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1. Introduction. Broadly speaking, a risk measure attempts to assign a single numerical value to the random
loss of a portfolio of assets. Mathematically, let ì be the set of all the possible states of nature at the end
of an observation period, and X be the set of financial losses, which are random variables defined on ì.
Then a risk measure � is a mapping from X to the real line �. Obviously, it can be problematic to use one
number to summarize the whole statistical distribution of the potential loss. Therefore, one should avoid doing
this if it is at all possible. In many cases, however, there is no other choice. Examples of such cases include
margin requirements in financial trading, insurance premiums, and regulatory capital requirements. Consequently,
choosing a good risk measure becomes a problem of great practical importance.

The Basel Accord risk measures are used for setting capital requirements for the banking books and trading
books of financial institutions. Because the Basel Accord risk measures lead to important regulations, there are
a lot of debates on what risk measures are good in the finance industry. In fact, one can even question whether
it is efficient to set up capital requirements using any risk measures. For example, in an interesting paper, Keppo
et al. [32] analyze the effect of the Basel Accord capital requirements on the behavior of a bank and show
surprisingly that imposing trading book capital requirements may in fact postpone recapitalization of the bank
and hence increase its default probability.

One of the most widely used risk measures is value-at-risk (VaR), which is a quantile at some predefined
probability level. More precisely, let F 4·5 be the distribution function of the random loss X; then for a given
� ∈ 40115, VaR of X at level � is defined as VaR�4X5 2= inf8x � F 4x5≥ �9= F −14�50 In practice, VaR�4X5 is
usually estimated from a sample of X, i.e., a data set x̃ = 4x11 : : : 1 xn5 ∈�n.

Gordy [19] provides a theoretical foundation for the Basel Accord banking book risk measure by demonstrat-
ing that under certain conditions the risk measure is asymptotically equivalent to the 99.9% VaR. The Basel II
and Basel III risk measures for trading books [6, 8] are both special cases of VaR with scenario analysis, which
is a class of risk measures involving calculation and comparison of VaR under different scenarios; each scenario
refers to a specific economic regime such as an economic boom and a financial crisis. The loss distributions
under different scenarios are substantially different, and hence the values of VaR calculated under different
scenarios are distinct from each other; for example, the VaR calculated under the scenario of the 2008 financial
crisis is much higher than the VaR calculated under a scenario corresponding to normal market conditions. The
exact formulae of the Basel II and Basel III risk measures are given in §4.

Although the Basel II and Basel III risk measures for trading books are of great regulatory importance, there
has been no axiomatic justification for their use. The main motivation of this paper is to investigate whether VaR,
in combination with scenario analysis, is a good risk measure for external regulation. By using the notion of
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comonotonic random variables studied in the actuarial literature such as Wang et al. [49], we shall define a
new class of risk measures that satisfy a new set of axioms. The new class of risk measures includes VaR
with scenario analysis, and particularly the Basel II and Basel III risk measures, as special cases. Thus, we
provide a theoretical framework for understanding and extending the Basel Accords when needed. Indeed, the
framework includes as special cases some proposals to address the procyclicality problem in Basel II such as
the countercyclical indexing risk measure suggested by Gordy and Howells [20].

The objective of a risk measure is an important issue that has not been well addressed in the existing literature.
In terms of objectives, risk measures can be classified into two categories: internal risk measures used for
internal risk management at individual institutions and external risk measures used for external regulation and
imposed for all the relevant institutions. The differences between internal and external risk measures mirror the
differences between internal standards (such as morality) and external standards (such as law and regulation).
Internal risk measures are applied in the interest of an institution’s shareholders or managers, whereas external
risk measures are used by regulatory agencies to maintain safety and soundness of the financial system. A risk
measure may be suitable for internal management but not for external regulation, or vice versa.

In this paper, we shall focus on external risk measures from the viewpoint of regulatory agencies. In particular,
we emphasize that an external risk measure should be robust (see §5).

The main results of the paper are as follows: (i) We postulate a new set of axioms and define a new class
of risk measures called natural risk statistics; furthermore, we give two complete characterizations of natural
risk statistics (§3.2). (ii) We show that natural risk statistics include the Basel II and Basel III risk measures as
special cases and thus provide an axiomatic framework for understanding and, if necessary, extending them (§4).
(iii) We completely characterize data-based coherent risk measures and show that no coherent risk measure is
robust with respect to small changes in the data (§§3.3 and 5.6). (iv) We completely characterize data-based
insurance risk measures and show that no insurance risk measure is robust with respect to model misspecification
(§§3.4 and 5.6). (v) We argue that an external risk measure should be robust, motivated by philosophy of
law and issues in external regulations (§5). (vi) We show that median shortfall, a special case of natural risk
statistics, is more robust than expected shortfall suggested by coherent risk measures (§5.4). (vii) We show that
natural risk statistics include a subclass of robust risk measures that are suitable for external regulation (§5.5).
(viii) We provide other critiques of the subadditivity axiom of coherent risk measures from the viewpoints of
diversification and bankruptcy protection (§6). (ix) We derive the Euler capital allocation rule under a subclass
of natural risk statistics including the Basel II and III risk measures (§7).

2. Review of existing risk measures.

2.1. Coherent and convex risk measures. Artzner et al. [5] propose the coherent risk measures that satisfy
the following three axioms:

Axiom A1. Translation invariance and positive homogeneity: �4aX + b5 = a�4X5 + b, ∀a ≥ 0, ∀b ∈ �,
∀X ∈X.

Axiom A2. Monotonicity: �4X5≤ �4Y 5, if X ≤ Y .

Axiom A3. Subadditivity: �4X + Y 5≤ �4X5+�4Y 51 ∀X1 Y ∈X0

Axiom A1 states that the risk of a financial position is proportional to its size, and a sure loss of amount b
simply increases the risk by b. Axiom A1 is proposed from the accounting viewpoint. For external risk measures
such as those used for setting margin deposits and capital requirements, the accounting-based axiom seems to
be reasonable. Axiom A2 is a minimum requirement for a reasonable risk measure. What is questionable lies
in Axiom A3, which basically means that “a merger does not create extra risk” (see Artzner et al. [5, p. 209]).
We will discuss the controversies related to this axiom in §6. Artzner et al. [5] and Delbaen [11] also present
an equivalent approach for defining coherent risk measures via acceptance sets. Föllmer and Schied [14] and
Frittelli and Gianin [15] propose the convex risk measures that relax Axioms A1 and A3 to a single convexity
axiom: �4�X + 41 −�5Y 5≤ ��4X5+ 41 −�5�4Y 5, ∀X1Y ∈X, ∀� ∈ 60117.

