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Abstract

It is commonly recognized that a major issue of robust optimization is the

tendency to produce overly conservative solutions. To address this issue, a

new regret-based criterion with a single control parameter is proposed and

axiomatized to offer smooth control of conservatism in a wide range without

tampering with the uncertainty set. This criterion has many appealing ana-

lytical properties, such as decreasing conservatism with regard to the control

parameter, which makes it a unique choice for fine control of conservatism.

Tractability for robust linear programs with this criterion is established by

reformulating them into those with the maximin criterion, for which tractable

solution schemes and theoretical results are actively developed in the liter-

ature. Closed-form solutions are obtained for the robust one-way trading

problem with this criterion, leading to a greatly simplified competitive ra-

tio analysis. Numerical experiments are conducted to demonstrate smooth

control of conservatism and the effects on revenue and risk.
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1. Introduction.

Robust optimization (RO) in the broad sense deals with decision-making

under data uncertainty without requiring an exact distribution, which is, in

contrast, a prerequisite for stochastic programming. The survey of Gabrel

et al. (2014) covers topics from distributional RO to the traditional or narrow-

sensed RO that features an uncertainty set and a maximin reward or min-

imax cost criterion. RO is often considered more practical and powerful in

applications where an exact distribution is difficult to estimate, due to little

or inaccurate data, or nonstationarity of the underlying stochastic process.

The traditional RO is initially developed in Soyster (1973), which proposes a

robust counterpart for a linear programming (LP) model to address the fea-

sibility concern, as data uncertainty can cause constraint violation. A large

branch of studies follows Soyster (1973) to derive tractable reformulations

that provide insights into robust solutions as well as probabilistic guarantees

of feasibility (see Ben-Tal and Nemirovski 2008 and Bertsimas et al. 2011 for

comprehensive surveys and Ben-Tal et al. 2009 for a book treatment).

As much performance is often sacrificed for robustness, it raises grave

concern about optimality and over-conservatism, which is, for example, con-

sidered as a major reason preventing airlines from adopting robust revenue

management methods in Vinod (2021). The robust counterpart of Soyster

(1973) is quickly found to be overly conservative with a severe performance

deterioration, which is caused by providing complete protection from all ad-

verse scenarios. Such protection may be justifiable in engineering where

infeasibility can cause a doomed satellite launch or a destroyed unmanned

robot. However, adverse events in business like low demand or supply do not
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bring about such disastrous consequences, thus protection can be made by a

smaller and more flexible uncertainty set, with a lower probabilistic guaran-

tee of feasibility in exchange for better performance. Significant progress in

the theory of RO was then made in this regard for models with ellipsoidal

uncertainty sets by Ben-Tal and Nemirovski (1998, 1999, 2000), El-Ghaoui

and Lebret (1997), and El Ghaoui et al. (1998). As such models are nonlinear

and much more demanding computationally than linear models, Bertsimas

and Sim (2004) proposes the uncertainty budget method that can fully con-

trol the uncertainty set for every constraint while maintaining linearity. A

drawback of these approaches is that they tamper with the uncertainty set

to trade-off between robustness and conservatism, which can be difficult to

balance, and may even be impossible in some engineering cases.

This paper tackles the issue of over-conservatism from a new angle with-

out touching the uncertainty set by proposing a new decision criterion. Three

criteria are commonly used in research and practices due to their good ana-

lytical properties and computational tractability, but none of them offers fine

control of conservatism. The earliest maximin reward criterion is employed

in traditional RO and often considered as the Achilles’ heel, as it focuses en-

tirely on worst-case profits and completely ignores all plausible opportunities

for higher profits, which can lead to very conservative solutions. To alleviate

this issue, the absolute and relative regret criteria are proposed on the basis

of regret experienced by decision-makers once they realized what could have

been the best action in hindsight (Kouvelis and Yu 2013). Both regret-based

criteria are well-prepared to seize good opportunities with reduced level of

conservatism, while sacrificing to some extent the assurance of worst-case
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profit. The absolute regret criterion is proposed by Savage (1951), and ax-

iomatized in Milnor (1951) and Stoye (2011). The relative regret criterion is

equivalent to the so-called “competitive ratio,” a popular measure for online

optimization (Borodin and El-Yaniv 2005).

These criteria are empirically found to have distinct levels of conservatism

in a consistent order. More and more studies describe regret-based criteria

as less conservative than the maximin reward criterion ( Perakis and Roels

2008, Natarajan et al. 2014, Wang et al. 2016, Caldentey et al. 2017, and

Poursoltani and Delage 2021). In revenue management, Perakis and Roels

(2008) observes that absolute regret decisions are less conservative than rela-

tive regret ones. This corroborates with the findings in numerical studies by

Poursoltani and Delage (2021) that relative regret might be closer in spirit

than absolute regret to maximin reward, which usually gives the most con-

servative solution.

This paper proposes adjustable regret minimization (ARM) as a new

regret-based criterion capable of fine-tuning conservatism in a wide range

without touching the uncertainty set. The new criterion is based on an

interpolation between and extrapolation beyond the aforementioned criteria

by a single control parameter. The parameter can be adjusted to suit the

needs of an application, or adapted to key performance indicators (KPIs)

monitored in real-time, such as in airline revenue management (Vinod 2021).

It is intuitively explained in general and theoretically shown in a concrete

example that as the control parameter increases, the level of conservatism

of the ARM criterion decreases, which gives a clear direction for adjustment

and adaptation.
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Computational tractability is another important issue for RO applica-

tions. Averbakh and Lebedev (2005) shows that a robust LP with absolute

regret criterion is strongly NP-hard. Since then, extensive efforts are made

to develop exact and approximate solution schemes. Poursoltani and Delage

(2021) provide general-purpose schemes by reformulating regret minimiza-

tion problems into two-stage traditional RO problems, for which tractable

solution schemes and theoretical knowledge are richly developed in the last

decade (see Yanıkoğlu et al. 2019 for a recent survey). In this paper, par-

allel results are obtained for the ARM criterion, to maintain comparable

tractability as the absolute regret criterion.

The ARM criterion also enables a new approach to competitive ratio anal-

ysis that can help reduce analysis complexity when closed-form solutions are

available. Competitive ratio analysis is usually much more complex than ab-

solute regret analysis, which can be seen, for example, by a contrast between

El-Yaniv et al. (2001) andWang et al. (2016), both of which solve the one-way

trading problem under the same setting except for the criterion: competitive

ratio for the former and absolute regret for the latter. This new approach

for competitive ratio analysis may have a similar level of analysis complexity

as that of the absolute regret analysis, as will be exemplified by solving the

robust one-way trading problem with the ARM criterion. To facilitate such

endeavors, the analytical properties of the ARM criterion are studied under

a multistage setting, which readily covers single-stage and two-stage settings

as special cases.

The main contributions of this paper are as follows: (1) The ARM cri-

terion is proposed and axiomatized to offer fine control of conservatism in a
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wide range for RO without touching the uncertainty set. It works with any

specification of the uncertainty set, therefore can be applied either indepen-

dently or jointly with methods based on modifying the uncertainty set, such

as the uncertainty budget. (2) Linear RO problems with the ARM criterion

are shown to have similar tractability as those with the absolute regret cri-

terion. (3) The properties of the ARM criterion are studied theoretically to

facilitate the analysis and its practical applications. Moreover, these theoret-

ical properties are exploited to establish a new approach to competitive ratio

analysis, which can reduce the complexity of analysis for some problems, es-

pecially when closed-form solutions are available. (4) The robust one-way

trading problem with the ARM criterion is solved analytically, and the com-

petitive ratio is derived by the new approach with reduced complexity than

in the traditional way. Numerical experiments are conducted to demonstrate

the effects of continuous control of conservatism.

The rest of this paper is arranged as follows. Section 2 gives general ARM-

based formulations of multistage problems. Their properties are studied in

Section 3 to facilitate analysis and applications, and the new approach to

competitive ratio analysis is also discussed. Then section 4 deals with the

tractability of linear problems, and in section 5 the robust one-way trading

problem is studied to show the effectiveness of ARM. Finally, section 6 draws

conclusions with future research suggestions.

2. Formulation.

The ARM criterion is first introduced for single-stage problems, which

is then generalized to multistage problems. In a single-stage problem, an
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action x is first taken from the robustly feasible set X, then a scenario ζ is

realized from the uncertainty set U , which may be continuous or discrete.

The set X may also be continuous or discrete, for example, X = {x ∈ M :

∀ζ ∈ U , g(x; ζ) ≤ 0}, where g(x; ζ) : X ×U → Rng , and M = Rnr × Znz is a

mixture of continuous and discrete space with nr, nz ≥ 0 being the number

of continuous and discrete components in x. The reward depends on both x

and ζ, as specified by a reward function r(x, ζ). Let r∗(ζ) = maxx∈X r(x, ζ)

denote the ex post optimal reward after having seen ζ being realized, which

indicates the potential of a scenario. It is assumed that the min and max

operators are well-defined, otherwise they could be replaced by inf and sup

respectively.

