

Keywords: Corporate innovation, Technological imitation, Value of innovation,
Innovation Cluster, Agglomeration

1. Introduction

Corporate innovation is crucial in that it improves total factor productivity and

allows firms to achieve higher potential output with lower manufacturing costs in

a more efficient and environmentally friendly way (Schoonhoven et al., 1990); in-

novation also brings new growth engines into different industries, thus increasing

demand in most developed economies (Brozen, 1951; Huang and Rozelle, 1996;

Grossman and Helpman, 1991). Although corporate innovation is very important

to firms and economies as a whole, it is extremely costly in that it requires mas-

sive fixed investments at the early stage and may require substantial support for

long-term capital and human resources from companies themselves or from na-

tional institutions. Therefore, various determinants of corporate innovation, such

as hostile takeovers (Atanassov, 2013), stock liquidity (Fang et al., 2014), corpo-

rate taxes (Mukherjee et al., 2017), policy uncertainty (Bhattacharya et al., 2017),

and product market competition (Aghion et al., 2005; Greenhalgh and Rogers,
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2006; Im et al., 2015) have been studied in the literature. In this paper, we investi-

gate how the degree of industry-level technological imitation influences industry-

level innovation activities and firms’ motivation to innovate.

The relationship between technological imitation and corporate innovation has

been studied by several scholars, but their theoretical predictions and empirical

findings have not yet reached consensus. The first view is that technological imi-

tation has a positive effect on corporate innovation due to the positive externalities

in the process of innovation. Among others, Bessen and Maskin (2009) argue that

if innovation is sequential (such that each successive innovation is made based on

its predecessors’ earlier innovations) and complementary (such that each poten-

tial innovator takes a different research line), technological imitation will enhance

an inventor’s prospective profits. In this case, patent protection (an obstacle to

imitation) may not be useful for encouraging corporate innovation. The second

view is that technological imitation has a negative effect on corporate innovation

due to free-riding problems. For example, Zeng (2001) found that an increase

in subsidies to technological imitation would increase investment in technological

imitation and decrease investment in technological innovation. Given the assump-

tion that innovation is independent, unlike the assumptions made by Bessen and

Maskin (2009), technological imitation will decrease the value of a firm’s innova-
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tion outcomes, thereby reducing its incentives to innovate. The third view predicts

an inverted U-shaped relationship between technological imitation and corporate

innovation. Positive externalities from the interactions among firms during the

process of innovation outweigh the negative effects of free-riding concerns on

firms’ innovation activities and incentives to innovate up to a high degree of tech-

nological imitation, while free-riding concerns outweigh the positive externalities

when the level of technological imitation is extremely high. In this spirit, Aghion

et al. (2001) argued that a small amount of imitation almost always contributes to

growth because it promotes more frequent close competition, whereas extremely

high imitation unambiguously reduces growth due to free-riding problems.

In this study, we empirically investigate whether the degree of industry-level

technological imitation increases or decreases firms’ innovation activities and

their incentives to innovate by utilizing firm-level patent data for US firms be-

tween 1977 and 2005. First, we perform an industry-level analysis as in Aghion

et al. (2001) by regressing an industry-average innovation measure (i.e., number

of patents and number of citations) on a competitor-quick-citation ratio for each

industry-year as a measure of technological imitation. This study finds that the

increase in technological imitation leads to an increase in the quantity of innova-

tion up to the 89th percentile of technological imitation, but the effect becomes
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negative after that point. This result implies that the positive externalities from the

interactions among firms during the process of innovation outweigh the negative

effects of free-riding concerns on firms’ innovation activities up to a high degree

of technological imitation, while free-riding concerns outweigh the positive exter-

nalities when the level of technological imitation is extremely high. In addition,

we repeat the analysis for each Pavitt technological sector to investigate whether

the relationship between the degree of technological imitation and the quantity of

industry-average innovation is heterogeneous across sectors. In general, all Pavitt

sectors have peak points at similar imitation levels (between the 83rd and 90th

percentile), although Pavitt 4 has a peak point at an imitation level significantly

lower than Pavitt sector 2 at the 5% level. The results imply that regardless of

Pavitt sectors, the positive externalities from the interactions among firms dur-

ing the innovation process dominate the negative effects of free-riding concerns

on firms’ innovation activities up to a rather high degree of technological imita-

tion, whereas free-riding concerns dominate the positive externalities in the case

of extremely high levels of technological imitation.

We then investigate the impact of technological imitation on the value of firm-

level innovation using the approach of Im et al. (2015), Faulkender and Wang

(2006), and Dittmar and Mahrt-Smith (2007). We find that an increase in techno-
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logical imitation leads to an increase in the value of innovation up to the 82nd to

85th percentile of technological imitation, but the effect becomes negative after

that point. This finding implies that the positive externalities from the interac-

tions among firms during the innovation process outweigh the negative effects

of free-riding concerns on firms’ incentives to innovate up to a high degree of

technological imitation; however, free-riding concerns outweigh the positive ex-

ternalities when technological imitation is at extremely high levels. To further ex-

amine whether the relationship between technological imitation and the value of

innovation is heterogeneous across sectors, we repeat the analysis for each Pavitt

technological sector, finding that the relationships between technological imita-

tion and the market value of firm-level innovation are not very different across

Pavitt technology sectors.

Finally, we further investigate how the relationship between imitation and in-

novation differs between agglomerated and non-agglomerated industries. This

study finds that the impacts of technological imitation on both the quantity and

the market value of innovation are stronger for agglomerated industries than for

non-agglomerated industries; thus, the positive effect of a moderate level of imita-

tion and the negative effect of an excessive level of imitation are more pronounced

for agglomerated industries. The results suggest that creating innovation clusters,
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such as Silicon Valley in the United States and Shenzhen City in China, and allow-

ing different innovators to cooperate, imitate and compete with each other would

be very effective in promoting corporate innovation.1 However, an excessively

high level of technological imitation is more detrimental for firms in innovation

clusters because it lowers those firms’ incentives to innovate more radically.

The main contribution of this study is twofold. First, we propose a novel

technological imitation measure to empirically test the impact of imitation on the

quantity and value of innovation. Although we are not the first to investigate the

imitation-innovation relationship, previous studies are mainly based on a small

sample limited to a specific industry and/or short horizon of time (Baptista and

Swann, 1998; Casadesus-Masanell and Zhu, 2013; Czarnitzki and Kraft, 2011;

Kim, 1997). Our imitation measure can be applied to a large sample across differ-

ent industries. Our findings support the inverted U-shaped relationship between

imitation and the quantity and value of innovation. It is also notable that our find-

ings suggest that even a developed country such as the United States could benefit

1An article in the South China Morning Post on 28 September 2016 introduced the success of
Shenzhen City in promoting corporate innovation: “Beginning in 2013, Shenzhen funnelled more
than 4 per cent of its annual GDP into research and development, putting it on par with South
Korea and Israel. The city now accounts for almost half of the mainland’s international patent
filings—about 13,300 last year, even outpacing the UK or France. In the first six months of this
year, Shenzhen filed 9,002 patent applications under the international patent system, 50 per cent
up year on year, according to the municipal government.”
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from a certain allowance of imitation. Second, the large sample used in this study

makes it possible to examine heterogeneity across industries. Our findings suggest

that the impact of imitation across industries differs and that the industry’s level

of agglomeration moderates the relationship between imitation and the quantity

and value of innovation.

The remainder of the paper is organized as follows. In Section 2, we first

review the literature regarding the relationship between technological imitation

and the quantity and value of innovation. We then review the literature regarding

the moderating effect of agglomeration on those relationships. Section 3 describes

the sample, the measurement of variables, and the descriptive statistics. In Section

4, we present our empirical models and results. Section 5 concludes the paper.

2. Related literature

Innovation is a key competitive advantage for a firm (Porter, 1980). Therefore,

the mechanism of protecting it from being imitated by competitors is crucial for a

firm’s motivation to innovate (Rumelt and Lamb, 1984). Various studies suggest

that such protection mechanisms against imitation generate incentives for firms to

perform active research and development (R&D). In addressing the mechanism,

the complexity of the innovation (Ethiraj et al., 2008; Rivkin, 2000) and legislative
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aspects, such as intellectual property rights (Arrow, 1972), are the major passive

and active components, respectively. One of the main findings in the literature is

that the complexity of the technology naturally acts as a protection mechanism,

while strong patents directly impede imitation. As a result, patent protection en-

courages firms to innovate; however, it could spur monopoly pricing by patent

owners (Arrow, 1972; Tirole, 1988; Grossman and Helpman, 1991; Aghion and

Howitt, 1992). Amara et al. (2008) also suggest that the selection of protection

mechanisms against imitation is particularly important for knowledge-intensive

businesses, as the imitation from competitors will directly impinge a firm’s prof-

itability and diminish its value of knowledge. In this spirit, Zeng (2001) argues

that technological imitation would decrease the value of a firm’s innovation ac-

tivities due to free-riding concerns. In an industry where imitation activities are

prevalent, the value of a firm’s innovation outcomes will be diminished due to the

risk of being copied and the possibility of being surpassed by competitors.