A risk measure � is coherent if and only if there exists a family Q of probability measures such that �4X5=

supQ∈Q8E
Q6X791 ∀X ∈X, where EQ6X7 is the expectation of X under the probability measure Q (see Huber [25],

Artzner et al. [5], Delbane [11]). Each Q ∈ Q can be viewed as a prior probability, so measuring risk by a
coherent risk measure amounts to computing the maximal expectation under a set of prior probabilities. Coherent
and convex risk measures are closely connected to the good deal bounds of asset prices in incomplete markets
(see, e.g., Jaschke and Küchler [30], Staum [45]).
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Artzner et al. [5] suggest using a specific risk measure called tail conditional expectation (TCE). TCE at level
� of X is defined as

TCE�4X5 2= E
[

X �X ≥ VaR�4X5
]

0 (1)

However, TCE does not generally satisfy subadditivity (see, e.g., Acerbi and Tasche [2, Example 5.4]); hence,
the expected shortfall (ES) is introduced in Acerbi et al. [1], Tasche [47], and Acerbi and Tasche [2] as a
modification of TCE and is shown to be a coherent risk measure. Conditional value-at-risk (CVaR) is introduced
in Rockfellar and Uryasev [39] which is equivalent to ES. The ES (or, equivalently, CVaR) at level � of X with
the distribution function F 4·5 is defined to be (Rockfellar and Uryasev [39])

ES�4X5 2= mean of the �-tail distribution of X1 (2)

where the �-tail distribution of X is defined by the distribution function:

F�1X4x5 2=











01 for x < VaR�4X5

F 4x5−�

1 −�
for x ≥ VaR�4X50

(3)

If F 4·5 is continuous, then the �-tail distribution is the same as the distribution of X conditional on that
X ≥ VaR�4X5, and ES�4X5= TCE�4X5.

A risk measure is called a law-invariant coherent risk measure (Kusuoka [34]) if it satisfies Axioms A1–A3
and the following Axiom A4:

Axiom A4. Law invariance: �4X5= �4Y 5, if X and Y have the same distribution.

Insisting on a coherent or convex risk measure rules out the use of VaR because VaR does not universally
satisfy subadditivity or convexity. The exclusion of VaR gives rise to a serious inconsistency between academic
theories and governmental practices. By requiring subadditivity only for comonotonic random variables, we will
define a new class of risk measures that include VaR and, more importantly, VaR with scenario analysis, thus
eliminating the inconsistency (see §3).

2.2. Insurance risk measures. Wang et al. [49] propose the insurance risk measures that satisfy the fol-
lowing axioms:

Axiom B1. Law invariance: the same as Axiom A4.

Axiom B2. Monotonicity: �4X5≤ �4Y 5, if X ≤ Y almost surely.

Axiom B3. Comonotonic additivity: �4X + Y 5= �4X5+ �4Y 5, if X and Y are comonotonic. (X and Y are
comonotonic if 4X4�15−X4�2554Y 4�15− Y 4�255≥ 0 holds almost surely for �1 and �2 in ì.)

Axiom B4. Continuity:

lim
d→0

�44X −d5+5= �4X+51 lim
d→−�

�4max4X1d55= �4X51 and lim
d→�

�4min4X1d55= �4X51 ∀X1

where x+ 2= max4x105, ∀x ∈�.

Axiom B5. Scale normalization: �415= 1.

Comonotonic random variables are studied by Yaari [50], Schmeidler [41], Denneberg [12], and others. If
two random variables X and Y are comonotonic, X4�5 and Y 4�5 always move in the same direction however
the state � changes. For example, the payoffs of a call option and its underlying asset are comonotonic.

Wang et al. [49] show that � is an insurance risk measure if and only if � has a Choquet integral representation
with respect to a distorted probability:

�4X5=

∫

Xd4g �P5=

∫ 0

−�

(

g4P4X > t55− 1
)

dt +
∫ �

0
g
(

P4X > t5
)

dt1 (4)

where g4·5 is called the distortion function, which is nondecreasing and satisfies g405 = 0 and g415 = 1. The
function g �P is called the distorted probability and defined by g �P4A5 2= g4P4A55 for any event A. In general,
an insurance risk measure does not satisfy subadditivity unless g4·5 is concave (Denneberg [12]). Unlike coherent
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risk measures, an insurance risk measure corresponds to a fixed distortion function g and a fixed probability
measure P , so it does not allow one to compare different distortion functions or different priors.

VaR with scenario analysis, such as the Basel II and Basel III risk measures (see §4 for their definition), is
not an insurance risk measure, although VaR itself is an insurance risk measure. The main reason that insurance
risk measures cannot incorporate scenario analysis or multiple priors is that they require comonotonic additivity.
Wang et al. [49] impose comonotonic additivity based on the argument that comonotonic random variables do not
hedge against each other. However, comonotonic additivity holds only if a single prior is considered. If multiple
priors are considered, one can get strict subadditivity rather than additivity for comonotonic random variables.
Hence, Axiom B3 may be too restrictive. To incorporate multiple priors, we shall relax the comonotonic additivity
to comonotonic subadditivity (see §3).

The mathematical concept of comonotonic subadditivity is also studied independently by Song and Yan [42],
who give a representation of the functionals satisfying comonotonic subadditivity or comonotonic convexity from
a mathematical perspective. Song and Yan [43] give a representation of risk measures that respect stochastic
orders and are comonotonically subadditive or convex. There are several major differences between their work
and this paper: (i) The new risk measures proposed in this paper are different from those considered in Song
and Yan [42, 43]. In particular, the new risk measures include VaR with scenario analysis, such as the Basel II
and Basel III risk measures, as a special case. However, VaR with scenario analysis is not included in the
class of risk measures considered by Song and Yan [42, 43]. (ii) The framework of Song and Yan [42, 43]
is based on subjective probability models, but the framework of the new risk measures is explicitly based on
data and scenario analysis (§3.1). (iii) We provide legal and economic reasons for postulating the comonotonic
subadditivity axiom (§§5 and 6). (iv) We provide two complete characterizations of the new risk measures (§3.2).
(v) We completely characterize the data-based coherent and insurance risk measures so that we can compare
them with the new risk measures (§§3.3 and 3.4).

3. Natural risk statistics.

3.1. Risk statistics: Data-based risk measures. In external regulation, the behavior of the random loss X
under different scenarios is preferably represented by different sets of data observed or generated under those
scenarios because specifying accurate models for X (under different scenarios) is usually very difficult. More
precisely, suppose the behavior of X is represented by a collection of data x̃ = 4x̃11 x̃21 : : : 1 x̃m5 ∈ �n, where
x̃i = 4xi

11 : : : 1 x
i
ni
5 ∈ �ni is the data subset that corresponds to the ith scenario and ni is the sample size of x̃i;

n1 +n2 +· · ·+nm = n. For each i = 11 : : : 1m, x̃i can be a data set based on historical observations, hypothetical
samples simulated according to a model, or a mixture of observations and simulated samples. X can be either
discrete or continuous. For example, the data used in the calculation of the Basel III risk measure comprise
120 data subsets corresponding to 120 different scenarios (m= 120); see §4 for the details of the Basel III risk
measures.

A risk statistic �̂ is simply a mapping from �n to �. It is a data-based risk measure that maps x̃, the data
representation of the random loss X, to �̂4x̃5, the risk measurement of X. In this paper, we will define a new
set of axioms for risk statistics instead of risk measures because (i) risk statistics can directly measure risk
from observations without specifying subjective models, which greatly reduces model misspecification error;
(ii) risk statistics can incorporate forward-looking views or prior knowledge by including data subsets generated
by models based on such views or knowledge; and (iii) risk statistics can incorporate multiple prior probabilities
on the set of scenarios that reflect multiple beliefs about the probabilities of occurrence of different scenarios.

