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Abstract

This paper considers the one-way trading problem with fixed costs where the trader can

only trade in one direction throughout, either sell or buy, and he only knows limited

information on price fluctuations beforehand. We construct a robust optimization model

based on Savage’s regret criterion, in order to find the online trading policy that minimizes

the worst-case regret. However, it is very difficult to obtain analytical results if the trading

horizon is relatively long, due to the discontinuity in the trader’s objective function caused

by the fixed cost. Thus we propose to solve the alternative problem with prepaid trading

opportunities, which is not only a satisfactory approximation of the original one, but also

a realistic problem with many practical applications, such as in the stock or future market.

The optimal online trading policy of the new problem can be easily found based on the

existing results of the one-way trading problem with limited opportunities in Wang and Lan

(2019). The proposed trading policy is robust in that it guarantees a finite performance

gap between itself and the optimal offline trading policy, no matter how prices fluctuate

within the given range. It is proved that this gap is an upper bound on the minimal CD

of the original problem with fixed costs. A lower bound on the minimal CD of the original
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problem is also provided.

Keywords: Finance; Robust optimization; One-way trading; Fixed cost; Mini-max Regret

1. Introduction

One-way trading refers to trading a given quantity of goods in one direction (either

selling or buying) within a finite time horizon when the price fluctuates continuously. It

is a fundamental activity in daily economy, such as stock trading, currency exchange,

merchandising, inventory procurement and so on. The basic one-way trading problem

without transaction costs has been well studied in the literature ( El-Yaniv et al. (2001),

Chen et al. (2001), Zhang et al. (2012), Wang et al. (2016) ). Such a simple set-up of the

one-way trading problem is very elegant from a theoretical point of view; however, in real

word applications, transaction costs are ubiquitous. Take the stock trading process as an

example, there are two types of transaction costs, variable costs and fixed costs. Since the

variable costs are proportional to the transaction volume, such as stamp duty, commission

and so on, they can be easily handled by proportionally adjusting the price. The fixed costs,

on the other hand, are paid for each transaction, regardless of the trading volume. The

existence of fixed costs fundamentally changes the structure of the basic one-way trading

problem and asks for further research.

Since the price fluctuates during the entire trading horizon, the information about

future prices plays a crucial role in the one-way trading problem. If all the future prices were

known in advance, the trader simply trades everything at the best price in the entire trading

horizon, which is known as the optimal offline trading policy. Unfortunately, information

about future prices is never perfect in reality. One-way trading is usually regarded as an

online decision-making process, because the irrevocable transaction under the current price

is committed without knowing the price in the future. There are two possible mistakes due

to imperfect information: trading too little when current price is quite favorable or trading

too much when it is not so favorable. Some researches in the one-way trading literature
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assume that the trader knows the probability distribution on price that can be estimated

from historical data. However, due to the lack of historical data, or the non-stationary

fluctuation of prices, it’s often unreliable if not impossible to estimate the probabilistic

distribution of future prices. Therefore, it is desirable for us to study the one-way trading

problem with limited yet potentially more reliable information on future prices.

This paper solves the one-way trading problem with fixed costs where the trader only

knows the range of future prices. The same competitive difference (CD) analysis is em-

ployed as by Wang et al. (2016) for the basic one-way trading problem without fixed costs.

CD analysis aims at finding the online trading policy that minimizes the worst-case regret.

In view of the calculation complexity caused by the fixed cost in the original problem,

we propose to solve the alternative problem with prepaid limited opportunities instead.

The one-way trading problem with limited opportunities is not only a satisfactory approx-

imation of the original problem with fixed costs, but also a realistic problem with many

practical applications. Putting a limit on trading opportunities is beneficial from the per-

spectives of both practitioners and scholars in the trading of financial products, such as

stocks or futures. A famous piece of advice to all investors from Warren Buffett is to be pa-

tient and avoid frequent trading. Interestingly, many empirical researches in the academia

seem to support this investment wisdom ( Odean (1999), Barber and Odean (2000), Cohn-

Urbach and Westerholm (2006)). Based on the existing results of the one-way trading

problem with limited opportunities in Wang and Lan (2019) , it is not difficult to obtain

the online trading policy and the corresponding CD of the problem with prepaid opportu-

nities (denoted by DPO). It is proved that DPO is an upper bound on the minimal CD of

the original problem with fixed costs. In addition, a lower bound on the minimal CD of the

original problem is also provided in this paper, which serves as a benchmark to evaluate

the proximity of the performances between the problem with prepaid opportunities and

the original one with fixed costs.

Another contribution of this paper is that we propose a reliable method to approx-
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imately solve these complicated robust optimization problem involving multiple decision

epochs and multiple state variables. It is often difficult to solve this type of multi-period

zero-sum game between the decision maker and the adversary through backward induction

directly. Because the subcases which require comparison in each decision epoch increases

dramatically when the backward process goes on. In this case, we can purposely reduce

the strategy space of the decision maker and solve the transformed problem instead, which

provides a heuristic solution to the original problem and an upper bound on the objective

of the original problem. On the other hand, by purposely reducing the strategy space of

the adversary, we can figure out the lower bound on the objective of the original problem

and use it to evaluate the performance of the heuristic solution.

The rest of the paper is organized as follows. In Section 2, we review the related

literature, especially those published in recent years. In Section 3, we start the analysis

by formulating the theoretical models. In Section 4, we provide theoretical analysis of

the problem and derive closed-form solution for the two period problem. In Section 5,

we develop the upper and lower bounds and conduct numerical experiments. We provide

managerial insights and possible extensions for future study in the concluding section.

2. Literature Review

Earlier studies on the one-way trading problems take the Bayesian approach with prob-

abilistic information on the price, and provide optimal trading policies based on Bayes’ rule.

In this regard there is already an extensive review provided by Lippman and McCall (1981),

to which we refer any interest in that stream of research. We focus on the more recent

researches that employ robust optimization with limited information, which are more close

to our current study. We will also look into the literature on the time series search problem,

which is a special case of the problem we study in this paper. A brief discussion on the

methodology is also furnished.

The traditional one-way trading problem, that is, the one without limit on trading
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opportunities, is a special case with limited trading opportunities when the limit is large

enough. El-Yaniv et al. (2001) are the first to consider the one-way trading problem with

limited information where the trader only knows the bounds of price. They find the threat-

based online trading policy via competitive ratio (CR) analysis proposed by Sleator and

Tarjan (1985). Chen et al. (2001) and Zhang et al. (2012) investigate the one-way trading

problem in an interesting setting where the range of the price in each period depends

geometrically on the price in the previous period. They design the optimal static online

trading strategy based on CR analysis. Larsen and Wøhlk (2010) study the optimal online

inventory control policy via CR analysis with consideration of inventory holding cost and

fixed order cost. Dai et al. (2016) improve the upper bound of the CR given by Larsen

and Wøhlk (2010) in the case with order costs and bounded storage capacity. To overcome

the calculation difficulties caused by the parameter of fixed order cost, they bound the CR

for the two types of cost separately before making a balance between them. Also, they

utilize the intuition as previous CR analyses did. In comparison, to avoid the complexity

of analyzing the fixed cost directly, we deal with a closely related problem —- the one-way

trading problem with limited opportunities. Also, the method of CD analysis we adopted

enables us to get the analytical results without the need of any intuition beforehand.

The time series search problem is also a special case of the one-way trading problem with

limited trading opportunities, when the limit is set to one. Different variants of the search

problem have been studied via CR analysis. El-Yaniv et al. (2001) provide the optimal

deterministic and randomized reservation price policies for the search problem with price

bounds. Damaschke et al. (2009) propose an optimal deterministic trading policy and

a near-optimal randomized trading policy for the search problem with upper and lower

price bounds decreasing in time. They also find an optimal randomized trading policy for

the search problem with only the upper price bound decreasing in time. Xu et al. (2011)

generalize the search problem by introducing a profit function that is increasing in price and

decreasing in time. They give the optimal deterministic trading policy respectively when
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duration is either known or unknown in advance. A direct extension of the basic search

problem is the k-search problem, where k indivisible products must be traded within a time

horizon. Lorenz et al. (2009) propose an optimal strategy for the k-search problem where

one can only trade one product at a time, while Zhang et al. (2011) allow the trading of

multiple products at a time.

