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It is not feasible to reserve a fraction of a seat, therefore to respect the spirit of
affirmative action the Indian reservation system adheres to a rotating system of seat
claiming, commonly referred to as a roster. Developing a roster involves addressing a
series of connected apportionment problems. To identify suitable apportionment meth-
ods, six essential requirements direct our search to the large class of divisor methods.
Our study reveals that Webster’s method is the unique divisor method that satisfies
several practical and fairness properties, making it an excellent choice for constructing
rosters. Our comparative analysis of the existing Indian roster with the application of
Webster’s method underscores the benefits of the latter approach.
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1 Introduction

Indian affirmative action scheme, the reservation policy, unlike its American counterpart,
explicitly prescribes a proportion of seats and jobs in publicly funded institutions to various
beneficiary groups. Every recruitment or admissions advertisement must include information
about the proportion of government positions that are specifically designated as ”reserved”
for various protected groups. Since seats are indivisible and arise in small numbers over
time, innovative methods are used to help achieve the objectives of the reservation policy in
practice. For instance, a university may appoint at most one assistant professor of economics
every year, while the reservation policy may have five beneficiary groups. To ensure that,
over a period of time, each beneficiary group gets its reservation policy prescribed percentage
of seats, India devised a tool called roster.1

The publicly announced roster details a sequence of length two hundred in which benefi-
ciary groups of a reservation policy take turns in claiming seats. The objective of maintaining
rosters is to provide representation in proportion to reservation fractions mandated by the
policy and the chosen route is rotation in claiming seats:2

Though members of a particular category in a particular recruitment

year may be unlucky and may not get proportionate benefit but their

lucky successors in later recruitment years may get more than what

is due to them, thus, making up for the earlier deficiency and vice

versa.

The reservation policy dictates a beneficiary group’s total number of turns in a roster.
However, the sequence of taking turns is not fixed by the legislation and is therefore up
to the designers (which are the many state governments of India). Since seats arrive over
time in small numbers, the delay in claiming seats occurs naturally. However, it would be
an unjustified layer of partiality if the delay is systematically associated with a beneficiary
group’s proportion mandated by the policy.

In this note we study the problem of constructing rosters. Section 2 presents the rosters
as a solution to a series of connected apportionment problems. Section 3 shows that any
serious contender for the problem among the apportionment methods must be from the
large class of divisor methods. Section 4 shows that practical and fairness considerations
favor Webster’s method among divisor methods. Furthermore, Theorem 2 and Theorem 3
give two new properties of Webster’s method. Section 5 scrutinizes the Indian roster while
contrasting it with Webster’s method’s roster. The paper concludes with a discussion with
respect to the related literature in Section 6. Proofs are relegated to Appendix B.

1For India’s roster, visit https://dopt.gov.in/sites/default/files/ewsf28fT.PDF, last accessed on
26 June 2023.

2See page 10 of https://www.police.rajasthan.gov.in/Rajpolice/pdf_files/2462008_155643_

Reservation.pdf, last accessed on 26 June 2023.
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2 Formulation

A roster construction problem is a tuple Λ = (C,α, n). C is a finite set of categories
where m := |C| ≥ 2. The reservation policy is defined by a vector of fractions α = (αj)j∈C.
For each category j ∈ C, αj ∈ (0, 1) fraction of turns are to be reserved so that

∑
j∈C αj = 1.

The size of the roster is n where n is a positive integer. Throughout the paper, we fix a
set of categories C and a reservation policy α.

A roster Rn : {1, . . . , n} → C maps each position to a category such that, |R−1
n (j)| = αjn

for all j ∈ C. We denote the set of rosters by Rn. The definition incorporates the idea that
the total number of positions a roster assigns to a category is the same as the proportion
given by the reservation policy; that is, all categories must get their quantum of reserved
positions once n positions are filled. Therefore, we can restrict our attention to only those
rosters where this is possible.

We denote by xt
j the number of seats given to category j until position t under roster Rn;

that is, xt
j := |{s ∈ R−1

n (j) | s ≤ t}|. We denote by nj the total number of seats given to
category j; that is, nj := αjn. In line with the practice of making rosters, we assume that n
is chosen such that nj ∈ N, that is, the total number of turns for each category is a natural
number.

We next introduce an example that makes the notion of roster easier to comprehend.
There are two categories for easy illustration. The example will also be sufficient to present
the various aspects of designing rosters in upcoming sections.