3.2. Axioms and a representation of natural risk statistics. First, we define the notion of scenario-wise
comonotonicity for two sets of data, which is the counterpart of the notion of comonotonicity for two random
variables. x̃ = 4x̃11 x̃21 : : : 1 x̃m5 ∈ �n and ỹ = 4ỹ11 ỹ21 : : : 1 ỹm5 ∈ �n are scenario-wise comonotonic if for ∀i,
∀1 ≤ j1 k ≤ ni, it holds that 4xi

j − xi
k54y

i
j − yik5 ≥ 0. Let x̃ and ỹ represent the observations of random losses X

and Y , respectively; then x̃ and ỹ are scenario-wise comonotonic means that X and Y move in the same direction
under each scenario i, i = 11 : : : 1m, which is consistent with the notion that X and Y are comonotonic.

Next, we postulate the following axioms for a risk statistic �̂.

Axiom C1. Positive homogeneity and translation scaling: �̂4ax̃ + b15 = a�̂4x̃5 + sb1 ∀x̃ ∈ �n, ∀a≥ 0,
∀b ∈�, where s > 0 is a scaling constant, and 1 = 41111 : : : 115 ∈�n.

Axiom C2. Monotonicity: �̂4x̃5≤ �̂4ỹ5, if x̃ ≤ ỹ, where x̃ ≤ ỹ means xi
j ≤ yij1 j = 11 : : : 1 ni3 i = 11 : : : 1m.
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These two axioms (with s = 1 in Axiom C1) are the counterparts of Axioms A1 and A2 for coherent risk
measures. Axiom C1 clearly yields �̂40 · 15 = 0 and �̂4b15 = sb for any b ∈ �, and Axioms C1 and C2 imply
that �̂ is continuous. Indeed, suppose �̂ satisfies Axioms C1 and C2. Then for any x̃ ∈ �n, � > 0, and ỹ ∈ �n

satisfying x̃− �1 < ỹ < x̃+ �1, by Axiom C2 we have �̂4x̃− �15≤ �̂4ỹ5≤ �̂4x̃+ �15. Applying Axiom C1, the
inequality further becomes �̂4x̃5− s�≤ �̂4ỹ5≤ �̂4x̃5+ s�, which establishes the continuity of �̂.

Axiom C3. Scenario-wise comonotonic subadditivity: �̂4x̃ + ỹ5 ≤ �̂4x̃5 + �̂4ỹ5, for any x̃ and ỹ that are
scenario-wise comonotonic.

Axiom C3 relaxes the subadditivity requirement, Axiom A3, in coherent risk measures so that subadditivity
is only required for comonotonic random variables. It also relaxes the comonotonic additivity requirement,
Axiom B1, in insurance risk measures. In other words, if one believes either Axiom A3 or Axiom B3, then one
has to believe the new Axiom C3.

Axiom C4. Empirical law invariance:

�̂
(

x̃11 x̃21 : : : 1 x̃m
)

= �̂
(

x1
p111

1 : : : 1 x1
p11n1

1 x2
p211

1 : : : 1 x2
p21n2

1 : : : 1 xm
pm11

1 : : : 1 xm
pm1nm

)

for any permutation 4pi111 : : : 1 pi1ni
5 of 41121 : : : 1 ni5, i = 11 : : : 1m.

This axiom is the counterpart of the law invariance Axiom A4. It means that if two data sets x̃ and ỹ have
the same empirical distributions under each scenario, i.e., the same order statistics under each scenario, then x̃
and ỹ should give the same measurement of risk.

A risk statistic �̂ 2 �n → � is called a natural risk statistic if it satisfies Axioms C1–C4. The following
theorem completely characterizes natural risk statistics.

Theorem 3.1. (i) For a given constant s > 0 and a given set of weights W = 8w̃9 ⊂ �n with each w̃ =

4w1
11 : : : 1w

1
n1
1 : : : 1wm

1 1 : : : 1w
m
nm
5 ∈W satisfying the following conditions

n1
∑

j=1

w1
j +

n2
∑

j=1

w2
j + · · · +

nm
∑

j=1

wm
j = 11 (5)

wi
j ≥ 01 j = 11 : : : 1 ni3 i = 11 : : : 1m1 (6)

define a risk statistic �̂ 2�n →� as follows:

�̂4x̃5 2= s · sup
w̃∈W

{ n1
∑

j=1

w1
j x

1
4j5 +

n2
∑

j=1

w2
j x

2
4j5 + · · · +

nm
∑

j=1

wm
j x

m
4j5

}

1 ∀x̃ = 4x̃11 : : : 1 x̃m5 ∈�n1 (7)

where 4xi
4151 : : : 1 x

i
4ni5

5 is the order statistics of x̃i = 4xi
11 : : : 1 x

i
ni
5 with xi

4ni5
being the largest, i = 11 : : : 1m. Then

the �̂ defined in (7) is a natural risk statistic.
(ii) If �̂ is a natural risk statistic, then there exists a set of weights W = 8w̃9 ⊂ �n such that each w̃ =

4w1
11 : : : 1w

1
n1
1 : : : 1wm

1 1 : : : 1w
m
nm
5 ∈W satisfies condition (5) and (6), and

�̂4x̃5= s · sup
w̃∈W

{ n1
∑

j=1

w1
j x

1
4j5 +

n2
∑

j=1

w2
j x

2
4j5 + · · · +

nm
∑

j=1

wm
j x

m
4j5

}

1 ∀x̃ = 4x̃11 : : : 1 x̃m5 ∈�n0 (8)

Proof. See Appendix A.

The main difficulty in proving Theorem 3.1 lies in part (ii). Axiom C3 implies that �̂ satisfies subadditiv-
ity on scenario-wise comonotonic sets of �n, such as the set B 2= 8ỹ = 4ỹ11 : : : 1 ỹm5 ∈ �n � y1

1 ≤ y1
2 ≤ · · · ≤

y1
n1
3 : : : 3 ym1 ≤ ym2 ≤ · · · ≤ ymnm9. However, unlike the case of coherent risk measures, the existence of a set of

weights W that satisfies (8) does not follow easily from the proof developed by Huber [25]. The main difference
here is that the set B is not an open set in �n. The boundary points do not have properties as nice as the interior
points do, and treating them involves greater effort. In particular, one should be very cautious when using the
results of separating hyperplanes. For the case of m = 1 (one scenario), Ahmed et al. [4] provide alternative
shorter proofs for Theorems 3.1 and 3.3 using convex duality theory after seeing the first version of this paper.

Natural risk statistics can also be characterized via acceptance sets, as in the case of coherent risk measures.
We show in Appendix B that for a natural risk statistic �̂, the risk measurement �̂4x̃5 is equal to the minimum
amount of cash that has to be added to the position corresponding to x̃ to make the modified position acceptable.
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3.3. Comparison with coherent risk measures. To formally compare natural risk statistics with coherent
risk measures, we first define the coherent risk statistics, the data-based versions of coherent risk measures.
A risk statistic �̂ 2�n →� is called a coherent risk statistic if it satisfies Axioms C1 and C2 and the following
Axiom E1.

Axiom E1. Subadditivity: �̂4x̃+ ỹ5≤ �̂4x̃5+ �̂4ỹ51 ∀x̃1 ỹ ∈�n.