Although frequently employed as a robust optimization method to solve online prob-

lems with limited information, the CR analysis is often criticized for being too conservative.

Some alternative quality measures of the online strategies to mitigate this have been pro-

posed in the literature, which are reviewed by Dorrigiv and López-Ortiz (2005). A variety

of performance indicators of the online search strategies are compared by Boyar et al.

(2012). An average-case analysis is provided by Fujiwara et al. (2011) for the one-way

trading in currency exchange where the upper bound of the exchange rate follows a ran-

dom distribution. They derive and compare different optimal strategies for several different

measures of performance. However, all these studies still adhere to competitive ratio as

the objective, which often results in analysis difficulties. In order to do this, they also

need more information, such as the distribution of the price bounds. Wang et al. (2016)

approach the one-way trading problem with the CD analysis for the first time. Instead of

the ratio, they use the difference in revenue or cost between the online trading policy and

the optimal offline trading policy as the objective. Generally speaking, the CD analysis is

not only more amenable to analysis, but also less conservative, remedying the shortcomings

of the CR analysis to some extent.

3. Problem Description and The Model

In this section we give details on how we formulate the problem and apply the CD

analysis. As there is no structural difference between the selling and buying problem, from

now on our analysis will focus on the former, while the results can be easily transferred to

the latter.
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3.1. Problem Description

We consider the one-way trading problem within a finite time horizon consisting of

T (T≥2) discrete periods. Let Q designate the total volume of the goods to be sold out

during the horizon. Assume the goods for trading is fully divisible, such as gasoline, coal,

steel, etc., which can be partially traded at will. Without loss of generality, the total

volume of the goods is normalized to one, i.e., Q = 1, and the measure of the price is

adjusted accordingly. It is known beforehand that the price fluctuates within a particular

range [m,M ], and nothing about the probability density on this range is known. In the

beginning of each period t, a price pt ∈ [m,M ] is revealed and it holds constant during that

entire period. On the observation of pt, the trader must decide on the trading volume kt in

period t before this price expires. In the last period, whatever the price, all the remaining

goods must be sold out. There is no sampling cost to obtain the price quotation. All

variable costs can be contained in the price and thus are not explicitly considered in the

model for simplicity. A fixed fee, denoted by c, must be paid for each transaction.

This one-way trading problem is a typical online decision-making problem for the trader,

since he must make trading decisions based on currently known information. The main ob-

jective of this paper is to find an effective online trading policy for the trader. We only focus

on deterministic trading polices, as they are usually employed in practice, while random-

ized trading policies are more of theoretical interests. A deterministic online trading policy

determines for each t = 1, 2, . . . , T a unique trading volume kt that depends on the current

price pt and the historical transaction information Ht = (p1, p2, . . . , pt−1; k1, k2, . . . , kt−1).

A formal way to describe such an online policy A is by a series of functions£¬

A = {kt(pt, Ht), t = 1, ..., T} (1)

where
∑T

t=1 kt(pt, Ht) = 1 must hold to ensure the completion of the trading task during

the finite horizon. Next we discuss the criterion to choose an online trading policy, assuming

the trader certainly prefers more sales revenue.
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3.2. The Model

We adopt Savage’s minimax regret as a performance measure of the online trading

policy A. The minimax regret criterion is first applied by Wang et al. (2016) to the one-

way trading problem without any consideration about transaction costs. They called this

approach the CD analysis, in contrast to the CR analysis well studied in the literature.

The regret of an online trading policy is the performance difference between itself

and the optimal offline trading policy with perfect price information. For different price

realizations, the regret would vary, and the worst regret is defined to be the CD of the

online policy. Let D(A) denote the CD of the online trading policy A in the sales problem,

then

D(A) = maxp [O∗(p)−O(p;A)], (2)

where O∗(p) is the revenue of the optimal offline trading policy while O(p;A) is that of

the online trading policy A under a realized price path p = {p1, p2, . . . , pT }. The objective

of the CD analysis is to find an online policy A that minimizes D(A). The basic idea of

CD analysis is to find an online trading policy as close as possible to the optimal offline

trading policy, where the degree of closeness is defined by the competitive difference (the

worst regret).

The CD analysis can be regarded as a zero-sum game between the trader and the

nature. The trader determines the online trading policy A that minimizes the regret

[O∗(p)−O(p;A)], while the nature chooses the price p to maximize the regret. Since the

nature always picks the worst price for the trader, thus we call it the adversary henceforth.

The timeline of the game is as follows. In any period t (t = 1, 2, . . . , T ), the adversary

chooses a price pt within the interval [m,M ] first to maximize the competitive difference;

the trader then determines the trading volume kt at this price to minimize the competitive

difference. The value of the subgame between the trader and the adversary from period t

through T , or the competitive difference from period t on, which is designated by Dt, only
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depends on the historical transaction information Ht. This information can be conveyed

by the trading state st−1 at the start of period t, which consists of three state variables,

that is,

st−1 = {Ct−1,Kt−1, p̄t−1} (3)

where Ct−1 =
∑t−1

i=1

(
piki − c× 1{ki>0}

)
is the accumulated profit, Kt−1 =

∑t−1
i=1 ki is the

accumulated trading volume, and p̄t−1 = max(p1:t−1) is the highest price from period 1

through t− 1. The state transition to st by actions taken in period t can be represented as

st = st−1 + {ptkt − c× 1{kt>0}, kt, p̄t − p̄t−1} (4)

In the beginning of any period t ∈ {1, 2, . . . , T − 1}, given the state st−1, we have

Dt(st−1) = max
pt∈[m,M ]

min
kt∈[0,1−Kt−1]

Dt+1(st) (5)

where

DT (sT−1) = max
pT∈[m,M ]

max(p̄T−1, pT )− c︸ ︷︷ ︸
total offline profit

−
(
CT−1 + pT (1−KT−1)− c× 1{1−KT−1>0}

)︸ ︷︷ ︸
total online profit

 (6)

Note that kT = 1 − KT−1 holds to guarantee that all the goods are sold out in the last

period. Denote the one-way trading problem with fixed transaction cost as problem FC.

The minimal CD of the trader can achieve in problem FC is the value of the game, that is,

DFC = D1(s0) (7)

where s0 = {0, 0,m} is the initial state at the beginning of the first period. Table 1 lists

the notations used for key parameters and variables in the model.
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Table 1: Notation of key parameters and variables

Symbol Description

T Length of the trading horizon, T > 2.

t Period index, t = 1, 2, . . . , T .

Q The total volume of the goods to be sold out, and Q = 1.

m,M Lower bound and upper bound on the prices in all periods.

pt Price revealed at period t.

kt Trading amount of the trader at period t, and
∑T

t=1 kt = 1 must
be ensured to complete the trading task.

Ht The historical transaction information at the beginning of period
t, Ht = [(p1, k1), . . . , (pt−1, kt−1)].

Kt Total volume traded by the end of period t, Kt =
∑t

i=1 ki.

Ct Total profit obtained by the end of period t, Ct =∑t
i=1

(
piki − c× 1{ki>0}

)
.

p̄t The highest price seen by the end of period t, p̄t =
max(p1, p2, . . . , pt).

st The set of state variables at the beginning of period t + 1, st =
{Ct,Kt, p̄t}.

s0 The initial state at the beginning of the first period, s0 = {0, 0,m}.
p∗t The optimal price for the adversary at period t.

k∗t The optimal trading volume for the trader at period t.