Example 1. Consider a problem Λ = ({R, B},α = [0.2, 0.8], 20). There are two categories
C = {R, B}, represented by red and blue colors. The reservation policy reserves 20% posi-
tions for members of category R. The size of the roster is n = 20. Therefore, the number of
positions given to the category R and B is 4 and 16, respectively. Figure 1 illustrates three
possible rosters for the problem. For instance, Example Roster 1 is

Rn(k) =

{
R, if k ∈ {1, 2, 3, 4}
B, otherwise

Figure 1: EXAMPLE ROSTERS

Example Roster 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Example Roster 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Example Roster 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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The following representation of a roster entails a staircase where each step is some cate-
gory’s turn. The staircase representation of roster Rn is

xt = (xt
1, . . . , x

t
j, . . . , x

t
m), for t ∈ {1, . . . , n},

where xt
j := |{s ∈ R−1

n (j) | s ≤ t}| measures the number of seats category j receives until
position t. Figure 2 illustrates staircase representation for two rosters depicted in Figure 1.

Denote the standard unit vector in the direction of the j-th axis by ej; that is,
vector with j-th component equals 1 and all other components equal 0. Given two consecutive
points xt−1 and xt, if xt = xt−1 + ej, then we say that staircase moves to direction j at
step t; that is, xt

j = xt−1
j +1. Note that for staircase representation of a roster, xt can move

in only one direction at any step.
The roster construction problem may therefore be seen as a series of connected appor-

tionment problems, where each step t of the staircase xt = (xt
1, . . . , x

t
m) is an apportionment

of t seats among m categories with qt = (qtj)j∈C := (α1t, . . . , αmt) claims. Notice that
step t corresponds to house size and claim qtj corresponds to quota in the original model of
apportionment (see Balinski and Young (2001)).

Figure 2: STAIRCASE REPRESENTATION

Example Roster 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Example Roster 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Example Roster 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Category Blue
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(a) EXAMPLE ROSTER 2

Example Roster 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Example Roster 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Example Roster 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Category Blue
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(b) EXAMPLE ROSTER 3
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3 Methods

A method of apportionment is a point to set mapping Φ that assigns at least one
solution xt to each qt. Numerous methods have been proposed and utilized to address
the problem at hand (see Young (1995), Balinski and Young (2001), Pukelsheim (2017)). To
grasp the characteristics of their solutions, it is crucial to examine the properties they adhere
to. Among these properties, three are unquestionably essential and have been satisfied by
every method ever seriously proposed:

• A method of apportionment Φ is anonymous if xt ∈ Φ(qt) implies σ(xt) ∈ Φ(σ(qt))
for any permutation σ of the categories. A category should receive the same number
of seats wherever it may appear in the list of categories.

• A method of apportionment Φ is exact if qt is integer-valued implies Φ(qt) = xt. If
perfect proportionality may be achieved, it must be.

• A method of apportionment Φ is responsive if xt ∈ Φ(qt) and qti > qtj implies xt
i ≥ xt

j.
Category with a relatively higher claim should never receive fewer seats.

A basic principle of fair apportionment (Balinski (2005)) is that: “Any part of a fair
apportionment must be fair.” To define this idea, let xt

S :=
(
xt
j

)
j∈S, qt

S :=
(
qtj
)
j∈S and

x(S) :=
∑

j∈S x
t
j, for S ⊂ C.

• A method of apportionment Φ is consistent if xt ∈ Φ (qt) then xt
S ∈ Φ

(
q
x(S)
S

)
for any subset of categories S ⊂ C; moreover, if a sub-problem has another solution

z
x(S)
S ∈ Φ

(
q
x(S)
S

)
another solution to the problem itself exists,

(
z
x(S)
S ,xt

(C\S)

)
∈ Φ (qt).

Two other natural properties for apportionment methods to be used for roster construc-
tion problem:

• A method of apportionment Φ is house-monotone if xt ∈ Φ(qt) implies there is some
xt+1 ∈ Φ(qt+1) for which xt+1 ≥ xt. Reservations are irreversible, going from step t
to step t+ 1 in a roster, the number of position each category receives upto each step
can only weakly increase.

• A method of apportionment Φ is balanced if xt ∈ Φ(qt) and qti = qtj implies |xt
i−xt

j| ≤
1. If two categories have the same reservation fractions, and therefore the same claims,
their apportionments should not differ by more than one seat.