Theorem 3.2. A risk statistic �̂ is a coherent risk statistic if and only if there exists a set of weights
W= 8w̃9⊂�n such that each w̃ ∈W satisfies (5) and (6), and

�̂4x̃5= s · sup
w̃∈W

{ n1
∑

j=1

w1
j x

1
j +

n2
∑

j=1

w2
j x

2
j + · · · +

nm
∑

j=1

wm
j x

m
j

}

1 ∀x̃ = 4x̃11 : : : 1 x̃m5 ∈�n0 (9)

Proof. The proof for the “if” part is trivial. To prove the “only if” part, suppose �̂ is a coherent risk statistic.
Let ä = 8�11 : : : 1 �n9 be a set with n elements and Z be the set of all real-valued functions defined on ä.
Define the functional E∗4Z5 2= 41/s5�̂4Z4�151Z4�251 : : : 1Z4�n55, ∀Z ∈ Z. By Axioms C1, C2, and E1, E∗4·5
satisfies the conditions in Huber and Ronchetti [26, Proposition 10.1, p. 252], so the result follows by applying
that proposition.

Natural risk statistics satisfy empirical law invariance, and coherent risk statistics do not. To better compare
natural risk statistics and coherent risk measures, we define empirical-law-invariant coherent risk statistics, which
are the counterparts of law-invariant coherent risk measures. A risk statistic �̂2 �n →� is called an empirical-
law-invariant coherent risk statistic if it satisfies Axioms C1, C2, C4, and E1. The following theorem completely
characterizes empirical-law-invariant coherent risk statistics.

Theorem 3.3. (i) For a given constant s > 0 and a given set of weights W = 8w̃9 ⊂ �n with each w̃ =

4w1
11 : : : 1w

1
n1
1 : : : 1wm

1 1 : : : 1w
m
nm
5 ∈W satisfying the following conditions

n1
∑

j=1

w1
j +

n2
∑

j=1

w2
j + · · · +

nm
∑

j=1

wm
j = 11 (10)

wi
j ≥ 01 j = 11 : : : 1 ni3 i = 11 : : : 1m1 (11)

wi
1 ≤wi

2 ≤ · · · ≤wi
ni
1 i = 11 : : : 1m1 (12)

define a risk statistic

�̂4x̃5 2= s · sup
w̃∈W

{ n1
∑

j=1

w1
j x

1
4j5 +

n2
∑

j=1

w2
j x

2
4j5 + · · · +

nm
∑

j=1

wm
j x

m
4j5

}

1 ∀x̃ = 4x̃11 : : : 1 x̃m5 ∈�n1 (13)

where 4xi
4151 : : : 1 x

i
4ni5

5 is the order statistics of x̃i = 4xi
11 : : : 1 x

i
ni
5 with xi

4ni5
being the largest, i = 11 : : : 1m. Then

the �̂ defined in (13) is an empirical-law-invariant coherent risk statistic.
(ii) If �̂ is an empirical-law-invariant coherent risk statistic, then there exists a set of weights W= 8w̃9⊂�n

such that each w̃ ∈W satisfies (10), (11), and (12), and

�̂4x̃5= s · sup
w̃∈W

{ n1
∑

j=1

w1
j x

1
4j5 +

n2
∑

j=1

w2
j x

2
4j5 + · · · +

nm
∑

j=1

wm
j x

m
4j5

}

1 ∀x̃ = 4x̃11 : : : 1 x̃m5 ∈�n0 (14)

Proof. See Appendix C.

Theorems 3.1 and 3.3 set out the main differences between natural risk statistics and coherent risk measures:
(i) Any empirical-law-invariant coherent risk statistic assigns larger weights to larger observations because both
xi
4j5 and wi

j increase when j increases; by contrast, natural risk statistics are more general and can assign any
weights to the observations. (ii) VaR and VaR with scenario analysis, such as the Basel II and Basel III risk
measures (see their definition in §4), are not empirical-law-invariant coherent risk statistics because VaR does
not assign larger weights to larger observations when it is estimated from data. However, VaR and VaR with
scenario analysis are natural risk statistics, as will be shown in §4. (iii) Empirical-law-invariant coherent risk
statistics are a subclass of natural risk statistics.
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3.4. Comparison with insurance risk measures. Insurance risk statistics, the data-based versions of insur-
ance risk measures, can be defined similarly. A risk statistic �̂2 �n →� is called an insurance risk statistic if it
satisfies the following Axioms 1–4.

Axiom 1. Empirical law invariance: the same as Axiom C4.

Axiom 2. Monotonicity: �̂4x̃5≤ �̂4ỹ5 if x̃ ≤ ỹ0

Axiom 3. Scenario-wise comonotonic additivity: �̂4x̃ + ỹ5 = �̂4x̃5 + �̂4ỹ51 if x̃ and ỹ are scenario-wise
comonotonic.

Axiom 4. Scale normalization: �̂415= s, where s > 0 is a constant.

Theorem 3.4. �̂ is an insurance risk statistic if and only if there exists a single weight w̃ = 4w1
11 : : : 1

w1
n1
1 : : : 1wm

1 1 : : : 1w
m
nm
5 ∈�n with wi

j ≥ 0 for j = 11 : : : 1 ni; i = 11 : : : 1m and
∑m

i=1

∑ni
j=1 w

i
j = 1, such that

�̂4x̃5= s

( n1
∑

j=1

w1
j x

1
4j5 +

n2
∑

j=1

w2
j x

2
4j5 + · · · +

nm
∑

j=1

wm
j x

m
4j5

)

1 ∀x̃ = 4x̃11 x̃21 : : : 1 x̃m5 ∈�n1 (15)

where 4xi
4151 : : : 1 x

i
4ni5

5 is the order statistics of x̃i = 4xi
11 : : : 1 x

i
ni
5, i = 11 : : : 1m.

Proof. See Appendix D.

Comparing Theorem 3.1 and 3.4 highlights the major differences between natural risk statistics and insurance
risk measures: (i) An insurance risk statistic corresponds to a single weight vector w̃, but a natural risk statistic
can incorporate multiple weights. (ii) VaR with scenario analysis, such as the Basel II and III risk measures,
is not a special case of insurance risk statistics but a special case of natural risk statistics. (iii) Insurance risk
statistics are a subclass of natural risk statistics.

Example 3.1. Although natural risk statistics include both empirical-law-invariant coherent risk statistics
and insurance risk statistics, not all risk statistics are natural risk statistics. For instance, for a constant p > 1,
we define the risk measure �s4X5 2=

∫ �

−�
�u�pdF�1X4u5, where F�1X4·5 is defined in (3). For X with a con-

tinuous distribution, �s4X5 is equal to E6�X�p � X > VaR�4X57, which is called the shortfall risk measure
in Tasche [46]. Then the risk statistic corresponding to the risk measure �s is not a natural risk statistic
because it does not satisfy comonotonic subadditivity. Indeed, in the one-scenario case, for a set of observations
x̃ = 4x11 : : : 1 xn5 of X, the risk statistic corresponding to �s is defined by �̂s4x̃5 2=

∫ �

−�
�u�p dF̂�1X4u5, where

F̂�1X4u5 2= 44Fn4u5−�5/41 −�55 · 18u≥x4�n��59
, �·� is the ceiling function and Fn is the empirical distribution

function of X. Then it can be shown that

�̂s4x̃5=
k−�n

41 −�5n
�x4k5�

p
+

1
41 −�5n

n
∑

j=k+1

�x4j5�
p1 k = �n��0

Suppose that x̃ and ỹ = 4y11 : : : 1 yn5 are comonotonic, and x4j5 > 0 and y4j5 > 0 for all j ≥ k, then