Dt(st−1) The CD at period t with st−1 given.

Bt(Kt−1, p̄t−1) The adjusted CD at period t with Kt−1 and p̄t−1 given, which does
not take the sunk cost Ct−1 into consideration.

4. Preliminary Analysis of Problem FC

There are two properties for the model of Problem FC in (5) and (6), as stated in the

following lemmas. The proofs are in the appendix.

Lemma 1. If the price range [m,M ] is normalized to [0, 1] by normalizing pt and c to

p′t = pt−m
M−m and c′ = c

M−m respectively, then the CD of the normalized model is DFC

M−m .

Lemma 2. The strategies of both the trader and the adversary in an arbitrary period t in
problem FC are independent of Ct−1.
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According to Lemma 1, we can normalize the price range to [0, 1] without losing any

generality of the model. In addition, based on Lemma 2, the original model in (5) and

(6) can be simplified to a new model with only two state variables, Kt−1 and p̄t−1. Let

Bt(Kt−1, p̄t−1) be the adjusted CD in period t with Kt−1 and p̄t−1 given, which denotes

the gap between the additional profit of the online policy from period t to the last period

and the total offline profit. So, the relationship between the CD and the adjusted CD is

Dt(st−1) = Bt(Kt−1, p̄t−1)− Ct−1.

After introducing Bt(Kt−1, p̄t−1), we can rewrite the game as follows. For any period

t ∈ {1, 2, . . . , T − 1}, given the state Kt−1 and p̄t−1, the adjusted CD is

Bt(Kt−1, p̄t−1) = max
pt∈[0,1]

min
kt∈[0,1−Kt−1]

Bt+1(Kt, p̄t)− (ptkt − c× 1{kt>0}) (8)

The boundary condition is

BT (KT−1, p̄T−1) = max
pT∈[0,1]

max(p̄T−1, pT )− c︸ ︷︷ ︸
total offline profit

−
(
pT (1−KT−1)− c× 1{1−KT−1>0}

)︸ ︷︷ ︸
additional online profit


= max (KT−1, p̄T−1)− c+ c× 1{1−KT−1>0}

(9)

The minimal CD the trader can achieve in problem FC is

DFC = B1(K0, p̄0) (10)

Lemma 3 points out the monotonicity of Bt(Kt−1, p̄t−1) in Kt−1. It reveals that when

there is more volume left, the trader will have a better chance to improve his performance

in the remaining periods.

Lemma 3. For any t ∈ {1, 2, . . . , T}, Bt(Kt−1, p̄t−1) is weakly increasing in Kt−1 when
Kt−1 < 1.

Based on Lemma 3, we can derive that it is optimal for the trader to trade nothing

11



when the adversary sets the current price at the bottom level m, unless it is the last period

when the trader has to finish the trading task, as stated in Lemma 4.

Lemma 4. In any period t ∈ {1, 2, . . . , T − 1}, if pt = m, then it is optimal for the trader
to trade noting, i.e., k∗t = 0.

There is also a particular feature with respect to the adversary’s strategy when she

chooses to lower the current price, as stated in Lemma 5.

Lemma 5. In an arbitrary period t, if the adversary chooses to reduce the price in this
period, then it is optimal for her to reduce it to the bottom price m and keep it at m in the
subsequent periods.

According to Lemma 5, we can reduce the adversary’s strategy space while maintaining

the same CD, which largely simplifies the analysis process. The adversary can only choose

from the following two options when she sets the current price in an arbitrary period

t ∈ {1, 2, . . . , T}:

(a)increase the price to a level that is not lower than the previous price, that is, pt ≥

pt−1; or

(b)drop the price to the bottom level, i.e., pt = 0.

In other words, the adversary will either keep an weakly increasing price path, or

drop the price to the bottom level permanently. She is not interested in vibrating the

price. This problem with reduced strategy space for the adversary is called problem FC’

hereafter. Therefore, if the adversary chooses to reduce the price to the bottom level 0,

the trader sells all the remaining goods in one go to save fixed costs and the game ends

in advance. Also, in any period t, if the previous price pt−1 > 0, it indicates that the

adversary has been keeping the weakly increasing price path from period 1 to the previous

period, thus p̄t−1 = pt−1. Since the only difference between Problem FC’ and Problem FC

is the strategy space of the adversary, the model of problem FC in (8) and (9) can be easily

revised to describe Problem FC’ as follows. In any period t ∈ {1, 2, . . . , T} with the state
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Kt−1 and p̄t−1 = pt−1 > 0, the adjusted CD is

B̆t(Kt−1, pt−1)

= max

{
pt−1 − c−

(
0− c× 1{1−Kt−1>0}

)
, max
pt∈[pt−1,1]

Ăt(Kt−1, pt−1|pt)
} (11)

where pt−1 − c−
(
0− c× 1{1−Kt−1>0}

)
is the CD when pt = 0 while

Ăt(Kt−1, pt−1|pt) = min
kt∈[0,1−Kt−1]

B̆t+1(Kt, pt)− (ptkt − c× 1{kt>0}) (12)

is the minimal CD for the trader when pt ≥ pt−1. The boundary condition is

B̆T (KT−1, pT−1) = max
pT∈{0}∪[pT−1,1]

max(pT−1, pT )− c︸ ︷︷ ︸
total offline profit

−
(
pT (1−KT−1)− c× 1{1−KT−1>0}

)︸ ︷︷ ︸
additional online profit


= max(KT−1, pT−1)− c+ c× 1{1−KT−1>0}

(13)

The minimal CD the trader can achieve in problem FC’ is

DFC′ = B̆1(K0, p0) (14)

The relationship between problem FC’ and problem FC is stated in Theorem 1. The

monotonicity of B̆t(Kt−1, pt−1) is illustrated in Lemma 6. The proofs are given in the

appendix.

Theorem 1. The CDs of problem FC and problem FC’ are the same, i.e., DFC = DFC′.

Lemma 6. For any t ∈ {1, 2, . . . , T}, B̆t(Kt−1, pt−1) is weakly increasing in Kt−1 when
Kt−1 < 1.

Theoretically, the sequential zero-sum game can be solved via backward induction. We

can obtain the closed-form solutions for the two-period (T = 2) problem by this method,

which is summarized in Theorem 2 , and the proof is given in the appendix.
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Theorem 2. For the two-period (T = 2) one-way trading problem with fixed costs c, the
optimal online trading policy for the trader is as follows: In the first period, given p1, the
optimal trading volume is

k̂1 (p1) =


0 if p1 ≤ p11

p1 if p11 < p1 < p12

1 if p1 ≥ p12

(15)

where p11 = min (1/2,
√
c) and p12 = max (1/2, 1−

√
c); In the second period, the trading

volume is 1− k̂1 (p1), no matter what the price p2 is. The CD of this online trading policy
is DFC = min(1/4 + c, 1/2).

When the trading horizon becomes longer (T ≥ 3), the analytical complexity of the

backward induction process increases dramatically, mainly resulting from the discontinuity

of the objective function with respect to the trading volume in the inner minimization

problem in (8). In any period t = 1, 2, . . . , T −1, there are two discontinuous points on the

objective function Bt+1(Kt, p̄t) for the trader, which are kt = 0 and kt = 1−Kt−1. Worse

still, the continuous part of Bt+1(Kt, p̄t) on the open interval (0, 1−Kt−1) is also very

complicated because of the discontinuities in subsequent periods. It is a piecewise function

with several local minima, all of which are candidates for the optimal trading volume. The

number of the segments consisting the continuous part of Bt+1(Kt, p̄t) increases when the

backward process goes on, so does the number of the local minima. As a result, if the

trading horizon is relatively long (in other words, when T is large), it is very difficult if not

impossible to obtain analytical results directly via backward induction. Therefore, we will

transform problem FC into a more solvable approximate problem—- the one-way trading

problem with prepaid opportunities (hereafter called Problem PO) in the next section.