A parameter β ∈ [0,∞) is introduced in ARM for continuous control

of conservatism. The reward r(x, ζ) is compared with the β-adjusted bench-

mark βr∗(ζ) to obtain an adjustable regret D(x, ζ; β) = βr∗(ζ)−r(x, ζ). The

worst-case regret D̄(x; β) = maxζ∈U D(x, ζ; β) serves as a regret guarantee.

The ARM criterion then chooses x ∈ X with the best regret guarantee:

D(β) = min
x∈X

D̄(x; β) = min
x∈X

max
ζ∈U

βr∗(ζ)− r(x, ζ),

= min
x∈X

max
ζ∈U

β{max
x′∈X

r(x′, ζ)} − r(x, ζ). (1)

The ARM criterion unifies a few well-known robust criteria into a con-

tinuum as β takes on different values. At β = 0, it degenerates into the

maximin reward criterion. With β at a special value between 0 and 1 (more

on this later), it is equivalent to the relative regret criterion. Then at β = 1

it becomes the absolute regret criterion, and finally it transforms into the

maximax criterion as β → ∞. Note that as β gets bigger, the ARM criterion

transmorphs into more aggressive criteria, which suggests that β can help
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moderate the aggressiveness. Though the form of (1) was used for fractional

combinatorial optimization in Megiddo (1978) and later adapted to numer-

ically computing competitive ratios in Averbakh (2005), it has never been

proposed as a new criterion for moderating conservatism as in this paper.

It is helpful to intuitively explain how such moderation happens as β

increases. From the definition of D̄(x; β), there is r(x, ζ) ≥ βr∗(ζ) − D for

any ζ ∈ U if and only if D ≥ D̄(x; β). Thinking of r(x, ζ) for a given x

and r∗(ζ) −D as graphs over U , clearly r(x, ζ) ≥ βr∗(ζ) −D says that the

reward graph r(x, ζ) is entirely above the benchmark graph βr∗(ζ)−D. As

D decreases with the benchmark graph rising up, chances are that reward

graphs no longer staying above are those that are either low in rewards or too

dissimilar to the benchmark graph in that they have a low value while the

benchmark has a high one at some ζ. When D reaches D(β), the final reward

graph that remains above and gets selected is likely to perform well and be

similar to the benchmark graph. As β increases, the benchmark demands

more rewards in favorable scenarios with higher r∗(ζ), and the recommended

solution is likely to be more aggressive in grasping opportunities in favorable

scenarios. The intuition will be further illustrated later in Corollary 3 for

the one-way trading problem: the bigger the β, the more aggressive the

recommended solution.

The single-stage setting can be readily extended to multistage, where de-

cisions are made sequentially as the uncertainty gradually reveals itself stage

by stage. Let t = 1, · · · , T labels the sequential stages, with a smaller t

for an earlier stage. The decision variable x now consists of T subverctors

(x1, · · · , xT ), with the stage decision xt corresponding to the decision in stage
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t. Likewise, a whole scenario now consists of stage scenarios for each stage:

ζ = (ζ1, · · · , ζT ). Without loss of generality, the formulation can be stan-

dardized so that in each stage t the stage decision xt first takes place, then

the stage scenario ζt is realized afterward. In an application where a stage

scenario is realized before a stage decision takes place, a dummy decision with

only one choice of action (i.e. to start decision-making) can be inserted in the

very beginning to have the standardized formulation, which helps simplify

discussions, while the results are general nevertheless.

Just as in multistage stochastic programming (MSP), there is an implicit

assumption: the realization of scenarios is independent of decisions, or the

decision maker can not influence the scenario development. In the beginning

of stage t, upon observing the partial scenario ζ1:t = (ζ1, · · · , ζt−1) revealed

before stage t, the set of future scenarios includes only scenarios that share

the same partially revealed scenario ζ1:t: U(ζ1:t) = {ζ ′ ∈ U : ζ ′1:t = ζ1:t}. It

is convenient to define the stage scenario set Ut(ζ1:t) = {ζ ′t : ζ ′ ∈ U(ζ1:t)}.

Nonanticipativity as in MSP is held here by having the stage decision xt

dependent only on the stage decisions and stage scenarios in the earlier stages,

so that decisions never depend on stage scenarios not revealed yet. Let x1:t =

(x1, · · · , xt−1) be the partial sequence of stage decisions before stage t, and

ht = (x1:t, ζ1:t) be the current history. Note that the set of robustly feasible

actions in stage t depends not only on x1:t, but also on ζ1:t by reason of U(ζ1:t).

Therefore, let X(ht) = {x′ ∈ M : x′1:t = x1:t,∀ζ ′ ∈ U(ζ1:t), g(x′; ζ ′) ≤ 0}

denote the set of robustly feasible decisions and Xt(ht) = {xt : x ∈ X(ht)}

denote all feasible actions in stage t.

The rewards may be accrued over the stages or may be received at once
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in the end, let r(x, ζ) denote the total reward over all stages. Let r∗(ζ) =

maxx∈X(ζ) r(x, ζ) be the ex post optimal reward, where X(ζ) = {x ∈ X|xt ∈

Xt(x1:t, ζ1:t), t = 1, · · · , T} is the set of all actions compatible with ζ. At the

end of the last stage, the complete history hT+1 = (x, ζ) is known, and the

regret is readily found by

DT (hT+1; β) = βr∗(ζ)− r(x, ζ). (2)

Now it is possible to work from the last periods backwards to evaluate xt in

the context of ht by this regret guarantee

D̄t(xt, ht; β) = max
ζt∈Ut(ζ1:t)

Dt(ht+1; β), (3)

where ht+1 is formed by appending xt and ζt to x1:t and ζ1:t respectively. An

optimal stage action xt is chosen to minimize the regret guarantee

Dt−1(ht; β) = min
xt∈Xt(ht)

D̄t(xt, ht; β),

= min
xt∈Xt(ht)

max
ζt∈Ut(ζ1:t)

Dt(ht+1; β). (4)

The definition (4) can be applied recursively for t = T, · · · , 1 backwards,

which gives a plain formulation with nonanticipativity. Note that when t = 1,

there is no history in h1, so let D(β) = D0(h1; β), which is the best regret

guarantee for the entire problem.

An alternative formulation is based on policies, where a policy π is a

sequence of functions π = {πt : ht → Xt(ht), t = 1, 2, · · · , T} to make stage

decisions according to xt = πt(ht), which takes care of nonanticipativity. Note

that Xt(ht) can be replaced by the set of probabilistic mixtures of elements in

Xt(ht) to allow for random policies, but the focus is on deterministic policies
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for the sake of simplicity. The regret under a policy π is defined as follows.

The regret with a full history hT+1 = (x, ζ) in the end of the last stage is

simply

Dπ
T (hT+1; β) = βr∗(ζ)− r(x, ζ). (5)

For t = T, · · · , 1 the regret is defined recursively backwards by

Dπ
t−1(ht; β) = max

ζt∈Ut(ζ1:t)
Dπ

t (h
π
t+1; β), (6)

where hπt+1 = ((x1:t, πt(ht)), (ζ1:t, ζt)) denote the history evolution under π.

To compute the overall regret Dπ(β) = Dπ
0 (h1, β) (since h1 is empty), simply

apply (6) recursively to have

Dπ(β) = max
ζ1∈U1(ζ1:1)

Dπ
1 (h

π
2 ; β)

= max
ζ1∈U1(ζ1:1)

max
ζ2∈U2(ζ1:2)

Dπ
2 (h

π
3 ; β)

= max
ζ1∈U1(ζ1:1)

· · · max
ζT∈UT (ζ1:T )

Dπ
T (h

π
T+1; β)

= max
ζ∈U

Dπ
T (h

π
T+1; β) (7)

Let Π be the set of all policies, and rπ(ζ) = r(π(ζ), ζ), where π(ζ) =

(π1(h1), · · · , πT (hT )) gives all stage decisions by policy π in scenario ζ. The

policy-based formulation is given by

min
π∈Π

Dπ(β) = min
π∈Π

max
ζ∈U

βr∗(ζ)− rπ(ζ). (8)

3. Properties.

The properties of the ARM criterion are studied in this section, to facil-

itate its application and the development of a new approach to competitive

ratio analysis. The correspondence and equivalence between the two formu-

lations is first established.
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Theorem 1. The plain formulation and the policy-based formulation have

such a correspondence that for an arbitrary history ht, there is

Dt−1(ht; β) = Dπ∗

t−1(ht; β), for t = 1, · · · , T + 1, (9)

with an optimal policy π∗ constructed by

π∗
t (ht) = argmin

xt∈Xt(ht)

max
ζt∈Ut(h

ζ
t )

Dt(ht+1; β), t = 1, · · · , T, (10)

where the argmin operator arbitrarily takes one minimizer when the solution

is not unique.