Following Balinski and Ramirez (2014), a divisor function d is any monotone real-valued
function defined on the nonnegative integers satisfying d(k) ∈ [k, k + 1] for any integer k,
and for which there exists no pair of integers a ≥ 0 and b ≥ 1 with d(a) = a+1 and d(b) = b.

The divisor method Φd based on d is

Φd(qt) =

{
xt : min

xt
i>0

qti
d (xt

i − 1)
≥ max

xt
j≥0

qtj

d
(
xt
j

) , x(C) = ∑
j∈C

xt
j = t

}
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A divisor method in decreasing order the values qti/d(xt
i) for all i and all integer ai give

the priority by which category i receives its xt
ith seat. Any divisor method is consistent,

house-monotone and balanced in addition to satisfying the three essential properties (see
Balinski and Young (2001), Pukelsheim (2017)). Arguably the most important result in the
theory of apportionment that characterizes divisor methods provides further affirmations:

Theorem 1. (Balinski and Young, 2001, p. 147) A method of apportionment Φ is consistent,
responsive, exact and anonymous if and only if it is a divisor method Φd.

4 Why Webster?

The gist of the previous section is that any method of apportionment seriously worth
an investigation must be divisor method. The question then arises: Which of the infinite
number of divisor methods should be chosen?

This section contends that one particular member stands out – Webster’s method that
requires d(a) = a+ 1

2
(also known as Sainte-Laguë method or the major fractions method).

A roster Rn is a Webster’s staircase if for all xt and t ∈ {1, . . . , n} we have,

min
xt
i>0

αi

xt
i − 0.5

≥ max
xt
j≥0

αj

xt
j + 0.5

,

which is the min-max inequality that characterizes Webster apportionments.

4.1 Concatenation Invariance

Note the following two principles that are followed for maintenance of rosters:3

(f) The register / roster register shall be maintained in the form

of a running account year after year. For example if recruitment

in a year stops at point 6, recruitment in the following year

shall begin from point 7.

(h) In case of cadres where reservation is given by rotation, fresh

cycle of roster shall be started after completion of all the

points in the roster.

Therefore, the roster not only decides the allocation of seats 1, 2, . . . , n, but also the
allocation of seats n + 1, . . . , 2n, the allocation of seats 2n + 1, . . . , 3n, and so forth. A
roster pins down an allocation of an infinite sequence of seats constructed as concatenation
of infinitely many finite seat sequences of length n. Our next property requires that the
apportionment method must be invariant to such concatenation. That is, a roster of size kn
can be constructed by concatenation of k copies of a roster of size n. For example, among
rosters depicted in Figure 1, only example roster 3 is invariant to such concatenation.

Given roster construction problem Λ, let s denote the size of the smallest roster possible,
that is, let s be the lowest common denominator of the reservation fractions.

3See page 1 of https://dopt.gov.in/sites/default/files/Ch-05_2014.pdf, last accessed on 26
June, 2023.
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• A method of apportionment Φ is concatenation invariant if t ∈ N+, x
t ∈ Φ (qt),

and xs ∈ Φ (qs) implies xt + xs ∈ Φ (qt+s).

Not all divisor methods are concatenation invariant, but Webster’s method is.4

Theorem 2. Webster’s method is a concatenation invariant divisor method.

4.2 Equitable Treatment in a Roster

Since rosters entails a series of connected apportionments, the set of positions at which
a category is at advantage and the distribution of these sets must be further analyzed to
determine the goodness of the methods and to differentiate or classify them. In addition
to the previous argument in favor of using Webster’s method, we next argue that that
rosters generated solely through the application of Webster’s method treat beneficiaries in
an equitable manner.

Since seats are indivisible, at every position in the roster, between any two categories,
there will always be a certain partiality that gives one of the categories a slight advantage
over the other. The distribution of seats for a category would make this advantage clear in
the case of rosters. The cumulative distribution of seats for category j under roster
Rn is

Fj(t) :=
|{s ∈ R−1

n (j) | s ≤ t}|
|R−1

n (j)| =
xt
j

nj

, for t ∈ {1, . . . .n}.

These cumulative distribution functions measure the fraction of seats a category receives
until position t; that is, the number of seats given to a category until position t over the
total number of seats given to a category. For instance, Figure 3 illustrates the cumulative
distribution of seats for the rosters depicted in Figure 1.