The objective value of Problem PO (denoted by DPO) serves as a upper bound on DFC ,

while its optimal online trading policy can be used as a heuristic of Problem FC. In order

to evaluate the proximity between DPO and DFC , we also provide a lower bound on DFC .
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5. The Upper and Lower Bounds

In order to find both the upper and lower bound on DFC , we need the following lemma

and the corollary derived directly from it. The proof of Lemma 7 is in the appendix.

Lemma 7. If f1(x, y) ≤ f2(x, y), and X ′ ⊆ X, Y ′ ⊆ Y , then

max
x∈X′

min
y∈Y

f1(x, y) ≤ max
x∈X

min
y∈Y ′

f2(x, y) (16)

Each side of the inequality (16) can be regarded as a zero-sum game between a maxi-

mizer and a minimizer where each player makes only one decision. The strategy space of

the maximizer is constrained on the left-hand side of (16), while the strategy space of the

minimizer is constrained on the right-hand side of it. Lemma 7 can be generalized to apply

in the multiple-stage zero-sum game where both players take turns to make decisions for

several times. The generalized result is formally stated in Corollary 1, which can be easily

proved by applying Lemma 7 repeatedly.

Corollary 1. Let x = {x1, x2, . . . , xj}, y = {y1, y2, . . . , yj}. If f1(x, y) ≤ f2(x, y), and
X ′i ⊆ Xi, Y

′
i ⊆ Yi for i = 1, 2, . . . , j, then

max
x1∈X′1

min
y1∈Y1

max
x2∈X′2

min
y2∈Y2

. . . max
xj∈X′j

min
yj∈Yj

f1(x, y) ≤

max
x1∈X1

min
y1∈Y ′1

max
x2∈X2

min
y2∈Y ′2

. . . max
xj∈Xj

min
yj∈Y ′j

f2(x, y)
(17)

One application of Corollary 1 is to analyze the monotonicity of the objective function

of problem FC. The monotonicity of DFC with respect to c is straightforward according

to Corollary 1.

Lemma 8. DFC is increasing in the fixed cost c.

Another application of Lemma 7 and Corollary 1 is to find the upper (lower) bound on

DFC by solving the variant of problem FC where the minimizer/trader’s (maximizer/adversary’s)

strategy space is purposely reduced.
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5.1. Lower bound

We provide a lower bound on DFC′ or equally on DFC by solving a discrete version

of problem FC’, which is called problem FC” hereafter. We evenly divide the interval of

possible values for kt into E sub-intervals, so kt ∈ {e × ∆k for e ∈ {0, 1, . . . , E}} where

∆k ≡ 1/E; we also evenly divide the interval of possible values for pt into F sub-intervals,

so pt ∈ {f ×∆p for f ∈ {0, 1, . . . , F}} where ∆p ≡ 1/F . As a result, both state variables

Kt−1 and pt−1 are also discrete-valued. Now, the continuous model of problem FC’ can be

transformed into the following discrete model of problem FC”. We introduce two matrix

with (E + 1) rows and F + 1 columns for each period, Ḃt and Ȧt, which are corresponding

to B̆t and Ăt in the continuous model. Ḃt(e, f) designates the CD in period t given the

state Kt−1 = e × ∆k and pt−1 = f × ∆p, while Ȧt(e, f) designates the minimal worst-

regret given the state Kt−1 = e × ∆k and the current price pt = f × ∆p. In any period

t ∈ {1, 2, . . . , T −1} with the state Kt−1 = i×∆k and p̄t−1 = pt−1 = j×∆p > 0, the CD is

Ḃt(i, j) = max
{
j ×∆p − c+ c× 1{i<E}, max

{
Ȧt(i, f) for f = j, j + 1, . . . , F

}}
(18)

where

Ȧt(i, j) = min
{
Ḃt+1(i, j), Gt(i, j)

}
− j ×∆p∆k (19)

with Gt(i, j) = min
{
Ḃt+1(i+ e, j)− j∆p × e∆k + c for e = 1, 2, . . . , E − i

}
. (18) and

(19) in the discrete model are corresponding to (11) and (12) in the continuous model.

Note that there is an extra term ”−j×∆p∆k” in (19) compared with (12). The boundary

condition in (13) becomes

ḂT (i, j) = max {i∆k, j∆p} − c+ c× 1{1−i∆k>0} (20)
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in the discrete model. The CD of problem FC” is

DFC′′ = ḂT (1, 1). (21)

Theorem 3 points out that the CD of the discrete model above is still a lower bound on

DFC , and the proof is in the appendix.

Theorem 3. The CD of the discrete version of problem FC’ in equations (18),(19) and
(20) is still a lower bound on DFC , i.e., DFC′′ ≤ DFC′ = DFC .

The following relationships between each two adjacent columns in Ḃt, or between each

two adjacent rows in Ȧt can help us greatly reduce the calculation complexity.

Gt(i, j) = min
{
Ḃt+1(i+ e, j)− j∆p × e∆k + c for e = 1, 2, . . . , E − i

}
= min

{
Ḃt+1(i+ 1, j)− j∆p∆k + c, Gt(i+ 1, j)− j∆p∆k

} (22)

Zt(i, j) = max
{
Ȧt(i, f) for f = j, j + 1, . . . , F

}
= max

{
Ȧ(i, j), Zt(i, j + 1)

} (23)

The discrete version of problem FC’ can be calculated very efficiently, as stated in

Theorem 4.

Theorem 4. The equilibrium outcome of the discrete model for problem FC’ can be found
in O(T ∗ E ∗ F ) time.

5.2. Upper bound

To find the upper bound on DFC , we introduce two relevant problems.

(i) Problem FC-LO: or the one-way trading problem with fixed costs and limited

opportunities. Compared with Problem FC, in Problem FC-LO a new constraint is imposed

on the trader that he can conduct at most N transactions during the trading horizon.
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(ii) Problem PO: or the one-way trading problem with prepaid opportunities, where

the trader first ”buys” a fixed number of trading opportunities (denoted by N) in advance

before the trading horizon starts and pays the fixed cost N ∗c. During the trading horizon,

the trader can conduct at most N transactions. No money will return to the trader even

if he trades less than N times in the end.

The relationships between the CD of these two problems and the CD of problem FC

are summarized in Theorem 5, and the proof is in the appendix.

Theorem 5. (Bounds on DFC) DFC′ = DFC ≤ DFC−LO ≤ DPO.

We use DPO to replace DFC−LO as the upper bound on DFC , because problem PO is

more solvable than problem FC-LO.

In problem PO, the trader ”buys” a fixed number of trading opportunities (denoted

by N)and pays the fixed cost N ∗ c in advance before the trading horizon starts. So the

minimal attainable CD for the trader in problem PO is

DPO = min
N≤T

(N − 1)c+DLO(N) (24)

where DLO(N) is the minimal attainable CD for the trader in the one-way trading problem

with N opportunities exogenously given. The one-way trading problem with limited op-

portunities (and no fixed cost) will be briefly called problem LO hereafter. Wang and Lan

(2019) have studied problem LO, and their results about DLO(N) is given in the following

lemma.

Lemma 9. (Wang and Lan (2019)) For the T-period one-way trading problem with N
opportunities, the minimal CD of all online trading policies is

DLO(N) =


(
N−1
N

)N ≡ f1(N) if N = T(
N
N+1

)N
≡ f2(N) if N ≤ T − 1

(25)

According to Lemma 9, if N ≤ T − 1, DLO(N) is irrelevant of T , and it decreases in

N at a decreasing speed. In other words, increasing trading opportunities for the trader
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in Problem LO displays a diminishing marginal effect on the minimal CD. In addition, an

important observation for problem LO given by Wang and Lan (2019) is that, the number

of actually used opportunities in equilibrium can be any integer in the interval [1, N ],

which is determined by the trader’s decisions. The more opportunities used, the higher

the revenue achieved by both the offline and online trading policies. However, the revenue

gap between the online and offline policies (i.e., the CD) is not influenced by the number

of actually used opportunities. It is worth mentioning that, in Problem PO, the prepaid

fixed costs is always c×N , although the actual number of transactions might turn out to

be less than N .