On the other hand, a recent stream of studies started investigating the poten-

tial implication of imitation on corporate innovation, focusing on the externalities

of innovation and technological learning. Czarnitzki and Kraft (2011) provide

solid empirical evidence for the existence of knowledge spillovers among com-

petitors, thereby stimulating firms to learn and imitate competitors’ leaked knowl-
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edge. Roper et al. (2013) introduce the notion of externalities of openness in

innovation. Their findings suggest that openness enables enhanced knowledge

diffusion and that externalities positively influence innovation outputs by inten-

sifying market competition. Furthermore, another strand of research establishes

the importance of the learning effect due to the sequential characteristic of inno-

vation. Bessen and Maskin (2009) argue that if innovation is sequential (such that

each successive innovation is made based on its predecessors’ earlier innovations)

and complementary (such that each potential innovator takes a different research

line), technological imitation will enhance a firm’s incentives to innovate and thus

increase the quantity of innovation. Given that innovation is sequential and com-

plementary in an industry, imitation activities will provide learning opportunities

to newcomers. Once innovation is achieved by imitating a predecessor, it will trig-

ger other firms to deliver more creative and valuable ideas by using the precedent

outcome as a basis (i.e., other firms will apply for new patents quickly after citing

a predecessor’s patent and implement further development). This is also in line

with the findings by Hopenhayn et al. (2006).

However, it is likely that both the positive and negative sides of imitation (i.e.,

technological free riding and positive externalities) coexist. Aghion et al. (2001)

argue that a small amount of imitation almost always enhances growth, as it pro-
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motes more frequent close competition, whereas a high degree of imitation ev-

idently slows growth due to free-riding problems. When the level of imitation

is moderately low, positive externalities from the interactions among firms out-

weigh the negative effect of free-riding concerns on firms’ innovation activities.

When the imitation level in a certain industry is extremely high, however, the

negative effect of free-riding concerns outweighs the positive effect of techno-

logical externalities. In this case, a firm cannot enjoy the monopolistic advantage

from innovation, resulting in strong discouragement towards further development.

An innovation outcome can be instantly discovered or duplicated by competitors;

therefore, the value of patent or the invention of new products or services will be

diminished, which will hinder firms from facilitating enhanced R&D activities.

Thus, a newly granted patent is much less valuable to companies in an indus-

try with a more intensive degree of imitation. In turn, the quantity of innovation

decreases with the degree of technological imitation prevalent in the industry.

Meanwhile, imitation is one of the major drivers of developing countries’ eco-

nomic development (Dobson and Safarian, 2008; Kim, 1997; Kim and Nelson,

2000). Developing countries generally tolerate imitation by imposing relatively

weak intellectual property right protection in their early stage. Once they reach a

certain stage of economic development, however, those countries showed a ten-
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dency to impose strong intellectual property right protection to support their own

non-tangible assets (Hwang et al., 2016). Similarly, in a certain industry where

firms are in their initial stage of development, a certain level of imitation provides

a better environment for innovation. In such cases, both quality (measured by the

increase in the market value of equity driven by a one-unit increase in innovation)

and quantity (measured by the number of patents or citations) of innovation in the

industry is anticipated to increase relative to the degree of imitation.

Because the main drivers of the effect of imitation are learning and free-riding,

we expect that agglomeration would play an important role. Firms in a clus-

ter would be able to learn and imitate their competitors’ innovation much easier

than those firms not in a cluster. For instance, information sharing has become

a hallmark of Silicon Valley firms. Various high-tech companies, such as Face-

book, Google, and Twitter, have designed their work spaces to enhance the inter-

action and sharing of ideas among workers. This knowledge spillover effect is

also well supported by several recent studies. Carlino and Kerr (2015) note that

knowledge spillovers are one of the main theoretical linkages between innova-

tion and agglomeration, while Jaffe et al. (1993) find that citation-linked patent

pairs tend to be in closer spatial proximity than the control patent pairs, which im-

plies strong evidence that knowledge spillovers are geographically concentrated.
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Such findings are further supported by Jaffe et al. (2000) and Thompson (2006).

Along with the results that spillovers dissipate rapidly with distance (Conley et al.,

2003; Moretti, 2004; Adams and Jaffe, 1996), we expect the impact of imitation

to be more significant in agglomerated industries. As a byproduct, our results also

contribute to the discussion on the policy implications of agglomeration. Chat-

terji et al. (2014) suggest that our understanding of which policy supports en-

trepreneurial clusters and how it works is quite limited. Therefore, the existence

of an optimal technological imitation level and heterogeneity among industries

implies the complexity of the optimal policy on agglomeration. This statement is

also in line with the argument that there is no single ideal model for innovation

policy because innovation activities differ significantly between central, periph-

eral and old industrial areas (Tödtling and Trippl, 2005).

Various theoretical models based on different assumptions and model settings

do not demonstrate unanimous predictions regarding the relationship between imi-

tation and innovation. Therefore, this study empirically investigates whether tech-

nological imitation and the quantity and value of innovation have upward-sloping,

downward-sloping, or inverted U-shaped relationships. Furthermore, Greenhalgh

and Rogers (2006) and Im et al. (2015) find that the relationship between the

market value of innovation and product market competition differs across indus-
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tries. The innate characteristics of industries are the main determinants for the

costs and benefits of imitation. The benefits from learning would be higher for

science-based industries but lower for information-based industries. Furthermore,

legislative backgrounds and innovation types also differ across industries. For

instance, the pharmaceutical industry and software industry are subject to very

different regulations and have very different innovation outputs. Thus, the impact

of imitation on innovation could also be very different across industries. We in-

vestigate whether the impacts of imitation on the quantity and value of innovation

are heterogeneous across sectors. Finally, we revisit the question raised by Bap-

tista and Swann (1998) and investigate whether the impact of imitation is greater

for agglomerated industries.

3. Sample selection and variable construction

3.1. Sample selection

Our key dataset is the latest version of the National Bureau of Economic

Research (NBER) US Patent Citations Data File, which contains firms’ patent-

related information, including the patent identifier, citing patent identifier, patent

assignee names, number of citations received by each patent, and each patent’s ap-

plication year over the period 1976–2006. Truncation issues in our patent dataset
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are handled by implementing the method of Hall et al. (2001, 2005). We exclude

observations before 1977 and after 2005 to further mitigate concerns arising from

truncations. Thus, our patent dataset covers all patents applied during the 1977–

2005 period.

We use data from Compustat North America to construct industry-average

and firm-level variables based on the information contained in financial state-

ments. We also use data for returns to individual firms’ stocks from the Center

for Research in Security Prices (CRSP) and data for returns to the 25 portfolios

formed based on size and book-to-market (5×5) from Kenneth French’s data li-

brary (or industry-average stock returns) to calculate excess stock returns. We

exclude firms in the utilities and financial service sectors and restrict the sample

to firms whose common shares are publicly traded on the three major US stock

exchanges (NYSE, NASDAQ, and AMEX).

We match our patent dataset with Compustat/CRSP data using a match table

that contains a firm identifier (i.e., GVKEY) as well as patent assignee and patent

identifier data. When we calculate firm-level patent and citation numbers, we

assume that firms without any information in our patent dataset have no patents.

Therefore, our sample is not constrained by the NBER database. Our sample

covers new firms that are listed in the stock market and firms that are delisted
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from the stock market or that go out of business, as long as they are covered by

Compustat/CRSP. Our final sample is an unbalanced panel of 9,064 firms among

296 four-digit Standard Industrial Classification (SIC) industries over the 29-year

period of 1978–2006.2

3.2. Construction of Variables

As measures for firm-level innovation activities, we use i) the number of

patents that firm i applied for in year t (COUNTi,t) and ii) the number of cita-

tions of the patents that firm i applied for in year t (CIT Ei,t). Similarly, to mea-

sure industry-average innovation activities, we use i) the industry-average number

of patents that firms in industry j applied for in year t (COUNT j,t) and ii) the

industry-average number of citations of the patents that firms in industry j ap-

plied for in year t (CIT E j,t). As both firm-level and industry-average measures

are skewed to the right, the natural logarithm of one plus each of the original mea-

sures is used in the industry-level regressions reported in Subsection 4.1 and the

firm-level regressions reported in Subsection 4.2.

To measure the intensity of technological imitation in industry j in year t,

IMIRaw
j,t , we use the industry-average competitor-quick-citation ratio, where the

2Note that we use the lagged value of our imitation measure constructed based on our patent
dataset.
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competitor-quick-citation ratio is defined as the ratio of Number of competitors’

within-five-year citations for the patents that any firms in industry j applied for

in year t to the Number of all citations for the patents that any firms in industry

j applied for in year t, where competitors are defined as all peers with the same

four-digit SIC industry code.3 For example, IMIRaw
j,t = 0 means that no patents

applied for in year t by any firms in industry j were cited by any competitors

within five years after the patent application, implying that the degree of imitation

in industry j is extremely low in year t. By contrast, IMIRaw
j,t = 0.5 means that the

patents applied for in year t by any firms in industry j have been heavily cited by

competitors within five years after the patent application, implying that the degree

of technological imitation in industry j is quite high in year t. In this sense,

we believe that the degree of imitation in a certain industry should be positively

correlated with the industry-average competitor-quick-citation ratio. We use the

standardized technological imitation measure (IMI j,t) in regression models.

However, our measure has some potential limitations. First, an imitation could

take place without patent citations. For example, competitors could adopt similar

functions or designs without citing patents. This could occur quite often in the

3We are the first to use the industry-average competitor-quick-citation ratio as an indicator of
industry-level technological imitation. We tried to find alternative indicators of imitation in the
prior literature, but we could not find any promising alternative measures.
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case of production innovation. However, our focus is more on a common type

of technological innovation that can be protected only by applying for patents.

When they apply for new patents, firms are required to cite relevant patents. Oth-

erwise, their applications may not be successful. Moreover, imitating without

citing and stealing others’ technologies are extremely costly for firms.4 There-

fore, we assume that the majority of technological imitation often involves the

citation of competitors’ patents. Second, there might be some “Type 1” errors in

our measure. Consider a situation in which an inventor who was not aware of the

existing patent might have invented a technology independently without imitation,

but the patent examiner requested that the inventor make the citation. In this case,

our measure should identify the independent work as an imitation. However, we

expect those cases to be few because researchers in a firm tend to be aware of

the patents in the same industry and consistently get updated of the new patents.