4.2.1 Spreads seats as evenly as possible

Had the seats been divisible, the uniform distribution would be the ideal seat allocation
for equitable treatment of categories. In that case, the seats would be spread “as evenly
as possible” without favoring any category over the other at any point in the roster, thus
treating all categories as equally as possible. However, since seats are indivisible, at each
step some category is over-represented, while another is under-represented. As a measure
of the grievances of each category, deviations from the uniform distribution is a reasonable
measure of partiality.

We denote by U(t) uniform distribution; that is, for any t ∈ {1, . . . , n}, U(t) = t/n. In
evaluating a roster’s disuniformity at position t we consider |Fj(t) − U(t)| the distance be-
tween the distribution of seats for category j and the uniform distribution, which is squared,
weighted by the claim αj, before summing across categories. This leads to a disuniformity
index at step t defined as

4An example of a divisor method that is not concatenation invariant is Hill’s method d(a) =
√

a(a+ 1).
Consider example 1, Λ = ({R, B},α = [0.2, 0.8], 20), and notice that s = 5. To see why Hill’s method is not
concatenation invariant, consider t = 2. (1, 1) ∈ Φ ((0.4, 1.2)), (1, 4) ∈ Φ ((1, 4)), but (2, 5) ̸∈ Φ ((1.4, 5.6)),
instead only (1, 6) ∈ Φ ((1.4, 5.6)).
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Figure 3: DISTRIBUTION OF SEATS
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(b) EXAMPLE ROSTER 2
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(c) EXAMPLE ROSTER 3

DI(xt) =
∑
j∈C

αj(Fj(t)− U(t))2.

• A method of apportionment Φ minimizes disuniformity if xt ∈ Φ (qt) implies
DI(xt) ≤ DI(xt + ej − ei) for all categories i, j ∈ C.

Theorem 3. Webster’s method is the unique divisor method that minimizes disuniformity.

Uniformity hints at proportionality, and Webster’s method of apportionment hints at
Sainte-Laguë index of proportionality (Lijphart and Gibberd, 1977, p. 241). We next show
how these two are related.

Consider the ratio between the seat allocation xt
j and claim qtj for each category j and

position t, in particular xt
j/qtj. In a perfectly proportional outcome, xt

j/qtj = 1 for each j and
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t. In evaluating a roster’s disproportionality at position t we consider
∣∣xt

j

qtj
− 1

∣∣ as error term
for each category j, which is squared, weighted by the claim qtj, before summing across
categories. This leads to the well-known Sainte-Laguë index at step t defined as

SLI(xt) =
∑
j∈C

qtj

(
xt
j

qtj
− 1

)2

=
∑
j∈C

(xt
j − qtj)

2

qtj
.

It can easily be shown that the disunifomity index and the Sainte-Laguë index of dispro-
portionality are co-monotone. In particular, we have the following relationship.

Lemma 1. DI(xt) = t/n2 SLI(xt).

4.2.2 Minimizes inequality

Since seats are indivisible, at every position in the roster, between any two categories,
there will always be a certain partiality that gives one of the categories a slight advantage
over the other. It is straightforward to say that for any pair of categories i, j ∈ C, category i is
favored relative to category j at position t under roster Rn, if Fi(t) > Fj(t). One measure
of inequality therefore is |Fi(t) − Fj(t)|. For example, in Figure 3, Example Roster 3 has
lesser inequality compared to Example Roster 2 at all positions. Huntington (1928) writes
that “such a transfer should be made or not depends on whether the amount of inequality
between the two states after the transfer is less or greater than it was before; if the amount
of inequality is reduced by the transfer, it is obvious that the transfer should be made.”

• A method of apportionment Φ minimizes inequality if xt ∈ Φ (qt) implies |xt
i/ni −

xt
j/nj| ≤ |(xt

j+1)/nj − (xt
i−1)/ni| for all categories i, j ∈ C.

Theorem 4. (Balinski and Young, 2001, p. 101) Webster’s method is the unique divisor
method that minimizes inequality.

4.2.3 Stays near quota

In line with the concept of Pareto optimality, at any given stage in the roster, it should
be impossible to transfer a seat from one category to another in a way that brings both
categories’ seat allocations closer to their respective claims. Put simply, it is not feasible
to bring one category closer to its claim without simultaneously moving another category
further away from its claim.