Based on Lemma 9, we can obtain the objective function in the right-hand-side of (24)

(i.e., H(N) = (N − 1)c + DLO(N)), which enables us to examine the optimal number

of trading opportunities for the trader to prepaid for (designated by N∗) and thus figure

out DPO. The function H(N) may not be monotonic in N . When 1 ≤ N ≤ T − 1, it

is a discrete convex function. However, as N moves from T − 1 to T , there could even

be a sudden drop in value for H(N), that is, f2(T ) > f1(T ). Thus a binary search of

the monotonic difference function ∆H(N) = H(N) − H(N − 1) can be done to find the

local minimum on 1 ≤ N ≤ T − 1, which is then compared to H(T ) to obtain the global

minimum for N ∈ [1, T ]. The complexity of such an approach is O (log N).

We conduct numerical experiments to illustrate the results for the one-way trading prob-

lem with prepaid opportunities. Let T = {10, 20, 30} and c = {0, 0.0001, 0.0002, . . . , 1}.

N∗ and DPO are calculated for different combinations of T and c. The results are shown

in Figure 1 and Figure 2.

There are several observations. In Figure 1, for each given T , when the fixed cost c

is not greater than a particular threshold c̄, N∗ is bounded by the length of the trading

horizon (N∗ = T ). Meanwhile, c̄ is smaller when T is larger. From the numerical results,

the value of c̄ is about 0.0101, 0.0026, 0.0011 for the case of T = 10, 20, 30 respectively.

In addition, for each T , we find that: (i) N∗ is decreasing in c; (ii) DPO is increasing
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in c; and (iii) the curve of N∗ as well as the curve of DPO when c > c̄ coincide with the

counterparts for a longer trading horizon. When c > 0.0101, the curve of N∗ (or DPO) for

T = 10 coincides with that for T = 20 and T = 30 in Figure 1 (or in Figure 2). When

c > 0.0026, the curve of N∗ (or DPO) for T = 20 coincides with that for T = 30 in Figure

1 (or in Figure 2). Note that N∗ decreases to 1 and DPO increases to 0.5 when c ≥ 0.0556.

Figure 1. The curve of N∗ w.r.t. c when T = 10, 20, 30

20



Figure 2. The curve of DPO w.r.t. c when T = 10, 20, 30

We also conduct numerical experiments to calculate both the upper bound DPO and

the lower bound DFC” on DFC for different fixed costs. Let c = {0, 0.001, 0.002, . . . , 1},

E = 10000, F = 1000, and T = {5, 10, 15, . . . , 100}. Figure 3 illustrates the curve of DPO

and DFC′′ with respect to c for the case of T = {5, 10, 15}. Figure 4 shows the curve of

DFC′′/DPO with respect to c when T = {5, 10, 15, 20, 30}. There are several observations

from these two figures.

(i) Both DPO and DFC′′ are increasing in c at a decreasing speed, and each of them

reaches the saturation point 0.5 when c is larger than a threshold value. The threshold

value for DPO (c̄PO ≈ 0.056) is smaller than that for DFC′′ (c̄FC” ≈ 0.086).

(ii) For an arbitrary c, if T1 > T2, then DFC′′(T = T1) ≥ DFC′′(T = T2) and DPO(T =

T1) ≥ DPO(T = T2). Meanwhile, the curve of DFC′′(T = T2) (or DPO(T = T2)) coincides

with that of DFC′′(T = T1) (or DPO(T = T1)) when c exceeds a threshold value.

(iii) DFC′′/DPO is greater than 93% for any combination of T and c, which indicates

that DFC/DPO is at least 93%. Therefore, the optimal trading policy for problem PO can

be used as a heuristic to solve problem FC, and the performance of this heuristic policy is

pretty close to that of the optimal policy for problem FC.
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Figure 3. The curve of DPO and DFC” w.r.t. c when T = 5, 10, 15

Figure 4. The curve of DFC”/DPO w.r.t. c when T = 5, 10, 15, 20, 30
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6. Conclusions and Extensions

For the one-way trading problem with fixed costs and limited information about future

prices (i.e., price range), we construct the robust optimization model based on CD analysis

(called CDA), or the mini-max regret criterion, and pinpoint several important properties

about this model. Since it is difficult to solve the original problem directly via backward

induction when the trading horizon is relatively long, we try to find out the bounds on it

by solving two approximate problems. We first introduce a discrete version of the original

problem which determines a lower bound on the CD of the original problem. In order

to obtain the upper bound on the CD of the original problem, we transform it to an

approximate problem with predetermined number of trading opportunities and propose an

online trading policy based on CD analysis (called CDA) to guide the trader’s decision

process according to actual prices encountered.

There is another purpose of introducing the one-way trading problem with limited

opportunities. It connects the well-studied one-way trading problem without opportunity

limitations and the time series search problem via a uniform mathematical framework,

which facilitates the comparison between these different types of problems, enriches the

conclusions of existing literatures, and provides a good foundation for future researches on

more complicated one-way trading problems with various practical constraints.

There are several directions to extend this paper. This research can be carried a step

further to find analytical solutions to the online inventory control problem with procure-

ment costs and inventory holding cost. In addition, it’s worthwhile to relax the assumption

of constant price range and consider the situation where the price range in each period de-

pends on the actual price in previous period. For example, the stock price must be within

±10% of last day’s price in China stock market.
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Appendix A. Proof of Lemma 1.

Proof of Lemma 1. Let c′ = c
M−m , p′t = pt−m

M−m , k′t = kt, and s′t−1 = {C ′t−1,K
′
t−1, p̄

′
t−1}

where C ′t−1 =
∑t−1

i=1

(
p′ik
′
i − c′ ∗ 1{k′i>0}

)
, K ′t−1 =

∑t−1
i=1 k

′
i and p̄′t−1 = max(p′1:t−1). Let

D′t(s
′
t−1) designates the CD of the normalized model in period t with the state s′t−1. Then

c = (M −m) ∗ c′, pt = m+ (M −m)p′t, kt = k′t, and

Ct−1 =
t−1∑
i=1

(
piki − c ∗ 1{ki>0}

)
=

t−1∑
i=1

[
(m+ (M −m)p′i)k

′
i − (M −m)c′ ∗ 1{k′i>0}

]
= m ∗K ′t−1 + (M −m)

t−1∑
i=1

(
p′ik
′
i − c′ × 1{k′i>0}

)
= m ∗K ′t−1 + (M −m)C ′t−1

(A.1)

Kt−1 =
t−1∑
i=1

ki =
t−1∑
i=1

k′i = K ′t−1 (A.2)

p̄t−1 = max(p1:t−1) = max
{
m+ (M −m)p′i for i ∈ {1, 2, . . . , t− 1}

}
= m+ (M −m)p̄′t−1

(A.3)
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So,

DT (sT−1) = max
pT∈[m,M ]

{
p̄T − c−

(
CT−1 + pT (1−KT−1)− c ∗ 1{1−KT−1>0}

)}
= max

p′T∈[0,1]
{m+ (M −m)p̄′T − (M −m)c′ − [m ∗K ′T−1 + (M −m)C ′T−1

+ (m+ (M −m)p′T )(1−K ′T−1)− (M −m)c′ ∗ 1{1−K′T−1>0}]}

= (M −m) max
p′T∈[0,1]

{p̄′T − c′ − [C ′T−1 + p′T (1−K ′T−1)− c′ ∗ 1{1−K′T−1>0}]}

= (M −m)D′T (s′T−1)

(A.4)

Next, we can prove the following statement: For an arbitrary t ∈ {1, 2, . . . , T − 1}, if

Dt+1(st) = (M −m)D′t+1(s′t), then Dt(st−1) = (M −m)D′t(s
′
t−1). The proof is as follows,

Dt(st−1) = max
pt∈[m,M ]

min
kt∈[0,1−Kt−1]

Dt+1(st)

= max
p′t∈[0,1]

min
k′t∈[0,1−K′t−1]

(M −m)D′t+1(s′t) = (M −m)D′t(s
′
t−1)

(A.5)

Therefore, DFC = D1(s0) = (M −m)D′1(s′0) = (M −m)D′FC .

