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1 Introduction

Researchers in many economic fields extensively address parameter instability in models,

which is a common empirical problem in macroeconomics and finance, such as the decrease

in output growth volatility in the 1980s, known as “the Great Moderation,” oil-price shocks,

labor productivity changes, inflation uncertainty, and stock-return prediction models. It is

often reasonable to assume that a change occurs over a long period of time or that some

historical event affects the dynamics of a structural model. Hence, the interpretation of

structural model dynamics or prediction models relies heavily on the estimation and testing

of parameter instability. In econometrics literature, these changes in the underlying data

generating process (DGP) of time-series are referenced as a structural break. The timing of

the break, as a fraction of the sample size, is called the break point.

Researchers have used estimation methods in the structural break literature to analyze

threshold effects and tipping points. Studies on policy change, income inequality dynamics,

and social interaction models have used structural break estimation methods. Card et al.

(2008) estimate a tipping point of segregation arising in neighborhoods with white preferences.

González-Val and Marcén (2012) explore the effect of child custody law reforms and Child

Support Enforcement on U.S. divorce rates using the method developed by Bai and Perron

(1998, 2003).

Extensive literature describes structural break estimation methods, starting with maxi-

mum likelihood estimators (MLE) on break points. Hinkley (1970), Bhattacharya (1987)

and Yao (1987) provide an asymptotic theory of the MLE of the break point in a sequence

of independent and identically distributed random variables. The asymptotic theory of

least-squares (LS) estimation of a one-time break in a linear regression model has been

developed by Bai (1994, 1997), with extension to multiple breaks in Bai and Perron (1998)

and Bai et al. (1998). The main problem with the LS estimation of the break point is that

its finite sample behavior depends on the size of the parameter shift. In many cases, break

magnitudes that are empirically relevant are “small” in a statistical sense. For instance,

the quarterly U.S. real gross domestic product (GDP) growth rate from 1970Q1 to 2018Q2

has a mean of 0.68 and a standard deviation of 0.8 percent. A break that decreases the

quarterly mean growth rate by 0.25 percentage points is less than half a standard deviation
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change but is equivalent to a 1 percentage-point decrease in annual growth, which is a

significant event for the economy.

In asymptotic analysis, tests have local power against breaks with a magnitude of

order O(T−1/2)1. The magnitude represents a small break, shrinking with sample size T ,

so that structural breaks tests have asymptotic power strictly less than one (Elliott and

Müller 2007). In the presence of small but detectable breaks, the LS estimator of the break

point has a finite sample distribution that exhibits tri-modality with one mode at the true

value and two modes at zero and one. Break points at zero or one do not provide any

information about a structural break, nor are they likely to be true in practice. Therefore,

inference in practical applications based on LS estimation of structural breaks would seem

unreliable. Surprisingly, although the methodology is used widely, there are few alternatives

for estimating the location of a structural break. Recent literature such as Casini and

Perron (2019, 2020) suggest a Laplace-based procedure to provide an estimator of the break

point, which is defined by an integration, rather than an optimization-based method.

This study provides an estimator of the structural break point, which is a generalization

of LS estimation, and hence, easy to implement in practice. The new estimator resolves the

finite sample issue of LS estimation; it has a finite sample distribution with a unique mode

at the true break and flat tails. This is achieved by imposing weights on the LS objective

function. Under small breaks, the LS estimator picks boundaries with high probability due

to the functional form of the objective. I construct a weight function of the break point

and impose it on the LS objective function to incorporate different estimation uncertainties

across potential break points. I provide conditions on the weight function that ensure

consistency of the break point estimator. I also suggest a representative weight function for

empirical researchers to use.

The break point estimator is consistent with the same rate of convergence as the

LS estimator (Bai 1997) under regularity conditions on the weight functional form in a

linear regression model with a structural break on a subset (or all) coefficients. The limit

distribution of the break point estimator is derived when the break magnitude is small,

1Asymptotic analysis under a DGP with a drifting sequence of parameters can be considered as a form
of weak identification asymptotics. Literature on estimation and inference with a restricted parameter space
under weak identification includes Andrews and Cheng (2012, 2013, 2014), and Han and McCloskey (2019).
Their results do not cover an abrupt structural change model, which is our model of interest.
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under an in-fill asymptotic framework, following the approach of Jiang et al. (2017, 2018).

Monte Carlo simulations show that the break point estimator has smaller root mean squared

error (RMSE) than the LS estimator in a finite sample for all break point values considered.

This study provides two empirical applications: estimation of structural breaks on

post-war U.S. real GDP growth rate and the U.S. and UK stock return prediction models.

For the quarterly U.S. real GDP growth rate under different sample periods, the new method

estimates a break in the early 1970s, whereas the LS estimates vary from the 1970s to 1952

or 2000, which are near boundaries of the sample. The break date estimate in the early

1970s is matched with the “productivity growth slowdown” suggested in literature, such as

Perron (1989) and Hansen (2001). Thus, my estimation method yields reasonable break

point estimates compared to LS estimates, which is sensitive to trimming the sample.

The remainder of this paper proceeds as follows: Section 2 constructs the break point

estimator for a mean shift in a linear process. Section 3 provides a generalized linear

regression model with multiple regressors, and proves the consistency of the break point

estimator. Section 4 presents the in-fill asymptotic theory for stationary and local-to-unit

root processes. Monte Carlo simulation results are in Section 5 and Section 6 provides

three empirical applications of the new structural break estimation method. We provide

concluding remarks in Section 7. Additional theoretical results and proofs are in the

Appendix.

2 Structural Break Point Estimator

In this section, I consider the simplest regression model with a constant term to provide an

intuitive explanation of the construction of the break point estimator. I provide theoretical

results in Section 3 under a general linear regression model with multiple regressors. Suppose

a single break occurs at time k0 = [ρ0T ], where ρ0 ∈ (0, 1), [·] is the greatest smaller integer

function, and 1{t > k0} is an indicator function that equals one if t > k0 and zero otherwise.

yt = µ+ δ1{t > k0}+ εt, t = 1, . . . , T (1)
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The disturbances {εt} are independent and identically distributed (i.i.d.) with mean zero

and Eε2
t = σ2. The pre-break mean yt is µ and the post-break mean is µ + δ. Assume

we know a one-time break occurs, but the break point ρ0 and parameters (µ, δ, σ2) are

unknown.

The conventional estimation method of the break location in the literature is least-squares.

One obtains the LS estimator by finding a value k that minimizes the objective function

ST (k)2, which is the sum of squared residuals (SSR) under the assumption that k is the

break date, ST (k)2 =
∑k

t=1(yt − ȳk)2 +
∑T

t=k+1(yt − ȳ∗k)2, where ȳk = k−1
∑k

j=1 yj and ȳ∗k =

(T − k)−1
∑T

j=k+1 yj are pre- and post-break LS estimates under break date k, respectively.

Following Bai’s (1994) expression, I use the identity
∑T

t=1(yt − ȳ)2 = ST (k)2 + TVT (k)2

(Amemiya 1985), where VT (k)2 = k/T (1− k/T ) (ȳ∗k − ȳk)
2, to substitute for the SSR. Then

the LS estimator of the break date is equivalent to

k̂LS = arg max
k=1,...,T−1

|VT (k)| , ρ̂LS = k̂LS/T. (2)

Denote ρ = k/T and ρ0 = k0/T . An issue with the LS estimator ρ̂LS is that under a small

magnitude |δ|, ρ̂LS has a finite distribution that is tri-modal with two modes at the ends of

the unit interval and one mode at the true break point ρ0.

A break magnitude that is statistically small is not necessarily small in an economic

sense. For example, quarterly U.S. real GDP growth rate from 1970Q1 to 2018Q2 has a

mean of 0.68 and a standard deviation of around 0.8 percent. A break that decreases the

mean quarterly growth rate by 0.3 percentage points (a 1.2 percentage point decrease in

yearly growth) is a significant event for the economy. Suppose model (1) has parameter

values similar to the U.S. real GDP growth rate; assume ρ0 = 0.3, the pre-break mean is

µ = 0.88 percent and the shift in the mean of growth rate is δ = −0.29. The expectation of

yt is µ+ (1− ρ0)δ = 0.68, which matches the quarterly U.S. real GDP growth rate. Suppose

we have T = 100 observations and Gaussian disturbances εt
i.i.d.∼ N(0, 0.82). The left plot of

Figure 1 shows the finite sample distribution of the LS estimator of ρ from a Monte Carlo

simulation with 2,000 replications. The LS estimator fails to accurately detect the break

that occurs in the constant term of a univariate linear regression model. Thus, we expect

that in practice, structural breaks that are economically important are not large enough for
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the LS estimator to detect in many cases.

This study focuses on such empirically relevant breaks that are not “large” enough. I

follow the approach of Elliott and Müller (2007) to provide an asymptotic approximation

to finite sample properties under this small break magnitude. The break magnitude has

the same order as sampling uncertainty, δ = T−1/2d, where d is fixed. These asymptotics

reflect an important feature of finite sample properties under moderate breaks, because the

p values of tests for breaks are typically significant, but not zero. See Elliott and Müller

(2007, 2014) for details on the justification of this break magnitude.

Figure 1: Finite sample distribution of the LS estimator (left) and new estimator (right)
of break point ρ with weight function w(ρ) = (ρ(1 − ρ))1/2 when (ρ0, δ) = (0.3,−0.29),

T = 100, and εt
i.i.d.∼ N(0, 0.82) with 2,000 replications.

Importantly, in literature, it is standard to trim the boundaries of the optimization

space so that k̂LS in (2) is the argmax function across k = [αT ], . . . , [(1 − α)T ] for some

0 < α < 1/2. Trimming the optimization space may help reduce the build-up mass at the

boundaries of the finite sample distribution; however, this has its own drawbacks. Figure

2 shows the finite sample distribution of the LS estimator of ρ with various fractions of

trimming, α ∈ {0, 0.1, 0.15, 0.2}, from a Monte Carlo simulation with 2,000 replications.

Under small break magnitudes δ = T−1/2d, d ∈ {2, 4}, the modes at the boundaries remain

even after trimming. It is unclear if there is a trade-off between the break size and how

large a trimming is needed. With larger trimming (α = 0.2), the mass at the boundaries

accumulate even more. In addition, there is no reason to believe a break occurs in a

restricted period. Thus, we need an alternative method to resolve this issue.
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Figure 2: Finite sample distribution of ρ̂LS when (ρ0, δ) = (0.5, 4T−1/2) (upper plots),

(ρ0, δ) = (0.5, 2T−1/2) (lower plots) T = 100, and εt
i.i.d∼ N(0, 1) with 2,000 replications. Each

distribution has different trimmed optimization space [α, 1− α], with α ∈ {0, 0.1, 0.15, 0.2}.

The finite sample distribution of the LS estimator has build-up mass at boundaries

under small break magnitudes because of how the objective function is constructed. For

each potential break date k, the objective function is constructed by partitioning the sample

into two sub-samples, before and after k. Each sub-sample is used to estimate two different

means, ȳk and ȳ∗k. If k is near 1, the pre-break sub-sample size k is small; similarly, if k

is near T − 1, the post-break sub-sample size T − k is small2. Hence, when the potential

break date k of |VT (k)| is near the boundaries, the estimates of pre- or post-break mean

are imprecise because of the small sub-sample size. Estimation uncertainty at boundaries

distorts picking up the true break location if the break magnitude is small relative to

sampling variability.

Because the issue arises from the large variance of the objective function at the boundaries,

one can think of shrinking the variance accordingly. Suppose there are non-negative “weights”

ωk imposed on the LS objective function so that k with a large estimation error has smaller

weights than k with a small estimation error. When k = 1 and T − 1, weights near zero

are imposed, which implies the variance of the weighted objective function ωk|VT (k)| would

shrink toward zero. If the sample period is normalized into a unit interval, the weights are

represented by a continuous function ω(ρ) on ρ ∈ [0, 1], which is zero at ρ ∈ {0, 1}, and has

2Estimation theory does not require ρ to be bounded away from zero and one, provided that a change
point is assumed to exist. However, identification in a finite sample typically needs more than one observation
pre- and post-break. In Section 3, I assume the break point exists; see Assumption 1(i).

7



positive values otherwise. A continuous function with such properties would look like an

inverse U-shaped (or concave downward) function on the unit interval.

I propose a new break point estimator to maximize the value of the objective function

|QT (k)|, equal to weights ωk multiplied by the LS objective |VT (k)|.

k̂ = arg max
k=1,...,T−1

|QT (k)| , ρ̂ = k̂/T (3)

|QT (k)| := ωk |VT (k)| = ωk

(
k(T − k)

T 2

)1/2

|ȳ∗k − ȳk| .

The weight function shrinks the variance of the LS objective function when k is near the

boundaries, and thus, the maximizing value k̂ is less likely to pick either end. The right

plot of Figure 1 shows the finite sample distribution of the break point estimator (3) under

the DGP calibrated from the U.S. real GDP growth rate. As expected, the break point

estimator has flat tails at boundaries with a mode at the true break point ρ0 = 0.3, whereas

the LS estimator has modes at 0.01 and 0.99. Section 5 provides additional Monte Carlo

simulations comparing the two estimators.

The break point estimator (3) is easy to implement, as we simply modify the objective

function by multiplying the weight function. It is a generalization of LS estimation because

the LS estimator is a special case, when ω(ρ) = 1. Moreover, by employing the weight

function, we no longer need to trim the search grid, because the boundaries have zero weight.

Section 3 provides a set of conditions on the weight function that ensures consistency of the

break point estimator under a general linear regression model.

I also suggest a representative weight function ω(ρ) = (ρ(1− ρ))1/2 under model (1) (see

Section 3 for its analogue under a model with multiple regressors). The weight function

has two interpretations. First, it is related to the weighting function from Anderson and

Darling (1954), which tests whether the sample is drawn from a particular distribution. A

non-negative weight function is chosen to accentuate the boundaries of the sample space,

where the test is desired to have sensitivity. If the cumulative distribution function (cdf)

under the null hypothesis is F (·), the weight function is [F (x)(1− F (x))]−1, which increases

as x approaches the boundaries of the sample space. In contrast, I want to down-weight

the boundaries of the parameter space ρ ∈ [0, 1]. If ρ is a random variable with cdf F (ρ),
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the weight would be the reciprocal of the weight function in Anderson and Darling (1954),

F (ρ)(1 − F (ρ)). We further assume that ρ is uniformly distributed on the unit interval,

F (ρ) = ρ. We obtain the weight function ρ(1− ρ), which down-weights the variance of the

LS objective function VT (k)2 near the boundaries.

Second, from a Bayesian perspective, the weight function ω(ρ) can be interpreted as

a prior on parameters δ and ρ. We assume the Gaussian disturbances in (1), ω(ρ) =

(ρ(1− ρ))1/2 are equivalent to the square root of the Fisher information up to a constant.

The Fisher information is interpreted as a way to measure the amount of information the

data gives us about the unknown parameter δ, given ρ. A prior distribution based on the

Fisher information reflects our belief that a structural break is less likely to occur near the

boundaries. See Appendix A for details.