�̂s4x̃+ ỹ5=
k−�n

41 −�5n
4x4k5 + y4k55

p
+

1
41 −�5n

n
∑

j=k+1

4x4j5 + y4j55
p

>
k−�n

41 −�5n
4x

p
4k5 + y

p
4k55+

1
41 −�5n

n
∑

j=k+1

4x
p
4j5 + y

p
4j55= �̂s4x̃5+ �̂s4ỹ50

4. Axiomatization of the Basel II and Basel III risk measures. The Basel II Accord [6] specifies that the
capital charge for the trading book on any particular day t for banks using the internal models approach should
be calculated by the formula

ct = max
{

VaRt−11 k ·
1

60

60
∑

i=1

VaRt−i

}

1 (16)

where k is a constant that is no less than 3; VaRt−i is the 10-day VaR at 99% confidence level calculated on day
t− i, i = 11 : : : 160. VaRt−i is usually estimated from a data set x̃i = 4xi

11 x
i
21 : : : 1 x

i
ni
5 ∈�ni , which is generated

by historical simulation or Monte Carlo simulation (Jorion [31]).
Adrian and Brunnermeier [3] point out that risk measures based on contemporaneous observations, such as

the Basel II risk measure (16), are procyclical; i.e., risk measurement obtained by such risk measures tends
to be low in booms and high in crises, which impedes effective regulation. Gordy and Howells [20] examine
the procyclicality of Basel II from the perspective of market discipline. They show that the marginal impact
of introducing Basel II depends strongly on the extent to which market discipline leads banks to vary lending
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standards procyclically in the absence of binding regulation. They also evaluate policy options not only in terms
of their efficacy in dampening cyclicality in capital requirements but also in terms of how well the information
value of Basel II market disclosures is preserved.

Scenario analysis can help to reduce procyclicality by using not only contemporaneous observations but also
data under distressed scenarios that capture rare tail events that could cause severe losses. Indeed, to respond to
the financial crisis that started in late 2007, the Basel committee recently proposed the Basel III risk measure
for setting capital requirements for trading books [8], which is defined by

ct = max
{

VaRt−11 k ·
1

60

60
∑

i=1

VaRt−i

}

+ max
{

sVaRt−11 ` ·
1

60

60
∑

i=1

sVaRt−i

}

1 (17)

where VaRt−i is the same as in (16); k and ` are constants no less than 3; and sVaRt−i is called the stressed
VaR on day t − i, which is calculated under the scenario that the financial market is under significant stress as
happened during the period from 2007 to 2008. The additional capital requirements based on stressed VaR help
reduce the procyclicality of the original risk measure (16).

In addition to the capital charge specified in (17), the Basel III Accord requires banks to hold additional
incremental risk capital charge (IRC) against potential losses resulting from default risk, credit migration risk,
credit spread risk, etc., in the trading book, which are incremental to the risks captured by the formula (17)
(Basel Committee on Banking Supervision [7, 8]). The IRC capital charge on the tth day is defined as

IRCt = max
{

VaRir
t−11

1
60

60
∑

i=1

VaRir
t−i

}

1 (18)

where VaRir
t−i is defined as the 99.9% VaR of the trading book loss due to the aforementioned risks over a

one-year horizon calculated on day t− i. The VaRir
t−i should be calculated under the assumption that the portfolio

is rebalanced to maintain a target level of risk and that less liquid assets have long liquidity horizons (see [7]).
Glasserman [18] analyzes the features of the IRC risk measure, with particular emphasis on the impact of the
liquidity horizons nested within the long risk horizon of one year on the portfolio’s loss distribution.

The Basel II and Basel III risk measures do not belong to any existing theoretical framework of risk measures
proposed in the literature, but they are special cases of natural risk statistics, as is shown by the following
theorems.

Theorem 4.1. The Basel II risk measure defined in (16) and the Basel III risk measure defined in (17) are
both special cases of natural risk statistics.

Proof. See Appendix E.

Theorem 4.2. The Basel III risk measure for incremental risk defined in (18) is a special case of natural
risk statistics.

Proof. See Appendix E.

Natural risk statistics thus provide an axiomatic framework for understanding and, if necessary, extending
the Basel Accords. Having such a general framework then facilitates searching for other external risk measures
suitable for banking regulation.

Example 4.1. The regulators may have different objectives in choosing external risk measures. For example,
as we shall explain in the next section, it is desirable to make them robust. Another objective is to choose less
procyclical risk measures. Gordy and Howells [20] propose to mitigate the procyclicality of ct , the Basel II
capital requirement, by a method called countercyclical indexing. This applies a time-varying multiplier �t to
ct and generates a smoothed capital requirement �tct , where �t increases during booms and decreases during
recessions to dampen the procyclicality of ct . In the static setting, the multiplier �t corresponds to the scaling
constant s in Axiom C1; thus, natural risk statistics provide an axiomatic foundation in the static setting for the
method of countercyclical indexing. Although the current paper focuses on static risk measures, it would be of
interest to study axioms for dynamic risk measures that also depend on business cycles.

5. Robustness of external risk measures.

5.1. The meaning of robustness. A risk measure is said to be robust if (i) it can accommodate model
misspecification (possibly by incorporating multiple scenarios and models) and (ii) it is insensitive to small
changes in the data, i.e., small changes in all or large changes in a few of the samples (possibly by using
robust statistics).
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The first part of the meaning of robustness is related to ambiguity and model uncertainty in decision theory. To
address these issues, multiple priors or multiple alternative models represented by a set of probability measures
may be used; see, e.g., Gilboa and Schmeidler [17], Maccheroni et al. [36], and Hansen and Sargent [21]. The
second part of the meaning of robustness comes from the study of robust statistics, which is mainly concerned
with the statistical distribution robustness; see, e.g., Huber and Ronchetti [26]. Appendix F presents a detailed
mathematical discussion of robustness.

5.2. Legal background. Legal realism, one of the basic concepts of law, motivates us to argue that exter-
nal risk measures should be robust because robustness is essential for law enforcement. Legal realism is the
viewpoint that the legal decisions of a court are determined by the actual practices of the judges rather than the
law set forth in statutes and precedents. All the legal rules contained in statutes and precedents are uncertain
because of the uncertainty in human language and because human beings are unable to anticipate all possible
future circumstances (Hart [22, p. 128]). Hence, a law is only a guideline for judges and enforcement officers
(Hart [22, pp. 204–205]); i.e., it is only intended to be the average of what judges and officers will decide. This
concerns the robustness of law; i.e., a law should be established in such a way that different judges will reach
similar conclusions when they implement it. In particular, consistent enforcement of an external risk measure in
banking regulation requires that it should be robust with respect to underlying models and data.

An illuminating example manifesting the concept of legal realism is how to set up speed limits on roads,
which is a crucial issue involving life and death decisions. Currently, the American Association of State Highway
and Transportation Officials recommends setting speed limits near the 85th percentile of the free flowing traffic
speed observed on the road with an adjustment taking into consideration that people tend to drive 5 to 10
miles above the posted speed limit (Transportation Research Board of the National Academies [48, p. 51]).
This recommendation is adopted by all states and most local agencies. The 85th percentile rule appears to be
a simple method, but studies have shown that crash rates are lowest at around the 85th percentile. The 85th
percentile rule is robust in the sense that it is based on data rather than on some subjective model and it can be
implemented consistently.