Appendix B. Proof of Lemma 2.

Proof of Lemma 2. To prove Lemma 2, we only need to show the following state-

ment: for any period t ∈ {1, 2, . . . , T}, Ct−1 can be separated from the objective function

of the subgame in this period, i.e., Dt(st−1). That is, we should verify that Dt(st−1) =

Gt(Kt−1, p̄t−1) − Ct−1 for any t ∈ {1, 2, . . . , T}, where Gt(Kt−1, p̄t−1) is a function inde-

pendent of Ct−1. The proof consists of the following two steps.

In the first step, we can easily confirm that DT (sT−1) = GT (KT−1, p̄T−1)−CT−1, where

GT (KT−1, p̄T−1) = maxpT∈[m,M ]

{
max(p̄T−1, pT )− c−

(
pT (1−KT−1)− c× 1{1−KT−1>0}

)}
since DT (sT−1) is given in (6). In the second step, we will prove the following state-

ment: For an arbitrary t ∈ {1, 2, . . . , T − 1}, if Dt+1(st) = Gt+1(Kt, p̄t) − Ct, then
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Dt(st−1) = Gt(Kt−1, p̄t−1)− Ct−1. The proof is straightforward,

Dt(st−1) = max
pt∈[m,M ]

min
kt∈[0,1−Kt−1]

Dt+1(st)

= max
pt∈[m,M ]

min
kt∈[0,1−Kt−1]

[Gt+1(Kt, p̄t)− Ct]

= max
pt∈[m,M ]

min
kt∈[0,1−Kt−1]

[Gt+1(Kt−1 + kt,max(p̄t−1, pt))− (Ct−1 + ptkt − c× 1{kt>0})]

= { max
pt∈[m,M ]

min
kt∈[0,1−Kt−1]

[Gt+1(Kt−1 + kt,max(p̄t−1, pt))− (ptkt − c× 1{kt>0})]} − Ct−1.

(B.1)

Thus, Dt(st−1) = Gt(Kt−1, p̄t−1)−Ct−1, whereGt(Kt−1, p̄t−1) = maxpt∈[m,M ] minkt∈[0,1−Kt−1] [Gt+1(Kt−1+

kt,max(p̄t−1, pt))− (ptkt − c× 1{kt>0})].

Appendix C. Proof of Lemma 3.

Proof of Lemma 3. The proof of Lemma 3 consists of two steps. In the first step, we

can confirm that BT (KT−1, p̄T−1) = max (KT−1, p̄T−1) − c + c × 1{1−KT−1>0} is weakly

increasing in KT−1 when KT−1 < 1. In the second step, we prove the following statement:

If Bt+1(Kt, p̄t) is weakly increasing in Kt when Kt < 1, then Bt(Kt−1, p̄t−1) is weakly

increasing in Kt−1 when Kt−1 < 1. In other words, we need to prove that Bt(Kt−1 +

δ, p̄t−1) ≥ Bt(Kt−1, p̄t−1) when Kt−1 < 1 for an arbitrary δ ∈ [0, 1−Kt−1).

For an arbitrary δ ∈ [0, 1−Kt−1),

Bt(Kt−1 + δ, p̄t−1) = max
pt∈[0,1]

min
kt∈[0,1−Kt−1−δ]

Bt+1(Kt−1 + δ + kt, p̄t)− (ptkt − c× 1{kt>0})(C.1)

Since Bt+1(Kt, p̄t) is weakly increasing in Kt when Kt < 1, we have Bt+1(Kt−1 + δ +
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kt, p̄t) ≥ Bt+1(Kt−1 + kt, p̄t). So,

min
kt∈[0,1−Kt−1−δ)

Bt+1(Kt−1 + δ + kt, p̄t)− (ptkt − c× 1{kt>0})

≥ min
kt∈[0,1−Kt−1−δ)

Bt+1(Kt−1 + kt, p̄t)− (ptkt − c× 1{kt>0})

≥ min
kt∈[0,1−Kt−1)

Bt+1(Kt−1 + kt, p̄t)− (ptkt − c× 1{kt>0}).

(C.2)

In addition, when kt = 1−Kt−1− δ > 0 in the minimization problem of (C.1), we have

Bt+1(1, p̄t)− (pt(1−Kt−1 − δ)− c) ≥ Bt+1(1, p̄t)− (pt(1−Kt−1)− c× 1{1−Kt−1>0})(C.3)

Therefore,

min
kt∈[0,1−Kt−1−δ]

Bt+1(Kt−1 + δ + kt, p̄t)− (ptkt − c× 1{kt>0})

≥ min
kt∈[0,1−Kt−1]

Bt+1(Kt−1 + kt, p̄t)− (ptkt − c× 1{kt>0})
(C.4)

Thus Bt(Kt−1 + δ, p̄t−1) ≥ Bt(Kt−1, p̄t−1) holds.

Appendix D. Proof of Lemma 4.

In any period t, if the adversary sets the current price at pt = m, then the trader faces

the following problem according to (8),

min
kt∈[0,1−Kt−1]

Bt+1(Kt, p̄t−1)− (0− c ∗ 1{kt>0}) (D.1)

Since Bt+1(Kt, p̄t−1) is increasing in Kt (according to Lemma 3), the minimum of it is

obtained at kt = 0. Thus Lemma 4 is proved.

Appendix E. Proof of Lemma 5.

Lemma 5 is consist of the following two statements.
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Statement 1. In an arbitrary period t, if the adversary chooses to reduce the price in

this period, then it is optimal for her to reduce it to the bottom price 0.

Statement 2. If the adversary has already reduced the price to 0 in a certain period,

then it is optimal for her to keep the price at 0 in the subsequent period. In other words,

given the historical state Kt−1 and p̄t−1, if it is optimal for the adversary to set pt = 0 in

period t, then it is no worse for her to set pt+1 = 0 than to set pt+1 at other values within

(0, 1].

We prove Statement 1 first. For any pt ∈ [0, p̄t−1], there is

Bt+1(Kt, p̄t)− (ptkt − c ∗ 1{kt>0}) = Bt+1(Kt, p̄t−1)− (ptkt − c ∗ 1{kt>0})

≤ Bt+1(Kt, p̄t−1)− (0− c ∗ 1{kt>0})
(E.1)

so,

min
kt∈[0,1−Kt−1]

Bt+1(Kt, p̄t)− (ptkt − c ∗ 1{kt>0})

≤ min
kt∈[0,1−Kt−1]

Bt+1(Kt, p̄t−1)− (0− c ∗ 1{kt>0})
(E.2)

Note that the right-hand-side of the inequality (E.2) is independent of pt, therefore,

max
pt∈[0,p̄t−1]

min
kt∈[0,1−Kt−1]

Bt+1(Kt, p̄t)− (ptkt − c ∗ 1{kt>0})

≤ max
pt∈[0,p̄t−1]

min
kt∈[0,1−Kt−1]

Bt+1(Kt, p̄t−1)− (0− c ∗ 1{kt>0})

= max
pt∈{0}

min
kt∈[0,1−Kt−1]

Bt+1(Kt, p̄t)− (ptkt − c ∗ 1{kt>0})

(E.3)

Hence Statement 1 is proved.