Proof: It is clear that (9) trivially holds for t = T + 1. For t ≤ T , recall

(4) and proceed as follows

Dt−1(ht; β) = min
xt∈Xt(ht)

max
ζt∈Ut(ζ1:t)

Dt(ht+1; β)

= max
ζt∈Ut(ζ1:t)

Dπ∗

t (hπ
∗

t+1; β)

= Dπ∗

t−1(ht; β),

where the second equality comes by (10), and the last equality comes by (6).

It remains to prove that π∗ is optimal to (8) by showing for an arbitrary

π ∈ Π there is

Dt−1(ht; β) ≤ Dπ
t−1(ht; β), (11)

for t = 1, 2, · · · , T + 1 via backward induction on t. As the initial step, it

trivially holds for t = T + 1. For the induction step, assume that (11) holds

for t + 1: Dt(ht+1; β) ≤ Dπ
t (ht+1; β), then show (11) also holds for t. Recall
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(4) and replace Dt(ht+1; β) with D
π
t (ht+1; β) to have

Dt−1(ht; β) ≤ min
xt∈Xt(ht)

max
ζt∈Ut(ζ1:t)

Dπ
t (ht+1; β)

≤ max
ζt∈Ut(ζ1:t)

Dπ
t (h

π
t+1; β)

= Dπ
t−1(ht; β),

where the second inequality comes by having xt = πt(ht), and the last equal-

ity comes by (6). Therefore (11) holds for all t by backward induction, and

π∗ is indeed an optimal policy. ■

It is handy to have both formulations: the plain formulation is more

useful in solving problems for practical applications, while the policy-based

formulation can facilitate theoretical analysis. Clearly there is Dπ∗
(β) =

D(β) by (9) with t = 1. Besides this direct proof, an alternative proof

of Theorem 1 can be made by recursively applying the interchangeability

principle of Shapiro (2017), which involves much advanced mathematical

concepts and is not adopted here. Conversely, the proof here can be adapted

to make an alternative proof of the interchangeability principle. Note that

the optimal policies given by (10) are “eager” as they always strive for the

minimal regret (which can be smaller than D(β) for some ht), while there

may be “lazy” optimal policies that deliver suboptimal objective values for

such ht (but still less than D(β) to be optimal).

A decision criterion assigns a preference relation between any pair of

policies π1 and π2. Policy π1 is preferred to π2 under the ARM criterion

(denoted as π1 ⪰ π2) ifD
π1(β) ≤ Dπ2(β), and strictly so (denoted as π1 ≻ π2)

if Dπ1(β) < Dπ2(β).
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Lemma 1. Given a policy set Π, the ARM criterion holds for the following

Axioms:

Axiom 1 (complete ordering): The relation satisfies (i) for any pair

of policies π1 and π2, either π1 ⪯ π2 or π2 ⪰ π1; (ii) if π1 ⪰ π2 ⪰ π3 holds

for policies π1, π2, π3, then π1 ⪰ π3.

Axiom 2 (symmetry): The relation between any pair of policies is

independent of the order in which the policies in Π are considered.

Axiom 3 (strong domination): If π1 strongly dominates π2 with ∀ζ ∈

U : r(π1(ζ), ζ) > r(π2(ζ), ζ), then π1 ≻ π2.

Axiom 4 (continuity): If a sequence of functions {ri(,̇)̇, i = 1, · · · }

converges to the function r(,̇)̇ and if ri(π1(ζ), ζ) ≥ ri(π2(ζ), ζ) for all i, then

π1 ≻ π2.

Axiom 5 (linearity): The relation is not changed if r(π(ζ), ζ) is replaced

by r′(π(ζ), ζ) ≡ λr(π(ζ), ζ) + µ, and λ > 0.

Axiom 6 (scenario randomization): The relation is not changed if a

new scenario ζ ′ is added, which is a randomized mixture of scenarios accord-

ing to a distribution Υ on U , with r(π(ζ ′), ζ ′) = Eζ∼Υ{r(π(ζ), ζ)}.

Axiom 7 (convexity): If π1 ⪰ π2 and π2 ⪰ π1 (they are equally pre-

ferred), and r(π(ζ), ζ) = (r(π1(ζ), ζ) + r(π2(ζ), ζ))/2, then π ⪰ π1.

Axiom 8 (special policy adjunction): The ordering between the poli-

cies in Π is not changed by the adjunction of a new policy π′, providing that

r(π′(ζ), ζ) ≤ maxπ∈Π r(π(ζ), ζ) for all ζ ∈ U .

Similar axioms as in Lemma 1 are also discussed in Milnor (1951) and

Özkaya et al. (2022), and they are satisfied by both the maximin (Wald)

and absolute regret (Savage) criterion, since the ARM criterion generalizes
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both. The proof for these axioms is relatively simple. The complete ordering

comes from the fact that Dπ(β) maps each policy π to a real number. Others

can be proved by showing that the values of Dπ(β) for all π ∈ Π are either

unaffected or transformed by an order-preserving linear map.

Lemma 2. The minimal regret guarantee Dt−1(ht; β) for all stages t = 1, · · · , T+

1 with an arbitrary history ht is continuous with regard to β.

Proof: By backward induction on t from T +1 to 1. When t = T +1, it is

clear that DT (hT+1; β) is continuous in β according to (2), which completes

the initial step. For the induction step, show that if Dt(ht+1; β) is continuous

in β, then so is Dt−1(ht; β). It is clear that D̄t(xt, ht; β) is continuous in β as

it is a point-wise max of continuous functions by (3). Likewise, Dt−1(ht; β)

is also continuous with regard to β by (4), which completes the proof. ■

Theorem 2. For 0 ≤ β1 < β2, let π
∗
i , i ∈ {1, 2} be an optimal policy when

β = βi, and ζ
∗
ij = argmaxζ∈U βir

∗(ζ)− rπ
∗
j (ζ), i, j ∈ {1, 2}, then there is

r∗(ζ∗21) ≥
D(β2)−D(β1)

β2 − β1
≥ r∗(ζ∗12). (12)

Proof: By the definition of π∗
2 and ζ∗12, as well as Theorem 1, there is

D(β1) = min
π∈Π

max
ζ∈U

β1r
∗(ζ)− rπ(ζ)

≤ max
ζ∈U

β1r
∗(ζ)− rπ

∗
2 (ζ)

= β1r
∗(ζ∗12)− rπ

∗
2 (ζ∗12).

And there is D(β2) = maxζ∈U β2r
∗(ζ)− rπ

∗
2 (ζ) ≥ β2r

∗(ζ∗12)− rπ
∗
2 (ζ∗12). There-
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fore D(β2)−D(β1) ≥ (β2 − β1) r
∗(ζ∗12). Similarly,

D(β2) = min
π∈Π

max
ζ∈U

β2r
∗(ζ)− rπ(ζ)

≤ max
ζ∈U

β2r
∗(ζ)− rπ

∗
1 (ζ)

= β2r
∗(ζ∗21)− rπ

∗
1 (ζ∗21).

And there is D(β1) = maxζ∈U β1r
∗(ζ) − rπ

∗
1 (ζ) ≥ β1r

∗(ζ∗21) − rπ
∗
1 (ζ∗21). Thus

D(β2)−D(β1) ≤ (β2 − β1) r
∗(ζ∗21). Therefore, (12) follows immediately. ■

The continuity of Lemma 2 is a basic property useful for other analytical

results. Note that when ∀ζ, r∗(ζ) > 0, Theorem 2 ensures the monotonicity

of D(β).

3.1. Convexity.

The convexity of D(β) requires certain conditions to hold. Note that

βr∗(ζ)− rπ(ζ) is linear in β, thus the function

F (β; π) = max
ζ∈U

βr∗(ζ)− rπ(ζ)

is convex in β for a given policy π. However, generally speaking, D(β) =

minπ∈Π F (β; π) is not convex in β. In order for D(β) to be convex, certain

conditions are needed. A weak condition for convexity is introduced first.

Lemma 3. A continuous function f(y) on a convex domain Y is convex if

∀y1, y2 ∈ Y ∃λ ∈ (0, 1) f(λy1 + (1− λ)y2) ≤ λf(y1) + (1− λ)f(y2). (13)

Proof: By contradiction. Assume f(y) is not convex, then there exists

y1, y2 ∈ Y and λ ∈ (0, 1) such that g(λ) > 0, where g(k) = f(y(k)) −

(kf(y1) + (1 − k)f(y2)) and y(k) = ky1 + (1 − k)y2. As g(k) is continuous
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with g(0) = g(1) = 0, there exists k1 = max{k ∈ [0, λ) : g(k) = 0}, k2 =

min{k ∈ (λ, 1] : g(k) = 0}, such that 0 ≤ k1 < λ < k2 ≤ 1, g(k1) = g(k2) = 0

and ∀k′ ∈ (k1, k2) g(k
′) > 0.

Let y′1 = y(k1), y
′
2 = y(k2), and k

′ = λ′k1+(1−λ′)k2 for a λ′ ∈ (0, 1), then

y(k′) = λ′y′1 + (1 − λ′)y′2. As f(y′i) = kif(y1) + (1 − ki)f(y2), i = 1, 2 from

g(k1) = g(k2) = 0, there is λ′f(y′1) + (1− λ′)f(y′2) = k′f(y1) + (1− k′)f(y2).