3 Partial Break with Multiple Regressors

This section provides consistency of the break point estimator under a general linear

regression model with multiple regressors. The model incorporates a partial break in

coefficients and assumes that a one-time break occurs at an unknown date k0 = [ρ0T ]

with ρ0 ∈ (0, 1). I follow the notations of Bai (1997) by denoting the vector of variables

associated with a stable coefficient as wt and the variables associated with coefficients under

a break as zt. Let xt = (w′t, z
′
t)
′ be a (p× 1) vector and zt is a (q × 1) vector with q ≤ p,

yt =

x
′
tβ + εt if t = 1, . . . , k0

x′tβ + z′tδT + εt if t = k0 + 1, . . . , T,
(4)

where εt is a mean zero error term. In general, zt can be expressed as a linear function of xt

so that zt = R′xt, where R is a (p× q) matrix with full column rank. Let Y = (y1, . . . , yT )′

and define Xk := (0, . . . , 0, xk+1, . . . , xT )′ and X0 := (0, . . . , 0, xk0+1, . . . , xT )′. Define Zk

and Z0 analogously so that Zk = XkR and Z0 = X0R. Let M := I −X(X ′X)−1X ′ and use

the maximal invariant to eliminate the nuisance parameter β.

The subscript on δT shows that the break magnitude may depend on the sample size.

We assume the break magnitude is outside the local T−1/2 neighborhood of zero. This
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is because the break point is not consistently estimable if the break magnitude is in the

local T−1/2 neighborhood of zero. This corresponds to the case of small break magnitudes

discussed previously, δT = O(T−1/2), in which structural break tests have asymptotic power

strictly less than one. In this section, I proceed by assuming that δT is fixed or it converges

to zero at a rate slower than T−1/2 so that the power of the structural break tests converge

to one (Assumption 3).

Let S̄ = Y ′MY , and denote ST (k)2 as the SSR regressing MY on MZk. The LS

estimator of break date k̂LS is the value that minimizes ST (k)2, and thus, maximizes VT (k)2

from the identity S̄ = ST (k)2 + VT (k)2 (Amemiya 1985),

k̂LS = arg max
k

VT (k)2, ρ̂LS = k̂LS/T

VT (k)2 := δ̂′k(Z
′
kMZk)δ̂k,

where δ̂k is the LS estimate of δT by regressing MY on MZk. Note that VT (k)2 is non-

negative from the inner product of the vector (Z ′kMZk)
1/2δ̂k. The LS objective function is

modified by multiplying a (q×q) positive definite weight matrix Ωk, which is a generalization

of ωk in Section 2 for linear regression models with multiple regressors. Decompose the weight

matrix so that Ωk = Ω
1/2′
k Ω

1/2
k and multiply Ω

1/2
k to the vector (Z ′kMZk)

1/2δ̂k. Take the

inner product and obtain the objective function QT (k)2 := δ̂′k(Z
′
kMZk)

1/2Ωk(Z
′
kMZk)

1/2δ̂k.

Then the estimator of the break point is

k̂ = arg max
k

QT (k)2, ρ̂ = k̂/T. (5)

An example of the weight matrix is Ωk = T−1Z ′kMZk, which is equal to the square of the

representative weight function ω2
k = k/T (1− k/T ) in model (1) if R = I and X is a (T × 1)

vector of ones. Similarly, the matrix T−1Z ′kMZk “decreases” as k approaches either end of

the sample from the following rearrangement of terms:

T−1Z ′kMZk = T−1[Z ′kZk − Z ′kX(X ′X)−1X ′Zk]

= T−1R′(X ′kXk)(X
′X)−1(X ′X −X ′kXk)R. (6)
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I prove the consistency of the break point estimator ρ̂ in (5) under regularity conditions

on model (4) and weight matrix Ωk. The notation ‖·‖ denotes the Euclidean norm ‖x‖ =

(
∑p

i=1 x
2
i )

1/2
for x ∈ Rp. For a matrix A, ‖A‖ represents the vector induced norm ‖A‖ =

supx ‖Ax‖ / ‖x‖ for x ∈ Rp and A ∈ Rp×p.

Assumption 1. (i) k0 = [ρ0T ], where ρ0 ∈ [α, 1− α], 0 < α < 1
2
;

(ii) The data {ytT , xtT , ztT : 1 ≤ t ≤ T, T ≥ 1} form a triangular array. The subscript

T is omitted for simplicity. In addition, zt = R′xt, where R is p × q, rank(R) = q,

zt ∈ Rq, xt ∈ Rp, and q ≤ p;

(iii) The matrices
(
j−1
∑j

t=1 xtx
′
t

)
,
(
j−1
∑T

t=T−j+1 xtx
′
t

)
,
(
j−1
∑k0

t=k0−j+1 xtx
′
t

)
and(

j−1
∑k0+j

t=k0+1 xtx
′
t

)
have minimum eigenvalues bounded away from zero in probability

for all large j. For simplicity, assume these matrices are invertible when j ≥ p. In

addition, these four matrices have stochastically bounded norms uniformly in j. That

is, for example, supj≥1

∥∥∥j−1
∑j

t=1 xtx
′
t

∥∥∥ is stochastically bounded;

(iv) T−1
∑[sT ]

t=1 xtx
′
t

p→ sΣx uniformly in s ∈ [0, 1], where Σx is a nonrandom positive

definite matrix;

(v) For random regressors, suptE ‖xt‖
4+γ ≤ K for some γ > 0 and K <∞;

(vi) The disturbance εt is independent of the regressor xs for all t and s. For an increasing

sequence of σ-fields Ft, {εt,Ft} form a sequence of Lr-mixingale sequence with r = 4+γ

for some γ > 0 (McLeish (1975) and Andrews (1988)). That is, there exists nonnegative

constants {ct : t ≥ 1} and {ψj : j ≥ 0}, such that ψj ↓ 0 as j →∞ and for all t ≥ 1

and j ≥ 0, we have (a) E |E(εt|Ft−j)|r ≤ crtψ
r
j , (b) E |εt − E(εt|Ft+j)|r ≤ crtψ

r
j+1, (c)

maxj |cj| < K <∞, (d)
∑

j j
1+κψj <∞ for some κ > 0.

Assumption 2. Ωk is a positive definite (q × q) matrix (q =dim(zt)) that is a continuous

function of data {yt, xt, zt; 1 ≤ t ≤ T} and have stochastically bounded norms uniformly in

k = 1, . . . , T − 1. In addition, for any nonzero vector c ∈ Rq,

∥∥∥Ω
1/2
k0

(Z ′0MZ0)1/2c
∥∥∥ > ∥∥∥Ω

1/2
k (Z ′kMZk)

−1/2(Z ′kMZ0)c
∥∥∥
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holds for all k and k0, where M = I − X(X ′X)−1X ′. When k/T → ρ as T → ∞, then

Ωk
p→ Ω̄(ρ), where Ω̄(ρ) is a differentiable function of ρ, element-wise.

The conditions of assumption 1 are similar to assumptions A1 to A6 in Bai (1997), with

additional restrictions (iv) and (vi). Assumption 1(vi) allows for general serial correlation

in disturbances and requires xt to be strictly exogeneous. This is because Ωk depends on

the moments of regressors and we want to impose zero weights on the boundaries of the

unit interval. For instance, if the second moments of zt changes at ρ0, the boundaries of the

unit interval may have positive weights that depend on the distribution of zt. These cases

are avoided under strict exogeneity because Ωk converges in probability to a nonrandom

matrix that varies across ρ only. Note that if Ωk is a non-stochastic matrix that satisfies

the norm inequality in Assumption 2, consistency holds under weakly exogeneous regressors

(see Assumption 4).

Assumption 2 guarantees that the matrix

AT (k) :=
1

|k0 − k|
[
(Z ′0MZ0)1/2Ωk0(Z

′
0MZ0)1/2

−(Z ′0MZk)(Z
′
kMZk)

−1/2Ωk(Z
′
kMZk)

−1/2(Z ′kMZ0)
]

(7)

is positive definite, and hence, ‖AT (k)‖ ≥ λmin(AT (k)) > 0, where λmin denotes the minimum

eigenvalue of AT (k). The condition can be interpreted as follows: for simplicity, consider

the univariate model (1). Assumption 2 is equivalent to |ω′(ρ)/ω(ρ)| < (2ρ(1− ρ))−1 for all

ρ, where ω′(ρ) = ∂ω(x)/∂x|x=ρ. The slope magnitude of the logarithm of ω(ρ) has an upper

bound that increases as ρ approaches zero or one. A sufficient condition is the function

ω(ρ) = (ρ(1− ρ))γ, with −1/2 ≤ γ ≤ 1/2.3 Note that this is sufficient under Assumption

1(i). If α is arbitrarily close to zero, it may restrict the functional of ω(·). The weight

matrix Ωk may be close to a singular matrix in a finite sample if α is extremely close to

zero under model (4). Under Assumption 1(iv), the weight matrix converges in probability

to a function of ρ and Σx as T increases. Because Ω̄(ρ) is a differentiable function of ρ

element-wise, ‖Ωk − Ωk0‖ ≤ b|k − k0|/T for some finite b > 0 and all k.

3The function ω(ρ) = (ρ(1−ρ))γ , with −1/2 ≤ γ ≤ 1/2, allows a convex function that has a large weight
on the boundaries. This is because I assume “large” break magnitudes (Assumption 3) for consistency of
the estimator. That is, if the break magnitude is large enough, we no longer have build-up mass at the
boundaries and imposing large weights does not matter for consistency.
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Assumption 3. δT → 0 and T 1/2−γδT →∞ for some γ ∈
(
0, 1

2

)
.

The consistency of the break point estimator is proved by showing that if δT 6= 0,

then with high probability, QT (k)2 can only be maximized near the true break k0. The

objective function QT (k)2 is defined in (5) and δ̂k is the LS estimator of the break magnitude,

assuming that k is the break date: δ̂k = (Z ′kMZk)
−1(Z ′kMZ0)δT + (Z ′kMZk)

−1Z ′kMε. If

k = k0, then δ̂k0 = δT + (Z ′0MZ0)−1Z ′0Mε.

Theorem 1. Under Assumptions 1 and 2, suppose δT is fixed or shrinking toward zero such

that Assumption 3 is satisfied. Then, k̂ = k0 +Op(‖δT‖−2) and the break point estimator ρ̂

in (5) is consistent.

|ρ̂− ρ0| = Op(T
−1 ‖δT‖−2) = op(1).

See Appendix B for proof of Theorem 1. For weakly exogenous regressors, the break

point estimator is consistent with the same rate of convergence in Theorem 1, under the

following conditions that substitute Assumptions 1 and 2.

Assumption 4. Assume the following conditions in model (4) with Assumption 1(i)-(iii)

and (v).

(i) (X ′X)/T converges in probability to a nonrandom positive definite matrix, as T →∞;

(ii) {εt,Ft} form a sequence of martingale differences for Ft = σ-field {εs, xs+1 : s ≤ t}.

Moreover, for all t, E|εt|4+γ < K for some K <∞ and γ > 0;

(iii) The weight matrix Ωk is a nonrandom (q × q) positive definite matrix, and for any

nonzero vector c ∈ Rq,

∥∥∥Ω
1/2
k0

(Z ′0MZ0)1/2c
∥∥∥ > ∥∥∥Ω

1/2
k (Z ′kMZk)

−1/2(Z ′kMZ0)c
∥∥∥

holds for all k and k0, where M = I − X(X ′X)−1X ′. Ωk converges to Ω̄(ρ) as

k/T →∞, which is a differentiable function of ρ on the unit interval.

Theorem 2. Under Assumption 4, suppose δT is fixed or shrinking toward zero that satisfies

δT → 0 and T 1/2−γδT →∞ for some γ ∈ (0, 1
2
). Then, k̂ = k0 +Op(‖δT‖−2) and the break
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point estimator ρ̂ in (5) is consistent.

|ρ̂− ρ0| = Op(T
−1 ‖δT‖−2) = op(1).

The proof of Theorem 2 is similar to the proof of Theorem 1; hence we have omitted

it. Under Assumptions 1(v), 2(i), and 2(ii), the strong law of large numbers holds for xtεt,

because the conditions in Hansen (1991) are satisfied. The weight matrix Ωk in Assumption

4(iii) depends on k/T but not on the data {xt, εt}. Thus, by setting ρ = k/T , Ωk is a

function of ρ, which is assumed to be differentiable with respect to ρ. Then, for some

finite c > 0, the bound ‖Ωk1 − Ωk2‖ ≤ c|k1 − k2|/T holds for any k1 and k2. Using these

properties, proving the consistency of the estimator under Assumption 4 follows the same

process as in the proof under Assumptions 1 and 2.

Given the consistency of the break point estimator from Theorem 1 or 2, the estimator

of the break magnitude corresponding to k̂ is consistent and asymptotically normally

distributed. Let δ̂(ρ̂) = δ̂k̂, then the following results hold. The proof is provided in the

Appendix.

Corollary 1. Under Assumptions 1 and 2, suppose δT is fixed or shrinking toward zero

such that Assumption 3 is satisfied. Let δ̂(ρ̂) be a consistent estimator of δT corresponding

to k̂, which is defined in (5). Then,

√
T
(
δ̂(ρ̂)− δT

)
d−→ N

(
0,V−1UV−1

)
,

where

V := plim
T→∞

T−1Z ′0MZ0, U := lim
T→∞

E
[(
T−1/2Z ′0Mε

)2
]
.

4 In-fill Asymptotic Distribution

Bai (1997) provides the limit distribution of the LS estimator assuming large breaks

(δ = O(T−1/2+ε) with 0 < ε < 1/2). The asymptotic distribution is symmetric at the true

break point, if the second moment of variables associated with coefficients under break (zt

in Section 3) do not change before and after break. I am interested in small breaks in which
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the asymptotic distribution depends on the parameters in a complicated manner (Elliott

and Müller 2007).

Jiang et al. (2017, 2018) and Casini and Perron (2019) employed a continuous record

asymptotic framework to derive the limit distribution of the break point estimator. By

assuming that a continuous record is available, a continuous time approximation to the

discrete time model is constructed and an in-fill asymptotic distribution is developed. In

contrast to the long-span asymptotic, where the time span of the data increases, the in-

fill asymptotic assumes a fixed time span with shrinking sampling intervals. The in-fill

asymptotic distribution is asymmetric, tri-modal, and dependent on the initial condition.

However, the long-span asymptotic distribution of the LS estimator under local-to-unity

processes do not depend on the initial condition. See Chong (2001), Pang et al. (2014)

and Pang et al. (2018) on the long-span asymptotic distribution of the LS estimator under

different settings of the AR root before and after the break. I follow the approach of Jiang

et al. (2017, 2018) to derive the limit distribution of the break point estimator under a

stationary and local-to-unity autoregressive process.

4.1 Partial break in a stationary process

Consider the linear regression model (4) with continuous time process {Ws, Zs, Es}s≥0

defined on a filtered probability space (Ω,F , (Fs)s≥0, P ), where s can be interpreted as a

continuous time index. Assume we observe at discrete points of time so that {Yth,Wth, Zth :

t = 0, 1, . . . , T = N/h}, where N is the time span. We normalize the time span N = 1

for simplicity. We denote the increment of processes as ∆hYt := Yth − Y(t−1)h. Let Xth =

(W ′
th, Z

′
th)
′ so that Zth = R′Xth. The model (4) can be expressed as

∆hYt =

(∆hXt)
′βh + ∆hEt if t = 1, . . . , [ρ0T ]

(∆hXt)
′βh + (∆hZt)

′δh + ∆hEt if t = [ρ0T ] + 1, . . . , T,

Divide both sides by
√
h so that the error term variance is O(1). The parameters βh and

δh may depend on the sampling interval, denoted by subscript h. Let εt := ∆hEt/
√
h,
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yt := ∆hYt/
√
h, xt := ∆hXt/

√
h, zt := ∆hZt/

√
h = R′xt,

yt =

x
′
tβh + εt if t = 1, . . . , [ρ0T ]

x′tβh + z′tδh + εt if t = [ρ0T ] + 1, . . . , T.
(8)

Assumption 5. {zt, εt} is a covariance stationary process that satisfies the functional

central limit theorem as T = 1/h→∞,

T−1/2

[sT ]∑
t=1

ztεt ⇒ B1(s),

where B1(s) is a multivariate Gaussian process on [0, 1] with mean zero and covariance

E[B1(u)B1(v)′] = min{u, v}Ξ, and Ξ := limT→∞E

[(
T−1/2

∑T
t=1 ztεt

)2
]

.