Third, patterns of patent citations may differ across industries and types of tech-

nology. Therefore, it is very important to ensure that our imitation measure does

not capture the variation driven by the heterogeneity across industries. To obtain

4In the United States, patent infringement is normally treated as a civil offense, and the Na-
tional Intellectual Property Rights Coordination Center (IPR Center) stands at the forefront of the
government’s response to global intellectual property theft and enforcement of its international
trade laws. In some countries (e.g., Argentina, China, France, Japan, Russia, and South Korea),
the cases are handled in criminal laws. Thus, those uncaptured imitation using our proxy might
exist, but it could be extremely costly for firms.
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the imitation measure to be used in the regression models, we standardize the

industry-average competitor-quick-citation ratio using the within-industry mean

and within-industry standard deviation. In addition, we conduct sector-by-sector

analyses.

Overall, our imitation measure based on patent citations would be an effec-

tive proxy for the level of imitation of patents or technology given a firm’s strong

incentive of being protected from patent infringement under the strong legal en-

forcement system in the United States. However, the measure should be treated

with caution when used for developing countries with low litigation costs or when

measuring non-patent innovation, such as innovation in business strategies or

product designs.

All variables are winsorized at the 1st and 99th percentiles, and their defini-

tions are reported in Appendices A and B.5 Table 1 reports the summary statistics

for those variables. Panel A is related to the industry-level analysis concerning

the effect of imitation on the quantity of innovation (Subsection 4.1), and Panel B

is related to the firm-level analysis regarding the effect of imitation on the market

value of innovation (Subsection 4.2).

5Firm age is winsorized at 37 years following Hadlock and Pierce (2010).
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Table 1: Summary statistics

Panel A. Industry-level variables

Variable Obs Mean S.D. Min Q1 Median Q3 Max

COUNT j,t 6,400 7.578 16.128 0.000 0.333 1.531 6.167 88.394
CIT E j,t 6,400 88.837 187.668 0.000 2.864 16.246 72.231 1009.677

ln(1+COUNT j,t) 6,400 3.110 1.964 0.000 1.609 2.890 4.537 7.460
ln(1+CIT E j,t) 6,400 5.061 2.640 0.000 3.495 5.203 6.877 10.114

Size j,t−1 6,400 4.772 1.433 1.580 3.750 4.556 5.556 9.075
ROA j,t−1 6,400 -0.053 0.555 -4.230 -0.013 0.085 0.135 0.284
R&D j,t−1 6,400 0.041 0.067 0.000 0.004 0.014 0.045 0.364
PPE j,t−1 6,400 0.301 0.136 0.056 0.203 0.273 0.371 0.770
Lev j,t−1 6,400 0.284 0.133 0.008 0.187 0.271 0.368 0.781

Capex j,t−1 6,400 0.066 0.036 0.008 0.043 0.059 0.080 0.262
MB j,t−1 6,400 2.511 5.174 0.455 0.930 1.304 2.026 42.707
Age j,t−1 6,400 13.425 5.601 2.000 9.348 12.619 16.567 34.000
KZ j,t−1 6,400 2.613 8.629 -32.735 0.422 1.596 3.239 61.104
IMI j,t−1 6,400 -0.006 0.949 -1.173 -0.588 -0.353 0.247 3.507
IMI2

j,t−1 6,400 0.905 1.948 0.000 0.112 0.288 0.656 12.302

Note: This table shows summary statistics for the industry-level variables used in Table 2, Table 4, and Table 8.

Panel B. Firm-level variables
Variable Obs Mean S.D. Min Q1 Median Q3 Max

ri,t 67,537 0.164 0.697 -0.856 -0.263 0.040 0.390 3.292
ri,t −Rp,t 67,537 0.002 0.682 -1.089 -0.409 -0.109 0.230 3.046
ri,t −R j,t 67,537 -0.017 0.619 -1.302 -0.369 -0.084 0.213 2.612
INN1i,t−1 67,537 0.614 1.111 0.000 0.000 0.000 0.701 4.615
INN2i,t−1 67,537 1.236 2.078 0.000 0.000 0.000 2.504 7.153

∆Earningsi,t 67,537 0.025 0.235 -0.985 -0.036 0.010 0.057 1.905
∆Assetsi,t 67,537 0.065 0.637 -4.186 -0.057 0.054 0.195 3.529
∆R&Di,t 67,537 0.000 0.031 -0.184 0.000 0.000 0.005 0.117

∆Dividendsi,t 67,537 0.001 0.013 -0.093 0.000 0.000 0.000 0.082
LnTAi,t−1 67,537 4.526 2.070 -1.952 3.048 4.354 5.830 10.141

Leveragei,t−1 67,537 0.572 1.292 0.000 0.024 0.186 0.578 15.524
MBi,t−1 67,537 1.783 2.290 0.240 0.752 1.108 1.882 30.731

Financingi,t 67,537 0.052 0.300 -1.224 -0.028 0.002 0.078 2.057
∆Interestsi,t 67,537 0.002 0.043 -0.386 -0.002 0.000 0.006 0.242

Agei,t−1 67,537 12.598 9.313 2.000 5.000 10.000 18.000 37.000

Note: This table shows summary statistics for the variables used in Table 5, Table 7, and Table 9.
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4. Empirical models and results

4.1. Effects of technological imitation on the quantity of innovation: An industry-

level analysis

4.1.1. Full-sample analyses

To examine the relationship between the degree of technological imitation and

industry-level innovation activities, we estimate the following regression models:

y j,t = β0 +β1IMI j,t−1 +β2IMI2
j,t−1 +β

′
CONT ROLSCONTROLS

+Industry FE+Year FE+ ε j,t , (1)

where y j,t is an industry-level innovation measure for industry j in year t, and

IMI j,t−1 is the (standardized) industry-year-average competitor-quick-citation ra-

tio for industry j in year t − 1. The control variables include industry-average

values for the following measures: size, profitability, R&D intensity, asset tangi-

bility, leverage, investment, market-to-book ratio, firm age, and a financial con-

straint measure. We also add year dummies to capture unobserved heterogeneity

across years.

Table 2 presents the regression results. We first use fixed-effects regression

models as in Fang et al. (2014). Two industry-average innovation measures, i.e.,
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COUNT j,t and CIT E j,t , are skewed to the right, so we transform the variables

by adding one and then taking the natural logarithm (i.e., ln(1+COUNT j,t) or

ln(1+CIT E j,t)) as in Fang et al. (2014). The results reported in Columns (1)

and (5) suggest that there is an inverted U-shaped relationship between techno-

logical imitation and two log-transformed industry-average innovation measures.

As we include a quadratic term, IMI2
j,t−1, we test for multicollinearity using vari-

ance inflation factors (VIFs) based on an ordinary-least-squares (OLS) regression

model. The maximum VIF for the set of independent variables is only 2.41 (i.e.,

much smaller than 10), so multicollinearity does not appear to be a serious is-

sue.6 In addition, our main finding is robust to i) using three-digit SIC codes

to classify industries; ii) defining the degree of imitation as an industry-average

competitor-citation ratio without the five-year restriction; iii) restricting the sam-

ple to the industry-years with at least 30 patents; and iv) controlling for product

market competition as measured by (1-Lerner’s index). We also find very similar

results when using firm-level variables instead of industry-average variables.

However, it is often reported that log transformations perform poorly com-

pared to Poisson and negative binomial models, except when the dispersion is

6A maximum VIF greater than 10 is believed to signal serious multicollinearity (Marquaridt,
1970).
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small and the mean counts are large (e.g., O’hara and Kotze (2010)). Thus, we em-

ploy three types of count data regression models (i.e., Poisson regression model,

negative binomial regression model, and zero-inflated negative binomial regres-

sion model) in which the dependent variable is one of the two original industry-

average innovation measures (i.e., COUNT j,t or CIT E j,t) as in Aghion et al.

(2005). Columns (2) and (6) present the results from Poisson regression mod-

els. Regardless of the choice of the dependent variable, we find evidence that

there is an inverted U-shaped relationship between technological imitation and

industry-average innovation.7 However, as the summary statistics in Table 1 Panel

A indicate, the standard deviation of COUNT j,t is 2.13 times its mean, and the

standard deviation of CIT E j,t is 2.11 times its mean; thus, there is a strong pos-

sibility that these variables are over-dispersed. In such a case, negative binomial

models would be more appropriate.

Columns (3) and (7) present the results from negative binomial regression

models. We first test whether the dispersion parameter α is equal to zero using the

likelihood-ratio χ2 test. The test statistic in Column (3) (Column (7)) is negative

two times the difference of the log-likelihood from the Poisson model and the

negative binomial model, 3,099 (120,000) with an associated p-value of 0.000

7We conduct further tests to conclude that there is an inverted U-shaped relationship.
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(0.000). The high test statistics suggest that both COUNT j,t and CIT E j,t are over-

dispersed and are not sufficiently described by the simpler Poisson distribution.

Again, we find evidence that there is an inverted U-shaped relationship between

technological imitation and industry-average innovation measured by COUNT j,t

and CIT E j,t .

However, the low median values of COUNT j,t and CIT E j,t in Table 1 Panel A

also suggest that there may be many zeros for these variables. According to our in-

vestigation, COUNT j,t (CIT E j,t) has 470 (669) zeros among 6,400 industry-year

observations. If there are many zeros, a zero-inflated negative binomial model that

explicitly models excess zeros (or certain zeros) would be appropriate. Columns

(4) and (8) present the results from zero-inflated negative binomial regressions. To

predict membership in the “certain zero” group, first-stage logistic models include

various predictors such as Prop. of zero R&D firms, imitation, imitation squared,

firm size, return on assets, asset tangibility, leverage, capital expenditures, market-

to-book ratio, firm age, and a financial constraint measure.8 Only Prop. of zero

R&D firms has significant coefficients in both first-stage logistic models reported

8We do not include an agglomeration measure in this regression model because sample size
drops significantly in this case. The concentration data are available only for the manufacturing
sector, and the state and area employment, hours, and earnings database is publicly available
only for the period between 1990 and 2002. Nevertheless, we have tested whether our main
results still hold when agglomeration is controlled for, finding that our results with and without
the agglomeration measure are quite similar.
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in Columns (4) and (8). Significantly positive coefficients suggest that the higher

the proportion of zero R&D firms, the more likely it is that the industry has a

certain zero.