By g(k′) > 0 there is f(y(k′)) > k′f(y1) + (1 − k′)f(y2), which implies

f(λ′y′1 + (1 − λ′)y′2) > λ′f(y′1) + (1 − λ′)f(y′2) for any λ′ ∈ (0, 1), which

contradicts (13). ■

A policy π dominates another policy π′ (denoted as π⪰̈π′) if for all ζ ∈ U

there is rπ(ζ) ≥ rπ
′
(ζ). Similarly, a scenario ζ dominates another scenario ζ ′

(denoted as ζ⪰̈ζ ′) if for all π ∈ Π there is rπ(ζ) ≤ rπ(ζ ′). According to Lan

et al. (2008), dominated policies and scenarios can be eliminated by iterated

elimination of dominated strategies in game theory.

Definition 1 (Reward Convexity (RC)). The set Π has the property of

RC if there is

∀π1, π2 ∈ Π ∃π ∈ Π ∃λ ∈ (0, 1) ∀ζ ∈ U rπ(ζ) = λrπ1(ζ)+(1−λ)rπ2(ζ). (14)

An example with the RC property is when all randomized policies (which

randomly draw a deterministic policy from a probability distribution) are

allowed and the reward of the random policy is given by the expected reward.

Definition 2 (Dominance Convexity (DC)). The set Π has the DC prop-

erty if there is

∀π1, π2 ∈ Π ∃π ∈ Π ∃λ ∈ (0, 1) ∀ζ ∈ U rπ(ζ) ≥ λrπ1(ζ)+(1−λ)rπ2(ζ). (15)
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Clearly, if Π has the RC property, then it also has the DC property.

A more sophisticated example is as follows. If r(x, ζ) is concave in x and

X(ζ) is convex for all ζ ∈ U , then (15) is satisfied. To see this, simply

let π(ζ) = π1(ζ)/2 + π2(ζ)/2. By the concavity of r(x, ζ) in x, there is

r(π(ζ), ζ) ≥ r(π1(ζ), ζ)/2 + r(π2(ζ), ζ)/2, and hence (15) is satisfied with

λ = 1/2.

Both the RC and DC property are intact after scenario elimination. How-

ever, the RC property can be lost in policy elimination, the DC property still

remains. Let Π̂ be the set of all non-dominated policies in Π, so that any

π ∈ Π is dominated by a π̂ ∈ Π̂. Let Π∗(β) be the set of all optimal policies

for a given β.

Theorem 3. The DC property can transfer among Π, Π̂ and Π∗(β) (i) from

Π to Π̂, and vice versa; (ii) from Π to Π∗(β), but not backward.

Proof: (i.a) from Π to Π∗(β). Let π1, π2 ∈ Π̂ ⊆ Π, thus there exists π ∈ Π

and λ ∈ (0, 1) such that rπ(ζ) ≥ λrπ1(ζ)+ (1−λ)rπ2(ζ). As there is a π̂ ∈ Π̂

such that π̂⪰̈π, it follows that Π̂ has the DC property. (i.b) To show vice

versa, let π1, π2 ∈ Π. Clearly there are π̂1, π̂2 ∈ Π̂ such that π̂1⪰̈π1, π̂2⪰̈π2.

There exists π̂ ∈ Π̂ and λ ∈ (0, 1) such that rπ̂(ζ) ≥ λrπ̂1(ζ)+(1−λ)rπ̂2(ζ) ≥

λrπ1(ζ) + (1− λ)rπ2(ζ). As π̂ ∈ Π, hence Π also has the DC property.

(ii) from Π to Π∗(β). Consider ∀π∗
1, π

∗
2 ∈ Π∗(β) ⊆ Π, by (15) there is a

π′ ∈ Π such that

∃λ ∈ (0, 1) ∀ζ ∈ U rπ
′
(ζ) ≥ λrπ

∗
1 (ζ) + (1− λ)rπ

∗
2 (ζ).
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Now show that π′ ∈ Π∗(β) as follows:

D(β) = min
π∈Π

max
ζ∈U

βr∗(ζ)− rπ(ζ)

≤ max
ζ∈U

βr∗(ζ)− rπ
′
(ζ) = Dπ′

(β)

≤ max
ζ∈U

βr∗(ζ)−
(
λrπ

∗
1 (ζ) + (1− λ)rπ

∗
2 (ζ)

)
≤ λ

(
max
ζ∈U

βr∗(ζ)− rπ
∗
1 (ζ)

)
+

(1− λ)

(
max
ζ∈U

βr∗(ζ)− rπ
∗
2 (ζ)

)
= λD(β) + (1− λ)D(β) = D(β).

Therefore Dπ′
(β) = D(β) and so π′ ∈ Π∗(β). If Π∗(β) is a singleton, then

it has the DC property, but Π may not, which shows it does not transfer

backward. ■

Theorem 3 is useful to prove DC property for Π by simply focusing on the

non-dominated subset Π̂. Meanwhile, the DC property of Π∗(β) may help

select a more preferable policy when there are many optimal policies.

Theorem 4. If Π has the DC property, then D(β) is convex in β.

Proof: Let π∗
i be an optimal policy for βi, i = 1, 2. By (15) there exists

π′ ∈ Π such that ∃λ ∈ (0, 1) ∀ζ ∈ U rπ
′
(ζ) ≥ λrπ

∗
1 (ζ) + (1 − λ)rπ

∗
2 (ζ). Let
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β = λβ1 + (1− λ)β2 and proceed as follows:

D(β) = min
π∈Π

max
ζ∈U

βr∗(ζ)− rπ(ζ)

≤ max
ζ∈U

βr∗(ζ)− rπ
′
(ζ)

≤ max
ζ∈U

βr∗(ζ)−
(
λrπ

∗
1 (ζ) + (1− λ)rπ

∗
2 (ζ)

)
≤ λ

(
max
ζ∈U

β1r
∗(ζ)− rπ

∗
1 (ζ)

)
+

(1− λ)

(
max
ζ∈U

β2r
∗(ζ)− rπ

∗
2 (ζ)

)
= λD(β1) + (1− λ)D(β2).

Therefore D(β) is convex in β by Lemma 3. ■

The DC property is relatively common, such as in most linear robust

optimization problems, hence Theorem 4 readily applies. The convexity of

D(β) may help design faster algorithms than binary searches in Averbakh

(2005) that numerically compute competitive ratios.

3.2. Competitive Ratio.

For reward maximization problems, the competitive ratio can be defined

as

max
π∈Π

min
ζ∈U

rζ(π)/r
∗
ζ , (16)

which generally assumes ∀ζ ∈ U , r∗(ζ) > 0. The relative regret criterion

is recovered when β is set to the competitive ratio, as shown by the next

lemma.

Lemma 4. Assume r∗(ζ) > 0 for all ζ ∈ U , the β0 that solves D(β) = 0

is exactly the competitive ratio, and the set of optimal policies for (8) is the

same as that for (16).
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Proof: It needs to show for any π∗ ∈ Π∗(β0) that π
∗ is an optimal solution

to (16), and vice versa. By Theorem 1 and (8) there is 0 = minπ∈Π maxζ∈U β0r
∗(ζ)− rπ(ζ)

π∗ ∈ argminπ∈Π maxζ∈U β
∗r∗(ζ)− rπ(ζ)

⇔

 0 = maxζ∈U β0r
∗(ζ)− rπ

∗
(ζ)

∀π ∈ Π 0 ≤ maxζ∈U β0r
∗(ζ)− rπ(ζ)

⇔


∃ζ ∈ U 0 = β0r

∗(ζ)− rπ
∗
(ζ)

∀ζ ∈ U 0 ≥ β0r
∗(ζ)− rπ

∗
(ζ)

∀π ∈ Π ∃ζ ∈ U 0 ≤ β0r
∗(ζ)− rπ(ζ)

⇔


∃ζ ∈ U : β0 = rπ

∗
(ζ)/r∗(ζ)

∀ζ ∈ U : β0 ≤ rπ
∗
(ζ)/r∗(ζ)

∀π ∈ Π ∃ζ ∈ U β0 ≥ rπ(ζ)/r∗(ζ)

⇔

 β0 = minζ∈U r
π∗
(ζ)/r∗(ζ)

∀π ∈ Π β0 ≥ minζ∈U r
π(ζ)/r∗(ζ)

⇔

 β∗ = maxπ∈Π minζ∈U r
π(ζ)/r∗(ζ)

π∗ ∈ argmaxπ∈Π minζ∈U r
π(ζ)/r∗(ζ)

As the reasoning can go in both directions, the theorem is established. ■

Based on the result of Lemma 4, the next lemma gives the condition for

the existence of a unique competitive ratio.

Lemma 5. If D(0) < 0 then there is r∗(ζ) > 0 for all ζ ∈ U , and there is a

unique β0 ∈ (0, 1] such that D(β0) = 0.