Assumption 6. The break magnitude is δh = d0λh, where d0 ∈ Rq is a fixed vector and λh

is a scalar that depends on the sampling interval h. Assume one of the following cases on

λh as h→ 0,

(i) λh = O(h1/2) so that δh = d0

√
h;

(ii) λh = O(h1/2−γ), where 0 < γ < 1/2 so that δh/
√
h→∞ simultaneously with δh → 0.

Notations from Section 3 are used for model (8): MY = MZ0δh+Mε, where ε = (ε1, . . . , εT )′

and M = I −X(X ′X)−1X ′. The objective function of the estimator k̂ in (5) is restated as

follows:

QT (k)2 =
√
T δ̂′k(T

−1Z ′kMZk)
1/2Ωk(T

−1Z ′kMZk)
1/2
√
T δ̂k (9)

The in-fill asymptotic distribution is derived for the two different magnitudes of δh in

Assumption 6. Theorem 3 provides the limit distribution under 6(i), which represents small

breaks. For proof, see Appendix B.

Theorem 3. Consider the model (8) with unknown parameters (βh, δh). Assumption 1, 2,

5, and 6(i) holds. Then the break point estimator ρ̂ = k̂/T defined in (5) has the following
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in-fill asymptotic distribution as h→ 0,

T ‖δh‖2 ρ̂
d−→ ‖d0‖2 arg max

ρ∈(0,1)

W̃ (ρ)′Ω̄(ρ)W̃ (ρ),

with

W̃ (ρ) := Σ−1/2
z

B1(ρ)− ρB1(1)√
ρ(1− ρ)

− (1− ρ0)

(
ρ

1− ρ

)1/2

Σ1/2
z d0 if ρ ≤ ρ0

:= Σ−1/2
z

B1(ρ)− ρB1(1)√
ρ(1− ρ)

− ρ0

(
1− ρ
ρ

)1/2

Σ1/2
z d0 if ρ > ρ0,

where B1(·) is a Brownian motion defined in Assumption 5.

An equivalent representation of the in-fill asymptotic distribution is (let ρ = ρ0 + u)

T ‖δh‖2 (ρ̂− ρ0)
d−→ ‖d0‖2 arg max

u∈(ρ0,1−ρ0)

W̃ (ρ0 + u)′Ω̄(ρ0 + u)W̃ (ρ0 + u),

where W̃ (·) is defined in Theorem 3.

Next, consider the case of Assumption 6(ii). The proof of Theorem 4 is in Appendix B.

Theorem 4. Consider the model (8) with unknown parameters (βh, δh). Assumptions 1, 2,

5, and 6(ii) hold. For simplicity, we denote Ω̄0 for Ω̄(ρ0). Then the break point estimator

ρ̂ = k̂/T defined in (5) has the following in-fill asymptotic distribution as h→ 0,

λ2
hT (ρ̂− ρ0)

d−→ (d′0Ω̄0ΞΩ̄0d0)

(d′0ΣzAud0)2
arg max
u∈(−∞,∞)

(d′0ΣzAud0)−1

{
W (u)− |u|

2

}
,

where Au = Ω̄0 − sgn(u)ρ0(1− ρ0)∇Ω̄0, ∇Ω̄0 ≡ ∂Ω̄(ρ)
∂ρ

∣∣∣
ρ=ρ0

, W (u) = W1(−u) for u ≤ 0 and

W (u) = W2(u) for u > 0. W1(·) and W2(·) are two independent Wiener processes on [0,∞).

If the weight matrix is Ωk = Iq, the estimator is equivalent to the LS estimator and the

limiting distribution reduces to the distribution in Proposition 3 of Bai (1997). The term

Au shows how the weight matrix down-weights break points near the boundaries. Suppose

Ωk = T−1Z ′kMZk and ρ0 > 0.5 so that Ω̄(ρ) = ρ(1− ρ)Σz and ∇Ω̄0 < 0. If u > 0 increases

in a positive direction toward the boundary (i.e., ρ > ρ0 > 0.5), then Au increases and the
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term multiplied to the Wiener process with drift, (d′0ΣzAud0)−1 decreases. In contrast, if

u < 0 decreases such that ρ shifts toward the median, then Au decreases and (d′0ΣzAud0)−1

increases. The result is opposite if ρ0 < 0.5. That is, there is larger weight on ρ near the

median 0.5 and less weight near the boundaries.

4.2 Break in an autoregressive model

In this section, I derive the in-fill asymptotic distribution of an autoregressive (AR) model

with a structural break in its lag coefficient, using a deterministic weight function ω(·).

As mentioned in Section 3, Assumption 1 excludes lagged dependent variables, due to the

dependence of the weight function on regressors. This condition is relaxed to allow weakly

exogeneous regressors by assuming non-stochastic weights. Consider a discrete model closely

related to the Ornstein-Uhlenbeck process with a break in the drift function:

dx(t) = −(µ+ δ1{t > ρ0})x(t)dt+ σdB(t),

where t ∈ [0, 1] and B(·) denote a standard Brownian motion. The discrete time model has

the form

xt = (β11{t ≤ k0}+ β21{t > k0})xt−1 +
√
hεt, εt

i.i.d.∼ (0, σ2), x0 = Op(1),

where β1 = exp{−µ/T} and β2 = exp{−(µ+ δ)/T} are the AR roots before and after the

break. We denote yt = xt/
√
h so that the order of errors is Op(1) as in model (4). Then, I

have for t = 1, . . . , T ,

yt = (β11{t ≤ k0}+β21{t > k0})yt−1 +εt, εt
i.i.d.∼ (0, σ2), y0 = xo/

√
h = Op

(
T 1/2

)
. (10)

The initial condition of yt in (10) diverges at rate T 1/2; thus, the in-fill asymptotic distribution

will depend explicitly on the initial value x0. The break size is β2 − β1 = O(T−1), whereas

the literature on long-span asymptotics assumes O(T−γ) with 0 < γ < 1. The model (10)

is a local-to-unit root process: β1 = exp{−µ/T} → 1 and β2 = exp{−(µ+ δ)/T} → 1, as

T → ∞ for any finite (µ, δ). In contrast, the long-span asymptotic theory incorporates
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stationary AR(1) processes, where |β1| < 1 and |β2| < 1. Chong (2001) derives the long-span

distribution under |β2 − β1| = O(T−1/2+γ) with 0 < γ < 1/2. Jiang et al. (2017) provides

simulation results that the in-fill asymptotic theory works well even when β1 and/or β2 are

distant from unity in the finite sample.

The break point estimator and the LS estimator in model (10) takes the form

S(k)2 =
k∑
t=1

(
yt − β̂1(k)yt−1

)2

+
T∑

t=k+1

(
yt − β̂2(k)yt−1

)2

k̂ = arg min
k=1,...,T−1

ω2
k S(k)2, ρ̂ = k̂/T (11)

k̂LS = arg min
k=1,...,T−1

S(k)2, ρ̂LS = k̂LS/T,

where β̂1(k) =
∑k

t=1 ytyt−1/
∑k

t=1 y
2
t−1 and β̂2(k) =

∑T
t=k+1 ytyt−1/

∑T
t=k+1 y

2
t−1 are LS

estimates of β1 and β2 under break at k, respectively.

Theorem 5. Consider the model (10) with fixed parameters (µ, δ) so that ln β1 = O(T−1)

and ln β2 = O(T−1). Assume the weight function ωk is nonrandom and bounded on the unit

interval with ωk → ω(ρ) as k/T → ρ. Then, the break point estimator ρ̂ = k̂/T in (11) has

the in-fill asymptotic distribution as

ρ̂ =⇒ arg max
ρ∈(0,1)

ω(ρ)2


(
J̃0(ρ)2 − J̃0(0)2 − ρ

)2

∫ ρ
0
J̃0(r)2dr

+

(
J̃0(1)2 − J̃0(ρ)2 − (1− ρ)

)2

∫ 1

ρ
J̃0(r)2dr

 ,
where J̃0(r), for r ∈ [0, 1] is a Gaussian process defined by

dJ̃0(r) = −(µ+ δ1{r > ρ0})J̃0(r)dr + dB(r), (12)

with the initial condition J̃0(0) = y0/σ = x0/(σ
√
h), and B(·) is a standard Brownian

motion.

The results of Theorem 5 derive from applying the continuous mapping theorem to

the limit distribution S(k)2 in Theorem 4.1 from Jiang et al. (2017). See Appendix B for

the proof. The difference between the asymptotic distributions of the two estimators is
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the weight function multiplied by the stochastic process in the argmax function. Both

estimators are asymmetrically distributed around the true point and biased when ρ0 6= 1/2.

5 Monte Carlo Simulation

This section compares finite sample distributions of the new estimator and the LS estimator

using Monte Carlo simulation. It considers two different models; a break in the mean

of a univariate regression model and a break in the lag coefficient of the AR(1) process.

I compare the root mean squared error (RMSE), bias, and standard errors of the two

estimators in the finite sample and in-fill asymptotics.

5.1 Univariate stationary process

The first model is when a structural break occurs in model (4), where xt = zt = 1 for all t.

The break magnitude δT = T−1/2d0 is in the local T−1/2 neighborhood of zero to represent

small break magnitudes.

yt = µ+ δT1{t > [ρ0T ]}+ εt, (13)

where εt
i.i.d.∼ N(0, σ2) and σ = 1. Parameter values are ρ0 ∈ {0.15, 0.3, 0.5, 0.7, 0.85},

µ = 4, d0 ∈ {1, 2, 4}, and T = 100 with 5,000 replications. The weight function is

ωk = (k/T (1− k/T ))1/2, which is the representative weight function motivated in Section

24. The break point estimator ρ̂NEW is defined in (3) and the LS estimator ρ̂LS in (2).

Although it is unnecessary to trim under the simple model (13), I trim the optimization

space by fraction α = 0.1 on both ends, following the common practice in the literature.

Table 1 provides the RMSE, the bias, and the standard error for the finite sample

distribution. For all ρ0 and d0 values considered, the RMSE of the estimator ρ̂NEW is

smaller than that of ρ̂LS in the finite sample. A comparison of asymptotic RMSE shows the

same results qualitatively (see Appendix C). A trade-off emerges of slightly larger bias but

4If the weight function is ωk = (k/T (1 − k/T ))γ , Assumption 2 is satisfied if −1/2 ≤ γ ≤ 1/2 for an
arbitrary small α in Assumption 1(i). For γ ∈ {1/8, 1/4, 3/8}, the results (omitted due to space constraints)
do not change qualitatively; the probability at the boundaries decrease compared to the finite sample
distribution of LS. Because ω(ρ) = (ρ(1− ρ))γ → 1 as γ → 0, the difference between the two estimators
finite sample behavior shrinks when γ is close to zero.
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a large decrease in standard error for ρ̂NEW compared to ρ̂LS, which leads to a decrease in

RMSE. When ρ0 = 0.5, both bias and standard error of the new estimator is smaller than

the LS estimator.

Figures 3 and 4 show the finite sample distribution of the two estimators under ρ0 = 0.30,

and 0.85. Under ρ0 = 0.30, the finite sample distribution of ρ̂LS is tri-modal, whereas the

ρ̂NEW has an unique mode at ρ0 for all d0 values considered. When the true break point is

near the boundaries of the optimization space and the break magnitude is small (ρ0 = 0.85

and d0 = 1), the LS estimator performs particularly worse. The tri-modal LS estimator

distribution becomes bi-modal with modes at α and 1− α. Under these parameter values,

the new estimator has its drawbacks; the finite sample distribution is relatively flat. This is

partly due to trimming the optimization space, which is not necessary for our estimation

method. Without trimming (α = 0), the finite sample distribution of our break point

estimator has a unique mode at ρ0 for all parameter values considered.

In short, the break point estimator is preferable than the LS estimator in terms of

RMSE, under small break magnitudes. The weight function biases the estimator toward the

median in trade-off to a significant decrease in standard error. When a break occurs near

the boundaries, we need to be careful, because the new estimator can also be problematic.

I suggest minimizing the trimming fraction α and using the new break point estimator.
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Table 1: Finite sample RMSE, bias, and the standard error of the new estimator and the LS
estimator of the break point under model (13) with parameter values (ρ0, d0) and T = 100.
The number of replications is 5,000.

RMSE Bias Standard error

ρ0 d0 NEW LS NEW LS NEW LS

0.15
1 0.4034 0.4381 0.3428 0.3401 0.2127 0.2762
2 0.3897 0.4211 0.3243 0.3152 0.2161 0.2792
4 0.3455 0.3556 0.2703 0.2323 0.2151 0.2693

0.30
1 0.2853 0.3303 0.1933 0.1898 0.2098 0.2703
2 0.2669 0.3150 0.1741 0.1703 0.2023 0.2649
4 0.2018 0.2435 0.1139 0.0999 0.1666 0.2221

0.50
1 0.2051 0.2681 -0.0029 -0.0041 0.2051 0.2680
2 0.1876 0.2511 -0.0017 -0.0029 0.1876 0.2511
4 0.1359 0.1985 0.0002 -0.0020 0.1359 0.1985

0.70
1 0.2866 0.3334 -0.1940 -0.1915 0.2109 0.2729
2 0.2640 0.3104 -0.1693 -0.1641 0.2025 0.2635
4 0.2043 0.2448 -0.1151 -0.1029 0.1689 0.2222

0.85
1 0.4018 0.4394 -0.3405 -0.3386 0.2134 0.2800
2 0.3913 0.4224 -0.3265 -0.3176 0.2157 0.2785
4 0.3438 0.3524 -0.2678 -0.2275 0.2155 0.2692
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Figure 3: (ρ0 = 0.30) Finite sample distribution of the new estimator ρ̂NEW (left) and the
LS estimator ρ̂LS (right) under model (13), with parameter values (ρ0, δT ) = (0.3, T−1/2),
(0.3, 2T−1/2), and (0.3, 4T−1/2) and T = 100, respectively. The optimization space is trimmed
by fraction α on both ends.
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Figure 4: (ρ0 = 0.85) Finite sample distribution of the new estimator ρ̂NEW (left) and the
LS estimator ρ̂LS (right) under model (13), with parameter values (ρ0, δT ) = (0.85, T−1/2),
(0.85, 2T−1/2), and (0.85, 4T−1/2) and T = 100, respectively. The optimization space is
trimmed by fraction α on both ends.
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5.2 Autoregressive process

For the AR(1) process, I replicate two experiments from Jiang et al. (2017). The first

experiment is a break in the lag coefficient so that the stationary process changes to another

stationary AR(1) process. The second case is a change from a local-to-unit root to a

stationary AR(1) process. Each experiment is generated from model (10) with h = 1/200

(T = 200), σ = 1, εt
i.i.d.∼ N(0, 1), ρ0 ∈ {0.3, 0.5, 0.7}, and different combinations of µ and δ

with β1 = exp(−µ/T ) and β2 = exp(−(µ+ δ)/T ).

1. Stationary to stationary: (µ, δ) = (138, 55), which implies (β1, β2) = (0.5, 0.38);

2. Local-to-unity to stationary: (µ, δ) = (1, 5), which implies (β1, β2) = (0.995, 0.97).

The stochastic integrals of in-fill asymptotic distributions are approximated over a grid

size h = 0.005. The optimization space is trimmed by fraction α = 0.1. The break point

estimator ρ̂NEW of the AR(1) model is defined in (11) and its asymptotic distribution is

stated in Theorem 3. The in-fill asymptotic distribution of the LS estimator ρ̂LS is stated

in Theorem 4.1 from Jiang et al. (2017).