Next, we prove Statement 2. We first prove the following preparatory statement (de-

noted by Statement 3) : for any t ∈ {1, 2, . . . , T − 1}, Bt(Kt−1, p̄t−1) ≥ Bt+1(Kt−1, p̄t−1),
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and the equality holds when pt = 0.

Bt(Kt−1, p̄t−1) = max
pt∈[0,1]

min
kt∈[0,1−Kt−1]

Bt+1(Kt−1 + kt,max(p̄t−1, pt))− (ptkt − c ∗ 1{kt>0})(E.4)

If pt is set at 0 on the right-hand-side, then according to Lemma 4, we can conclude that

kt = 0, and Bt(Kt−1, p̄t−1) = Bt+1(Kt−1, p̄t). Therefore, Statement 3 is proved.

Now we are ready to prove Statement 2. Since it is optimal for the adversary to set

pt = 0 in period t, we know that

max
pt∈[0,1]

min
kt∈[0,1−Kt−1]

Bt+1(Kt, p̄t)− (ptkt − c ∗ 1{kt>0}) = Bt+1(Kt−1, p̄t−1) (E.5)

We can also conclude that kt = 0 according to Lemma 4, thus the state variables in the

beginning of period t+ 1 are Kt = Kt−1 and p̄t = p̄t−1. Therefore,

max
pt+1∈[0,1]

min
kt+1∈[0,1−Kt−1]

Bt+2(Kt−1 + kt+1,max(p̄t−1, pt+1))− (pt+1kt+1 − c ∗ 1{kt+1>0})

= max
pt∈[0,1]

min
kt∈[0,1−Kt−1]

Bt+2(Kt−1 + kt,max(p̄t−1, pt))− (ptkt − c ∗ 1{kt>0})

≤ max
pt∈[0,1]

min
kt∈[0,1−Kt−1]

Bt+1(Kt−1 + kt,max(p̄t−1, pt))− (ptkt − c ∗ 1{kt>0})

= Bt+1(Kt−1, p̄t−1)

= Bt+2(Kt−1, p̄t−1)

(E.6)

The inequality in the third line of (E.6) holds because Bt+2(Kt−1 + kt,max(p̄t−1, pt)) ≤

Bt+1(Kt−1 + kt,max(p̄t−1, pt)) according to Statement 3. The equality in the forth line of

(E.6) holds based on (E.5). The equality in the last line of (E.6) holds because of Statement

3 in the case of pt+1 = 0. Statement 2 is thus proved.

Appendix F. Proof of Theorem 1.

Proof of Theorem 1. Theorem 1 can be easily derived from Lemmas 4 and 5.
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Appendix G. Proof of Lemma 6.

Proof of Lemma 6. We can first confirm that B̆T (KT−1, pT−1) = max(KT−1, pT−1) −

c + c × 1{1−KT−1>0} is weakly increasing in KT−1 when KT−1 < 1. Then we prove the

following statement: For any t ∈ {1, 2, . . . , T −1}, if B̆t+1(Kt, pt) is weakly increasing in Kt

when Kt < 1, then B̆t(Kt−1, pt−1) is weakly increasing in Kt−1 when Kt−1 < 1. In other

words, we only need to prove that B̆t(Kt−1 + δ, pt−1) ≥ B̆t(Kt−1, pt−1) when Kt−1 < 1 for

an arbitrary δ ∈ [0, 1−Kt−1).

According to (11), for an arbitrary δ ∈ [0, 1−Kt−1),

B̆t(Kt−1 + δ, pt−1) = max{pt−1, max
pt∈[pt−1,1]

Ăt(Kt−1 + δ, pt−1|pt)} (G.1)

where

Ăt(Kt−1 + δ, pt−1|pt) = min
kt∈[0,1−Kt−1−δ]

B̆t+1(Kt−1 + δ + kt, pt)− (ptkt − c× 1{kt>0})(G.2)

Since B̆t+1(Kt, pt) is weakly increasing in Kt when Kt < 1, we have B̆t+1(Kt−1 + δ +

kt, pt) ≥ B̆t+1(Kt−1 + kt, pt) when kt < 1−Kt−1 − δ. So

min
kt∈[0,1−Kt−1−δ)

B̆t+1(Kt−1 + δ + kt, pt)− (ptkt − c× 1{kt>0})}

≥ min
kt∈[0,1−Kt−1−δ)

B̆t+1(Kt−1 + kt, pt)− (ptkt − c× 1{kt>0})

≥ min
kt∈[0,1−Kt−1)

B̆t+1(Kt−1 + kt, pt)− (ptkt − c× 1{kt>0})

(G.3)

In addition, when kt = 1−Kt−1− δ > 0 in the minimization problem of (G.2), we have

B̆t+1(1, pt)− (pt(1−Kt−1 − δ)− c) ≥ B̆t+1(1, pt)− (pt(1−Kt−1)− c× 1{1−Kt−1>0})(G.4)

So we have Ăt(Kt−1+δ, pt−1|pt) ≥ Ăt(Kt−1, pt−1|pt), thus B̆t(Kt−1+δ, pt−1) ≥ B̆t(Kt−1, pt−1)

holds.
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Appendix H. Proof of Theorem 2.

Proof of Theorem 2. For the two-period problem, in the second period, the trader’s

choice is to sell out all the remaining goods (i.e., k2 = 1− k1). The adversary’s problem in

this period is

B2(k1, p1) = max
p2∈[0,1]

[
max(p1, p2)− c−

(
p2(1− k1)− c ∗ 1{1−k1>0}

)]
(H.1)

according to (9). Since the objective function of the outer maximization problem is de-

creasing in p2 when p2 <= p1 and is increasing in p2 when p2 > p1, we can conclude that

the maximum is achieved at p2 = 0 or p2 = 1, which resulting in

B2(k1, p1) = max(p1, k1)− c+ c ∗ 1{1−k1>0} (H.2)

According to (8), the subgame between the adversary and the trader in the first period is

as following,

B1(0, 0) = max
p1∈[0,1]

min
k1∈[0,1]

B2(k1, p1)− (p1k1 − c ∗ 1{k1>0}) (H.3)

We first solve the inner minimization problem in (H.3) for the trader. The objective

function

B2(k1, p1)− (p1k1 − c ∗ 1{k1>0}) =


p1 if k1 = 0

max(p1, k1)− p1k1 + c if k1 ∈ (0, 1)

1− p1 ifk1 = 1

(H.4)

In the interval k1 ∈ (0, 1), the objective function is decreasing in k1 when k1 <= p1 and

is increasing in k1 when k1 > p1, so there is a local minimum 1
4 + c − (p2 − 1

2)2 obtained

at k∗1 = p1. Comparing the objective value at k1 = 0, k1 = 1 and k1 = k∗1 = p1, we obtain
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the optimal trading volume for the trader in the first period, i.e., k̂1(p1), and the optimal

objective value is

B̂1 (p1) =


p1 if p1 ≤ p11

1
4 + c− (p2 − 1

2)2 if p11 < p1 < p12

1− p1 if p1 ≥ p12

(H.5)

Now we solve the outer maximization problem in (H.3) for the adversary, which is

maxp1∈[0,1] B̂1(p1). We obtain p∗1 = 1
2 , and the minimal CD for the two-period problem is

DFC = min(1/4 + c, 1/2).

Appendix I. Proof of Lemma 7.

Proof of Lemma 7. Given x, suppose y∗(x) = arg miny∈Y f1(x, y) and y′∗(x) = arg miny∈Y ′ f2(x, y).