A Vuong test is often used to compare a zero-inflated negative binomial model

with a corresponding standard negative binomial model. In Column (4), the

Vuong test statistic is not significantly different from zero at the conventional level

of significance (p-value=0.971), suggesting that the zero-inflated negative bino-

mial model reported in Column (4) does not have a better fit than the correspond-

ing standard negative binomial model reported in Column (3). Columns (3) and

(4) both provide evidence that there is an inverted U-shaped relationship between

technological imitation and the quantity of innovation measured by COUNT j,t .

However, in Column (8), the Vuong test statistic is significant at the 1% level (p-

value=0.000), suggesting that the zero-inflated negative binomial model reported

in Column (8) has a better fit than the corresponding standard negative binomial

model reported in Column (7). Once again, we find evidence that there is an

inverted U-shaped relationship between technological imitation and quantity of

innovation measured by CIT E j,t .

To thoroughly examine whether there is an inverted U-shaped relationship be-

tween technological imitation and the quantity of innovation, we follow the pro-
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cedures suggested by Haans et al. (2016).9 First, we conduct Lind and Mehlum’s

(2010) test to examine whether the slopes at the lower and upper bounds are sig-

nificantly positive and negative, respectively. The Lind and Mehlum’s test results

based on zero-inflated negative binomial models reported in Column (4) (Col-

umn (8)) suggest that the slope at the lower bound is 0.745 [t-stat=8.88] (0.738

[t-stat=9.57]) and the slope at the upper bound is -0.674 [t-stat=-7.81] (-0.664 [t-

stat=-7.51]), and the overall test of an inverted U-shaped relationship rejects the

null hypothesis of a monotone or U-shaped relationship at the 1% level of signifi-

cance with a t-statistic of 7.81 (7.51). Thus, Lind and Mehlum’s tests confirm that

slopes at the lower and upper bounds are significantly positive and negative at the

1% level. Second, we test whether the turning point and its 95% confidence in-

terval are within the data range of technological imitation. The estimation results

based on zero-inflated negative binomial models suggest that the industry-average

number of patents (COUNT j,t) peaks when IMI j,t−1 has a value of 1.272 with the

95% confidence interval of [1.139, 1.405], while the industry-average number of

citations (CIT E j,t) peaks when IMI j,t−1 has a value of 1.317 with the 95% con-

fidence interval of [1.162, 1.471].10 An investigation of the distribution of our

9We thank the anonymous referee for suggesting the procedures.
10The standardized imitation level corresponding to each of the peak points is estimated as

−β
IMI j,t−1/2β

IMI2
j,t−1 , where β

IMI j,t−1 is the regression coefficient of IMI j,t−1 and β
IMI2

j,t−1 is the
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imitation measure suggests that turning points correspond to approximately the

89th percentile with their 95% confidence intervals being [the 87th percentile, the

90th percentile],11 suggesting that the turning points and their 95% confidence

intervals are within the data range of technological imitation. Thus, an increase

in technological imitation leads to an increase in the quantity of innovation up

to the 89th percentile of technological imitation, but after that point, the effect

becomes negative. This result implies that the positive externalities from the in-

teractions among firms during the process of innovation outweigh the negative

effects of free-riding concerns on firms’ innovation activities up to a high degree

of technological imitation. By contrast, free-riding concerns outweigh the positive

externalities when the level of technological imitation is extremely high.

4.1.2. Sector-by-sector analyses

To further examine whether the relationship between technological imitation

and the quantity of innovation is heterogeneous across sectors, we repeat the anal-

ysis for each sector, where the sector is defined following Greenhalgh and Rogers’

(2006) classification of six technology sectors. Greenhalgh and Rogers (2006)

expanded Pavitt’s (1984) classification of technology sectors. Pavitt (1984) origi-

regression coefficient of IMI2
j,t−1.

11The summary statistics for IMI j,t−1 reported in Table 1 suggest that the sample mean (median)
is -0.006 (-0.353),and the minimum (maximum) is -1.173 (3.507).
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nally introduced four industrial classifications based on technological trajectories:

“supplier dominated” (Pavitt 1), “production intensive (scale intensive)” (Pavitt

2), “production intensive (specialist suppliers)” (Pavitt 3), and “science based”

(Pavitt 4). Tidd et al. (2005) included a new sector called “information intensive”

(Pavitt 5), which includes firms in finance, retail and publishing. Greenhalgh and

Rogers (2006) allocated “software-related firms” (Pavitt 6) to a separate sector.

Table 3 describes the Pavitt technology sectors and provides some summary

statistics. This table shows that innovation patterns are very heterogeneous across

the Pavitt sectors. Pavitt sectors 3 and 4 have significantly higher levels of inno-

vation: larger proportions of R&D firms, higher proportions of firms with patents,

and higher R&D-to-total-assets ratios. Software industries (Pavitt 6) have a larger

proportion of R&D firms and a higher R&D-to-total-assets ratio, but have a rela-

tively lower proportion of firms with patents. Pavitt sectors 5 and 1 tend to have

significantly lower levels of innovation based on the three measures. This ta-

ble also shows that imitation levels are very heterogeneous across Pavitt sectors.

Pavitt sectors 3 and 4 with significantly higher levels of innovation have signifi-

cantly higher levels of imitation as well. Pavitt sector 5, with the lowest level of

innovation, also has the lowest level of imitation. Pavitt sector 4, with a higher

imitation level than Pavitt sector 3, has a lower proportion of R&D firms, a lower
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proportion of firms with patents, and a higher R&D-to-total-assets ratio. This pre-

liminary analysis of the summary statistics implies that there may be an inverted

U-shaped or positive relationship between innovation activities and the degree of

industry-level imitation.

Table 4 reports the zero-inflated negative binomial regression results for each

sector. The dependent variable is the industry-average number of citations of the

patents that any firms in industry j applied for in year t (CIT E j,t). In all six

Pavitt sectors, Prop. of zero R&D firms has significantly positive signs in the

logistic models predicting membership in the “certain zero” group, suggesting

that the higher the proportion of zero R&D firms, the more likely the industry is

to have a certain zero. In the six sectors, the test statistics for the Vuong tests

are significant at the 1% (10%) level for Pavitt sectors 1, 2, 3, 4, and 5 (Pavitt

sector 6), suggesting that in all Pavitt sectors, the zero-inflated negative binomial

model is a better fit than the standard negative binomial model. We find a clear

inverted U-shaped relationship between technological imitation and the quantity

of innovation, regardless of the Pavitt sector.

The estimation results based on the zero-inflated negative binomial regres-

sions suggest that CIT E j,t has peaks at the 89th, 90th, 89th, 83rd, 86th, and 88th

percentiles in Pavitt sectors 1, 2, 3, 4, 5, and 6, respectively. The 95% confi-
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dence intervals of the imitation levels corresponding to the peak points are as

follows: (1) Pavitt sector 1: [85th percentile, 93rd percentile]; (2) Pavitt sector

2: [88th percentile, 93rd percentile]; (3) Pavitt sector 3: [86th percentile, 91st

percentile]; (4) Pavitt sector 4: [77th percentile, 87th percentile]; (5) Pavitt sec-

tor 5: [84th percentile, 88th percentile]; and (6) Pavitt sector 6: [83rd percentile,

92nd percentile]. The results suggest that the peak points and their 95% confi-

dence intervals are within the data range. In general, all Pavitt sectors have peak

points at similar imitation levels, although Pavitt sector 4 has a peak point at a

significantly lower imitation level compared to Pavitt sector 2 at the 5% level.12

The differences across Pavitt sectors are not economically meaningful given that

all 6 sectors have peaks between 83rd percentile and 90th percentile. The results

imply that regardless of the Pavitt sector, the positive externalities from the inter-

actions among firms during the innovation process dominate the negative effects

of free-riding concerns on firms’ innovation activities up to a rather high degree

of technological imitation, whereas free-riding concerns dominate the positive ex-

ternalities only when technological imitation is at extremely high levels.

12Note that the 95% confidence intervals for Pavitt sectors 2 and 4 do not overlap with each
other.
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4.2. Effects of technological imitation on the market value of innovation: A firm-

level analysis

4.2.1. Full-sample analyses

To further investigate the impact of technological imitation on the value of

firm-level innovation, we follow the approach used by Im et al. (2015).13 To

measure the market value of firm-level innovation, we estimate the sensitivity

of raw (excess) stock returns to a firm-level innovation measure controlling for

various factors affecting stock returns. Specifically, we estimate the coefficient

of a firm-level innovation measure in a regression model in which the dependent

variable is raw (excess) stock returns. In this study, we model the regression

coefficient as a quadratic function of technological imitation to investigate the

effect of the degree of technological imitation on a firm’s incentive to innovate as

measured by the market value of firm-level innovation.