• A method of apportionment Φ stays near quota if xt ∈ Φ (qt) implies there are no
categories i, j ∈ C such that |(xt

i − 1)− qti | < |xt
i − qti | and |(xt

j + 1)− qtj| < |xt
j − qtj|.

Theorem 5. (Balinski and Young, 2001, p. 132) Webster’s method is the unique divisor
method that stays near quota.
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5 The Roster Made in India

ΛIN = ({UR,OBC, SC,EWS, ST},α = [0.405, 0.27, 0.15, 0.10, 0.075], 200) is the Indian
roster construction problem. It consists of five categories of seats – Unreserved (UR), Other
Backward Classes (OBC), Scheduled Castes (SC), Economically Weaker Sections (EWS),
and Scheduled Tribes (ST). The reservation policy dictates the division of the 200 seats in
a roster among the five categories – 81 UR, 54 OBC, 30 SC, 20 EWS, and 15 ST. However,
the positions each category is assigned in a roster is left up to the designer, in this case the
Ministry of Personnel.5 In all central government institutions, rosters are constructed and
maintained as per the most recent revision detailed inOffice memorandum No.36039/1/2019-
Estt (Res) dated January 31, 2019 issued by the Department of Personnel and Training
(Ministry of Personnel, Public Grievances, and Pensions, Government of India).6

It is hard to improve upon the transparency rosters provide in the nationwide imple-
mentation of the reservation policy. Moreover, they do achieve the goal of reserving seats
in a manner such that each institution meets the prescribed percentage of reserved over a
sufficiently long period of time. Yet the choice of the roster construction method can and
has been scrutinized for the delay associated with the arrival of reserved seats. Gupta and
Thorat (2019) and Gupta (2018) criticize the current roster method for delaying reserved
seats, causing a sparse representation of some reserved category candidates. They write:

A mathematical juggling has been used by policymakers to reduce the

constitutionally mandated reservation for the deprived sections.

The complaint becomes apparent on analyzing how the distribution of seats is system-
atically associated with a beneficiary group’s reservation fraction. Recall that, for any
pair of categories i, j ∈ C, category i is favored relative to category j at position t un-
der roster Rn, if Fi(t) > Fj(t). One measure of partiality is to count such instances. Let
#|Fi(t) > Fj(t)| := |{t ∈ {1, . . . , n}|Fi(t) > Fj(t)}| denote the number of positions cat-
egory i is favored relative to category j. In Table 1, for αi < αj we note the value of
#|Fi(t) < Fj(t)| − #|Fi(t) > Fj(t)|, call it pairwise bias. In pairwise comparisons, this
measures whether the roster tends to exhibit a greater frequency of favoring categories with
a larger proportion over the other, surpassing the instances where the opposite occurs.

Table 1: Instances of Pairwise Bias

ST vs.
EWS

ST vs.
SC

ST vs.
OBC

ST vs.
UR

EWS vs.
SC

EWS vs.
OBC

EWS vs.
UR

SC vs.
OBC

SC vs.
UR

OBC vs.
UR

Indian Roster 57 100 146 197 54 126 195 86 198 199

Webster’s Staircase 3 0 3 3 -4 2 1 6 9 -3

Table 1 shows systematic association between the distribution of seats and the reservation
fractions. (i) the Indian roster favors categories with a larger reservation fraction relative

5The details of the method for making rosters can be found in the Annexure I to Office Memorandum No.
36012/2/96-Estt(Res) dated July 2, 1997. Visit https://documents.doptcirculars.nic.in/D2/D02adm/
OM%20dated%202%207%2097BsMyq.pdf, last accessed on 26 June 2023.

6For Office memorandum No.36039/1/2019-Estt (Res) visit https://dopt.gov.in/sites/default/

files/ewsf28fT.PDF, last accessed on 26 June 2023.
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to the smaller ones, and (ii) the larger the difference between reservation fractions of two
categories, the higher the pairwise bias. For instance, compare category ST (αST = 0.075),
which has the smallest reservation fraction, with categories EWS (αEWS = 0.1) and UR
(αUR = 0.405) which have the larger reservation fractions. The pairwise bias is 57 for ST
vs. EWS, while 197 for ST vs. UR.

Table 1 also shows that such systematic delay in arrival of seats of categories with rel-
atively smaller reservation fractions does not arise under Webster’s Staircase roster. In a
Webster’s staircase, seats are spread “as evenly as possible” without favoring any category
at a bulk of points in the roster, thus treating all categories as equally as possible.