5.3. Robustness is indispensable for external risk measures. In determining capital requirements, regu-
lators impose a risk measure and allow institutions to use their own internal risk models and private data in the
calculation. For example, the internal model approach in Basel II and III allows institutions to use their own
internal models to calculate their capital requirements for trading books because of various legal, commercial,
and proprietary trading considerations. However, there are two issues arising from the use of internal models
and private data in external regulation: (i) the data can be noisy, flawed, or unreliable, and (ii) there can be
several statistically indistinguishable models for the same asset or portfolio because of limited availability of
data. For example, the heaviness of tail distributions cannot be identified in many cases. Heyde and Kou [23]
show that it is very difficult to distinguish between exponential-type and power-type tails with 5,000 observations
(about 20 years of daily observations) because the quantiles of exponential-type distributions and power-type
distributions may overlap. For example, surprisingly, a Laplace distribution has a larger 99.9% quantile than
the corresponding T distribution with degree of freedom (d.f.) 6 or 7. Hence, regardless of the sample size, the
Laplace distribution may appear to be more heavily tailed than is the T distribution up to the 99.9% quantile. If
the quantiles have to be estimated from data, the situation is even worse. In fact, with a sample size of 5,000 it is
difficult to distinguish between the Laplace distribution and the T distributions with d.f. 3, 4, 5, 6, and 7 because
the asymptotic 95% confidence interval of the 99.9% quantile of the Laplace distribution overlaps with those
of the T distributions. Therefore, the tail behavior may be a subjective issue depending on people’s modeling
preferences.

To address the aforementioned two issues, external risk measures should demonstrate robustness with respect
to model misspecification and small changes in the data. From a regulator’s viewpoint, an external risk measure
must be unambiguous, stable, and capable of being implemented consistently across all the relevant institutions,
no matter what internal beliefs or internal models each may rely on. When the correct model cannot be identified,
two institutions that have exactly the same portfolio can use different internal models, both of which can obtain
the approval of the regulator; however, the two institutions should be required to hold the same or at least almost
the same amount of regulatory capital because they have the same portfolio. Therefore, the external risk measure
should be robust; otherwise, different institutions can be required to hold very different regulatory capital for
the same risk exposure, which makes the risk measure unacceptable to both the institutions and the regulators.
In addition, if the external risk measure is not robust, institutions can take regulatory arbitrage by choosing a
model that significantly reduces the capital requirements or by manipulating the input data.
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5.4. Median shortfall: A robust risk measure. We propose a robust risk measure, median shortfall (MS),
which is a special case of natural risk statistics. MS is defined by replacing the “mean” in the definition of ES
by “median.” More precisely, MS of X at level � is defined as

MS�4X5 2= median of the �-tail distribution of X1

where the �-tail distribution of X is defined in (3). It can be shown that for any X, MS at level � of X is equal
to VaR of X at level 41 +�5/2, i.e.,

MS�4X5= VaR41+�5/24X51 ∀X1 ∀� ∈ 401150 (19)

Equation (19) shows that VaR at a higher level can incorporate tail information, which contradicts the claims
in some of the existing literature. For example, if one wants to measure the size of loss beyond the 99% level,
one can use VaR at 99.5%, or, equivalently, MS at 99%, which gives the median of the size of loss beyond 99%.
It is also interesting to point out that MS�4X+Y 5≤ MS�4X5+MS�4Y 5 may hold for those X and Y that cause
VaR�4X + Y 5 > VaR�4X5+ VaR�4Y 5; in other words, subadditivity may not be violated if one replaces VaR�

by MS�. Here are two such examples: (i) The example on page 216 of Artzner et al. [5] shows that 99% VaR
does not satisfy subadditivity for the two positions of writing an option A and writing an option B. However,
99% MS (or, equivalently, 99.5% VaR) does satisfy subadditivity. Indeed, the 99% MS of the three positions
of writing an option A, writing an option B, and writing options A+ B are equal to 1000 − u, 1000 − l, and
1000−u− l, respectively. (ii) The example in Artzner et al. [5, p. 217] shows that the 90% VaR does not satisfy
subadditivity for X1 and X2. However, the 90% MS (or, equivalently, 95% VaR) does satisfy subadditivity.
Actually, the 90% MS of X1 and X2 are both equal to 1. By simple calculation, P4X1 +X2 ≤ −25= 00005 < 0005,
which implies that the 90% MS of X1 +X2 is strictly less than 2.

MS can be shown to be more robust than ES by at least three tools in robust statistics: (i) influence functions,
(ii) asymptotic breakdown points, and (iii) finite sample breakdown points. See Appendix F. See also Cont
et al. [9] for discussion on robustness of risk measures.

ES is also highly model dependent and particularly sensitive to modeling assumptions on the extreme tails of
loss distributions because the computation of ES relies on these extreme tails, as is shown by (F1) in Appendix F.
Figure 1 illustrates the sensitivity of ES to modeling assumptions. MS is clearly less sensitive to tail behavior
than ES because the changes of MS with respect to the changes of loss distributions have narrower ranges than
do those of ES.

5.5. Robust natural risk statistics. Natural risk statistics include a subclass of risk statistics that are robust
in two respects: (i) they are insensitive to model misspecification because they incorporate multiple scenarios,
multiple prior probability measures on the set of scenarios, and multiple subsidiary risk statistics for each
scenario, and (ii) they are insensitive to small changes in the data because they use robust statistics for each
scenario.

Let �̂ be a natural risk statistic defined as in (7) that corresponds to the set of weights W. Define the map
�2 W → �m × �n such that w̃ 7→ �4w̃5 2= 4p̃1 q̃5, where p̃ 2= 4p11 : : : 1 pm5, pi 2=

∑ni
j=1 w

i
j , i = 11 : : : 1m;

q̃ 2= 4q1
11 : : : 1 q

1
n1
1 : : : 1 qm

1 1 : : : 1 q
m
nm
5, qi

j 2= 18pi>09w
i
j/p

i. Since pi ≥ 0 and
∑m

i=1 p
i = 1, p̃ can be viewed as a

prior probability distribution on the set of scenarios. Then �̂ can be rewritten as

�̂4x̃5= s · sup
4p̃1q̃5∈�4W5

{ m
∑

i=1

pi�̂i1q̃4x̃i5

}

1 where �̂i1q̃4x̃i5 2=
ni
∑

j=1

qi
jx

i
4j50 (20)

Each weight w̃ ∈ W then corresponds to �4w̃5 = 4p̃1 q̃5 ∈ �4W5, which specifies: (i) the prior probability
measure p̃ on the set of scenarios and (ii) the subsidiary risk statistic �̂i1q̃ for each scenario i, i = 11 : : : 1m.
Hence, �̂ can be robust with respect to model misspecification by incorporating multiple prior probabilities p̃
and multiple risk statistics �̂i1q̃ for each scenario. In addition, �̂ can be robust with respect to small changes in
the data if each subsidiary risk statistic �̂i1q̃ is a robust statistic.