The model is specified as follows:

ri,t (or ri,t−RB,t) = β0 +β1INNi,t−1 +β
′
CONT ROLSCONTROLS

+Firm FE+Year FE+ εi,t , (2)

13Im et al. (2015) employed the approach used by Faulkender and Wang (2006) and Dittmar
and Mahrt-Smith (2007) to measure the market value of cash holdings.
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Table 5: Effects of technological imitation on the market value of firm-level innovation: Annual
raw or excess stock returns as the dependent variable

(1) (2) (3) (4) (5) (6) (7) (8)
Dependent variable ri,t ri,t −Rp,t ri,t −R j,t VIF ri,t ri,t −Rp,t ri,t −R j,t VIF

INN1i,t−1 0.032*** 0.032*** 0.020*** 1.82
(0.006) (0.006) (0.005)

INN1i,t−1× IMI j,t−1 0.012*** 0.017*** 0.009*** 2.92
(0.004) (0.004) (0.003)

INN1i,t−1× IMI2
j,t−1 -0.009*** -0.008*** -0.006*** 3.26

(0.002) (0.002) (0.001)
INN2i,t−1 0.017*** 0.016*** 0.011*** 1.77

(0.002) (0.002) (0.002)
INN2i,t−1× IMI j,t−1 0.011*** 0.013*** 0.007*** 2.53

(0.002) (0.002) (0.002)
INN2i,t−1× IMI2

j,t−1 -0.006*** -0.005*** -0.003*** 2.78
(0.001) (0.001) (0.001)

IMI j,t−1 0.011*** 0.007* 0.003 1.99 0.009** 0.004 0.001 1.96
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

∆Earningsi,t 0.569*** 0.576*** 0.467*** 1.11 0.569*** 0.577*** 0.468*** 1.11
(0.020) (0.020) (0.018) (0.020) (0.020) (0.018)

∆Assetsi,t 0.231*** 0.223*** 0.194*** 1.70 0.231*** 0.223*** 0.194*** 1.70
(0.009) (0.009) (0.008) (0.009) (0.009) (0.008)

∆R&Di,t 0.763*** 0.791*** 0.676*** 1.10 0.764*** 0.790*** 0.676*** 1.10
(0.126) (0.127) (0.119) (0.126) (0.127) (0.119)

∆Dividendsi,t 1.359*** 1.416*** 1.112*** 1.01 1.358*** 1.416*** 1.112*** 1.01
(0.281) (0.289) (0.257) (0.281) (0.289) (0.257)

LnTAi,t−1 -0.236*** -0.236*** -0.196*** 1.83 -0.236*** -0.235*** -0.196*** 1.74
(0.007) (0.007) (0.006) (0.007) (0.007) (0.006)

Leveragei,t−1 0.090*** 0.089*** 0.077*** 1.21 0.090*** 0.089*** 0.077*** 1.21
(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

MBi,t−1 -0.076*** -0.068*** -0.068*** 1.15 -0.077*** -0.069*** -0.068*** 1.15
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

Financingi,t 0.110*** 0.120*** 0.102*** 1.42 0.110*** 0.120*** 0.102*** 1.42
(0.018) (0.018) (0.016) (0.018) (0.018) (0.016)

∆Interestsi,t -1.423*** -1.395*** -1.163*** 1.26 -1.422*** -1.394*** -1.163*** 1.26
(0.106) (0.107) (0.095) (0.106) (0.107) (0.095)

Agei,t−1 0.008 -0.002 0.009** 1.43 0.011** -0.001 0.011** 1.43
(0.005) (0.005) (0.004) (0.005) (0.005) (0.004)

Constant 1.123*** 0.731*** 0.652*** 1.127*** 0.733*** 0.653***
(0.030) (0.030) (0.026) (0.030) (0.030) (0.026)

Year fixed effects Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes

Observations 67,537 67,537 67,537 67,537 67,537 67,537
Adjusted R-squared 0.261 0.191 0.158 0.262 0.191 0.158

Note: This table reports the results of regressions designed to estimate the impact of technological imitation on the value of
firm-level innovation. Raw stock returns (ri,t ) or excess returns (ri,t −Rp,t or ri,t −R j,t ) are used as the dependent variable.
The regression models reported in Columns (1) through (3) and Columns (5) through (7) are estimated using the within-
groups (i.e., fixed-effects) estimator. Standard errors clustered by firm are reported in brackets. *, **, and *** denote
statistical significance at the 10%, 5%, and 1% levels, respectively. In Columns (4) and (8), variance inflation factors
(VIFs) are reported.
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where

β1 = γ0 + γ1IMI j,t−1 + γ2IMI2
j,t−1. (3)

ri,t is the annualized stock return of firm i in year t, and RB,t is the annualized

return of the benchmark portfolio in year t. The benchmark portfolios are Fama

and French’s 5×5 portfolios of size and book-to-market ratio and industry portfo-

lio, and the corresponding portfolio returns are denoted Rp,t and R j,t , respectively.

IMI j,t−1 is the lagged technological imitation measure, and INNi,t−1 is the lagged

value of a firm-level innovation measure (INN1i,t−1 or INN2i,t−1). Both measures

are defined in Appendix B. The control variables include the ratio of the change in

earnings to market equity, the ratio of the change in total assets to market equity,

the ratio of the change in R&D expenses to market equity, the ratio of the change

in dividends to market equity, the ratio of the change in interest expenses to mar-

ket equity, the ratio of new financing to market equity, the lagged leverage ratio,

the lagged natural logarithm of total assets, the lagged market-to-book ratio, firm

age, and the linear term of imitation (IMI j,t−1).14 We employ within-groups (i.e.,

fixed-effects) estimators to capture unobserved heterogeneity across firms.15 We

14In addition to the control variables used in Im et al. (2015), we include firm age and the linear
term of imitation because firm age and the linear term may have an impact on stock returns. We
do not include the quadratic term of imitation because the quadratic term is not significant in most
regression models.

15Stock returns may vary with industry affiliation, so it is necessary to control for industry
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also include year dummies to capture unobserved heterogeneity across years. The

definitions of the control variables are provided in Appendix B.

Table 5 reports the regression results for the model specified in Equations (2)

and (3). We use two different measures for firm-level innovation and three differ-

ent regression specifications to measure the market value of innovation. Columns

(1) through (3) are based on INN1i,t−1 as a firm-level innovation measure, while

Columns (5) through (7) are based on INN2i,t−1. We use three dependent vari-

ables: ri,t is the raw return, ri,t − Rp,t is the excess return based on Fama and

French’s 5× 5 portfolios, and ri,t − R j,t is the excess return based on industry

portfolios. Regardless of the model specifications, the regression coefficient of

INNi,t−1× IMI2
j,t−1 is significantly negative at the 1% level and the regression

coefficient of INNi,t−1× IMI j,t−1 is significantly positive at the 1% level, suggest-

ing that the relationship between technological imitation and the market value of

innovation has an inverted U-shaped relationship. That is, a firm’s incentive to in-

novate increases with the intensity of technological imitation up to a certain point,

beyond which it starts to decrease with the intensity of technological imitation.

The estimation results with raw returns as the dependent variables suggest that

effects. However, we do not include industry dummies because the industry fixed effects are
subsumed by firm fixed effects.
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the value of innovation measured by the regression coefficient of INN1i,t−1 peaks

when IMI j,t−1 has a value of 0.672, while the value of innovation measured by the

regression coefficient of INN2i,t−1 peaks when IMI j,t−1 has a value of 0.920.16

The values correspond to approximately the 82nd and 85th percentiles, respec-

tively. The 95% confidence intervals for the peak points are [77th percentile, 85th

percentile] and [81st percentile, 88th percentile], respectively. The results suggest

that the peak points and their confidence intervals are within the data range. Thus,

an increase in technological imitation leads to an increase in the market value of

innovation up to the 82nd to 85th percentile of technological imitation, but the

effect then becomes negative after that point. This finding implies that the posi-

tive externalities from the interactions among firms during the innovation process

outweigh the negative effects of free-riding concerns on firms’ incentives to in-

novate up to a high degree of technological imitation, while free-riding concerns

outweigh the positive externalities when there is a very high level of technological

imitation.

As we include interaction terms, we test for multicollinearity using VIFs based

on an OLS regression model. The maximum VIF for the first (second) set of

16The standardized imitation level corresponding to each of the peak points is estimated
as −β

INNi,t−1×IMI j,t−1/2β
INNi,t−1×IMI2

j,t−1 , where β
INNi,t−1×IMI j,t−1 is the regression coefficient of

INNi,t−1× IMI j,t−1 and β
INNi,t−1×IMI2

j,t−1 is the regression coefficient of INNi,t−1× IMI2
j,t−1.
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independent variables is only 3.26 (2.78), so multicollinearity does not seem to

be a serious issue. Our main finding is robust to i) using three-digit SIC codes

to classify industries; ii) restricting the sample to the industry-years with at least

30 patents; iii) including firm fixed effects; and iv) controlling for the effect of

product market competition.

In the firm-level model specified in Equations (2) and (3), there might be an en-

dogeneity problem concerning the relationship between firm innovation (INNi,t−1)

and technological imitation (IMI j,t−1). The causal relationship between INNi,t−1

and IMI j,t−1 is actually the rationale underlying the industry-level model in Equa-

tion (1). A possible solution to the endogeneity concern is to construct a new de-

pendent variable, such as the stock return divided by INNi,t−1, which indicates the

average annual return of firm innovations.17 By directly including IMI j,t−1 and

IMI2
j,t−1 as explanatory variables, we can test for the curvilinear effects of tech-

nological imitation on the average annual return of firm innovations. We use the

same control variables as those used in Table 5. We employ within-groups (i.e.,

fixed-effects) estimators to capture unobserved heterogeneity across firms.18 We

17We are grateful to an anonymous referee for pointing out the potential endogeneity problem
and proposing the solution.