6 Discussion

A considerable number of recent studies have documented unnoticed issues in imple-
mentation of nation-wide affirmative action policies, and have offered practical alternatives
for better implementation of such policies (see Hafalir et al. (2013), Ehlers et al. (2014),
Echenique and Yenmez (2015), Aygün and Turhan (2017), Dur et al. (2019), Aygun and Bó
(2021), Sönmez and Yenmez (2022), and the articles cited therein). Ours is another paper in
this class. While the focus of the contemporary market design literature has been the design
and analysis of assignment mechanisms given reserved seats and quotas, our paper (also
Evren and Khanna (2022)) looks at another side of affirmative action schemes: proportional
distribution of indivisible seats.

The idea of rosters is similar to that of precedence orders according to which institutions
prioritize individual slots above others (as in Kominers and Sönmez (2016)), but in a world
where seats arrive sequentially, over time in small numbers. A serious limitation of using
rosters is that it is not possible to differentiate between vertical reservations, horizontal
reservations, or any form of reservations (see Sönmez and Yenmez (2022)). For instance, a
roster cannot allocate all positions of a beneficiary group at the very end just as it is done
in the static implementation of vertical reservations in India. On top of that, the treatment
of a horizontal reservation is not any different than that of a vertical reservation in a roster.

To accommodate a richer variety of forms of reservations – vertical reservations, horizontal
reservations, horizontal reservations within vertical reservations – a deviation from rosters
is required. Dynamic implementation of the reservation policy is recommended, that allows
reserving a seat early in time, but also allows that particular seat to be considered unreserved
at a later point depending on the history of seat allocation (see Aygün and Turhan (2020)).
The advantage of this method over rosters is obvious; the mandated vertical and horizontal
reservations can be implemented at any point in time. However, it is hard to quash the use
of rosters. Both the legislators and their electorates greatly value the ease, transparency, and
credibility publicly declared rosters provide in the implementation of the reservation policy.
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Figure 4: MODEL ROSTER OF RESERVATION WITH REFERENCE TO POSTS

Source: https://dopt.gov.in/sites/default/files/ewsf28fT.PDF7
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B Proofs

Let xt
j := |{s ∈ R−1

n (j) | s ≤ t}| be the number of seats given to category j until point
t. Note that

∑
j x

t
j = t for t ∈ {1, . . . , n}. Let nj be the total number of seats in the roster

for category j, that is, nj = xn
j = αjn.

With these definitions, the distribution of seats for category j at point t is

Fj(t) =
xt
j

nj

and the location at the staircase at point t is

xt = (xt
1, . . . , x

t
j, . . . , x

t
n).

Proof of Theorem 2

Proof. xt ∈ Φd (qt) if and only if xt
j ≥ 0 for all j ∈ C, ∑j∈C x

t
j = t, and

min
xt
i>0

qti
d (xt

i − 1)
≥ max

xt
j≥0

qtj

d
(
xt
j

)
Equivalently,

d (xt
i − 1)

d
(
xt
j

) ≤ αi

αj

≤ d (xt
i)

d
(
xt
j − 1

) if xt
i, x

t
j > 0, (1)

αi

αj

≤ d(0)

d(xt
j − 1)

if xt
i = 0, xt

j > 0, (2)

and

d(xt
i − 1)

d(0)
≤ αi

αj

if xt
i > 0, xt

j = 0. (3)

Next, since divisor methods are exact (as defined in Section 3), xs ∈ Φd (qs) we have,

xs
i

xs
j

=
αi

αj

(4)

Recall the following fact: adding a to the numerator and b to the denominator moves the
resultant fraction closer to the fraction a/b. If x/y < a/b, moving the starting fraction close
to a/b will make it bigger. If x/y > a/b, moving the starting fraction close to a

b
will make it

smaller.
Adding xs

i to numerators and xs
j to denominators in equation (1) to (3) therefore does

not alter the inequalities and gives,

d (xt
i − 1) + xs

i

d
(
xt
j

)
+ xs

j

≤ αi

αj

≤ d (xt
i) + xs

i

d
(
xt
j − 1

)
+ xs

j

if xt
i, x

t
j > 0, (5)
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αi

αj

≤ d(0) + xs
i

d(xt
j − 1) + xs

j

if xt
i = 0, xt

j > 0, (6)

and

d(xt
i − 1) + xs

i

d(0) + xs
j

≤ αi

αj

if xt
i > 0, xt

j = 0. (7)

If d(xt
i − 1)+ xs

i = d(xt
i + xs

i − 1), d(xt
i) + xs

i = d(xt
i + xs

i ), and d(0)+ xs
j = d(xs

j), then we
have that xt +xs ∈ Φd (qt+s), that is Φd is concatenation invariant. In particular, Webster’s
method d(a) = a+ 1

2
is is concatenation invariant.