Proof: Note that at β = 0 it becomes equivalent to the maximin reward

criterion:

D(0) = min
π∈Π

max
ζ∈U

−rπ(ζ) = −max
π∈Π

min
ζ∈U

rπ(ζ).
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Suppose there is a ζ̇ such that r∗(ζ̇) ≤ 0, then there is

−D(0) = max
π∈Π

min
ζ∈U

rπ(ζ) ≤ max
π∈Π

rπ(ζ̇) = r∗(ζ̇) ≤ 0.

Therefore D(0) ≥ 0, a contradiction! Thus there is r∗(ζ) > 0 for all ζ ∈

U , so D(β) strictly increases in β. Note that at β = 1 it is the minimax

regret criterion, thus D(1) ≥ 0 > D(0), and the conclusion follows by the

monotonicity and continuity of D(β) inferred from Lemma 2 and Theorem

2. ■

Variants of Lemma 4 and 5 are known for fractional combinatorial opti-

mization, see e.g. Megiddo (1978) for numerical algorithms based on them.

They are also useful to analytically solve for competitive ratios, as will be

illustrated with the one-way trading problem later.

4. Tractability.

This section deals with the tractability of two-stage linear RO problems

with an ARM criterion by converting them into the following problem of

two-stage linear RO with fixed recourse (TSLRO/FR):

max
x∈X ,y(·)

inf
ζ∈U

(Cζ + c)Tx+ dTy(ζ) + fT ζ,

s.t. Ax+By(ζ) ≤ Ψζ + ψ,∀ζ ∈ U ,

where x ∈ Rnx is the first-stage action before the revelation of the uncertain

parameters ζ ∈ Rnζ , while y : Rnζ → Rny is a strategy for the second-stage

action implemented after ζ has been revealed. The constants are Ψ ∈ Rm×nζ ,

C ∈ Rnx×nζ , c ∈ Rnx , d ∈ Rny , f ∈ Rnζ , A ∈ Rm×nx and B ∈ Rm×ny . Both X

and U are nonempty polyhedra: X := {x ∈ Rnx|Wx ≤ v} with W ∈ Rr×nx
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and v ∈ Rr, and U := {ζ ∈ Rnζ |Pζ ≤ q} with P ∈ Rs×nζ and q ∈ Rs. The

more common notation of minζ∈U may be used if U is bounded. The two

stages of decisions can be separated to have

max
x∈X

inf
ζ∈U

h(x, ζ)

where h(x, ζ) is the second-stage optimal objective found in the linear re-

course problem defined as

h(x, ζ) := sup
y
(Cζ + c)Tx+ dTy + fT ζ (17)

s.t. : Ax+By ≤ Ψ(x)ζ + ψ.

The fixed recourse property refers to d and B being unaffected by ζ, which

is essential for approximate schemes using linear decision rules in the form

of an affine policy y(ζ) := Υζ + y, where Υ ∈ Rny×nζ and y ∈ Rny .

The seminal work of Ben-Tal et al. (2004) establishes that the TSLRO/FR

problem is NP-hard in general, since the so-called “adversarial problem” of

infζ∈U h(x, ζ) minimizes a piecewise linear concave function over an arbi-

trary polyhedron and is NP-hard in itself. A tractable approximation of the

TSLRO/FR problem initially proposed in Ben-Tal et al. (2004)) employs

linear decision rules for the second-stage strategy y(·), which can be refor-

mulated into an LP model by exploiting the principles of duality theory. In

the last decade, a number of theoretical and empirical studies have shown

that linear decision rules can provide high-quality solutions to TSLRO/FR

problems. Furthermore, Bertsimas et al. (2010), Ardestani-Jaafari and De-

lage (2016), and Poursoltani and Delage (2021) establish conditions under

which this approach is exact. Methods to identify exact solutions are also

developed, among which is the Column-and-Constraint Generation method
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proposed by Zeng and Zhao (2013). The reader is referred to Delage and

Iancu (2015) and Yanıkoğlu et al. (2019) for a rich set of additional methods

to solve TSLRO/FR problems efficiently.

To leverage these methods for TSLRO/FR problems, it is highly desirable

to convert two-stage linear RO with ARM (LROARM) problems into equiv-

alent TSLRO/FR problems. Given the optimal second-stage profit h(x, ζ),

the LROARM problem takes the form

min
x∈X

sup
ζ∈U

sup
x′∈X

βh(x′, ζ)− h(x, ζ), (18)

which is well-defined when the best profit achievable in hindsight never

reaches infinity, that is, supx′∈X h(x
′, ζ) < ∞,∀ζ ∈ U . Equivalent reformu-

lation into TSLRO/FR problems will be considered next for the LROARM

problem with either right-hand side or objective uncertainty. The following

assumptions are frequently used later on.

Assumption 1 (Existence). The sets X and U are nonempty polyhedra,

and there exists a triplet (x, ζ, y) such that x ∈ X , ζ ∈ U , and Ax + By ≤

Ψ(x)ζ + ψ.

Assumption 2 (Relatively Complete Recourse). For all x ∈ X and

for all ζ ∈ U , there always exists a recourse action y to satisfy all the con-

straints,

∀x ∈ X ,∀ζ ∈ U ,∃y ∈ Rny , Ax+By ≤ Ψ(x)ζ + ψ. (19)

Assumption 3 (Finite Case). For all x ∈ X there exists a ζ ∈ U such

that h(x, ζ) is bounded from above. Equivalently, there exists a function ζ̄ :

X → U such that ∀x ∈ X , h(x, ζ̄(x)) <∞.
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Assumption 4 (Finite Worst-Case). There is a lower bound on the worst-

case profit achievable: ∀x ∈ X , infζ∈U h(x, ζ) > −∞.

Assumption 5 (Finite Best-Case). There is an upper bound on the best-

case profit achievable: supx∈X ,ζ∈U h(x, ζ) <∞.

Assumption 5 is a natural condition to impose on LROARM problems and

implies Assumption 3.

4.1. Right-Hand Side Uncertainty

This subsection deals with the case with the uncertainty limited to the

right-hand side, where the profit function h(x, ζ) takes the following form,

h(x, ζ) := sup
y
cTx+ dTy (20)

s.t. : Ax+By ≤ Ψζ + ψ. (21)

Let Y (x, ζ) := {y ∈ Rny |Ax+By ≤ Ψζ+ψ} and consider the two consecutive

sup operators in (18) together with (20) to have

sup
ζ∈U

sup
x′∈X

βh(x′, ζ) = sup
ζ∈U

sup
x′∈X

sup
y′∈Y (x′,ζ)

β(cTx′ + dTy′)

= sup
ζ′∈U ′

β(cTx′ + dTy′)

where ζ ′ = [ζT x′T y′T ]T is called a lifting of ζ as a result of merging the

three consecutive sup operators, and U ′ = {[ζT x′T y′T ]T : ζ ∈ U , x′ ∈ X , y′ ∈

Y (x′, ζ)} is the lifted uncertainty set.

Theorem 5. Given Assumption 1, the LROARM problem with right-hand

side uncertainty is equivalent to the following TSLRO/FR problem:

− max
x∈X ,y(·)

inf
ζ′∈U ′

cTx+ dTy(ζ ′) + βf ′T ζ ′, (22)

s.t. Ax+By(ζ ′) ≤ Ψ′ζ ′ + ψ,∀ζ ′ ∈ U ′, (23)
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where ζ ′ = [ζT x′T y′T ]T ∈ Rnζ+nx+ny , y : Rnζ+nx+ny → Rny , f ′ := [0T −

cT − dT ]T , Ψ′ := [Ψ 0 0], and the lifted uncertainty set U ′ can be defined by

U ′ := {ζ ′ ∈ Rnζ+nx+ny |P ′ζ ′ ≤ q′}, with (24)

P ′ =


P 0 0

0 W 0

−Ψ A B

 and q′ =


q

v

ψ

 .
Furthermore, Assumption 1 carries through the reformulation naturally, and

so does Assumption 2. Assumption 3 carries through if Assumptions 2 also

holds for the LROARM problem. And finally, Assumption 4 carries through

if Assumptions 5 also holds for the LROARM problem.

Proof: Start from the definition of LROARM with right-hand side uncer-

tainty and proceed with the following simple steps:

LROARM ≡ min
x∈X

sup
ζ∈U

{
sup

x′∈X ,y′∈Y (x′,ζ)

β(cTx′ + dTy′)− sup
y∈Y (x,ζ)

cTx+ dTy

}
,

≡ min
x∈X

sup
ζ∈U ,x′∈X ,y′∈Y (x′,ζ)

inf
y∈Y (x,ζ)

β(cTx′ + dTy′)− (cTx+ dTy),

≡ −max
x∈X

inf
ζ∈U ,x′∈X ,y′∈Y (x′,ζ)

sup
y∈Y (x,ζ)

cTx+ dTy − β(cTx′ + dTy′),

≡ − max
x∈X ,y(·)

inf
ζ′∈U ′

cTx+ dTy(ζ ′) + βf ′T ζ ′,

s.t. Ax+By(ζ ′) ≤ Ψ′ζ ′ + ψ,∀ζ ′ ∈ U ′,

where Y (x, ζ) := {y ∈ Rny |Ax+By ≤ Ψζ+ψ}, and where the minimization

and maximization operations are simply regrouped, and then the sign of the

objective is flipped.