18The average annual return of firm innovations may vary with industry affiliation, so it is
necessary to control for industry effects. However, we do not include industry dummies because
the industry fixed effects are subsumed by firm fixed effects.
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Table 6: Effects of technological imitation on the market value of firm-level innovation: Annual
raw or excess stock returns per innovation as the dependent variable

(1) (2) (3) (4) (5) (6) (7) (8)
Dependent variable ri,t

INN1i,t−1

ri,t−Rp,t
INN1i,t−1

ri,t−R j,t
INN1i,t−1

VIF ri,t
INN2i,t−1

ri,t−Rp,t
INN2i,t−1

ri,t−R j,t
INN2i,t−1

VIF

IMI j,t−1 0.032*** 0.032*** 0.019** 5.32 0.016*** 0.016*** 0.010*** 4.88
(0.010) (0.010) (0.009) (0.004) (0.004) (0.004)

IMI2
j,t−1 -0.011*** -0.012*** -0.008** 3.35 -0.005*** -0.005*** -0.003** 2.94

(0.004) (0.004) (0.004) (0.002) (0.002) (0.002)
∆Earningsi,t 0.742*** 0.740*** 0.625*** 1.13 0.259*** 0.261*** 0.223*** 1.13

(0.055) (0.055) (0.049) (0.020) (0.020) (0.018)
∆Assetsi,t 0.221*** 0.217*** 0.184*** 1.76 0.086*** 0.085*** 0.077*** 1.79

(0.020) (0.020) (0.018) (0.007) (0.007) (0.007)
∆R&Di,t 0.570*** 0.619*** 0.470** 1.16 0.204** 0.211** 0.148* 1.15

(0.218) (0.217) (0.201) (0.084) (0.084) (0.078)
∆Dividendsi,t 0.462 0.713 0.132 1.03 0.188 0.328* 0.076 1.03

(0.498) (0.505) (0.453) (0.204) (0.198) (0.186)
LnTAi,t−1 -0.226*** -0.205*** -0.165*** 1.33 -0.073*** -0.067*** -0.057*** 1.35

(0.012) (0.012) (0.011) (0.005) (0.005) (0.004)
Leveragei,t−1 0.078*** 0.076*** 0.068*** 1.18 0.026*** 0.024*** 0.024*** 1.18

(0.013) (0.013) (0.011) (0.005) (0.005) (0.004)
MBi,t−1 -0.057*** -0.050*** -0.051*** 1.21 -0.019*** -0.016*** -0.016*** 1.21

(0.004) (0.004) (0.004) (0.001) (0.001) (0.001)
Financingi,t 0.143*** 0.162*** 0.134*** 1.50 0.032** 0.037*** 0.030** 1.50

(0.040) (0.040) (0.036) (0.014) (0.014) (0.013)
∆Interestsi,t -1.914*** -1.891*** -1.428*** 1.22 -0.731*** -0.716*** -0.586*** 1.23

(0.262) (0.260) (0.226) (0.100) (0.101) (0.094)
Agei,t−1 0.004 -0.002 0.004 1.63 0.005*** 0.001 0.002 1.67

(0.004) (0.004) (0.004) (0.002) (0.002) (0.002)
Constant 1.228*** 0.870*** 0.695*** 0.406*** 0.277*** 0.235***

(0.060) (0.060) (0.053) (0.024) (0.023) (0.021)

Year fixed effects Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes

Observations 22,274 22,274 22,274 20,388 20,388 20,388
Adjusted R-squared 0.235 0.173 0.141 0.230 0.168 0.140

Note: This table reports the results of regressions designed to estimate the impact of technological imitation on the value
of firm-level innovation. Raw stock returns per innovation or excess stock returns per innovation are used as the dependent
variable. The regression models reported in Columns (1) through (3) and Columns (5) through (7) are estimated using
the within-groups (i.e., fixed-effects) estimator. Standard errors clustered by firm are reported in brackets. *, **, and ***
denote statistical significance at the 10%, 5%, and 1% levels, respectively. In Columns (4) and (8), variance inflation
factors (VIFs) are reported.
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also include year dummies to capture unobserved heterogeneity across years.

Table 6 shows the regression results for the alternative model. We use two

different measures for firm-level innovation and three different specifications.

Columns (1) through (3) are based on the annual raw or excess returns divided

by INN1i,t−1 as the dependent variable, while Columns (5) through (7) are based

on the annual raw or excess returns divided by INN2i,t−1 as the dependent vari-

able. To thoroughly examine whether there is an inverted U-shaped relation-

ship between technological imitation and the value of innovation, we check if

the peak points and their confidence intervals are within the data range. For

example, the estimation results reported in Columns (1) and (5) suggest that

ri,t/INN1i,t−1 peaks when IMI j,t−1 has a value of 1.479, while ri,t/INN2i,t−1

peaks when IMI j,t−1 has a value of 1.742. The values correspond to approxi-

mately the 90th and 93rd percentiles, respectively. The 95% confidence intervals

for the peak points are [84th percentile, 95th percentile] and [85th percentile, 97th

percentile], respectively. These analyses suggest that all the peak points and their

confidence intervals are within the data range.

Regardless of the specifications, the relationship between technological im-

itation and the market value of firm-level innovation has an inverted U-shaped

relationship, suggesting that a firm’s incentive to innovate increases with the in-
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tensity of technological imitation up to a certain point, beyond which it starts to

decrease with the intensity of technological imitation. Therefore, we conclude

that the results reported in Table 5 are not driven by the endogeneity problem

mentioned above. As we include a quadratic term, we test for multicollinearity

using VIFs based on an OLS regression model. The maximum VIF in Column

(4) (in Column (8)) is only 5.32 (4.88), so it appears that multicollinearity is not a

serious issue.

4.2.2. Sector-by-sector analyses

To further examine whether the relationship between technological imitation

and the market value of firm-level innovation is heterogeneous across sectors,

we repeat the analysis specified in Equations (2) and (3) for each Pavitt sec-

tor. Table 7 reports the results of the sector-by-sector regressions. Using raw

stock returns as the dependent variable, we find that the regression coefficient of

INN2i,t−1× IMI2
j,t−1 is negative regardless of Pavitt sectors. Note that the regres-

sion coefficient is statistically significant at the 10% level for the first three Pavitt

sectors and is statistically significant at the 1% level for the fourth Pavitt sector but

is not statistically significant for the fifth and sixth Pavitt sectors.19 The value of

19The lack of significance of the coefficient estimates could be due to relatively smaller sample
sizes.
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innovation measured by the regression coefficient of the innovation measure peaks

at the 55th, 87th, 85th, 84th, 79th, and 73rd percentiles of our imitation measure

in Pavitt sectors 1, 2, 3, 4, 5, and 6, respectively. The 95% confidence intervals of

the imitation levels corresponding to the peak points are as follows: (1) Pavitt sec-

tor 1: [1st percentile, 79th percentile]; (2) Pavitt sector 2: [60th percentile, 97th

percentile]; (3) Pavitt sector 3: [73rd percentile, 92nd percentile]; (4) Pavitt sector

4: [81st percentile, 87th percentile]; (5) Pavitt sector 5: [2nd percentile, 95th per-

centile]; and (6) Pavitt sector 6: [Below minimum, 97th percentile]. The results

suggest that all the peak points and their 95% confidence intervals are within the

data range, with the exception of the 95% lower bound for Pavitt sector 6. In gen-

eral, all Pavitt sectors have peak points at similar imitation levels, although Pavitt

sector 1 has a peak point at a significantly lower imitation level compared to Pavitt

sector 4 at the 5% level.20 Thus, technological imitation and the market value of

firm-level innovation, regardless of Pavitt sectors, have an inverted U-shaped re-

lationship. This result suggests that regardless of technological sectors, a firm’s

incentive to innovate increases with the intensity of technological imitation up to a

certain point, beyond which it starts to decrease with the intensity of technological

20Note that the 95% confidence intervals for Pavitt sectors 1 and 4 do not overlap with each
other.
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imitation.

4.3. Effects of agglomeration on the relationship between technological imitation

and the quantity and market value of innovation

4.3.1. Defining agglomerated and non-agglomerated industries

To derive implications for innovation cluster policies, we further investigate

whether the relationships between imitation and the quantity and value of innova-

tion differ between agglomerated and non-agglomerated industries. To measure

the degree of agglomeration for industry j in year t, we closely follow Ellison and

Glaeser (1997). The Ellison-Glaeser index (γEG
j,t ) is defined as follows:

γ
EG
j,t =

∑
S
i=1(si, j,t− xi,t)

2− (1−∑
S
i=1 x2

i,t)HHI j,t

(1−∑
S
i=1 x2

i,t)(1−HHI j,t)
, (4)

where si, j,t is the share of industry j’s employment in state i measured in year t,

xi,t is the share of total employment in state i measured in year t, and HHI j,t is

Herfindahl-Hirschman index (HHI) for industry j measured in year t. We calcu-

late si, j,t and xi,t using the state and area employment, hours, and earnings database

provided by the US Bureau of Labor Statistics, and we calculate the HHI using
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the economic census database provided by the US Census Bureau.21 We first

calculate the Ellison-Glaeser index for each of 2-digit SIC industries in the man-

ufacturing sector because the concentration data are available only for the man-

ufacturing sector and the employment data are available only for each of 2-digit

SIC industries. We then categorize industry-year observations into two groups

(i.e., agglomerated and non-agglomerated industries) based on the sample median

of the Ellison-Glaeser index. A dummy variable indicating agglomerated indus-

tries (HighEG j,t−1) has a value of one if the Ellison-Glaeser index for industry j

in year t−1 is greater than or equal to the sample median of the Ellison-Glaeser

index and a value of zero otherwise.

4.3.2. Does agglomeration moderate the relationship between imitation and the

quantity of innovation?