Proof of Theorem 3

We denote by DI(xt) weighted distance between the distribution of seats and
the uniform distribution at point t; that is,

DI(xt) =
∑
j

αj(Fj(t)− U(t))2.

Note that,

DI(xt) =
∑
j

αj(Fj(t)− U(t))2

=
∑
j

αj(
xt
j

αjn
− t

n
)2

=
1

n2

∑
j

xt
j
2

αj

− 1

n2

∑
j

2xt
jt+

1

n2

∑
j

αjt
2

=
1

n2

∑
j

xt
j
2

αj

− 2t2

n2
+

t2

n2

=
1

n2

∑
j

xt
j
2

αj

− t2

n2
.

Therefore, minimizing DI(xt) is equivalent to minimizing
∑

j

xt
j
2

αj
.

Lemma 2. For any xt = (xt
1, . . . , x

t
j, . . . , x

t
m), for any pair of i, j with xt

i > 0,

DI(xt) ≤ DI(xt + ej − ei) ⇐⇒ xt
i − 0.5

αi

≤ xt
j + 0.5

αj

.
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Proof. Using the fact that DI(xt) = 1
n2

∑
j

xt
j
2

αj
− t2

n2 ,

DI(xt) ≤ DI(xt + ej − ei) ⇐⇒ xt
i
2

αi

+
xt
j
2

αj

≤ (xt
i − 1)2

αi

+
(xt

j + 1)2

αj

⇐⇒ xt
i
2

αi

− (xt
i − 1)2

αi

≤ (xt
j + 1)2

αj

− xt
j
2

αj

⇐⇒ xt
i − 0.5

αi

≤ xt
j + 0.5

αj

.

Lemma 3. The following sets are equivalent

1.
argmin

xt

DI(xt) s.t.
∑
j

xt
j = t and xt ≥ 0 integer

2.

{xt | for any i, j with xt
i > 0,

xt
i − 0.5

αi

≤ xt
j + 0.5

αj

;
∑
j

xt
j = t and xt ≥ 0 integer }

Proof. Lemma 2 implies that if xt minimizes DI(xt) then the following inequalities hold.

xt
i − 0.5

αi

≤ xt
j + 0.5

αj

for any i, j with xt
i > 0

Therefore, if xt is in the former set, then it is also in the latter set.
Suppose yt is in the latter set but not in the former; that is,

yti − 0.5

αi

≤ ytj + 0.5

αj

for any i, j with yti > 0 .

We denote by H = {j|xt
j > ytj} the set of categories in xt that has more number of

seats. We denote by L = {j|xt
j < ytj} the set of categories in xt that has less number of

seats. We denote by hj := xt
j − ytj for j ∈ H. We denote by lj := ytj − xt

j for j ∈ L. Since∑
j y

t
j =

∑
j x

t
j = t, we have

∑
j∈H hj =

∑
j∈L lj > 0.

Using the inequalities for xt and yt for i ∈ L and j ∈ H, we have

2yti − lj
αi

≤ 2ytj + hj

αj

for any i ∈ L and j ∈ H .

If we calculate the summation of such inequities, we find that

∑
j∈L

lj(2y
t
j − lj)

αj

≤
∑
j∈H

hj(2y
t
j + hj)

αj

.
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Note that,

∑
j

xt
j
2

αj

−
∑
j

ytj
2

αj

=
∑
j

(
xt
j
2

αj

− ytj
2

αj

)

=
∑
j∈H

(
xt
j
2

αj

− ytj
2

αj

)−
∑
j∈L

(
ytj

2

αj

− xt
j
2

αj

)

=
∑
j∈H

hj(2y
t
j + hj)

αj

−
∑
j∈L

lj(2y
t
j − lj)

αj

≥ 0.

This contradicts the assumption that yt does not belong to the first set; that is, if a yt

is in the second set then yt must be in the first set.

Proof of Lemma 1

Proof.