Example 5.1. MS (or, equivalently, VaR at a higher confidence level) is a robust statistic. Another example
of robust statistics is the sample version of the following new risk measure which we call trimmed average
VaR (tav):

�tav4X5 2=
1

�−�

∫ �

�
F −14u5du1 (21)
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Figure 1. Comparing the robustness of expected shortfall (ES) and median shortfall (MS) with respect to model misspecification. ES� and
MS� are calculated for Laplace and T distributions with degree of freedom 3, 5, and 12, which are normalized to have mean 0 and variance 1.
The horizontal axis is log41 −�5 for � ∈ 600951009997. For �= 9906%, the variation of ES� with respect to the change in the underlying
models is 1.44, but the variation of MS� is only 0.75.

where 0 <�<�< 1, e.g., �= 99%1�= 9909%. �tav is robust because it does not involve quantiles with levels
higher than �. It can be shown that the sample version of �tav corresponding to the data x̃i is given by

�̂tav4x̃
i5=

1
�−�

(

k11i − ni�

ni

xi
4k11i5

+

k21i−1
∑

j=k11i+1

1
ni

xi
4j5 +

1 + ni�− k21i

ni

xi
4k21i5

)

1 k11i = �ni��1 k21i = �ni��0

Example 5.2. The Basel II risk measure (16) is robust to a certain extent because (i) each subsidiary risk
statistic is a VaR, which is robust, and (ii) the risk measure incorporates two priors of probability distributions
on the set of scenarios. More precisely, one prior assigns probability 1/k to the scenario of day t−1 and 1−1/k
to an imaginary scenario under which losses are identically 0; the other prior assigns probability 1/60 to each
of the scenarios corresponding to day t − i, i = 11 : : : 160.

Example 5.3. The Basel III risk measure (17) is more robust than is the Basel II risk measure (16) because
it incorporates 60 more scenarios and it essentially incorporates two more priors of probability measures on the
set of scenarios.

Example 5.4. Similar to the Basel II risk measure (16), the Basel III IRC risk measure (18) is robust in
the sense that each subsidiary risk statistic VaRir

t−i is robust, and the risk measure incorporates two priors of
probability distributions on the set of scenarios.

5.6. Neither law-invariant coherent risk measures nor insurance risk measures are robust. No law-
invariant coherent risk measure is robust with respect to small changes in the data. Indeed, by Theorem 3.3, an
empirical-law-invariant coherent risk statistic �̂ can be represented by (14), where for each weight w̃, wi

j is a
nondecreasing function of j . Hence, any empirical-law-invariant coherent risk statistic assigns larger weights to
larger observations, but assigning larger weights to larger observations is clearly sensitive to small changes in
the data. An extreme case is the maximum loss max8xi

4ni5
2 i = 11 : : : 1m9, which is not robust at all. In general,

the finite sample breakdown point (see Huber and Ronchetti [26, Chap. 11] for definition) of any empirical-law-
invariant coherent risk statistic is equal to 1/41 + n5, which implies that one single contamination sample can
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cause unbounded bias. In particular, ES is sensitive to modeling assumptions of heaviness of tail distributions
and to outliers in the data, as is shown in §5.4.

No insurance risk measure is robust to model misspecification. An insurance risk measure can incorporate
neither multiple priors of probability distributions on the set of scenarios nor multiple subsidiary risk statistics
for each scenario because it is defined by a single weight vector w̃, as is shown in Theorem 3.4.

5.7. Conservative and robust risk measures. One risk measure is said to be more conservative than another
if it generates higher risk measurement than the other for the same risk exposure. The use of more conservative
risk measures in external regulation is desirable from a regulator’s viewpoint because it generally increases the
safety of the financial system. Of course, risk measures that are too conservative may retard economic growth.

There is no contradiction between the robustness and the conservativeness of external risk measures. Robust-
ness addresses the issue of whether a risk measure can be implemented consistently, so it is a requisite property
of a good external risk measure. Conservativeness addresses the issue of how stringently an external risk measure
should be implemented, given that it can be implemented consistently. In other words, an external risk measure
should be robust in the first place before one can consider the issue of how to implement it in a conservative
way. In addition, it is not true that ES is more conservative than is MS because the median can be bigger than
the mean for some distributions.

A natural risk statistic can be constructed by (7) in the following ways so that it is both conservative and
robust: (i) more data subsets that correspond to stressed scenarios can be included in (7), and (ii) a larger
constant s in (7) can be used. For example, adding 60 stressed scenarios makes (17) much more conservative
than is (16), and a larger k or ` in (17) can be used by regulators to increase the capital requirements.

6. Other reasons to relax subadditivity.

6.1. Diversification and tail subadditivity of VaR. The subadditivity axiom is related to the idea that
diversification does not increase risk; the convexity axiom for convex risk measures also comes from the idea
of diversification. There are two main justifications for diversification. One is based on the simple observation
that �4X +Y 5≤ �4X5+�4Y 5, for any two random variables X and Y with finite second moments, where �4·5
denotes standard deviation. The other is based on expected utility theory. Samuelson [40] shows that any investor
with a strictly concave utility function will uniformly diversify among independently and identically distributed
(i.i.d.) risks with finite second moments; see, e.g., McMinn [37], Hong and Herk [24], and Kijima [33] for
the discussion on whether diversification is beneficial when the asset returns are dependent. Both justifications
require that the risks have finite second moments.

Is diversification still preferable for risks with infinite second moments? The answer can be no. Ibragimov
[27, 28] and Ibragimov and Walden [29] show that diversification is not preferable for risks with extremely
heavy tailed distributions (with tail index less than 1) in the sense that (i) the loss of the diversified portfolio
stochastically dominates that of the undiversified portfolio at the first order and second order, and (ii) the
expected utility of the (truncated) payoff of the diversified portfolio is smaller than that of the undiversified
portfolio. They also show that investors with certain S-shaped utility functions would prefer nondiversification,
even for bounded risks.

In addition, the conclusion that VaR prohibits diversification, drawn from simple examples in the literature,
may not be solid. For instance, Artzner et al. [5, pp. 217–218] show that VaR prohibits diversification by a
simple example in which 95% VaR of the diversified portfolio is higher than that of the undiversified portfolio.
However, in the same example 99% VaR encourages diversification because the 99% VaR of the diversified
portfolio is equal to 20,800, which is much lower than 1,000,000, the 99% VaR of the undiversified portfolio.

Ibragimov [27, 28] and Ibragimov and Walden [29] also show that although VaR does not satisfy subadditivity
for risks with extremely heavy tailed distributions (with tail index less than 1), VaR satisfies subadditivity
for wide classes of independent and dependent risks with tail indices greater than 1. In addition, Daníelsson
et al. [10] show that VaR is subadditive in the tail region provided that the tail index of the joint distribution
is larger than 1. Asset returns with tail indices less than 1 have extremely heavy tails; they are hard to find but
easy to identify. Daníelsson et al. [10] argue that they can be treated as special cases in financial modeling. Even
if one encounters an extremely fat tail and insists on tail subadditivity, Garcia et al. [16] show that when tail
thickness causes violation of subadditivity, a decentralized risk management team may restore the subadditivity
for VaR by using proper conditional information. The simulations carried out in Daníelsson et al. [10] also show
that VaR� is indeed subadditive for most practical applications when � ∈ 695%, 99%7.
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To summarize, there seems to be no conflict between the use of VaR and diversification. When the risks do
not have extremely heavy tails, diversification seems to be preferred and VaR seems to satisfy subadditivity;
when the risks have extremely heavy tails, diversification may not be preferable and VaR may fail to satisfy
subadditivity.