To investigate whether the moderating effect of agglomeration on the imitation-

innovation relationship exists, we estimate zero-inflated negative binomial models

with two additional interaction terms (i.e., IMI j,t−1×HighEG j,t−1 and IMI2
j,t−1×

HighEG j,t−1) and an additional control variable (i.e., HighEG j,t−1). Table 8 re-

21The economic census database contains HHI data for each of 4-digit SIC industries. We obtain
the HHI for each of 2-digit SIC industries by value-weighting the HHIs for constituent 4-digit SIC
industries. The database is updated every 5 years, so we use linear interpolation to obtain HHIs for
the years between two census years. The state and area employment, hours, and earnings database
is publicly available only for the period between 1990 and 2002.
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Table 8: Moderating effect of agglomeration on the relationship between imitation and the quantity
of innovation

(1) (2)
Dependent variable COUNT j,t CIT E j,t

IMI j,t−1 0.281* 0.271*
(0.168) (0.160)

IMI2
j,t−1 -0.165** -0.127*

(0.071) (0.069)
IMI j,t−1×HighEG j,t−1 0.301* 0.254*

(0.175) (0.153)
IMI2

j,t−1×HighEG j,t−1 -0.132* -0.136*
(0.077) (0.073)

HighEG j,t−1 -0.092 0.060
(0.225) (0.205)

Size j,t−1 0.412*** 0.445***
(0.090) (0.077)

ROA j,t−1 0.425** 0.260
(0.183) (0.191)

R&D j,t−1 8.070*** 6.754***
(1.809) (2.057)

PPE j,t−1 -2.148** -1.721
(1.025) (1.063)

Lev j,t−1 -0.314 -0.135
(0.675) (0.588)

Capex j,t−1 4.365 1.105
(2.865) (2.655)

MB j,t−1 0.005 0.010
(0.021) (0.020)

Age j,t−1 0.054*** 0.065***
(0.020) (0.021)

KZ j,t−1 -0.008 -0.008
(0.007) (0.006)

Constant 1.947*** -1.080**
(0.433) (0.450)

Vuong z-stat 2.88*** 1.31*
p-value 0.002 0.095

Year fixed effects Yes Yes
Industry fixed effects Yes Yes

Observations 1,408 1,408
Number of industries 140 140

Note: This table reports the second-stage results of zero-inflated negative binomial (ZiNB) regression analyses designed
to estimate the moderating effect of agglomeration on the relationship between imitation and the quantity of innovation.
“Vuong z-stat” is the test statistic for the Vuong test that compares the zero-inflated negative binomial model with industry
dummies to the standard negative binomial model with industry dummies. Standard errors clustered by industry are
reported in brackets. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.
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ports the second-stage regression results of zero-inflated negative binomial regres-

sion analyses. The dependent variables are COUNT j,t and CIT E j,t in Columns

(1) and (2), respectively. Note that Vuong test statistics are significantly greater

than zero in both columns, suggesting that zero inflated negative binomial models

have better fits than the corresponding standard negative binomial models. First,

we find evidence that there are inverted-U relationships between imitation and

innovation for both agglomerated and non-agglomerated industries.22 Second,

we find evidence that the moderating effect of agglomeration on the imitation-

innovation relationship exists. The estimated regression coefficients for the ad-

ditional interaction terms suggest that the impact of imitation on the quantity

of innovation is significantly stronger for agglomerated industries than for non-

agglomerated industries.

Figure 1 visually shows the relationship between the natural logarithm of the

quantity of innovation and the degree of imitation for agglomerated and non-

22Note that turning points and their 95% confidence intervals for both agglomerated and non-
agglomerated industries are within the data range. For agglomerated industries, COUNT j,t peaks
when IMI j,t−1 has a value of 0.982 (86th percentile) with a 95% confidence interval of [0.708,
1.256] ([83rd percentile, 88th percentile]), while the CIT E j,t peaks when IMI j,t−1 has a value of
0.995 (86th percentile) with a 95% confidence interval of [0.691, 1.299] ([82nd percentile, 89th
percentile]). For non-agglomerated industries, COUNT j,t peaks when IMI j,t−1 has a value of
0.853 (85th percentile) with a 95% confidence interval of [0.327, 1.380] ([76th percentile, 90th
percentile]), while CIT E j,t peaks when IMI j,t−1 has a value of 1.065 (87th percentile) with a 95%
confidence interval of [0.420, 1.709] ([78th percentile, 92nd percentile]). Note also that locations
of turning points for agglomerated and non-agglomerated industries are quite similar.
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Figure 1. The impact of technological imitation on the quantity of innovation: agglomerated industries vs. non-
agglomerated industries
This figure plots the natural logarithm of the quantity of innovation against the degree of imitation for agglomerated
and non-agglomerated industries. The variables presented on the vertical axis in Panels (a) and (b) are ln(COUNT j,t)
and ln(CIT E j,t), respectively. The vertical-axis values are the natural logarithms of the predicted values obtained using
estimated regression coefficients of the zero-inflated negative binomial models presented in Table 8 and sample mean
values of the control variables. The solid curves show the imitation-innovation relationship for agglomerated industries,
while the dotted curves show the relationship for non-agglomerated industries. The figure is drawn for the range between
the 5th and 95th percentiles of the imitation measure in the manufacturing sector sample.

agglomerated industries. The variables presented on the vertical axis in Panels

(a) and (b) are ln(COUNT j,t) and ln(CIT E j,t), respectively. The solid curves

show the imitation-innovation relationship for agglomeration industries, while the

dotted curves show the relationship for non-agglomeration industries. The solid

curves are steeper on both sides of the peaks than dotted curves in both panels,

suggesting that the impact of imitation on the quantity of innovation is stronger

for agglomerated industries than for non-agglomerated industries. Easier access to

competitors, suppliers, customers, and R&D collaborators in agglomerated indus-
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tries enhances both the positive and negative impacts of technological imitation

on the quantity of innovation.

4.3.3. Does agglomeration moderate the relationship between imitation and the

market value of innovation?

To investigate whether the moderating effect of agglomeration on the rela-

tionship between imitation and the value of innovation exists, we estimate the

fixed-effects regression models described by Equations (2) and (3) with three ad-

ditional interaction terms (i.e., INNi,t−1 ×HighEG j,t−1, INNi,t−1 × IMI j,t−1 ×

HighEG j,t−1 and INNi,t−1× IMI2
j,t−1×HighEG j,t−1) and an additional control

variable (i.e., HighEG j,t−1). Table 9 reports the fixed-effects regression results.

We use three different dependent variables, as shown in Table 5. Columns (1)

through (3) are based on INN1i,t−1 as a firm-level innovation measure, while

Columns (4) through (6) are based on INN2i,t−1. First, we find evidence that

there are inverted U-shaped relationships between imitation and the value of in-

novation for both agglomerated and non-agglomerated industries.23 Second, we

find that the moderating effect of agglomeration on the relationship between im-

23Note that, regardless of the choice of the dependent variable and the innovation measure, all
turning points and their 95% confidence intervals (except one upper bound only) are within the
data range. Note also that the locations of turning points for agglomerated and non-agglomerated
industries are quite similar.
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Table 9: Moderating effect of agglomeration on the relationship between imitation and the value
of innovation

(1) (2) (3) (4) (5) (6)
Dependent variable ri,t ri,t −Rp,t ri,t −R j,t ri,t ri,t −Rp,t ri,t −R j,t

INN1i,t−1 0.027*** 0.025** 0.015
(0.009) (0.010) (0.009)

INN1i,t−1× IMI j,t−1 0.025*** 0.026*** 0.021***
(0.008) (0.008) (0.007)

INN1i,t−1× IMI2
j,t−1 -0.009*** -0.007** -0.007**

(0.003) (0.003) (0.003)
INN1i,t−1×HighEG j,t−1 0.023*** 0.013* 0.020***

(0.007) (0.007) (0.007)
INN1i,t−1× IMI j,t−1×HighEG j,t−1 0.025*** 0.030*** 0.019**

(0.009) (0.010) (0.009)
INN1i,t−1× IMI2

j,t−1×HighEG j,t−1 -0.015*** -0.014*** -0.008**
(0.004) (0.005) (0.004)

INN2i,t−1 0.010** 0.008* 0.006
(0.004) (0.004) (0.004)

INN2i,t−1× IMI j,t−1 0.13*** 0.014*** 0.12***
(0.004) (0.004) (0.004)

INN2i,t−1× IMI2
j,t−1 -0.004** -0.003* -0.004**

(0.002) (0.002) (0.002)
INN2i,t−1×HighEG j,t−1 0.012*** 0.008** 0.009***

(0.003) (0.004) (0.003)
INN2i,t−1× IMI j,t−1×HighEG j,t−1 0.015*** 0.016*** 0.011**

(0.005) (0.006) (0.005)
INN2i,t−1× IMI2

j,t−1×HighEG j,t−1 -0.007*** -0.006** -0.004
(0.003) (0.003) (0.002)

HighEG j,t−1 0.016 0.023 -0.034* 0.008 0.017 -0.034*
(0.022) (0.022) (0.020) (0.022) (0.022) (0.020)

IMI j,t−1 0.020** 0.015* -0.005 0.018** 0.013 -0.006
(0.008) (0.009) (0.007) (0.009) (0.009) (0.008)

Constant 1.218*** 1.633*** 0.902*** 1.207*** 1.641*** 0.920***
(0.103) (0.105) (0.091) (0.102) (0.104) (0.090)

Firm-level control variables Yes Yes Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes

Observations 22,458 22,458 22,458 22,458 22,458 22,458
Adjusted R-squared 0.281 0.220 0.189 0.281 0.220 0.188