DI(xt) =
∑
j∈C

αj(Fj(t)− U(t))2

=
∑
j∈C

αj

(
xt
j

αjn
− t

n

)2

=
∑
j∈C

αj

(
xt
j − αjt

αjn

)2

=
t

n2

∑
j∈C

(xt
j − αjt)

2

αjt

=
t

n2
SLI(xt).
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C Visualizing Webster’s Staircase for m = 2

In the staircase representation, the line connecting origin (0, 0) and (n1, nm) would be the
proportionate allotment of turns if only the seats were divisible. We therefore call the line
described by the following vector, the ideal fractional line, u =< n1, nm > . For instance,
in Figure 2, the ideal fractional line is the line connecting origin and (16, 4).

In the staircase representation, the euclidean distance between point xt and the
ideal fractional line, is defined as the shortest distance between point xt and any point
on the ideal fractional line. It is the length of the line segment that is perpendicular to the
ideal fractional line and passes through the point xt; that is,

dstair(x
t,u) = ||xt − (xt · u) u

||u||22
||2

where || · ||2 is the Euclidean norm.
The following iterative algorithm finds the roster that stays closest to the ideal fractional

line throughout the roster. The algorithm has two parts. At each step t, for each staircase,
it first finds the set of directions the staircase can move such that the Euclidean distance
between the next point xt and the ideal fractional line is minimum. The staircase next moves
in such directions and results in a set of staircases. The algorithm creates a set of staircases
in each step. Each staircase in the last step Sn represents a roster. We call such rosters as
Webster’s Staircase rosters because of the following result.

Lemma 4. For any xt = (xt
i, x

t
j) with xt

i > 0,

dstair(x
t,u) ≤ dstair(x

t + ej − ei,u) ⇐⇒ xt
i − 0.5

αi

≤ xt
j + 0.5

αj

.

Figure 5: LEMMA 1 ILLUSTRATION

xtxt

xt + ej − ei

Proof. If distance from xt to u is smaller than the distance from xt + ej − ei to u, then the
middle point of these two points, xt + 0.5ej − 0.5ei lays on the same side of u as the point
xt + ej − ei (notice the two similar triangles in fig. 5). Consequently, the slope of the line

connecting origin and (xt
i − 0.5, xt

j + 0.5) is higher than the slope of u,
nj

ni

(
=

αj

αi

)
, that is,

xt
j + 0.5

xt
i − 0.5

≥ αj

αi

.
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Webster’s Staircase Generating Algorithm:

Input: roster construction problem Λ
Output: Webster’s Staircase
S0 = {x0 = (0, . . . , 0)};
for t ∈ {1, . . . , n} do

St = ∅;
while xt−1 ∈ St−1 do

Jt = argminj∈C dstair(x
t−1 + ej,u);

while jt ∈ Jt do
xt = xt−1 + ejt ;
St = St ∪ {x0, . . . ,xt};

end

end

end
return Sn

To make the Webster’s Staircase Generating Algorithm easier to understand and show
the whole procedure that constructs the set of rosters, consider the roster construction
problem Example 1. The number of positions given to the category R and B is 4 and
16, respectively. The category B is represented by the x-axis (1st axis), and the cate-
gory R is represented by the y-axis (2nd axis). The ideal fractional line is the line con-
necting the origin and (16, 4). This line is described by the vector u =< 4, 16 >. We
start from S0 = {{x0 = (0, . . . , 0)}}. Figure 6 illustrates steps 1 to 4 of the Webster’s
Staircase Generating Algorithm. At step 1, staircase moves to right (direction 1) since
dstair((1, 0),u) < dstair((0, 1),u). We add {(0, 0), (1, 0)} to S1. At Step 2, staircase moves
to right (direction 1) since dstair((2, 0),u) < dstair((1, 1),u). We add {(0, 0), (1, 0), (2, 0)} to
S2. At Step 3, staircase moves to up (direction 2) since dstair((2, 1),u) < dstair((3, 0),u). We
add {(0, 0), (1, 0), (2, 0), (2, 1)} to S3. At Step 4, staircase moves to right (direction 1) since
dstair((3, 1),u) < dstair((2, 2),u). We add {(0, 0), (1, 0), (2, 0), (2, 1), (3, 1)} to S4. Figure 2
(b) illustrates the final output of the algorithm.
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Figure 6: CONSTRUCTING Webster’s STAIRCASE
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