It remains to verify the conditions under which the assumptions are sat-

isfied by this new TSLRO/FR problem. First, when Assumption 1 holds
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for the LROARM problem, there must exist a triplet (x̄, ζ̄, ȳ) satisfying

x̄ ∈ X , ζ̄ ∈ U , and bary ∈ Y (x̄, ζ̄). It is clear that ζ ′ := [ζ̄T x̄T ȳT ]T ∈ U ′ so

that the triplet (x̄, ζ ′, ȳ) satisfies Assumption 1 for the reformulation. There-

fore, Assumption 1 carries through naturally. Second, since the feasible set

for the recourse problem is the same in LROARM and its TSLRO/FR re-

formulation, Assumption 2 carries also carries through unscathed. Third,

one can show that Assumption 3 also carries through if Assumption 2 holds.

Simply let ζ̄ : X → U map an x to a ζ that must exist according to Assump-

tion 3 for the LROARM problem, and let (x′, y′) be a feasible first-stage and

recourse action, which exists based on Assumption 2. Then the mapping

ζ ′(x) := [ζ̄T (x) x′T y′T ]T provides that special ζ ′ to satisfy Assumption 3 for

the TSLRO/FR problem. Finally, Assumption 4 carries through as long as

Assumption 5 also holds for the LROARM problem. With Assumption 4 and

5 satisfied by the LROARM problem, let the recourse problem that appears

in the TSLRO/FR reformulation as h′(x, ζ ′),

inf
ζ′∈U ′

h′(x, ζ ′) = inf
ζ∈U ,x′∈X ,y′∈Y (x′,ζ)

sup
y∈Y (x,ζ)

cTx+ dTy − β(cTx′ + dTy′),

≥ inf
ζ∈U

h(x, ζ)− sup
x′∈X ,y′∈Y (x′,ζ)

β(cTx′ + dTy′),

≥ inf
ζ∈U

h(x, ζ)− sup
x′∈X

βh(x′, ζ) > −∞.

■

4.2. Objective Uncertainty

This subsection deals with the case when uncertainty is limited to the ob-

jective function. To be precise, the profit function h(x, ζ) takes the following
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form,

h(x, ζ) := sup
y
cTx+ dT (ζ)y (25)

s.t. : Ax+By ≤ ψ. (26)

Note that this concise form help simplify exposition without losing the more

general form where c is uncertain, which can be accommodated by lifting the

space of second-stage decisions:

h(x, ζ) := sup
yx,yy

cT (ζ)yx + dT (ζ)yy

s.t. : yx = x

Ax+Byy ≤ ψ.

Theorem 6. Given Assumptions 1 and 2, the LROARM problem with ob-

jective uncertainty is equivalent to the following TSLRO/FR problem:

− max
x∈X ,y′(ζ′)

inf
ζ′∈U ′

(Cζ ′ + c)Tx+ βd′
T
y′(ζ ′) + f ′T ζ ′, (27)

s.t. A′x+B′y′(ζ ′) ≤ Ψ′ζ ′ + ψ′,

where y′ : Rnζ+m → Rm+r, whereas U ′ is the new uncertainty set defined as:

U ′ := {ζ ′ ∈ Rnζ+m|P ′ζ ′ ≤ q′}, with

P ′ =


P 0

−D BT

D −BT

 and q′ =


q

d

−d


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and where the matrices are constructed as follows,

C ′ :=
[
0 −AT

]
, d′ :=

 −ψ

−v

 , f ′ :=

 0

ψ

 , A′ :=
[
0
]
,

B′ :=



AT W T

−AT −W T

BT 0

−BT 0

−I 0

0 −I


,Ψ′ :=



0 0

0 0

D 0

−D 0

0 0

0 0


, and ψ′ :=



c

−c

d

−d

0

0


.

Furthermore, the TSLRO/FR reformulation satisfies Assumptions 1 and 2

when the LROARM also satisfies Assumptions 3 and 5, whereas the LROARM

needs to additionally satisfy Assumption 4 for the TSLRO/FR reformulation

to satisfy Assumptions 3 and 4.

Proof: Consider the ex post problem in the LROARM problem with ob-

jective uncertainty:

sup
x′∈X

h(x′, ζ) = sup
x′,y′

cTx′ + dT (ζ)y′, (28)

s.t. Ax′ +By′ ≤ ψ, (29)

Wx′ ≤ v, (30)

to which Assumption 2 guarantees a feasible solution (x′, y′). Therefore,

strong duality holds and the dual form is derived as

sup
x′∈X

h(x′, ζ) = inf
λ≥0,γ≥0

ψTλ+ vTγ, (31)

s.t. ATλ+W Tγ = c, (32)

BTλ = d(ζ), (33)
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where the dual variables λ ∈ Rm and γ ∈ Rr are associated with constraints

(29) and (30). Similarly, Assumption 2 also provides strong duality for the

recourse problem (17). Thus it is possible to substitute both h(x, ζ) and

supx′∈X h(x
′, ζ) in the LROARM problem by their respective dual form:

min
x∈X

sup
ζ∈U

sup
x′∈X

βh(x′, ζ)− h(x, ζ),

≡ min
x∈X

sup
ζ∈U

{
sup
x′∈X

βh(x′, ζ)− inf
ρ∈Φ(ζ)

cTx+ (ψ − Ax)Tρ

}
,

≡ min
x∈X

sup
ζ∈U ,ρ∈Φ(ζ)

sup
x′∈X

βh(x′, ζ)− (cTx+ (ψ − Ax)Tρ),

≡ min
x∈X

sup
ζ∈U ,ρ∈Φ(ζ)

inf
(λ,γ)∈Λ(ζ)

β(ψTλ+ vTγ)− (cTx+ (ψ − Ax)Tρ),

≡ −max
x∈X

inf
ζ∈U ,ρ∈Φ(ζ)

sup
(λ,γ)∈Λ(ζ)

cTx+ (ψ − Ax)Tρ− β(ψTλ+ vTγ), (34)

where Λ(ζ) := {(λ, γ) ∈ Rm × Rr|(32), (33), λ, γ ≥ 0} and Φ(ζ) := {ρ ∈

Rm|BTρ = d(ζ), ρ ≥ 0}. By having ζ ′ := [ζT ρT ]T and y′ := [λT γT ]T ,

problem (34) can be rewritten in the reformulation (27).

It remains to verify the conditions on LROARM under which the as-

sumptions are satisfied by this new TSLRO/FR problem. First consider

that LROARM satisfies Assumptions 1, 2, 3, and 5. Based on Assumption

3, for all x ∈ X there is h(x, ζ̄(x)) < ∞. This implies by LP duality that

there must be a feasible ρ̄ ∈ Φ(ζ̄(x)). Moreover, Assumption 5 implies that

supx′∈X h(x
′, ζ̄(x)) < ∞ hence once again LP duality ensures that there ex-

ists a pair (λ̄, γ̄) ∈ Λ(ζ̄(x)). The TSLRO/FR reformulation therefore satisfies

Assumption 1 using (x, ζ̄(x), ρ̄, λ̄, γ̄). Next, the fact that the TSLRO/FR re-

formulation satisfies Assumption 2 follows similarly from imposing Assump-

tion 5 on LROARM because the existence of a pair λ̄, γ̄) ∈ Λ(ζ) holds for all

ζ ∈ U .
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Now consider that LROARM satisfies in addition Assumption 4. As-

sumption 3 and 4 on LROARM implies that there exists a ζ̄(x) ∈ U such

that, for all x ∈ U ,∞ > h(x, ζ̄(x)) ≥ infζ∈U > −∞. Therefore,

inf
x∈X

sup
ζ∈U

sup
x′∈X

βh(x′, ζ)− h(x, ζ) ≥ inf
x∈X

sup
x′∈X

βh(x′, ζ̄(x))− h(x, ζ̄(x))

≥ βh(x, ζ̄(x))− h(x, ζ̄(x)) = (β − 1)h(x, ζ̄(x)) > −∞.

The LROARM problem is therefore bounded below hence the TSLRO/FR

reformulation is bounded above, which demonstrates that the latter satisfies

Assumption 3. Similarly, there is for all x ∈ X :

sup
ζ∈U

{
sup
x′∈X

h(x′, ζ)− h(x, ζ)

}
≤ sup

ζ∈U
sup
x′∈X

h(x′, ζ)− inf
ζ∈U

h(x, ζ) <∞,

where the first term is bounded above according to Assumption 5 and the

second term bounded below according to Assumption 4. We can thus con-

clude that for all x ∈ X , the worst-case regret is bounded above; and that for

all x ∈ X , the worst-case profit in the TSLRO/FR reformulation is bounded

below, that is, Assumption 4 is satisfied by the TSLRO/FR reformulation.