Table 2 provides the RMSE, bias, and the standard error of ρ̂NEW and ρ̂LS for the finite

sample, respectively (see Table A.2 in Appendix C for the asymptotic distribution). Similar

to results in section 5.1, the RMSE of ρ̂NEW is smaller than that of ρ̂LS for all parameter

values (β1, β2, ρ0) considered. This also holds in the limit. A decrease in RMSE of ρ̂NEW

emerges from the trade-off of a relatively large decrease in variance compared to the increase

in the squared bias.

Figures 5 and 6 are finite sample distributions of the break point in the two experiments.

For the stationary to another stationary process change, the LS estimator ρ̂LS mode at

the true break point is almost negligible, unless it is the median ρ0 = 0.5. In contrast, the

estimator ρ̂NEW has a unique mode at the true break point for all ρ0 ∈ {0.3, 0.5, 0.7}. For the

local-to-unit root to a stationary AR(1) change, both estimators have a higher probability

at the true break point. However, the LS estimator continues to exhibit tri-modality with

modes at the ends, whereas the new estimator has a unique mode at ρ0.
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Figure 5: (Stationary to stationary) Finite sample distributions of the new estimator (left)
and the LS estimator (right) when the lag coefficient pre- and post-break are (β1, β2) =
(0.5, 0.38) at break points ρ0 = 0.3, 0.5, and 0.7, respectively.
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Figure 6: (Local-to-unity to stationary) Finite sample distributions of the new estimator
(left) and the LS estimator (right) when the lag coefficient pre- and post-break are (β1, β2) =
(0.995, 0.97) at break points ρ0 = 0.3, 0.5, and 0.7, respectively.
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Table 2: Finite sample RMSE, bias, and the standard error of the new estimator and the LS
estimator of the break point under the AR(1) model (10) with parameter values (β1, β1, ρ0)
and T = 200. The number of replications is 5,000.

RMSE Bias Standard error

β1 β2 ρ0 NEW LS NEW LS NEW LS

0.5 0.38
0.3 0.2627 0.3091 0.1821 0.1657 0.1893 0.2610
0.5 0.1763 0.2452 0.0204 0.0282 0.1751 0.2436
0.7 0.2285 0.2725 -0.1379 -0.1223 0.1822 0.2435

0.995 0.97
0.3 0.2369 0.2780 0.1319 0.1279 0.1967 0.2469
0.5 0.1754 0.2328 -0.0042 -0.0047 0.1754 0.2327
0.7 0.2375 0.2784 -0.1358 -0.1336 0.1948 0.2442

6 Empirical Application

In this section, I estimate the structural breaks in two empirical applications. I analyze

the performance of the break point estimator by comparing it with the LS estimator and

historical events documented in the literature. Furthermore, I show that the estimator

is robust to trimming the sample period, whereas the LS estimator varies significantly

depending on the trimmed sample. The first application is about the structural break

in postwar U.S. real GDP growth rate. The second application is estimating the break

date on the U.S. and UK stock returns using the return prediction model from Paye and

Timmermann (2006).

6.1 U.S. real GDP growth rate

In the macroeconomics literature, shocks that affect the mean growth rate are often modeled

as a one-time structural break because of their rare occurrence. However, existing estimation

methods fail to capture the graphical evidence of postwar European and U.S. growth, slowing

sometime in the 1970s. This is known as the “productivity growth slowdown,” which is

widely hypothesized in macroeconomics literature. For instance, Bai, Lumsdaine, and Stock

(1998) show that for the U.S., most test statistics reject the no-break hypothesis; however,

the estimated confidence interval does not contain the slowdown in the 1970s.
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I estimate the structural break of an autoregressive model using the postwar quarterly

U.S. real GDP growth rate. I use real GDP in chained dollars (base year 2012) data from

the Bureau of Economic Analysis (BEA) website for the sample period 1947Q1-2018Q2,

seasonally adjusted at annual rates. Annualized quarterly growth rates are calculated as

400 times the first differences of the natural logarithms of the levels data. I assume that

log output has a stochastic trend with a drift and a finite-order representation. Following

the Eo and Morley (2015) approach, I use Kurozumi and Tuvaandorj’s (2011) modified

Bayesian information criterion (BIC) for lag selection to account for structural breaks. The

highest lag order selected is 1 for output growth, given an upper bound of four lags and

four breaks. The AR(1) model (14) is estimated under three cases. The first case is a break

only in the drift term (γ 6= 0, δ = 0), the second case is a break only in the coefficient of

lag, the “propagation term” (γ = 0, δ 6= 0), and finally, a break in constant and coefficient.

∆yt = β + φ∆yt−1 + 1{t > k0} (γ + δ∆yt−1) + εt. (14)

I assume the error term {εt} is serially uncorrelated with mean zero disturbances. If a

structural break occurs in constant and lag coefficients, the long-run growth rate of log

output will change from E[∆yt] = β/(1− φ) to (β + γ)/(1− φ− δ) and the volatility of the

growth rate will change from V ar[∆yt] = σ2/(1− φ2) to σ2/(1− (φ+ δ)2) at time k0.

Using the notations of model (4), we have xt = (1, ∆yt−1)
′, the dependent variable is

∆yt, and for each model zt = R′xt is as follows:

• M1: R = (1, 0)′, zt = 1

• M2: R = (0, 1)′, zt = ∆yt−1

• M3: R = (1, 1)′, zt = (1,∆yt−1)′

The break point estimator k̂NEW in (5) is obtained using the weight Ωk = ω2
kIq, where

ωk = (k/T (1− k/T ))1/2 and q = dim(zt)
5. I use the full sample 1947Q3-2018Q2 (T = 284)

to estimate the structural break date, then a shorter sub-sample to see if the break date

estimates change. The optimization space of k is the sample trimmed by fraction α = 0.1

5For consistency of the break point estimator in a AR(1) model, we use Ωk = ω2
kIq, where ωk is a

function of k/T only.
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at both ends; the grid starts at 1954Q2 and ends at 2011Q1. The second and third columns

of Table 3 show the break date estimates for the full sample. For M1 and M3, the two

estimates are extremely different from each other, k̂NEW is 1973Q1, whereas k̂LS is 2000Q2.

The break point estimates on the unit interval are approximately 0.36 and 0.75, respectively.

Without any knowledge of historical events, one might think the finite sample properties of

ρ̂LS do not appear here, because it is not close to the boundaries of 0.1 or 0.9.

However, the LS estimate switches to the boundary if we consider a sub-sample that

is one decade shorter. Consider a sub-sample that ends at 2007Q1, with starting date

1947Q3, so that the search grid includes k̂LS from all models. The LS estimate of M1

changes drastically to 1953Q1, which is the end of the search grid, ρ̂LS = 0.1. In contrast,

my estimator under M1 provides the same break date estimate k̂NEW =1973Q1. For M3,

both estimates change, so k̂NEW =1966Q1 and k̂LS =1958Q1. Compared to the full sample

estimate, the change in the new estimate is 7 years, whereas it is over 40 years for the LS

estimate.

The break date estimate k̂NEW =1973Q1 under M1 corresponds to the productivity

growth slowdown in the early 1970s. U.S. labor productivity experienced a slowdown in

growth after the oil shock in 1973 (see Perron (1989) and Hansen (2001)). None of the

models estimate a break date in the 1980s, which is known as “the Great Moderation,”

referencing an empirical fact of a large reduction in the volatility of U.S. real GDP growth

in 1984Q1, established by Kim and Nelson (1999) and McConnell and Perez-Quiros (2000).

I focus on events that affect the mean rather than the volatility of growth rate because the

change in volatility is not a linear function of the change in the lag coefficient in model (14).
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Table 3: Structural break date estimates of postwar U.S. real GDP growth rate in a AR(1)
model. For each model, the first row is the break date estimate and the second row is the
break point estimate (fraction in the corresponding sample).

1947Q3-2018Q2 1947Q3-2007Q1
Model NEW LS NEW LS

M1
1973Q1 2000Q2 1973Q1 1953Q1

0.36 0.75 0.43 0.10

M2
1966Q1 1966Q1 1966Q1 1966Q1

0.26 0.26 0.32 0.32

M3
1973Q1 2000Q2 1966Q1 1958Q1

0.36 0.75 0.32 0.18

I check the sensitivity of the estimators to trimming the sample, by computing the two

estimators for a total of 54 sub-samples, which end at different dates from 2005Q1 to 2018Q2

(the samples used to obtain estimates differ, not the fraction α of the optimization space

within the sample). Because the sample is trimmed by one quarter each time, switching to

a different estimate, which is farther, implies that the estimator is sensitive to trimming,

rather than suggesting multiple breaks6. Estimating multiple structural breaks using the

weighting scheme is beyond the scope of this study. For LS estimation of multiple breaks

see Bai and Perron (1998) and Bai et al. (1998).

Table 4 provides the number of sub-samples that have the same break date estimates;

the entries are fractions of the number of sub-samples out of 54 sub-samples. For M1 and

M3, there are sub-samples in which the LS estimates are at the boundaries ρ̂LS = 0.1 or 0.9.

In contrast our break point estimates are either mid 1960s or early 1970s, which are in the

fraction interval ρ̂ ∈ [0.2, 0.5].

In short, estimating a structural break of postwar U.S. real GDP growth rate using our

estimation method, provides evidence of a break occurring in 1973Q1, which corresponds to

6It is likely that multiple structural breaks exist in the output growth rate because we are considering
a sample that is over 70 years. Estimates that vary depending on the sub-sample could be evidence of
more than one break in the sample period. The break date estimate k̂LS = 2000Q2 can align with the tech
bubble, also known as the dot-com crash in 2000. In relation to business cycles, k̂LS =1953Q1 and 1958Q1
are both recession in 1953, with the end of the Korean war. Under M2, both estimates from the full sample
are 1966Q1, and the closest historical event that is likely to affect the output growth rate is the Vietnam
war.
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the productivity growth slowdown period. However, the LS estimates a break occurs in 2000

or 1953, depending on the time interval. Break date estimates are obtained for sub-samples

with end dates 2005Q1 to 2018Q2 for both methods; the LS estimates vary considerably,

with ρ̂LS near 0.1 and 0.9 for almost 40% of the sub-samples considered under M1. In

contrast, my estimates are 1966Q1 or 1973Q1 for all sub-samples and models. This suggests

that the difference in LS estimates, depending on the sample period, are due to their finite

sample behavior (tri-modality) rather than evidence of multiple structural breaks.

Table 4: Structural break date estimates of postwar U.S. real GDP growth rate in an AR(1)
model using 54 sub-samples. The entries are the fractions of the number of sub-samples
that have break date estimates corresponding to the first column. The second column is the
interval of break point estimates that depend on sub-sample size. The start date is 1947Q3
and the end dates of sub-samples change across 2005Q1 to 2018Q2.

M1 M2 M3

Break date ρ̂ interval NEW LS NEW LS NEW LS

1953Q1 0.10 0.17
1958Q1 [0.17, 0.19] 0.22
1966Q1 [0.26, 0.33] 0.06 1 1 0.30 0.09
1973Q1 [0.36, 0.45] 1 0.05 0.70
2000Q2 [0.74, 0.86] 0.52 0.48
2006Q1 [0.85, 0.90] 0.20 0.21

6.2 Stock return prediction models

Paye and Timmermann (2006) studied the instability in models of ex-post predictable

components in stock returns by examining structural breaks in the coefficients of state

variables. The regression model (15) is specified with four state variables as follows: the

lagged dividend yield, short-term interest rate, term spread, and default premium. The

model allows for all coefficients to change because no strong reason exists to believe that

the coefficient on any of the regressors should be immune from shifts. The multivariate
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model with a one-time structural break at k with t = 1, . . . , T is

Rett = β0 + β1Divt−1 + β2Tbillt−1 + β3Spreadt−1 + β4Deft−1 (15)

+ 1{t > k} (δ0 + δ1Divt−1 + δ2Tbillt−1 + δ3Spreadt−1 + δ4Deft−1) + εt,

where Rett represents the excess return for the international index in question during

month t, Divt−1 is the lagged dividend yield, Tbillt−1 is the lagged local country short

interest rate, Spreadt−1 is the lagged local country spread, and Deft−1 is the lagged US

default premium. From the notation of model (4), yt = Rett and for the multivariate

model, xt = zt = (1, Divt−1, T billt−1, Spreadt−1, Deft−1). For the univariate model with

dividend yield xt = zt = (1, Divt−1), which is defined analogously for other univariate

models. The weight matrix is wk = T−1Z ′kMZk, where Zk = (0, . . . , 0, zk+1, . . . , zT )′ and

M = I − X(X ′X)−1X ′. Following the approach of Paye and Timmermann (2006), I

examine univariate models to facilitate the interpretation of coefficients, in addition to the

multivariate model (15).

I collected data from Global Financial Data and Federal Reserve Economic Data (FRED).

The indices of the total return and dividend yield series are the S&P 500 for the U.S. and

the Financial Times Stock Exchange (FTSE) All-share for the UK. The dividend yield is

expressed as an annual rate and constructed as the sum of dividends over the preceding 12

months, divided by the current price. For both countries, the three-month Treasury bill

(T-bill) rate is used as a measure of the short-term interest rate and the 20-year government

bond yield is the measure of the long-term interest rate. Excess returns are the total return

stocks in the local currency less the total return on T-bills. The term spread is constructed

as the difference between the long- and the short-term local country interest rate. The U.S.

default premium is the differences in yields between Moody’s Baa and Aaa rated bonds.

The search grid is obtained by trimming each sample period by fraction α = 0.15 (which is

equivalent to the trimming window of Paye and Timmermann (2006)). For the full sample,

the search grid is 1960:2-1996:3, and for the sub-sample it is 1975:1-1998:10.

Under the univariate model, with the lagged dividend yield as a single forecasting

regressor, the LS estimate of the break point for the S&P 500 is close to the boundary of

the search grid. Paye and Timmermann (2006) note that the NYSE or S&P 500 indices
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have the same estimated break date when the trimming window is shortened, and thus, the

discrepancy is not the sole explanation for the timing of the break. However, it is likely that

estimates are near the boundaries because of the finite sample behavior of the LS estimator.

I check whether the new estimator provides a different break date estimate under model

(15), using data similar to the first dataset from Paye and Timmermann (2006), which is

monthly data on the U.S. and the UK stock returns from 1952:7 to 2003:12. For comparison,

I also estimate the break using a shorter period 1970:1-2003:12, which is equivalent to the

sample period of their second dataset.

Table 5 provides estimates of the two samples using the S&P 500 index. One notable

feature is that the LS estimates that a break occurred in December 1994, with break point

ρ̂LS = 0.83, whereas my method estimates a break in the mid-1980s and ρ̂NEW = 0.62.

Although the LS estimate is close to the boundaries of the grid, it gives the same break

estimate in the sub-sample. This suggests that a break may have occurred multiple times.

Paye and Timmermann (2006) use the Bai and Perron (1998) method and find that two

structural breaks occur in the return model (15), using the S&P 500, where each break

occurs at 1987:7 and 1995:3. They note that the break in 1987 appears to be an isolated

break, not appearing in other international markets. These two break date estimates are

similar to estimates in Table 5, which assume a one-time structural break.
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Table 5: Structural break date estimates of the U.S. stock return (S&P 500) prediction
model for samples 1952:7-2003:12 and 1970:1-2003:12. For each model, the first row is
the break date estimate and the second row is the break point estimate (fraction in the
corresponding sample).