Note: This table reports the results of regression analyses designed to estimate the moderating effect of agglomeration
on the relationship between imitation and the value of innovation. Raw stock returns (ri,t ) or excess returns (ri,t −Rp,t or
ri,t −R j,t ) are used as the dependent variable. All the regression models are estimated using the within-groups (i.e., fixed-
effects) estimator. Standard errors clustered by firm are reported in brackets. *, **, and *** denote statistical significance
at the 10%, 5%, and 1% levels, respectively.
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itation and the value of innovation exists. Note that in Columns (1) through (5),

the coefficients of INNi,t−1× IMI j,t−1×HighEG j,t−1 and INNi,t−1× IMI2
j,t−1×

HighEG j,t−1 are significantly positive and negative at the 5% or 1% level, re-

spectively. In Column (6), the coefficient of INNi,t−1× IMI j,t−1×HighEG j,t−1 is

significantly positive at the 5% level but the coefficient of INNi,t−1× IMI2
j,t−1×

HighEG j,t−1 is only marginally insignificant at the 10% level (t-stat=-1.64; p-

value=0.102). Thus, the results suggest that the impact of imitation on the value

of innovation is significantly stronger for agglomerated industries than for non-

agglomerated industries.
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Figure 2. The impact of technological imitation on the value of innovation: agglomerated industries vs. non-
agglomerated industries
This figure plots the value of innovation against the degree of imitation for agglomerated and non-agglomerated indus-
tries. The value of innovation is measured as the sensitivity of raw stock returns to an innovation measure (INN1i,t−1 or
INN2i,t−1). The innovation measures used in Panels (a) and (b) are INN1i,t−1 and INN2i,t−1, respectively. The solid curves
show the relationship for agglomerated industries, while the dotted curves show the relationship for non-agglomerated
industries. The figure is drawn for the range between the 5th and 95th percentiles of the imitation measure in the manufac-
turing sector sample.
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Figure 2 shows the relationship between the value of innovation (β1) and the

degree of imitation (IMI j,t−1) for agglomerated and non-agglomerated industries.

The solid curves show the relationship for agglomerated industries, while the

dotted curves show the relationship for non-agglomerated industries. The solid

curves are steeper on both sides of the peaks than the dotted curves in both panels,

suggesting that the impact of imitation on the value of innovation is stronger for

agglomerated industries than for non-agglomerated industries. Easier access to

competitors, suppliers, customers, and R&D collaborators in agglomerated indus-

tries enhances both the positive and negative impacts of technological imitation

on the value of innovation.

Overall, these results suggest that creating innovation clusters and allowing

different innovators to cooperate, imitate and compete with each other would be

very effective in promoting corporate innovation. Firms in an innovation cluster

are located close to the supplier, customer, and R&D collaborator. Thus, firms in

a cluster would be able to learn from and imitate their competitors’ innovations

much easier than those firms not in a cluster. However, a level of technological

imitation that is too high is more detrimental for firms in an innovation cluster, as

it lowers their incentives to innovate more significantly.
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5. Conclusion

This study examines the relationship between technological imitation and firms’

innovation activities and their incentives to innovate using US firm-level patent

data for the period 1977–2005. The findings reveal inverted U-shaped relation-

ships between technological imitation and industry-average innovation activities

and between technological imitation and the market value of firm-level innova-

tion. The results are driven by the trade-off of two different effects. The first

effect is the positive externalities of the interactions among firms during the pro-

cess of technological innovation. Particularly when innovation is sequential and

complementary, interactions among innovative firms can enhance the firms’ in-

novation activities and incentives to innovate. The second effect is the negative

effect of free-riding problems on firms’ innovation activities and their incentives

to innovate. This effect may be quite significant when innovation outcomes can be

easily extended or imitated by competing firms and imitators can extract signifi-

cant parts of the benefits that would have been enjoyed by the original innovators.

Our results suggest that the first effect outweighs the second effect up to a high

level of technological imitation, while the second effect outweighs the first effect

when the level of technological imitation is extremely high. The positive effect of

a moderate level of technological imitation and the negative effect of an excessive
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level of technological imitation are more pronounced for agglomerated industries.

This finding suggests that creating innovation clusters such as Silicon Valley in

the United States and Shenzhen City in China and allowing different innovators

to cooperate, imitate and compete with each other would be very effective in pro-

moting corporate innovation. However, an excessively high level of technological

imitation is more detrimental for firms in innovation clusters because it lowers

firms’ incentives for technological innovation more radically. Because our imita-

tion measure is computed based on patent data, this study is limited to the role of

patent-based imitation. Future studies could investigate the role of imitation in the

innovation of product designs and business strategies.
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Appendix A. Definition of industry-level variables

The following table shows the definitions of the industry-level variables used in
Table 2, Table 4, and Table 8. The italicized codes in brackets([]) represent item
codes in CRSP/Compustat Merged Database. All control variables are measured
in year t−1.

Variable Definition

Dependent variables
COUNT j,t Industry-average number of the patents applied for in year t by any firms in industry

j
CIT E j,t Industry-average number of citations of the patents applied for in year t by any firms

in industry j
ln(1+COUNT j,t) The natural logarithm of 1 plus COUNT j,t
ln(1+CIT E j,t) The natural logarithm of 1 plus CIT E j,t

Imitation-related variables
IMI j,t−1 Technological imitation for industry j in year t− 1, defined as the average ratio of

the citations made by industry peers within five years after the application of the
patents to the number of citations of the patents that any firms in industry j applied
for in year t−1

IMI2
j,t−1 The square of the technological imitation measure

Control variables
Size j,t−1 Industry-average value of firm size (Size) where Size is measured as the natural log-

arithm of market value of total assets ([prcc_ f ]× [cshpri]+[pstkl]+[dlc]+[dltt]−
[txditc])

ROA j,t−1 Industry-average value of return on assets (ROA) where ROA is measured as the ratio
of operating income before depreciation ([oibd p]) to book value of the total assets
([at])

R&D j,t−1 Industry-average value of R&D intensity (R&D) where R&D is measured as the
ratio of R&D expenditures ([xrd]) to book value of total assets ([at])

PPE j,t−1 Industry-average value of asset tangibility (PPE) where PPE is measured as the
ratio of net property, plant and equipment ([ppent]) to book value of total assets([at])

Lev j,t−1 Industry-average value of market leverage ratio (Lev) where Lev is measured as the
ratio of total debt ([dlc]+[dltt]) to market value of total assets ([prcc_ f ]× [cshpri]+
[pstkl]+ [dlc]+ [dltt]− [txditc])

Capex j,t−1 Industry-average value of investment rate (Capex) where Capex is measured as the
ratio of capital expenditures ([capx]) to book value of total assets ([at])

MB j,t−1 Industry-average value of market-to-book ratio (MB) where MB is measured as the
ratio of market value of total assets ([prcc_ f ]× [cshpri]+ [pstkl]+ [dlc]+ [dltt]−
[txditc]) to book value of total assets ([at])

Age j,t−1 Industry-average value of firm age (Age) where Age is defined as the number of
years preceding the observation year that the firm has a non-missing stock price on
the Compustat file and winsorized at 37 years following Hadlock and Pierce (2010)

KZ j,t−1 Industry-average value of Kaplan-Zingales (KZ) Index where KZ index is defined
as −1.002×CashFlow+ 0.283×Q+ 3.139× Leverage− 39.368×Dividends−
1.315×CashHoldings, where each component is defined in line with Kaplan and
Zingales (1997)
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Appendix B. Definition of firm-level variables

The following table shows the definitions of the firm-level variables used in Table
5, Table 7, and Table 9. The italicized codes in brackets([]) represent item codes
in CRSP/Compustat Merged Database. In line with Im et al. (2015), Faulkender
and Wang (2006), and Dittmar and Mahrt-Smith (2007), some control variables
are measured in year t−1 and other control variables in year t.

Variable Definition

Dependent variables
ri,t Firm i’s annual stock returns in year t
ri,t −Rp,t Firm i’s annual stock returns in year t in excess of annual returns to the 5×5 Fama

and French portfolios formed on “Size” and “Book-to-Market”
ri,t −R j,t Firm i’s annual stock returns in year t in excess of industry j’s annual stock returns,

where firm i belongs to industry j in year t

Firm-level innovation measures
INN1i,t−1 Natural logarithm of 1 plus the number of patents that firm i applied for in year t−1
INN2i,t−1 Natural logarithm of 1 plus the number of citations of the patents that firm i applied

for in year t−1

Control variables
∆Earningsi,t Ratio of change in earnings ([ebit]) to market capitalization ([prcc_ f ]× [cshpri]) at

the previous fiscal end
∆Assetsi,t Ratio of change in total assets ([at]) to market capitalization ([prcc_ f ]× [cshpri]) at

the previous fiscal end
∆R&Di,t Ratio of change in R&D expenditures ([xrd]) to market capitalization ([prcc_ f ]×

[cshpri]) at the previous fiscal end
∆Dividendsi,t Ratio of change in dividends ([dvc] + [dvp]) to market capitalization ([prcc_ f ]×

[cshpri]) at the previous fiscal end
LnTAi,t−1 Natural logarithm of book total assets ([at])
Leveragei,t−1 Ratio of total debt ([dlc] + [dltt]) to market capitalization ([prcc_ f ]× [cshpri]) at

the previous fiscal end
MBi,t−1 Ratio of market value of total assets ([prcc_ f ]× [cshpri]+ [pstkl]+ [dlc]+ [dltt]−

[txditc]) to book value of the total assets ([at])
Financingi,t Ratio of new financing ([dltis]− [dltr] + [sstk]− [prstkc]) to market capitalization

([prcc_ f ]× [cshpri]) at the previous fiscal end
∆Interestsi,t Ratio of interest expenditures ([xint]) to market capitalization ([prcc_ f ]× [cshpri])

at the previous fiscal end
Agei,t Firm age which is defined as the number of years preceding the observation year

that the firm has a non-missing stock price on the Compustat file and winsorized at
37 years following Hadlock and Pierce (2010)
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