Since Y ′ ⊆ Y , y′∗(x) is a feasible but not necessarily optimal solution of the minimization

problem miny∈Y f1(x, y). In other words, miny∈Y f1(x, y) ≤ f1(x, y′∗(x)). Therefore,

min
y∈Y

f1(x, y) = f1(x, y∗(x)) ≤ f1(x, y′∗(x)) ≤ f2(x, y′∗(x)) = min
y∈Y ′

f2(x, y) (I.1)

Next, we go on to prove maxx∈X′ f1(x, y∗(x)) ≤ maxx∈X f2(x, y′∗(x)). Suppose x′∗ =

arg maxx∈X′ f1(x, y∗(x)). Since X ′ ⊆ X, x′∗ is a feasible but not necessarily optimal solu-

tion of the maximization problem maxx∈X f2(x, y′∗(x)). In other words, f2(x′∗, y′∗(x′∗)) ≤

maxx∈X f2(x, y′∗(x)). Therefore,

max
x∈X′

f1(x, y∗(x)) = f1(x′∗, y∗(x′∗)) ≤ f2(x′∗, y′∗(x′∗)) ≤ max
x∈X

f2(x, y′∗(x)) (I.2)

Appendix J. Proof of Theorem 3.

Proof of Theorem 3. Since the discretization of the adversary’s decision just reduces

her own strategy space when maximizing the CD, it can still guarantee the lower bound
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according to Corollary 1. Now we prove that, if Kt−1 = i ×∆k and pt = j ×∆p ≥ pt−1,

there is

Ăt(Kt−1, pt−1|pt) ≥ Ȧt(i, j) (J.1)

where

Ăt(Kt−1, pt−1|pt) = min
kt∈[0,1−Kt−1]

B̆t+1(Kt−1 + kt, pt)− (ptkt − c× 1{kt>0}) (J.2)

Ȧt(i, j) = min
{
Ḃt+1(i, j), Gt(i, j)

}
− j ×∆p∆k (J.3)

with Gt(i, j) = min
{
Ḃt+1(i+ e, j)− j∆p × e∆k + c for e = 1, 2, . . . , E − i

}
.

Suppose Kt−1 = i × ∆k and pt = j × ∆p. For an arbitrary kt ∈ (e∆k, (e + 1)∆k),

e ∈ {0, 1, . . . , E − i− 1}, let k̊ = kt − e∆k < ∆k, there is

min
kt∈(e∆k,(e+1)∆k)

B̆t+1(Kt−1 + kt, pt)− ptkt + c

≥ min
kt∈(e∆k,(e+1)∆k)

B̆t+1(Kt−1 + kt − k̊, pt)− ptkt + c

= min
kt∈(e∆k,(e+1)∆k)

B̆t+1(Kt−1 + kt − k̊, pt)− pt(kt − k̊ + k̊) + c

≥ min
kt∈(e∆k,(e+1)∆k)

B̆t+1(Kt−1 + kt − k̊, pt)− pt(kt − k̊ + ∆k) + c

= B̆t+1(Kt−1 + e×∆k, pt)− pt(e×∆k + ∆k) + c

= Ḃt+1(i+ e, j)− j∆p × (e+ 1)∆k + c

(J.4)

The first inequality in (J.4) is based on Lemma 6, while the second inequality in (J.4) holds
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because k̊ ≤ ∆k. Meanwhile, for any e ∈ {1, 2, . . . , E − i}, there is

B̆t+1(Kt−1 + e∆k, pt)− pt × e∆k + c = Ḃt+1(i+ e, j)− j∆p × e∆k + c

≥ Ḃt+1(i+ e, j)− j∆p × (e+ 1)∆k + c
(J.5)

Therefore,

min
kt∈(0,1−Kt−1]

B̆t+1(Kt−1 + kt, pt)− ptkt + c

≥ min
{
Ḃt+1(i+ e, j)− j∆p × (e+ 1)∆k + c for e ∈ {0, 1, . . . , E − i}

}
= min

{
Ḃt+1(i+ e, j)− j∆p × e∆k + c for e ∈ {0, 1, . . . , E − i}

}
− j∆p∆k

= min
{
Ḃt+1(i, j) + c, Gt(i, j)

}
− j∆p∆k

(J.6)

Finally, we check the special point kt = 0 in (J.1). Since B̆t+1(Kt−1, pt) = Ḃt+1(i, j),

we have B̆t+1(Kt−1, pt) ≥ Ḃt+1(i, j)− j∆p∆k. Thus

Ăt(Kt−1, pt−1|pt) = min
kt∈[0,1−Kt−1]

B̆t+1(Kt−1 + kt, pt)− ptkt + c

≥ min
{
Ḃt+1(i, j), Ḃt+1(i, j) + c, Gt(i, j)

}
− j∆p∆k

= min
{
Ḃt+1(i, j), Gt(i, j)

}
− j∆p∆k

= Ȧt(i, j)

(J.7)

Appendix K. Proof of Theorem 4.

Proof of Theorem 4. We analyze the calculation complexity of problem FC” in the

backward induction process. In the last period T , we only need to calculate each cell of

the matrix ḂT (i, j) according to (20). The calculation volume is (E + 1) ∗ (F + 1).

In any period t ∈ {1, 2, . . . , T − 1}, we need to calculate both the matrices Ȧt and Ḃt.

When calculating each cell in the ith row of Ȧt, we need to consider all the possible values

of kt, including {e∆k for e = 0, 1, . . . , E − i}. So, the calculation volume for each column
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of the matrix Ȧt is (F + 1)
∑E

i=0(E − i+ 1) = (E + 1)(E + 2)/2. Fortunately, according to

(23), this calculation volume can be reduced to (E+ 1). Therefore, the calculation volume

of computing the matrix Ȧt is (E + 1) ∗ (F + 1).

When calculating each cell in the jth column of Ḃt, we need to consider all the possible

values of pt, including {j ∗ ∆p + f∆pfor f = 0, 1, . . . , F − j + 1}. So, the calculation

volume for each row of the matrix Ḃt is (E + 1)
∑F

j=0(F − j + 2) = (F + 2)(F + 3)/2− 1.

Fortunately, according to (22), this calculation volume can be reduced to (F+1). Therefore,

the calculation volume of computing the matrix Ḃt is (E + 1) ∗ (F + 1).

Therefore, the calculation complexity of problem FC” is O(T ∗ E ∗ F ).

Appendix L. Proof of Theorem 5.

Proof of Theorem 5. According to the definition of Problem FC-LO, its objective

function is the same as that of Problem FC, but the strategy space for the trader in this

problem is much reduced compared with the strategy space for the trader in Problem FC.

Therefore, DFC ≤ DFC−LO based on Corollary 1.

Next we prove DFC−LO ≤ DPO. Assume that N is the number of prepaid opportunities

in Problem FC-LO, and N is also the maximum number of transactions allowed in Problem

FC-LO. The game between the trader and the adversary in both Problem FC-LO and

Problem PO can be described by the same model in (5), and the strategy spaces of both

players are the same in problem FC−LO and problem PO. The only difference between the

two problems lies in their objective functions, or the boundary condition DT+1(p1:T , k1:T ).

The objective function of Problem PO is

DT+1(p1:T , k1:T ) = [max(p1:T )− c]︸ ︷︷ ︸
Offline Profit

−

[
T∑
t=1

ptkt − c×N

]
︸ ︷︷ ︸

Online Profit

(L.1)

37



while the objective function of Problem FC-LO with at most N opportunities is

D̂T+1(p1:T , k1:T ) = [max(p1:T )− c]︸ ︷︷ ︸
Offline Profit

−

[
T∑
t=1

(ptkt − c× 1{kt>0})

]
︸ ︷︷ ︸

Online Profit

(L.2)

DT+1(p1:T , k1:T ) is obviously not smaller than D̂T+1(p1:T , k1:T ), since the former deducts

N∗c while the later only deducts the actual fixed costs c×
∑T

t=1 1{kt>0} <= N∗c. According

to Corollary 1, DFC−LO ≤ DPO.
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