1952:7-2003:12 1970:1-2003:12
Model NEW LS NEW LS

Multi.
1984:8 1994:12 1982:8 1994:12
0.62 0.83 0.37 0.74

Div. yield
1982:8 1995:1 1982:8 1996:9
0.59 0.83 0.37 0.79

T-bill
1974:10 1974:10 1982:8 1975:1

0.43 0.43 0.37 0.15

Spread
1983:5 1976:2 1987:9 1976:2
0.60 0.46 0.52 0.18

Def.prem.
1968:12 1965:11 1982:8 1975:7

0.32 0.26 0.37 0.16

An alternative explanation of the break in the early 1980s is that the estimation method

captures a change in the individual state variable itself rather than the coefficient of the

prediction model (15), because the noisy nature of stock market returns makes it extremely

difficult to detect a break. For instance, the estimate β̂1 could be capturing noise caused by

the movement in Divt−1 (see Figure A.1 in Appendix C).

For UK stock returns, both methods obtain a break date estimate that is (or close to)

1975:1 under all models and sample periods. This is different from the result using the S&P

500 index series, because the excess return for the FTSE All-share index increases nearly 10

standard deviations from 1975:1 to 1975:2 7. Hence, the change in excess returns is large

enough for the LS to detect the break point appropriately. Paye and Timmermann (2006)

relate the break in the mid-1970s to the large macroeconomic shocks reflecting large oil

price increases; breaks in the underlying economic fundamentals process can explain breaks

in financial return models. If this is the case, then the break magnitude is large enough for

7For the sample period 1952:7-2003:12, the mean excess return of the FTSE All-share index is 0.5949
and the standard deviation is 5.4890. At t =1975:1, the excess return Rett = 0.4556 and at t =1975:2 we
have Rett = 53.2187; therefore, the change is approximately 9.6 standard deviations.
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both methods to accurately estimate the break date 1975:1.

Table 6: Structural break date estimates of the UK (FTSE) stock return prediction model
for samples 1952:7-2003:12, and 1970:1-2003:12. For each model, the first row is the break
date estimate and the second row is the break point estimate (fraction in the corresponding
sample).

1952:7-2003:12 1970:1-2003:12
Model NEW LS NEW LS

Multi.
1975:1 1975:1 1975:1 1975:1
0.44 0.44 0.15 0.15

Div. yield
1975:1 1975:1 1975:1 1975:1
0.44 0.44 0.15 0.15

T-bill
1975:1 1974:12 1975:1 1975:1
0.44 0.29 0.15 0.15

Spread
1975:1 1975:6 1975:1 1975:3
0.44 0.45 0.15 0.15

Def.prem.
1979:5 1975:6 1975:1 1975:3
0.52 0.45 0.52 0.15

7 Conclusion

This study provides an estimation method of the structural break point in multivariate

linear regression models, when a one-time break occurs in a subset of (or all) coefficients. In

particular, this study focuses on break magnitudes that are empirically relevant. In practice,

it is likely that the shift in parameters is small in a statistical sense. The LS estimation

widely used in the literature fails to accurately estimate the break point under small break

magnitudes, which motivates us to construct the estimation method in this study.

I construct a weight function on the sample period normalized to a unit interval, which

imposes small weights on the LS objective for potential break points with large estimation

uncertainty. The break point estimator is the argmax of the objective function that is

equal to the LS objective multiplied by a weight function. The break point estimator is

consistent under regularity conditions on a general weight function, with the same rate of

convergence as the LS estimator from Bai (1997). The limit distribution under a small break
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magnitude derives under an in-fill asymptotic framework, following the approach by Jiang

et al. (2017, 2018). For a structural break in a stationary linear process with a small break

magnitude (inside the local T−1/2 neighborhood of zero), the asymptotic distribution of

the new estimator explicitly depends on the weight function. The limit distribution is also

derived for a break in a local-to-unit root process, assuming the break magnitude is O(T−1).

Monte Carlo simulation results show that for a small break, the break point estimator

reduces the RMSE compared to the LS estimator for all parameter values considered.

This study provides two empirical applications as follows: structural breaks on the

U.S. real GDP growth and the U.S. and UK stock return prediction models. My break

point estimator is robust to trimming of the sample, in contrast to the LS. In particular,

my method estimates the break date 1973Q1 in U.S. real GDP growth rates, which LS

estimation has failed to confirm. In macroeconomics literature, the “productivity growth

slowdown” in the early 1970s is a widely known empirical fact.

In short, this study provides an alternative estimation method that estimates the timing

of a structural break in linear regression models under empirically relevant break magnitudes.

My estimator shows a uni-modal finite sample distribution under statistically small break

magnitudes. To my knowledge, this is the first study to widen the class of break point

estimators by generalizing least-squares. I provide theoretical results of the consistency of

the estimator and an asymptotic distribution that represents finite sample behavior. If the

break magnitude is small, my estimator outperforms the LS estimation in terms of RMSE.

Thus, under statistically small but empirically relevant breaks, the estimator described

in this study provides reliable inferences of the change point in models. The estimation

method can be generalized to estimate multiple structural breaks, which is a topic for future

research.
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Appendix A

In a Bayesian perspective, the weight function can be interpreted as a prior belief on

parameters δ and ρ. Suppose the prior distribution of the break magnitude δ conditional on

ρ is normal, with mean zero and variance ν2, δ|ρ ∼ N(0, ν2). Denote the prior distribution

of the break point as f(ρ) and let y = (y1, . . . , yT ). We assume Gaussian disturbances,

εt
i.i.d.∼ N(0, σ2). The joint distribution of δ, ρ, and y is

f(y, δ, ρ) = (2π)−1(ν2I−1
T )−1/2 exp

[
−1

2

{
δ2

ν2
+

(ȳ∗k − ȳk − δ)2

I−1
T

}]
f(ρ),

where IT = IT (δ|ρ) is the Fisher information of δ conditional on ρ and lT (δ | ρ) is the

conditional log-likelihood function.

IT := E

[
−∂

2lT (δ | ρ)

∂δ∂δ′

]
= σ−2Tρ(1− ρ).

The posterior distribution of ρ is proportional to f(y, δ, ρ), integrated with respect to δ.

f(ρ|y) ∝ f(ρ)(I−1
T + ν2)−1/2 exp

[
− (ȳ∗k − ȳk)2

2(I−1
T + ν2)

]
.

We assume ρ is bounded away from {0, 1} so that I−1
T = o(1), and for simplicity, assume

σ2 = 1. Suppose ν = T−1IT = ρ(1−ρ) and f(ρ) ∝ ν. In the limit, the posterior distribution

is proportional to

f(ρ|y) ∝ exp

[
− (ȳ∗k − ȳk)2

2ρ2(1− ρ)2

]
. (A.1)

Given the data y, the argmax function of the monotone transformation of the likelihood

(A.1) is asymptotically equivalent to the argmax of QT (k)2 = ω2
kVT (k)2, with ωk = (k/T (1−

k/T ))1/2. That is, if the weight function is proportional to the square root of the Fisher

information of δ conditional on ρ, the mode of the Bayesian posterior distribution (known

as the maximum a-posteriori probability (MAP) estimator) is asymptotically equivalent to

the break point estimator in (3).

Note that the Fisher information is interpreted as a way to measure the amount of

information about the unknown parameter δ, given ρ. Given two different values ρ1 6= ρ2,
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the inequality IT (δ|ρ1) > IT (δ|ρ2) reflects the fact that observations carry more information

on the break magnitude if a break occurs at ρ1, compared to ρ2. In other words, there is

more information of a structural break occurring at ρ1 than at ρ2. If a break occurs with

high probability, its magnitude is likely to be far from zero; if it is not likely, then δ is close

to zero. If we scale the Fisher information by sample size (I := T−1IT ), then the prior

distribution δ|ρ ∼ N(0, I) incorporates the amount of information of a break at some fixed

ρ. A large I implies the variance of the prior distribution is large, thus δ is more spread out

from zero and has large magnitude with high probability. In the opposite case, if there is

less information, δ is centered toward mean zero and the break magnitude is likely to be

small. Similarly, a prior belief of ρ can be expressed using the Fisher information (f(ρ) ∝ I

is equivalent to a Beta distribution with shape parameters (2, 2)).

Appendix B

Proof of Theorem 1

Proof. By rearranging terms we have

QT (k)2 −QT (k0)2 = −|k0 − k|GT (k) +HT (k), (A.2)

where GT (k) and HT (k) are defined as follows:

GT (k) :=
1

|k0 − k|
δ′T
[
(Z ′0MZ0)1/2Ωk0(Z

′
0MZ0)1/2

−(Z ′0MZk)(Z
′
kMZk)

−1/2Ωk(Z
′
kMZk)

−1/2(Z ′kMZ0)
]
δT (A.3)

HT (k) := ε′MZk(Z
′
kMZk)

−1/2Ωk(Z
′
kMZk)

−1/2Z ′kMε

− ε′MZ0(Z ′0MZ0)−1/2Ωk0(Z
′
0MZ0)−1/2Z ′0Mε

+ 2δ′T (Z ′0MZk)(Z
′
kMZk)

−1/2Ωk(Z
′
kMZk)

−1/2Z ′kMε (A.4)

− 2δ′T (Z ′0MZ0)1/2Ωk0(Z
′
0MZ0)−1/2Z ′0Mε.
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Lemma A.2 is equivalent to Bai’s (1997) lemma A.3, which is the generalized Hájek-Rényi

inequality for martingale differences to mixingales. For the proof see Bai and Perron (1998).

Lemma A.1. Under Assumptions 1 and 2, for every ε > 0, there exists λ > 0 and C <∞

such that inf |k−k0|>C‖δT ‖−2 GT (k) ≥ λ ‖δT‖2, with probability at least 1− ε.

Lemma A.2. Under Assumption 1, there exist a M < ∞ such that for every c > 0 and

m > 0,

P

(
sup

m≤k≤T

1

k

∥∥∥∥∥
k∑
t=1

ztεt

∥∥∥∥∥ > c

)
≤ M

c2m
.

Lemma A.3. Under Assumptions 1 and 2, suppose δT is fixed or shrinking toward zero

such that Assumption 3 is satisfied. Then the break point estimator ρ̂ in (5) is consistent.

That is, for every ε > 0 and η > 0, there exists T0 > 0 such that when T > T0,

P (|ρ̂− ρ0| > η) < ε.

Moreover, |ρ̂− ρ0| = Op

(
T−1/2 ‖δT‖

√
lnT

)
.

The rate of convergence of the break point estimator ρ̂ in (5) can be improved from

lemma A.3. For a fixed ε > 0 and η > 0, inequality (A.5) holds for any true break point

ρ0 ∈ [α, 1− α], when T is large.

P

(
sup

|k−k0|>Tη
QT (k)2 ≥ QT (k0)2

)
< ε. (A.5)

This is equivalent to lemma A.3 because given the estimator k̂, QT (k̂)2 −QT (k0)2 ≥ 0 by

definition. This implies that to prove the improved rate of convergence Op

(
T−1 ‖δT‖−2), it

is sufficient to show that for all ε > 0, there exists a finite C > 0 so that for all T > Tε,

P

(
sup

k∈KT (C)

QT (k)2 ≥ QT (k0)2

)
< ε.

Here, KT (C) =
{
k : |k − k0| > C ‖δT‖−2 , |k − k0| ≤ Tη

}
for some small fraction η. From

identity (A.2), QT (k)2 ≥ QT (k0)
2 is equivalent to HT (k)/|k − k0| ≥ GT (k). From lemma
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A.1, it is sufficient to prove that

P

(
sup

k∈KT (C)

∣∣∣∣HT (k)

k0 − k

∣∣∣∣ > λ ‖δT‖2

)
< ε. (A.6)

We use the expression Z0 = Zk − Z∆sgn(k0 − k) to rewrite the third and fourth terms of

HT (k) given in (A.4) as

2δ′T
[
(Z ′0MZk)(Z

′
kMZk)

−1/2Ωk(Z
′
kMZk)

−1/2Z ′kMε− (Z ′0MZ0)1/2Ωk0(Z
′
0MZ0)−1/2Z ′0Mε

]
= 2δ′T

[
(Z ′kMZk)

1/2Ωk(Z
′
kMZk)

−1/2Z ′kMε− (Z ′0MZ0)1/2Ωk0(Z
′
0MZ0)−1/2Z ′kMε

]
+ 2δ′T (Z ′0MZ0)1/2Ωk0(Z

′
0MZ0)−1/2(Z ′∆Mε) sgn(k0 − k) (A.7)

− 2δ′T (Z ′∆MZk)(Z
′
kMZk)

−1/2Ωk(Z
′
kMZk)

−1/2(Z ′kMε) sgn(k0 − k).

Note that for nonsingular matrices S and A with bounded norms, SAS−1 = A + op(1).

Also, we have (Z ′kMZk)
−1Z ′kMε = Op(T

−1/2) and (Z ′0MZ0)−1(Z ′kMZk) = Op(1) uniformly

on KT (C). We use this to find the order of the first line of the right-side in (A.7).

∥∥2δ′T
{

(Z ′kMZk)
1/2Ωk(Z

′
kMZk)

−1/2Z ′kMε− (Z ′0MZ0)1/2Ωk0(Z
′
0MZ0)−1/2Z ′kMε

}∥∥
≤
∥∥2δ′T

{
(Z ′kMZk)

1/2Ωk(Z
′
kMZk)

1/2 − (Z ′0MZ0)1/2Ωk0(Z
′
0MZ0)1/2Op(1)

}∥∥
×
∥∥(Z ′kMZk)

−1Z ′kMε
∥∥+ op(1)

≤ ‖2δT‖ ‖Z ′kMZkΩk − Z ′0MZ0Ωk0‖ Op(T
−1/2) + op(1)

= ‖2δT‖ ‖(Z ′kMZk − Z ′0MZ0)Ωk − Z ′0MZ0(Ωk0 − Ωk)‖ Op(T
−1/2) + op(1).

Then the second norm can be rearranged by subtracting and adding Z ′0MZk to the term
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(Z ′kMZk − Z ′0MZ0) and Assumption 2.

Z ′kMZk−Z ′0MZ0

=

R
′[X ′∆X∆(X ′X)−1(X ′X −X ′kXk)−X ′0X0(X ′X)−1X ′∆X∆]R if k ≤ k0

R′[X ′∆X∆(X ′X)−1X ′kXk − (X ′X −X ′0X0)(X ′X)−1X ′∆X∆]R if k > k0

= |k0 − k|Op(1), (A.8)

Ωk0 − Ωk = |k0 − k|T−1Op(1)

The norm ‖(k0 − k)−1X ′∆X∆‖ is bounded by assumption, hence the first line of (A.7) has

order |k0 − k| ‖δT‖Op(T
−1/2). The second and third lines of (A.7) are

2δ′T (Z ′0MZ0)1/2Ωk0(Z
′
0MZ0)−1/2(Z ′∆Mε) sgn(k0 − k)

= 2δ′TΩk0(Z
′
∆Mε) sgn(k0 − k) + op(1)

= 2δ′TΩk0(Z
′
∆ε− Z ′∆X(X ′X)−1X ′ε) sgn(k0 − k) + op(1)

= 2δ′TΩk0Z
′
∆ε sgn(k0 − k) + |k0 − k|T−1/2 ‖δT‖Op(1) + op(1),

−2δ′T (Z ′∆MZk)(Z
′
kMZk)

−1/2Ωk(Z
′
kMZk)

−1/2(Z ′kMε) sgn(k0 − k)

= −2δ′T (Z ′∆MZk)Ωk(Z
′
kMZk)

−1(Z ′kMε) sgn(k0 − k) + op(1)

= |k0 − k|T−1/2 ‖δT‖Op(1).