■

With LROARM problems reformulated to equivalent TSLRO/FR prob-

lems, the approximate and exact methods developed for TSLRO/FR prob-

lems can be readily leveraged to solve LROARM problems, as well as the

theoretical results for linear decision rules to be exact.

5. One-way Trading.

The one-way trading problem is studied here with the ARM criterion for

multiple demonstrations, for which it is an ideal choice, especially that it is
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already studied under RO with both competitive ratio (El-Yaniv et al. 2001)

and absolute regret (Wang et al. 2016). First, the ARM criterion is amenable

to analysis by producing closed-form solutions, which yields the result of

Wang et al. (2016) as a special case at β = 1. Second, the newly proposed

approach to competitive ratio analysis is applied, without depending on acute

intuition and insights as in El-Yaniv et al. (2001), which drastically reduces

the difficulty of analysis. Third, the solution indeed becomes more aggressive

as β increases, and the effects of β on the performance can be shown via

numerical simulations. These are helpful to demonstrate the properties and

potential of the ARM criterion.

5.1. Problem Formulation.

Consider selling a certain amount of fully divisible goods (like gasoline or

steel) in a finite time horizon, while the price fluctuates in the range of [m,M ].

For comparable results, the tradition of dividing time into T discrete periods

is followed. A fixed price pt ∈ [m,M ] is revealed in each period t = 1, · · · , T .

The trader is a price-taker and must decide in each period on the amount xt

to sell at pt without knowing the future prices. The goal is to maximize the

total sales revenue in the end.

It is helpful to connect to the notations in section 2. A scenario ζ simply

corresponds to the prices p = (p1, · · · , pT ) revealed over time, with ζt = pt.

There is U = [m,M ]T and Ut(ζ1:t) = [m,M ], as prices are independent of

each other. Without loss of generality, the total amount of goods to sell

is one unit, and the action is x = (x1, · · · , xT ) with X = {x :
∑T

t=1 xt =

1, x ≥ 0}. For t < T there is Xt(ht) = [0, qt] where qt = 1 −
∑t−1

s=1 xs

is the remaining amount to sell given ht, but in the last period everything
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must go, so XT (hT ) = [qT , qT ]. The reward is accumulated over time, so

let rt =
∑t−1

s=1 psxs be the rewards accumulated in ht, the reward in the end

is r(x, p) = rT+1. Let p̂t = max{ps : s = 1, · · · , t − 1} denote the highest

price seen in ht, and r
∗(p) = max{r(x, p) :

∑T
t=1 xt = 1} = p̂T+1 the ex post

optimal. At the end of the last stage (2) becomes

DT (hT+1; β) = βp̂T+1 − rT+1. (35)

In this multistage problem it is natural to have periods coincide with

stages, in which the uncertain price is first revealed, then an action is taken.

This calls for a different formulation from the standard formulation in (4):

Dt−1(ht; β) = max
pt∈[m,M ]

min
xt∈Xt(ht)

Dt(ht+1; β), (36)

but the difference is only superficial: all the results in section 3 remain valid.

5.2. Analytic Solution.

The analysis starts from the last period T and works backwards. In the

last period clearly there is xT = qT , and (36) becomes

DT−1(hT ; β) = max
pT∈[m,M ]

βmax(p̂T , pT )− (rT + pT qT ),

which is convex in pT , and the maximizer is either pT = m or pT = M .

Define auxiliary functions that map a quantity q ∈ [0, 1] to a price in [m,M ],

Pj(q) = (M −m)

(
1− q

βj

)+j

+m, j = 1, 2, · · · ,
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where y+j = maxj(0, y) denote the positive part of y raised to the jth power.

Let P−
j (y) = q be the inverse of y = Pj(q) for q ∈ [0, βj].

DT−1(hT ; β) = max(βp̂T −RT , βM − (rT +MqT ))

= max(βp̂T , βM − (M −m)qT )−RT

= βmax(p̂T , P1(qT ))−RT ,

where Rt = rt +mqt for t = 1, · · · , T is the lower bound on rT+1 given ht.

Note that the trivial case of β = 0 is not considered. Continue on with (36)

for t = T − 1, · · · , 1, the result is obtained and presented as follows.

Theorem 7. The minimal worst-case regret for the one-way trading problem

in period t given history ht for t = 1, 2, · · · , T is

Dt−1(ht; β) = βmax(p̂t, P1+T−t(qt))−Rt, (37)

and the optimal trading policy is π∗
t (ht, pt) = qt − q∗t+1, where q

∗
T+1 = 0 and

q∗t+1 = min(qt, P
−
T−t(p̂t+1)), t = 1, · · · , T − 1. (38)

Proof: By backward induction. It is already verified for period t = T ,

which completes the initial step. For the induction step, assume that (37)

holds in period t+ 1(t < T ), that is,

Dt(ht+1; β) = βmax(p̂t+1, PT−t(qt+1))−Rt+1,

and show that it also holds in period t. For the minimization nested in (36),

let

D̄t(ht, pt; β) = min
xt∈Xt(ht)

Dt(ht+1; β)

= min
qt+1∈[0,qt]

βmax(p̂t+1, Pn(qt+1))−Rt+1, (39)
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with n = T−t, qt+1 = qt−xt, andRt+1 = rt+1+mqt+1. To find ∂Dt(ht+1; β)/∂qt+1,

first note that

P ′
n(q) = −M −m

β

(
1− q

βn

)+(n−1)

≤ 0.

Then by the monotonicity of Pn(q), there is Pn(qt+1) ≥ p̂t+1 if qt+1 ≤

P−
n (p̂t+1), and similarly qt+1 > P−

n (p̂t+1) ensures Pn(qt+1) ≤ p̂t+1. Thus

there is

Dt(ht+1; β) =

 βPn(qt+1)−Rt+1 qt+1 ≤ P−
n (p̂t+1)

βp̂t+1 −Rt+1 qt+1 > P−
n (p̂t+1)

(40)

∂Dt(ht+1; β)

∂qt+1

=

 pt −m+ βP ′
n(qt+1) qt+1 < P−

n (p̂t+1)

pt −m qt+1 > P−
n (p̂t+1)

(41)

Note that in the first branch with qt+1 < P−
n (p̂t+1), there is pt ≤ p̂t+1 <

Pn(qt+1) ≤ −βP ′
n(qt+1) +m, so pt −m + βP ′

n(qt+1) < 0. And in the second

branch with qt+1 > P−
n (p̂t+1), there is pt − m ≥ 0. Therefore an optimal

solution to (39) is (38), which from (40) gives

D̄t(ht, pt; β) = βPn(q
∗
t+1)− (rt+1 +mq∗t+1). (42)

Let p̄t = max(p̂t, Pn(qt)) ∈ [m,M ], and from (36) there is

Dt−1(ht; β) = max
pt∈[m,M ]

D̄t(ht, pt; β)

= max

 maxpt∈[m,p̄t] D̄t(ht, pt; β)

maxpt∈[p̄t,M ] D̄t(ht, pt; β)

 (43)

For the branch with pt ∈ [m, p̄t] in (43), consider two cases: (i) p̄t = p̂t ≥

Pn(qt) and (ii) p̄t = Pn(qt) > p̂t. In case (i) there is p̂t+1 = max(p̂t, pt) =

p̂t ≥ Pn(qt), therefore P
−
n (p̂t+1) ≤ qt and (38) simplifies to q∗t+1 = P−

n (p̂t+1),
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thus Pn(q
∗
t+1) = p̂t+1 = p̄t. In case (ii) there is p̂t+1 ≤ Pn(qt), therefore

P−
n (p̂t+1) ≥ qt and (38) simplifies to q∗t+1 = qt, thus Pn(q

∗
t+1) = Pn(qt) = p̄t.

As in both cases there is Pn(q
∗
t+1) = p̄t, from (42) there is D̄t(ht, pt; β) =

βp̄t − (rt+1 +mq∗t+1) = βp̄t − rt − ptx
∗
t −mq∗t+1, which is linear in pt with a

slope of −x∗t ≤ 0 as x∗t = qt − q∗t+1 ≥ 0. Thus p∗t = m is a maximizer, which

gives

max
pt∈[m,p̄t]

D̄t(ht, pt; β) = βp̄t − rt −mqt = βp̄t −Rt.

For the branch in (43) with pt ∈ [p̄t,M ], as pt ≥ p̄t ≥ p̂t, there is p̂t+1 =

pt ≥ p̄t ≥ Pn(qt), thus P
−
n (p̂t+1) ≤ qt and (38) simplifies to q∗t+1 = P−

n (p̂t+1).

Therefore Pn(q
∗
t+1) = p̂t+1 = pt, and (42) simplifies to D̄t(ht, pt; β) = βpt−rt−

ptx
∗
t −mq∗t+1 = βpt−rt−pt(qt−q∗t+1)−mq∗t+1 = (β−qt+q∗t+1)pt−mq∗t+1−rt =

(β − qt + q∗t+1)Pn(q
∗
t+1)−mq∗t+1 − rt. Now consider this function

d(z) = (β − qt + z)Pn(z)−mz − rt, z ∈ [0, 1].