The first and second terms of HT (k) in (A.4) are Op(1) uniformly in KT (C), under Assump-

tions 1 and 2. Therefore, HT (k) divided by |k0 − k| is

HT (k)

|k0 − k|
= 2δ′TΩk0

1

|k0 − k|
Z ′∆ε sgn(k0 − k) + T−1/2 ‖δT‖Op(1) +

Op(1)

|k0 − k|
. (A.9)

Now we can prove (A.6) using the expression (A.9). Let 1/ ‖Ωk0‖ = A where A < ∞ by

Assumption 2. Without loss of generality, consider the case k < k0. The first term of (A.9)

is bounded by lemma A.2.

45



P

(
sup

k∈KT (C)

∥∥∥∥∥2δ′TΩk0

1

k0 − k

k0∑
t=k+1

ztεt

∥∥∥∥∥ > λ ‖δT‖2

3

)

≤ P

(
sup

k0−k≥C‖δT ‖−2

∥∥∥∥∥ 1

k0 − k

k0∑
t=k+1

ztεt

∥∥∥∥∥ > λA ‖δT‖
6

)

≤M

(
λA ‖δT‖

6

)−2
1

C ‖δT‖−2

=
36M

λ2A2C
<
ε

3

The probability is negligible for large T because we can choose a large C value accordingly.

For any ε > 0 and η > 0, we proved that the probability in (A.5) is negligible for large T .

Thus we can choose C such that KT (C) is non-empty and the inequality above is satisfied

for all ε > 0 and T > Tε. The second term of (A.9) is bounded due to the assumption

(T 1/2 ‖δT‖)−1 → 0.

P

(
T−1/2 ‖δT‖Op(1) >

λ ‖δT‖2

3

)
= P

(
Op(1)

T 1/2 ‖δT‖
>
λ

3

)
<
ε

3
.

The third term of (A.9) is bounded for k0 − k ≥ C ‖δT‖−2, since Op(1)/|k0 − k| ≤

Op(1) ‖δT‖2 /C,

P

(
sup

k0−k≥C‖δT ‖−2

Op(1)

|k0 − k|
>
λ ‖δT‖2

3

)
≤ P

(
Op(1)

C
>
λ

3

)
<
ε

3

where Op(1)/C is small for large T , by choosing a large constant C. Hence the bound (A.6)

holds and the rate of convergence of the break point estimator ρ̂ = k̂/T in Theorem 1 is

proved: |ρ̂− ρ0| = Op(T
−1 ‖δT‖2).

Proof of Lemma A.1

Proof. Assumption 2 implies that AT (k) from (7) is positive definite and thus GT (k) =

δ′TAT (k)δT ≥ λT (k) ‖δT‖2, where λT (k) is the minimum eigenvalue of AT (k). It is sufficient

to argue that λT (k) is bounded away from zero with probability tending to 1 as |k0 − k|
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increases. The matrices Z ′0MZ0 and Z ′0MZk are rearranged as follows, similar to Z ′kMZk

in (6).

Z ′0MZ0 = R′(X ′0X0)(X ′X)−1(X ′X −X ′0X0)R

Z ′0MZk =

R
′(X ′0X0)(X ′X)−1(X ′X −X ′kXk)R if k ≤ k0

R′(X ′X −X ′0X0)(X ′X)−1(X ′kXk)R if k > k0

(A.10)

Without loss of generality, assume k ≤ k0. The second term of |k0 − k|AT (k) from (7) is

(Z ′0MZk)(Z
′
kMZk)

−1/2Ωk(Z
′
kMZk)

−1/2(Z ′kMZ0)

=
[
R′(X ′0X0)(X ′X)−1(X ′X −X ′kXk)R

] [
(Z ′kMZk)

1/2Ω−1
k (Z ′kMZk)

1/2
]−1

(A.11)

×
[
R′(X ′X −X ′kXk)(X

′X)−1(X ′0X0)R
]
.

Define the following matrices.

Fk := (X ′kXk)
−1 − (X ′X)−1 = (X ′X)−1(X ′X −X ′kXk)(X

′
kXk)

−1

F0 := (X ′0X0)−1 − (X ′X)−1 = (X ′X)−1(X ′X −X ′0X0)(X ′0X0)−1 (A.12)

ΩX,k :=

 I(p−q) 0(p−q)×q

0q×(p−q) Ωk

 , B := Ω
−1/2
X,k F

1/2
k X ′kXk.

Both Fk and F0 are positive definite matrices under Assumption 1. Hence, each matrix can

be decomposed into Fk =
(
F

1/2
k

)2

and F0 =
(
F

1/2
0

)2

where F
1/2
k and F

1/2
0 are nonsingular

(p×p) matrices with p = dim(xt). ΩX,k is a (p×p) matrix where I(p−q) is an identity matrix

with rank (p− q) and zeros in non-diagonal block matrices such that R′ΩX,kR = Ωk. The

projection matrix of BR is Ip − BR(R′B′BR)−1R′B′, which is positive semi-definite. If

we multiply R′(X ′0X0)F
1/2
k Ω

1/2
X,k to the left and its transpose to the right of the projection
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matrix, the following inequality is obtained:

R′(X ′0X0)F
1/2
k ΩX,kF

1/2
k (X ′0X0)R

≥ R′(X ′0X0)Fk(X
′
kXk)R(R′B′BR)−1R′(X ′kXk)Fk(X

′
0X0)R

= R′(X ′0X0)(X ′X)−1(X ′X ′ −X ′kXk)R(R′B′BR)−1

×R′(X ′X −X ′kXk)(X
′X)−1(X ′0X0)R.

From (A.12), R′B′BR = R′(X ′kXk)F
1/2
k Ω−1

X,kF
1/2
k (X ′kXk)R = (Z ′kMZk)

1/2Ω−1
k (Z ′kMZk)

1/2

and the right side of the inequality is equivalent to (A.11). Therefore, it is sufficient to show

that the right-side of inequality (A.13) is bounded away from zero for large k0 − k,

AT (k) ≥ 1

|k0 − k|

[
(Z ′0MZ0)1/2Ωk0(Z

′
0MZ0)1/2 −R′(X ′0X0)F

1/2
k ΩX,kF

1/2
k (X ′0X0)R

]
.

(A.13)

Also from (A.12), (Z ′0MZ0)1/2Ωk0(Z
′
0MZ0)1/2 = R′(X ′0X0)F

1/2
0 ΩX,k0F

1/2
0 (X ′0X0)R. Thus,

|k0 − k|AT (k) ≥ R′(X ′0X0)
[
F

1/2
0 ΩX,k0F

1/2
0 − F 1/2

k ΩX,kF
1/2
k

]
(X ′0X0)R

= |k0 − k|R′ÃT (k)R,

where ÃT (k) := 1
|k0−k|(X

′
0X0)

[
F

1/2
0 ΩX,k0F

1/2
0 − F 1/2

k ΩX,kF
1/2
k

]
(X ′0X0). Then we have

∥∥∥ÃT (k)−1
∥∥∥ = |k0 − k|

∥∥∥∥(X ′0X0)−1
[
F

1/2
0 ΩX,k0F

1/2
0 − F 1/2

k ΩX,kF
1/2
k

]−1

(X ′0X0)−1

∥∥∥∥
≤ 1

‖X ′0X0‖
1

|k0 − k|−1

∥∥∥F 1/2
0 ΩX,k0F

1/2
0 − F 1/2

k ΩX,kF
1/2
k

∥∥∥ 1

‖X ′0X0‖
.

Note that for a nonsingular, bounded (p × p) matrix S, the norm does not change by

multiplying S on the left and S−1 on the right of a matrix: ‖ΩX,k‖ = ‖SΩX,kS
−1‖. By

assumption, ΩX,k ≥ λmin(ΩX,k) > 0 where λmin denotes the minimum eigenvalue. Therefore,

(F
1/2
0 )−1ΩX,k0F

1/2
0 = ΩX,k0 + op(1) ≥ λmin(ΩX,k0) + op(1). By subtracting and adding the

matrix Fk(F
1/2
0 )−1ΩX,k0F

1/2
0 to the denominator of the second term, the following inequality
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holds:

∥∥∥F 1/2
0 ΩX,k0F

1/2
0 − F 1/2

k ΩX,kF
1/2
k

∥∥∥
=
∥∥∥(F0 − Fk)(F 1/2

0 )−1ΩX,k0F
1/2
0 − Fk

{
(F

1/2
k )−1ΩX,kF

1/2
k − (F

1/2
0 )−1ΩX,k0F

1/2
0

}∥∥∥
≥
∣∣∣∥∥∥(F0 − Fk)(F 1/2

0 )−1ΩX,k0F
1/2
0

∥∥∥− ∥∥∥Fk {(F
1/2
k )−1ΩX,kF

1/2
k − (F

1/2
0 )−1ΩX,k0F

1/2
0

}∥∥∥∣∣∣
= |‖(F0 − Fk)ΩX,k0‖ − ‖Fk (ΩX,k − ΩX,k0)‖|+ op(1),

where the inequality is from the inverse triangular inequality. Let λ̃ be the minimum value

of λmin(ΩX,k) and λmin(ΩX,k0). From Assumption 2, we have |k0 − k|−1 ‖Ωk − Ωk0‖ ≤ b/T .

Hence,

|k0 − k|−1
∥∥∥F 1/2

0 ΩX,k0F
1/2
0 − F 1/2

k ΩX,kF
1/2
k

∥∥∥
≥
∣∣∣(k0 − k)−1

∥∥∥(F0 − Fk)λ̃
∥∥∥− b/T ‖Fk‖∣∣∣+ |k0 − k|−1op(1)

≥ λ̃
∥∥(k0 − k)−1(F0 − Fk)

∥∥+ op(1).

Let X∆ := sgn(k0 − k)(Xk − X0). By rearranging terms similar to (A.12), F0 − Fk =

(X ′0X0)−1(X ′∆X∆)(X ′kXk)
−1 so that

∥∥∥ÃT (k)−1
∥∥∥ ≤ 1

‖X ′0X0‖2

1

λ̃|k0 − k|−1 ‖F0 − Fk‖

≤ 1

λ̃ ‖X ′0X0‖2 ‖(X ′0X0)−1(k0 − k)−1X ′∆X∆(X ′kXk)−1‖
.

From Assumptions 1 and 2, the right-side of the inequality is bounded:

λ̃ ‖T−1X ′0X0‖2 ‖T 2(X ′0X0)−1(X ′kXk)
−1‖ < M , for some M <∞. In addition, the minimum

eigenvalue of (k0 − k)−1(X ′∆X∆) is bounded away from zero with large probability so that

1/ ‖(k0 − k)−1X ′∆X∆‖ is bounded with large probability for all large k0−k. Thus
∥∥∥ÃT (k)−1

∥∥∥
is bounded with large probability for all large k0 − k. This implies that the minimum

eigenvalue of ÃT (k) is bounded away from zero for all large k0 − k and this is also true for

AT (k) = R′ÃT (k)R because R has full column rank.

For the proof of Lemma A.3 we use Proposition 1 and Lemma A.4.
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Proposition 1. Let ε1, ε2, . . . , be a sequence of martingale differences with E[ε2
t ] = σ2 and

{ck} be a decreasing positive sequence of constants. The Hájek-Rényi inequality takes the

following form.

P

(
max
m≤k≤T

ck

∣∣∣∣∣
k∑
t=1

εt

∣∣∣∣∣ > α

)
≤ σ2

α2

(
mc2

m +
T∑

t=m+1

c2
t

)
.

Hájek and Rényi (1955) proved the inequality assuming i.i.d. random variables, and was

later generalized to martingales by Birnbaum and Marshall (1961). We use the generalized

Hájek-Rényi for martingale difference sequences to prove Lemma A.4, where {εt,Ft} are

mixingale sequences under Assumption 1.

Lemma A.4. Under Assumption 1, for every α > 0 and m > 0 there exists C <∞ such

that

P

(
sup

m≤k≤T

1√
k

∣∣∣∣∣
k∑
t=1

ztεt

∣∣∣∣∣ > α

)
≤ C lnT

α2
,

and thus, supk T
−1/2 ‖Z ′kε‖ = Op

(√
lnT

)
.

Proof. Denote ξt = ztεt and proceed. Let {ξt,Ft} be (q × 1) Lr-mixingales, r = 4 + γ for

some γ > 0 satisfying Assumption 1(vi). Define ξjt := E[ξt|Ft−j] − E[ξt|Ft−j−1]. Then

ξt =
∑∞

j=−∞ ξjt, and hence
∑k

t=1 ξt =
∑∞

j=−∞
∑k

t=1 ξjt. Denote ‖·‖s for the Ls-norm. For

each T > 0,

P

(
sup

m≤k≤T

1√
k

∥∥∥∥∥
k∑
t=1

ξt

∥∥∥∥∥
2

> α

)
≤ P

(
∞∑

j=−∞

sup
m≤k≤T

1√
k

∥∥∥∥∥
k∑
t=1

ξjt

∥∥∥∥∥
2

> α

)
. (A.14)

For each j, {ξjt,Ft−j} forms a sequence of martingale difference and the generalized

Hájek-Rényi inequality (Proposition 1) holds for this sequence. Let bj > 0 for all j and∑∞
j=−∞ bj = 1. The right-side of (A.14) is bounded by

∞∑
j=−∞

P

(
sup

m≤k≤T

1√
k

∥∥∥∥∥
k∑
t=1

ξjt

∥∥∥∥∥
2

> bjα

)

≤ 1

α2

∞∑
j=−∞

1

b2
j

(
m−1

m∑
i=1

E ‖ξji‖2
2 +

T∑
i=m+1

i−1E ‖ξji‖2
2

)
.
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Note that ‖ξjt‖2 ≤ ‖ξjt‖r by Liapounov’s inequality. By definition, for j ≥ 0, we have

‖ξjt‖r ≤ ‖E[ξt|Ft−j]‖r + ‖E[ξt|Ft−j−1]‖r and for j < 0, ‖ξjt‖r ≤ ‖ξt − E[ξt|Ft−j−1]‖r +

‖ξt − E[ξt|Ft−j]‖r. Hence, from the definition of a mixingale, E ‖ξjt‖2
r ≤ 4c2

tψ
2
|j| and with

Assumption 1(vi)(c), this implies E ‖ξji‖2
2 ≤ 4c2

iψ
2
|j| ≤ 4K2ψ2

|j|. Then the right-side of (A.14)

is bounded by

1

α2

∞∑
j=−∞

4b−2
j K2ψ2

|j|

(
1 +

T∑
i=m+1

i−1

)
≤ 1

α2

∞∑
j=−∞

4b−2
j K2ψ2

|j| (1 + lnT ) . (A.15)

We can choose appropriate {bj} so that
∑

j b
−2
j ψ2

|j| are bounded. From lemma A.6 of Bai

and Perron (1998), let ν0 = 1 and νj = j−1−κ for j ≥ 1, where κ > 0 is given in Assumption

1(vi)(d). Let bj = νj/ (1 + 2
∑∞

i=1 νi) and b−j = bj for all j ≥ 0. Then
∑∞

j=−∞ bj = 1. By

Assumption 1(vi)(d), we have

∞∑
j=−∞

b−2
j ψ2

|j| =

(
ψ2

0 + 2
∞∑
j=1

j2+2κψ2
j

)(
1 + 2

∞∑
j=1

j−2−2κ

)
<∞.

Hence, the right-side inequality of (A.15) is bounded by C lnT
α2 for some C > 0 and we obtain

the result of Lemma A.4.