The derivative is d′(z) = (β − qt + z)P ′
n(z) + Pn(z)−m. Note that Pn(z)−

m = −(β − z/n)P ′
n(z), thus d

′(z) = (β − qt + z)P ′
n(z) − (β − z/n)P ′

n(z) =

(z + z/n− qt)P
′
n(z). As P

′
n(z) ≤ 0, there is d′(z) ≥ 0 when z + z/n− qt ≤ 0,

and d′(z) ≤ 0 when z + z/n− qt ≥ 0, hence z∗ = nqt/(n+ 1) is a maximizer

of d(z), which gives

d(z∗) = βPn+1(qt)−Rt,

Pn(z
∗) ≥ Pn+1(qt).

Clearly, there is D̄t(ht, pt; β) = d(P−
n (pt)) for pt ∈ [p̄t,M ], consider two

cases. Case (i) Pn(z
∗) ≥ p̄t. As P−

n (M) = 0 ≤ z∗ ≤ P−
n (p̄t), there is

maxpt∈[p̄t,M ] D̄t(ht, pt; β) = d(z∗). Thus, according to (43) there is

Dt−1(ht; β) = max(βp̄t −Rt, d(z
∗)).
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Case (ii) Pn(z
∗) < p̄t. As qt ≥ z∗ ≥ P−

n (p̄t), there is

max
pt∈[p̄t,M ]

D̄t(ht, pt; β) = max
pt∈[p̄t,M ]

d(P−
n (pt))

= max
z∈[0,P−

n (p̄t)]
d(z)

≤ max
z∈[0,qt]

d(z) = d(z∗).

As Pn(z
∗) ≥ Pn+1(qt), there is p̄t ≥ Pn+1(qt). Therefore d(z

∗) = βPn+1(qt)−

Rt ≤ βp̄t −Rt, and according to (43) there is,

Dt−1(ht; β) = βp̄t −Rt = max(βp̄t −Rt, d(z
∗)).

So in both cases there is Dt−1(ht; β) = max(βp̄t − Rt, d(z
∗)). Note that

p̄t = max(p̂t, Pn(qt)), and Pn(qt) ≤ Pn+1(qt), thus

Dt−1(ht; β) = max(βp̄t −Rt, d(z
∗))

= max(βp̄t −Rt, βPn+1(qt)−Rt)

= βmax(p̄t, Pn+1(qt))−Rt

= βmax(p̂t, Pn(qt), Pn+1(qt))−Rt

= βmax(p̂t, Pn+1(qt))−Rt

Therefore, as n = T − t, it is clear that (37) also holds for t. ■

Corollary 1. The minimal worst-case regret D(β) for the one-way trading

problem is a convex function of β:

D(β) = β(M −m)

(
1− 1

βT

)+T

− (1− β)m, (44)

Proof: In the first period, there is q1 = 1, r1 = 0, p̂1 = m. Use these in (37)

and simplify to have the result. The convexity of D(β) is a consequence of

the reward convexity in the one-way trading problem and Theorem 4. ■
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Note that the result of Wang et al. (2016) is a special case of Theorem 7

with β = 1, and the proof for this general result uses quite different technical

approach and tactics than those for the special case. Theorem 7 easily leads

to a tremendously simplified derivation of the competitive ratio, as compared

to the highly complicated analysis of El-Yaniv et al. (2001).

Corollary 2. The competitive ratio defined in (16) for the one-way trading

problem is the unique root β0 of D(β) as defined in (44).

Proof: As r∗(ζ) ≥ m > 0, it follows from Lemma 4 and Lemma 5. ■

This is in perfect agreement with El-Yaniv et al. (2001), except that they

define competitive ratio as the inverse of β0. Their analysis heavily relies on

insights of the worst case price paths and is much more involved than this

analysis, while this analysis can easily deduce all worst-case price paths in

the same way as in Wang et al. (2016).

Corollary 3. As β increases, the optimal trading policy becomes more ag-

gressive by taking on more risk as it tends to reserve more inventory for the

future and trade less in the current period with other things being equal:

∀ht, ∀pt, π∗
t (ht, pt; β1) ≤ π∗

t (ht, pt; β2) if β1 > β2 > 0.

Proof: Consider the quantity reserved for the future q∗t+1 in (38) and note

that

P−
T−t(p) = β(T − t)

(
1− T−t

√
p−m

M −m

)
increases in β, therefore q∗t+1 increases as β increases. ■

Corollary 3 illustrates the continuous moderation of conservatism by β,

and that the optimal policy gets more aggressive as β increases.
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Figure 1: Average revenue and standard deviation of revenue for T = 5

5.3. Numerical Study.

The effect of β on the one-way trading policy is further demonstrated by

numerical simulations. The prices are I.I.D. with a uniform distribution on

[1, 2] for all the T = 5 periods, but the ARM formulation only knows the price

bounds m = 1,M = 2. For β ∈ {i/300 : i = 1, · · · , 300}, the policy from

(38) is executed on the same sequence of randomly generated prices and the

overall revenue is accrued over all periods. Repeat this process N = 10, 000

times and the average and standard deviation of the revenue for each β is

calculated, together with a 99% confidence interval for the average revenue.

The outcome is shown in Fig. 1.

Three distinct phases can be identified in Fig. 1 from left to right. The

first phase (β < 0.8) witnesses increases in the average overall revenue with
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decreases in the standard deviation as β increases, indicating that an overly

conservative policy can not only hurt the revenue, but it may not really

reduce the overall risk as supposed. To understand this apparent dilemma,

note that the overall risk is different from the risk conditioned on historic

prices: the former is estimated from runs that randomize all the prices, while

the latter must fix the historic prices and only randomize the future prices. It

is helpful to point out that more conservative policies with smaller β values

indeed have lower conditional risks. But for the overall risk at β = 0, the

policy trades everything in the first period at any price, while the policy at

larger β diversifies the risks by trading less at lower prices and reserves more

for future opportunities, which not only increases expected revenue but also

helps reduce the overall risk. The second phase (0.8 < β < 1.5) observes the

normal case of increases in both revenue and overall risk. The third phase

(β > 1.5) experiences decreasing revenue while the risk increases. This is due

to that an overly aggressive policy reserves too much quantity for the future

and boldly takes the risk of selling a significant amount at whatever price in

the last period.

This experiment provides some valuable insights, that both extreme con-

servatism (β = 0) and extreme aggressiveness (β ↑ ∞) give poor performance

with low expected reward and high overall risk, and the ARM criterion may

trade off and find a sweet spot in between. An overly conservative robust

policy by the maximin reward criterion (i.e. β = 0) can suffer both lower

performance and higher overall risk. On the other hand, an overly aggressive

robust policy for a big β may also hurt the performance as it boldly exposes

to future price risks by reserving too much inventory, ending up selling it
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in the last period at any price. Last but not least, there is a trade-off be-

tween the two extremes by adjusting the β value of the ARM criterion. As

illustrated in Figure 1, the fine-tuned β may well go beyond β = 1 for the

minimax absolute regret criterion.

6. Conclusion.

This paper proposes the ARM criterion with the β parameter for con-

tinuous control of conservatism. By minimizing the guarantee of worst-case

regret against a β-adjusted benchmark that becomes more aggressive as β

increases, the ARM criterion chooses a solution that is likely to “mimic” the

benchmark’s behavior, so that the conservatism of the recommended solu-

tion is moderated. Various theoretical properties of the ARM criterion are

studied, such as continuity, monotonicity, and convexity, which may facilitate

the analysis of problems, finding closed-form solutions, or designing better

numerical algorithms to calculate competitive ratios. These theoretical in-

vestigations also lead to a new approach for competitive ratio analysis, which

may be much simpler than the traditional approach for some problems, such

as observed in the analysis of the one-way trading problem.

The tractability is studied for two-stage linear problems with the ARM

criterion. Two particular situations are studied: the right-hand side uncer-

tainty and the objective uncertainty. Equivalent reformulations into TSLRO/FR

problems make it possible to take advantage of the tractable solution meth-

ods developed recently to solve them for practical applications.

Finally, the ARM criterion is applied to the robust one-way trading prob-

lem to demonstrate its properties and potential. Closed-form solutions are
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obtained, which facilitates the derivation of competitive ratios by the new

approach. The optimal policy is shown to get more aggressive as the control

parameter increases. A numerical study is carried out to demonstrate the

effects of smooth control of conservatism for the one-way trading problem.

Some insights are gleaned from the numerical study: extreme conservatism or

aggressiveness may suffer from both lower average reward and higher overall

risk at the same time, and the proper β value is found somewhere in between.

The investigations of the ARM criterion carried out in this paper may

serve as a starting point for future research. A rigorous analysis on how

β moderates conservatism is theoretically interesting and challenging at the

same time. Conceivably, how to choose an appropriate β value in real appli-

cations depends on the application context, and it is another worthy topic of

interest for future study.
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