Proof of Lemma A.3

Proof. We use the expression (A.2); the estimator k̂ must satisfy QT (k̂)2 ≥ QT (k0)2 which

is equivalent to HT (k̂) ≥ |k0 − k̂|GT (k̂). Therefore we have

P (|ρ̂− ρ0| > η) = P
(
|k̂ − k0| > Tη

)
≤ P

(
sup

|k−k0|>Tη
|HT (k)| ≥ inf

|k−k0|>Tη
|k0 − k|GT (k)

)

≤ P

(
sup

|k−k0|>Tη
|HT (k)| ≥ Tη inf

|k−k0|>Tη
GT (k)

)

≤ P

(
G̃−1 sup

p≤k≤T−p
T−1|HT (k)| ≥ η

)
, (A.16)

where G̃ := inf |k−k0|>Tη GT (k), which is positive and bounded away from zero by Lemma
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A.1 and the restriction p ≤ k ≤ T − p is imposed to guarantee existence of HT (k). Thus,

the consistency follows by showing that T−1 supp≤k≤T−p |HT (k)| = op(1), where

T−1|HT (k)| ≤
∣∣T−1ε′MZk(Z

′
kMZk)

−1/2Ωk(Z
′
kMZk)

−1/2Z ′kMε
∣∣

+
∣∣T−1ε′MZ0(Z ′0MZ0)−1/2Ωk0(Z

′
0MZ0)−1/2Z ′0Mε

∣∣
+ 2

∣∣T−1δ′T (Z ′0MZk)(Z
′
kMZk)

−1/2Ωk(Z
′
kMZk)

−1/2Z ′kMε
∣∣ (A.17)

+ 2
∣∣T−1δ′T (Z ′0MZ0)1/2Ωk0(Z

′
0MZ0)−1/2Z ′0Mε

∣∣ .
Lemma A.4 implies that supk

∥∥T−1/2Z ′kMε
∥∥ = Op

(√
lnT

)
. We use (A.18) to verify uniform

convergence for all k.

sup
p≤k≤T−p

∥∥(Z ′kMZk)
−1/2Z ′kMε

∥∥ = Op

(√
lnT

)
. (A.18)

We show that the third and fourth terms of (A.17) areOp

(
T−1/2 ‖δT‖ lnT

)
andOp

(
T−1/2 ‖δT‖

)
,

respectively. Denote DT := T−1/2(Z ′0MZk)(Z
′
kMZk)

−1/2. From (6) and (A.10), Z ′0MZk ≤

Z ′kMZk for all k, and thus

sup
p≤k≤T−p

D′TDT ≤ sup
p≤k≤T−p

T−1Z ′kMZk = Op(1),

then the third term of (A.17) is bounded by

2
∥∥T−1/2δ′T (T−1Z ′kMZk)

1/2Ωk

∥∥∥∥(Z ′kMZk)
−1/2Z ′kMε

∥∥ = ‖δT‖Op

(
T−1/2

√
lnT

)
.

For the true break date k0,
∣∣(Z ′0MZ0)−1/2Z ′0Mε

∣∣ = Op(1) under our regularity conditions.

Hence, the fourth term of (A.17) has order

∣∣T−1δ′T (Z ′0MZ0)1/2Ωk0(Z
′
0MZ0)−1/2Z ′0Mε

∣∣ = ‖δT‖Op

(
T−1/2

)
.

From (A.18) and boundedness of Ωk, we have supk

∥∥∥Ω
1/2
k (Z ′kMZk)

−1/2Z ′kMε
∥∥∥ = Op

(√
lnT

)
.
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Then the first and second terms of (A.17) are bounded as below, respectively.

sup
k
T−1

∥∥∥Ω
1/2
k (Z ′kMZk)

−1/2Z ′kMε
∥∥∥2

= Op

(
T−1 lnT

)
T−1

∥∥∥Ω
1/2
k0

(Z ′0MZ0)−1/2Z ′0Mε
∥∥∥2

= Op(T
−1).

By combining all four terms, T−1 supp≤k≤T−p |HT (k)| = op(1). Hence, probability (A.16) is

negligible for large T .

Proof of Corollary 1

Proof. Let Ẑ0 denote Zk when k is replaced by k̂. Then the LS estimator of δ̂(ρ̂) is

obtained by regressing MY on MẐ0. By multiplying M to model (4) can be rewritten as

MY = MẐ0δT +Mε∗, where ε∗ = ε+ (Z0 − Ẑ0)δT . Then,

√
T
(
δ̂(ρ̂)− δT

)
= (T−1Ẑ ′0MẐ0)−1T−1/2Ẑ ′0Mε∗

= (T−1Ẑ ′0MẐ0)−1
(
T−1/2Ẑ ′0Mε+ T−1/2Ẑ ′0M(Z0 − Ẑ0)δT

)
.

We show that the right side converges in probability to the same limit as when Ẑ0 is replaced

by Z0. First, we show that plimT−1/2Ẑ ′0M(Z0 − Ẑ0)δT = 0. Without loss of generality,

consider k > k0.

∥∥∥T−1/2Ẑ ′0M(Z0 − Ẑ0)δT

∥∥∥ ≤ T−1/2
∥∥∥Ẑ ′0(Z0 − Ẑ0)− Ẑ ′0X(X ′X)−1X ′(Z0 − Ẑ0)

∥∥∥ ‖δT‖
≤ 1√

T ‖δT‖

∥∥∥∥∥∥
k̂∑

t=k0+1

ztz
′
t

∥∥∥∥∥∥ ‖δT‖2

+

∥∥∥∥∥∥
 T∑
t=k̂+1

ztx
′
t

( T∑
t=1

xtx
′
t

)−1
∥∥∥∥∥∥ 1√

T ‖δT‖

∥∥∥∥∥∥
k̂∑

t=k0+1

xtz
′
t

∥∥∥∥∥∥ ‖δT‖2

=
1√

T ‖δT‖
Op(1) = op(1).

The last equality is because the sum has k̂− k0 = Op

(
‖δT‖−2) terms, hence,

∥∥∥∑k0
t=k̂+1

ztz
′
t

∥∥∥
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×‖δT‖2 = Op(1). Also,

T−1
∥∥∥Ẑ ′0MẐ0 − Z ′0MZ0

∥∥∥ ≤ T−1
∥∥∥Ẑ ′0Ẑ0 − Z ′0Z0

∥∥∥+ T−1
∥∥∥(Ẑ0 − Z0)′X(X ′X)−1X ′Ẑ0

∥∥∥
+ T−1

∥∥∥Z ′0X(X ′X)−1X ′(Ẑ0 − Z0)
∥∥∥

≤ 1

T ‖δT‖2

∥∥∥∥∥∥
k̂∑

t=k0+1

ztz
′
t

∥∥∥∥∥∥ ‖δT‖2 +
2

T ‖δT‖2

∥∥∥∥∥∥
k̂∑

t=k0+1

xtz
′
t

∥∥∥∥∥∥ ‖δT‖2Op(1)

=
1

T ‖δT‖2Op(1) = op(1).

Thus,
√
T
(
δ̂(ρ̂)− δT

)
= (T−1Z ′0MZ0)

−1T−1/2Z ′0Mε + op(1), and the normality follows

from the central limit theorem.

Proof of Theorem 3

Proof. When δh = d0

√
h, the break point estimator ‖δh‖2 (k̂ − k0) = ‖d0‖2 (ρ̂− ρ0) = Op(1)

has values in the interval (−ρ0 ‖d0‖2 , (1− ρ0) ‖d0‖2). Therefore, we only need to examine

the behavior of the objective function QT (k)2 for those k in the neighborhood of k0 such that

k =

[
k0 + s

∥∥∥d0

√
h
∥∥∥−2
]
, with s ∈ (−ρ0 ‖d0‖2 , (1−ρ0) ‖d0‖2). Then for any fixed s, if h→ 0

then T →∞ with k/T → ρ = ρ0 +u, and T −k →∞ with (T −k)/T → 1−ρ = 1−ρ0−u,

where u = s ‖d0‖−2 ∈ (−ρ0, 1− ρ0). From the objective function (9), we have

(T−1Z ′kMZk)
1/2
√
T δ̂k = (T−1Z ′kMZk)

−1/2(T−1Z ′kMZ0)d0 + (T−1Z ′kMZk)
−1/2T−1/2Z ′kMε.
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Consider each of the terms as h→ 0, which is equivalent to T →∞.

T−1Z ′kMZ0 = T−1

T∑
t=max{k,k0}+1

ztz
′
t −

(
T−1

T∑
t=k+1

R′xtx
′
t

)
(T−1X ′X)−1

(
T−1

T∑
t=k0+1

xtx
′
tR

)

−→ (1−max{ρ, ρ0}) Σz − (1− ρ)(1− ρ0)R′ΣxΣ
−1
x ΣxR

= (min{ρ, ρ0} − ρ · ρ0) Σz

T−1Z ′kMZk = T−1

T∑
t=k+1

ztz
′
t −

(
T−1

T∑
t=k+1

R′xtx
′
t

)
(T−1X ′X)−1

(
T−1

T∑
t=k+1

xtx
′
tR

)
−→ ρ(1− ρ)Σz

T−1/2Z ′kMε = T−1/2

T∑
t=k+1

ztεt − (T−1Z ′kX)(T−1X ′X)−1

(
T−1/2

T∑
t=1

xtεt

)
⇒ B1(ρ)− ρB1(1).

By assumption, Ωk
p→ Ω̄(ρ) as k/T → ρ. This implies that for a fixed d0, the objective

function QT (k)2 weakly converges as follows. For ρ ≤ ρ0,

QT (k)2 ⇒ 1

ρ(1− ρ)
[B1(ρ)− ρB1(1)− ρ(1− ρ0)Σzd0]′

× Σ−1/2
z Ω̄(ρ)Σ−1/2

z [B1(ρ)− ρB1(1)− ρ(1− ρ0)Σzd0] ,

and for ρ > ρ0,

QT (k)2 ⇒ 1

ρ(1− ρ)
[B1(ρ)− ρB1(1)− ρ0(1− ρ)Σzd0]′

× Σ−1/2
z Ω̄(ρ)Σ−1/2

z [B1(ρ)− ρB1(1)− ρ0(1− ρ)Σzd0] .

By continuous mapping theorem, the the in-fill asymptotic distribution of T ‖δh‖2 ρ̂ is the

argmax functional of the limit of QT (k)2, stated in Theorem 3.

Proof of Theorem 4

Proof. We omit the proof of consistency of the break point estimator ρ̂ → ρ0, because

it follows the same procedure as the proof of Theorem 1. Given the rate of convergence
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ρ̂− ρ0 = Op

(
T−1λ−2

h

)
, we only need to examine the behavior of QT (k)2−QT (k0)2 for those

k in the neighborhood of k0 such that k ∈ K(C), where K(C) = {k : |k − k0| ≤ Cλ−2
h } for

some C > 0.

Lemma A.5. Consider the model (8) and the weight matrix Ωk that satisfies Assumption

2. For the break magntiude δh = d0λh that satisfies Assumption 6(ii),

QT (k)2 −QT (k0)2 = −λ2
hd
′
0Z
′
∆Z∆Ωk0d0 − λ2

hd
′
0(Z ′0MZ0)(Ωk0 − Ωk)d0

+ 2λhd
′
0Ωk0Z

′
∆ε sgn(k0 − k) + op(1)

where Z∆ := sgn(k0 − k)(Zk − Z0) and op(1) is uniform on K(C).

Because δh = d0λh, for any constant C of K(C), we consider the limiting process of

QT (k)2−QT (k0)2 for k =
[
k0 + νλ−2

h

]
and ν ∈ [−C,C]. Consider ν ≤ 0 (i.e., ρ ≤ ρ0). From

lemma A.5,

QT (k)2 −QT (k0)2 = −d′0

(
λ2
h

k0∑
t=k+1

ztz
′
t

)
Ωk0d0 − d′0(T−1Z ′0MZ0)λ2

hT (Ωk0 − Ωk)d0

+ 2d′0Ωk0

(
λh

k0∑
t=k+1

ztεt

)
+ op(1).

For k0 − k =
[
−νλ−2

h

]
, the partial sum in the first term converges as follows:

λ2
h

k0∑
t=k+1

ztz
′
t

p−→ |ν|Σz.

Consider the second term; from the proof of Theorem 3, T−1Z ′0MZ0
p→ ρ0(1− ρ0)Σz and

λ2
hT (Ωk0 − Ωk) =

−ν(Ωk0 − Ωk)

−νλ−2
h T−1

=
−ν(Ωk0 − Ωk)

ρ0 − ρ
,

where Ωk = Ω̄(ρ) + op(1) for fixed ρ. From Assumption 2, Ω̄(ρ) is a differentiable function

of ρ element-wise and by the mean value theorem, Ω̄(ρ0) − Ω̄(ρ) = ∂Ω̄(ρ)
∂ρ

∣∣∣
ρ̃

(ρ0 − ρ) for

some ρ̃ ∈ (ρ, ρ0). Thus, the equation converges to −ν ∂Ω̄(ρ)
∂ρ

∣∣∣
ρ0
≡ −ν∇Ω̄0, under the break
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magntiude 6(ii).

The third term has partial sum of ztεt, which weakly converges to a Brownian motion

process B1(−ν) on [0,∞) that has variance |ν|Ξ.

λh

k0∑
t=k+1

ztεt ⇒ B1(−ν).

Therefore,

QT

([
k0 + νλ−2

h

])2 −QT (k0)2

⇒ −|ν|d′0ΣzΩ̄0d0 + νρ0(1− ρ0)d′0Σz∇Ω̄0d0 + 2d′0Ω̄0B1(−ν).

Let W1(·) and W2(·) be an Wiener processes that are independent of each other on [0,∞).

Define Aν := Ω̄0 − sgn(ν)ρ0(1− ρ0)∇Ω̄0.

G̃(ν) :=

−
|ν|
2

(d′0ΣzAνd0) + (d′0Ω̄0ΞΩ̄0d0)1/2W1(−ν) if ν ≤ 0

− |ν|
2

(d′0ΣzAνd0) + (d′0Ω̄0ΞΩ̄0d0)1/2W2(ν) if ν > 0.

From the continuous mapping theorem, the in-fill asymptotic distribution of the break point

estimator is λ2
h(k̂ − k0) ⇒ arg maxν G̃(ν). Denote Aν in terms of u so that Au = Ω̄0 −

sgn(u)ρ0(1− ρ0)∇Ω̄0. Let ν = cu where c = (d′0Ω̄0ΞΩ̄0d0)/(d′0ΣzAud0)2 and u ∈ (−∞,∞).

For ν ≤ 0,

arg max
ν∈(−∞,0]

G̃(ν) = arg max
cu∈(−∞,0]

−|u|
2
c(d′0ΣzAud0) + c1/2(d′0Ω̄0ΞΩ̄0d0)1/2W1(−u)

= arg max
cu∈(−∞,0]

(d′0ΣzAud0)−1

{
W1(−u)− |u|

2

}
= c arg max

u∈(−∞,0]

(d′0ΣzAud0)−1

{
W1(−u)− |u|

2

}
,

where the second equality is from

c(d′0ΣzAud0) = c1/2(d′0Ω̄0ΞΩ̄0d0)1/2 = (d′0Ω̄0ΞΩ̄0d0)/(d′0ΣzAud0),
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and the numerator does not depend on u. For ν > 0 we have arg maxν∈(0,∞) G̃(ν) =

c arg maxu∈(0,∞)(d
′
0ΣzAud0)−1{W2(u)− |u|/2}. Thus,

λ2
h(k̂ − k0)⇒ (d′0Ω̄0ΞΩ̄0d0)

(d′0ΣzAud0)2
arg max
u∈(−∞,∞)

(d′0ΣzAud0)−1

{
W (u)− |u|

2

}
,

for W (·) defined in Theorem 4.

Proof of Lemma A.5

Proof. Use equation (A.2), Z0 = Zk − Z∆sgn(k0 − k) and rearrange terms so that

|k0 − k|GT (k)

= δ′h(Z
′
0MZ0)1/2Ωk0(Z

′
0MZ0)1/2δh

− δh(Z ′0MZk)(Z
′
kMZk)

−1/2Ωk(Z
′
kMZk)

−1/2(Z ′kMZ0)δh

= δ′h [Z ′∆MZ∆Ωk0 + (Z ′kMZk)(Ωk0 − Ωk)] δh

+ δ′h
[
2sgn(k0 − k)(Z ′∆MZk)(Z

′
kMZk)

−1/2Ωk(Z
′
kMZk)

1/2

−2sgn(k0 − k)Z ′∆MZkΩk0 − (Z ′∆MZk)(Z
′
kMZk)

−1/2Ωk(Z
′
kMZk)

−1/2Z ′kMZ∆

]
δh

= λ2
hd
′
0 [Z ′∆MZ∆Ωk0 + (Z ′kMZk)(Ωk0 − Ωk)] d0 + op(1).

The last equality is because (Z ′∆MZk) = ‖δh‖−2Op(1) uniformly on K(C) and

(Z ′kMZk)
−1/2Ωk(Z

′
kMZk)

1/2 − Ωk0 = Ωk − Ωk0 + op(1) ≤ b|k0 − k|/T = op(1)

(Z ′∆MZk)(Z
′
kMZk)

−1/2Ωk(Z
′
kMZk)

−1/2Z ′kMZ∆ = ‖δh‖−4 T−1Op(1).

Similarly, from Zk = Z0 − Z∆sgn(k0 − k), we can show that (Z ′kMZk)(Ωk0 − Ωk) =

(Z ′0MZ0)(Ωk0 − Ωk) + op(1) and

λ2
hd0(Z ′∆MZ∆)Ωk0d0 = λ2

hd0(Z ′∆Z∆ − Z ′∆X(X ′X)−1X ′Z∆)Ωk0d0

= λ2
hd0Z

′
∆Z∆Ωk0d0 + op(1),
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because Z ′∆X = ‖δh‖−2Op(1) and (X ′X)−1 = Op(T
−1). Hence,

|k0 − k|GT (k) = λ2
hd
′
0Z
′
∆Z∆Ωk0d0 + λ2

hd
′
0(Z ′0MZ0)(Ωk0 − Ωk)d0 + op(1). (A.19)

Next, consider HT (k) in equation (A.9).

HT (k) = 2λhd
′
0Ωk0Z

′
∆ε sgn(k0 − k) + T−1/2 ‖δh‖ |k0 − k|Op(1) +Op(1).

Because |k0 − k| ≤ C ‖δh‖−2 on K(C), the second term in the above equation is bounded

by CT−1/2 ‖δh‖−1Op(1) = op(1). The last term Op(1) is op(1) uniformly on K(C), which

can be verified by rearranging terms using Z0 = Zk − Z∆sgn(k0 − k).

ε′MZk(ZkMZk)
−1/2Ωk(ZkMZk)

−1/2Z ′kMε− ε′MZ0(Z0MZ0)−1/2Ωk0(Z0MZ0)−1/2Z ′0Mε

= ε′MZk
[
(Z ′kMZk)

−1/2Ωk(Z
′
kMZk)

−1/2 − (Z ′0MZ0)−1/2Ωk0(Z
′
0MZ0)−1/2

]
Z ′kMε

+ ε′MZk(Z
′
0MZ0)−1/2Ωk0(Z

′
0MZ0)−1/2Z ′∆Mε sgn(k0 − k)

+ ε′MZ0(Z ′0MZ0)−1/2Ωk0(Z
′
0MZ0)−1/2Z ′∆Mε sgn(k0 − k)

= Op

(
T−1 ‖δh‖−2)+Op

(
T−1/2 ‖δh‖−1)+ op(1).

The first line is Op

(
T−1 ‖δh‖−2) is uniformly on K(C),

ε′MZk
[
(Z ′kMZk)

−1Ωk − (Z ′0MZ0)−1Ωk0

]
Z ′kMε+ op(1)

= ε′MZk(Z
′
kMZk)

−1(Z ′0MZ0 − Z ′kMZk)(Z
′
0MZ0)−1ΩkZ

′
kMε

+ ε′MZk(Z
′
0MZ0)−1(Ωk − Ωk0)Z

′
kMε+ op(1)

= T−1/2 ‖δh‖−2Op(T
−1/2) + op(1),

from (A.8) and (Z ′kMZk)
−1Z ′kMε = Op(T

−1/2) uniformly on K(C). The second and third

lines are Op

(
T−1/2 ‖δh‖−1) from Z ′∆Mε sgn(k0−k) = |k0−k|1/2Op(1) = Op

(
‖δh‖−1). Hence,

HT (k) = 2λhd
′
0Ωk0Z

′
∆ε sgn(k0 − k) + op(1).

Combine this with (A.19), we obtain the expression in Lemma A.5.
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Proof of Theorem 5

Proof. Lemma B.1 from Jiang et al. (2017) is restated below, and used without proof.

Lemma A.6. For the process yt defined in (10), the following equations hold when T =

1/h→∞ with a fixed ρ0 = k0/T , for any ρ ∈ [0, 1],

(a) T−1
∑[ρT ]

t=1 yt−1εt ⇒ σ2
∫ ρ

0
J̃0(r)dB(r);

(b) T−2
∑[ρT ]

t=1 y
2
t−1 ⇒ σ2

∫ ρ
0

[
J̃0(r)

]2

dr;

(c)
[
J̃0(ρ)

]2

−
[
J̃0(0)

]2

= 2
∫ ρ

0
J̃0(r)dB(r)− 2

∫ ρ
0

(µ+ δ1{r > ρ0})
[
J̃0(r)

]2

dr + ρ;

(d)
[
J̃0(1)

]2

−
[
J̃0(ρ)

]2

= 2
∫ 1

ρ
J̃0(r)dB(r)− 2

∫ 1

ρ
(µ+ δ1{r > ρ0})

[
J̃0(r)

]2

dr + (1− ρ);

where J̃0(r) for r ∈ [0, 1] is a Gaussian process defined in (12) and B(·) is a standard

Brownian motion.

Define the (T × 2) matrix Y (k) = [Y1(k)
...Y2(k)] with Y1(k) = (y0, . . . , yk−1, 0 . . . , 0)′,

Y2(k) = (0 . . . , 0, yk, . . . , yT−1)′ and Y = (y1, . . . , yT )′. Then the LS objective function can

be expressed as S(k)2 = Y ′MY where

M = IT − Y1(k)[Y1(k)′Y1(k)]−1Y1(k)′ − Y2(k)[Y2(k)′Y2(k)]−1Y2(k)′,

where IT is a (T × T ) identity matrix. The model (10) can be written as

yt = β1yt−1 + (β2 − β1)1{t > k0}yt−1 + εt = β1yt−1 + ηt,

where ηt := (β2 − β1)1{t > k0}yt−1 + εt. Let Y− = (y0, . . . , yT−1)
′ and η = (η1, . . . , ηT )′.

Then we have Y = Y−β1 + η, and the LS objective function is

S(k)2 = (Y−β1 + η)′M ′M(Y−β1 + η)

= η′η − η′Y1(k)[Y1(k)′Y1(k)]−1Y1(k)′η − η′Y2(k)[Y2(k)′Y2(k)]−1Y2(k)′η
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because M is a idempotent matrix and MY− = 0. Note that

η′η =

k0∑
t=1

η2
t +

T∑
t=k0+1

η2
t =

k0∑
t=1

ε2
t +

T∑
t=k0+1

((β2 − β1)yt−1 + εt)
2

which holds regardless of the choice of k, and

η′Y1(k)[Y1(k)′Y1(k)]−1Y1(k)′η =

(∑k
t=1 yt−1ηt

)2

∑k
t=1 y

2
t−1

,

η′Y2(k)[Y2(k)′Y2(k)]−1Y2(k)′η =

(∑T
t=k+1 yt−1ηt

)2

∑T
t=k+1 y

2
t−1

.

Therefore, the break point estimator is

ρ̂ = arg max
ρ∈(0,1)

ω(ρ)2 V(ρ), (A.20)

V(ρ) :=


(∑[ρT ]

t=1 yt−1ηt

)2

∑[ρT ]
t=1 y

2
t−1

+

(∑T
t=[ρT ]+1 yt−1ηt

)2

∑T
t=[ρT ]+1 y

2
t−1

 .
When ρ ≤ ρ0, the terms in the numerator and denominator of V(ρ) weakly converges as

follows.

T−1

[ρT ]∑
t=1

yt−1ηt = T−1

[ρT ]∑
t=1

yt−1εt ⇒ σ2

∫ ρ

0

J̃0(r)dB(r).

From Lemma A.6,

T−1

T∑
t=[ρT ]+1

yt−1ηt = T−1

 [ρ0T ]∑
t=[ρT ]+1

yt−1ηt +
T∑

t=[ρ0T ]+1

yt−1ηt


= T−1

T∑
t=[ρT ]+1

yt−1εt + T (β2 − β1)T−2

T∑
t=[ρ0T ]+1

y2
t−1

⇒ σ2

∫ 1

ρ

J̃0(r)dB(r)− δσ2

∫ 1

ρ0

[
J̃0(r)

]2

dr,

T−2

[ρT ]∑
t=1

y2
t−1 ⇒ σ2

∫ ρ

0

[
J̃0(r)

]2

dr, and T−2

T∑
t=[ρT ]+1

y2
t−1 ⇒ σ2

∫ 1

ρ

[
J̃0(r)

]2

dr.
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Then the LS objective function V(ρ) in (A.20) weakly converges to

V(ρ)⇒ σ2


(∫ ρ

0
J̃0(r)dB(r)

)2

∫ ρ
0

[
J̃0(r)

]2

dr
+

(∫ 1

ρ
J̃0(r)dB(r)− δ

∫ 1

ρ0

[
J̃0(r)

]2

dr

)2

∫ 1

ρ

[
J̃0(r)

]2

dr

 .

Lemma A.6 (c) and (d) implies that each term is rearranged as follows.

(∫ ρ
0
J̃0(r)dB(r)

)2

∫ ρ
0

[
J̃0(r)

]2

dr
=

([
J̃0(ρ)

]2

−
[
J̃0(0)

]2

− ρ+ 2µ
∫ ρ

0

[
J̃0(r)

]2

dr

)2

4
∫ ρ

0

[
J̃0(r)

]2

dr

=

([
J̃0(ρ)

]2

−
[
J̃0(0)

]2

− ρ
)2

4
∫ ρ

0

[
J̃0(r)

]2

dr
+ µ2

∫ ρ

0

[
J̃0(r)

]2

dr

+ µ

([
J̃0(ρ)

]2

−
[
J̃0(0)

]2

− ρ
)

(∫ 1

ρ
J̃0(r)dB(r)− δ

∫ 1

ρ0

[
J̃0(r)

]2

dr

)2

∫ 1

ρ

[
J̃0(r)

]2

dr
=

([
J̃0(1)

]2

−
[
J̃0(ρ)

]2

− (1− ρ)

)2

4
∫ 1

ρ

[
J̃0(r)

]2

dr

+ µ2

∫ 1

ρ

[
J̃0(r)

]2

dr + µ

([
J̃0(1)

]2

−
[
J̃0(ρ)

]2

− (1− ρ)

)
.

As a result, the objective function of the break point estimator in (A.20) weakly converges

to

ω(ρ)2V(ρ)

σ2
⇒

ω(ρ)2

([
J̃0(ρ)

]2

−
[
J̃0(0)

]2

− ρ
)2

4
∫ ρ

0

[
J̃0(r)

]2

dr
+

ω(ρ)2

([
J̃0(1)

]2

−
[
J̃0(ρ)

]2

− (1− ρ)

)2

4
∫ 1

ρ

[
J̃0(r)

]2

dr

+ µ2ω(ρ)2

∫ 1

0

[
J̃0(r)

]2

dr + µω(ρ)2

([
J̃0(1)

]2

−
[
J̃0(0)

]2

− 1

)
.

Following the same procedure above, ω(ρ)2V(ρ)/σ2 has the same limit when ρ > ρ0.

Therefore, by deleting the terms which are independent of the choice of ρ, the in-fill
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asymptotic distribution of ρ̂ in (A.20) is

ρ̂ = arg max
ρ∈(0,1)

ω(ρ)2V(ρ)

⇒ arg max
ρ∈(0,1)

ω(ρ)2

([
J̃0(ρ)

]2

−
[
J̃0(0)

]2

− ρ
)2

∫ ρ
0

[
J̃0(r)

]2

dr
+

ω(ρ)2

([
J̃0(1)

]2

−
[
J̃0(ρ)

]2

− (1− ρ)

)2

∫ 1

ρ

[
J̃0(r)

]2

dr
,

which is identical to the distribution in Theorem 5.

Appendix C

Table A.1: In-fill asymptotic RMSE, bias, and the standard error of the new estimator and
the LS estimator of the break point under model (13) with parameter values (ρ0, d0) and
T = 100. The number of replications is 5,000.

RMSE Bias Standard error

ρ0 d0 NEW LS NEW LS NEW LS

0.15
1 0.4112 0.4284 0.3270 0.3174 0.2493 0.2876
2 0.3763 0.3898 0.2895 0.2729 0.2403 0.2784
4 0.3159 0.3071 0.2285 0.1807 0.2181 0.2483

0.30
1 0.3004 0.3225 0.1865 0.1741 0.2355 0.2715
2 0.2595 0.2959 0.1527 0.1471 0.2097 0.2567
4 0.1930 0.2277 0.1059 0.0890 0.1614 0.2096

0.50
1 0.2226 0.2635 0.0086 0.0081 0.2224 0.2634
2 0.1894 0.2425 0.0081 0.0140 0.1893 0.2421
4 0.1322 0.1887 0.0094 0.0122 0.1319 0.1883

0.70
1 0.2796 0.3116 -0.1560 -0.1533 0.2320 0.2713
2 0.2437 0.2837 -0.1282 -0.1240 0.2072 0.2551
4 0.1840 0.2188 -0.0890 -0.0676 0.1611 0.2081

0.85
1 0.3986 0.4116 -0.3114 -0.2981 0.2489 0.2838
2 0.3616 0.3767 -0.2717 -0.2518 0.2386 0.2802
4 0.2982 0.3003 -0.2083 -0.1651 0.2134 0.2508
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Table A.2: In-fill asymptotic RMSE, bias, and the standard error of the new estimator and
the LS estimator of the break point under the AR(1) model (10) with parameter values
(β1, β1, ρ0) and T = 200. The number of replications is 5,000.

RMSE Bias Standard error

β1 β2 ρ0 NEW LS NEW LS NEW LS

0.5 0.38
0.3 0.1909 0.2046 0.1888 0.0145 0.0290 0.2041
0.5 0.0270 0.2368 -0.0053 -0.0751 0.0264 0.2246
0.7 0.1995 0.3164 -0.1970 -0.1878 0.0316 0.2546

0.995 0.97
0.3 0.1284 0.1737 0.0529 0.0392 0.1170 0.1692
0.5 0.0934 0.1749 -0.0145 -0.0260 0.0923 0.1730
0.7 0.1759 0.2484 -0.0934 -0.1128 0.1490 0.2213

Figure A.1: U.S. dividend yield (left) and term spread (right), 1952:7-2003:12. Red and
blue dotted lines are the new and LS break date estimates from the univariate model,
respectively.
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