6.2. Does a merger always reduce risk? Subadditivity basically means that “a merger does not create
extra risk” (see Artzner et al. [5, p. 209]). However, Dhaene et al. [13] point out that a merger may increase
risk, particularly when there is bankruptcy protection for institutions. For example, an institution can split a
risky trading business into a separate subsidiary so that it has the option to let the subsidiary go bankrupt when
the subsidiary suffers enormous losses, confining losses to that subsidiary. Therefore, creating subsidiaries may
incur less risk and a merger may increase risk. Had Barings Bank set up a separate institution for its Singapore
unit, the bankruptcy of that unit would not have sunk the entire bank in 1995.

In addition, there is little empirical evidence supporting the argument that “a merger does not create extra
risk.” In practice, credit rating agencies do not upgrade an institution’s credit rating because of a merger; on the
contrary, the credit rating of the joint institution may be lowered shortly after the merger. The merger of Bank
of America and Merrill Lynch in 2008 is an example.

7. Capital allocation under the natural risk statistics. In this section, we derive the capital allocation
rule for a subclass of natural risk statistics that include the Basel II and Basel III risk measures. The purpose
of capital allocation for the whole portfolio is to decompose the overall capital into a sum of risk contributions
for such purposes as identification of concentration, risk-sensitive pricing, and portfolio optimization (see, e.g.,
Litterman [35]).

First, as an illustration, we compute the Euler capital allocation under the Basel III risk measure. The Euler rule
is one of the most widely used methodologies for capital allocation under positive homogeneous risk measures
(see, e.g., Tasche [46], McNeil et al. [38]). Consider a portfolio composed of ui units of asset i, i = 11 : : : 1 d,
and denote u = 4u11 u21 : : : 1 ud5. Suppose that there are m scenarios. Let x̃4i5 = 4x̃4i511 x̃4i521 : : : 1 x̃4i5m5 be
the observed loss of the ith asset, where x̃4i5s = 4x4i5s11 x4i5

s
21 : : : 1 x4i5

s
ns
5 ∈ �ns are the observations under

the sth scenario, s = 11 : : : 1m. Then the observations of the portfolio loss are given by l̃4u5 =
∑d

i=1 uix̃4i5 =

4l̃4u511 l̃4u521 : : : 1 l̃4u5m5, where l̃4u5s = 4l4u5s11 l4u5
s
21 : : : 1 l4u5

s
ns
5 ∈�ns and l4u5sj 2=

∑d
i=1 uix4i5

s
j . The required

capital measured by a natural risk statistic �̂ is denoted by C�̂4u5 2= �̂4l̃4u55. Let m = 120 and � = 99%; then
the required capital calculated by the Basel III risk measure is

C�̂4u5 2= max
{

l4u51
4��n1�5

1
k

60

60
∑

s=1

l4u5s4��ns�5

}

+ max
{

l4u561
4��n61�5

1
`

60

120
∑

s=61

l4u5s4��ns�5

}

0

We have the following proposition on the Euler capital allocation under the Basel III risk statistic:

Proposition 7.1. Suppose 4x̃4151 x̃4251 : : : 1 x̃4d55 is a sample of the random vector 4X4151X4251 : : : 1
X4d55, where X4i5= 4X4i511X4i521 : : : 1X4i5m5 and X4i5s = 4X4i5s11X4i5s21 : : : 1X4i5sns 5 ∈�ns . Suppose that the
joint distribution of 4X4151X4251 : : : 1X4d55 has a probability density on �dn. Then for any given u 6= 0, it
holds with probability 1 that

C�̂4u5=

d
∑

i=1

ui

¡C�̂4u5

¡ui

1 (22)

and the capital allocation for the ith asset under the Euler’s rule is ui4¡C�̂4u5/¡ui5.

Proof. For any given u 6= 0, let �u be the set of samples 4x̃4151 x̃4251 : : : 1 x̃4d55 ∈ �dn that satis-
fies the following conditions: (i) l4u51

4��n1�5
6= 4k/605

∑60
s=1 l4u5

s
4��ns�5

; (ii) l4u561
4��n61�5

6= 4`/605
∑120

s=61 l4u5
s
4��ns�5

;
(iii) l4u5si 6= l4u5sj for any s and i 6= j . Then it follows from the condition of the proposition that P44X4151X4251
: : : 1X4d55 ∈ �u5 = 10 Fix any 4x̃4151 x̃4251 : : : 1 x̃4d55 ∈ �u. By the definition of �u, there exists � > 0 such
that C�̂4·5 is a linear function on the open set V 2= 8v ∈ �d � �v− u� < �9. Hence, C�̂4·5 is differentiable at u,
and (22) holds.

For any given u 6= 0, let �u be defined in the above proof and suppose x̃ ∈�u. To compute ui4¡C�̂4u5/¡ui5,
one only needs to compute 4¡l4u5s4��ns�55/¡ui. Let 4p11 : : : 1 pns

5 be the permutation of 41121 : : : 1 ns5 such that
l4u5sp1

< l4u5sp2
< · · ·< l4u5spns

. Then there exists �> 0 such that l4v5sp1
< l4v5sp2

< · · ·< l4v5spns
for ∀v ∈ V , where

V 2= 8v ∈�d � �v− u�<�9. Hence, for ∀v ∈ V ,

l4v5s4��ns�5 = l4v5sp��ns �
=

d
∑

i=1

vix4i5
s
p��ns �

1 and
¡l4u5s4��ns�5

¡ui

= x4i5sp��ns �
0
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In general, let é1 be the set of natural risk statistic �̂ that can be represented by (8) using only a finite set W.
Let é2 be the set of natural risk statistic �̂ that can be written as �̂ =

∑K
k=1 ak�̂k, where ak ≥ 0 and �̂k ∈ é1,

k = 11 : : : 1K. Both the Basel II risk measure and Basel III risk measure belong to the set é2. For any �̂ ∈é2,
it can be shown in the same way as in Proposition 7.1 that C�̂4u5 is a piecewise linear function of u and the
Euler capital allocation rule can be computed similarly.

8. Conclusion. We propose a class of data-based risk measures called natural risk statistics that are charac-
terized by a new set of axioms. The new axioms only require subadditivity for comonotonic random variables,
thus relaxing the subadditivity for all random variables required by coherent risk measures and relaxing the
comonotonic additivity required by insurance risk measures.

Natural risk statistics include VaR with scenario analysis, and particularly the Basel II and Basel III risk
measures, as special cases. Thus, natural risk statistics provide a theoretical framework for understanding and, if
necessary, extending the Basel Accords. Indeed, the framework is general enough to include the countercyclical
indexing risk measure suggested by Gordy and Howells [20] to address the procyclicality problem in Basel II.

We emphasize that an external risk measure should be robust to model misspecification and small changes
in the data in order for its consistent implementation across different institutions. We show that data-based
law-invariant coherent risk measures are generally not robust with respect to small changes in the data and
data-based insurance risk measures are generally not robust with respect to model misspecification.

Natural risk statistics include a subclass of robust risk measures that are suitable for external regulation. In
particular, natural risk statistics include median shortfall (with scenario analysis), which is more robust than
expected shortfall suggested by the theory of coherent risk measures. The Euler capital allocation rule can also
be easily calculated under the natural risk statistics.

Appendix A. Proof of Theorem 3.1. A simple observation is that �̂ is a natural risk statistic corresponding
to a constant s in Axiom C1 if and only if 1

s
�̂ is a natural risk statistic corresponding to the constant s = 1 in

Axiom C1. Therefore, in this section, we assume without loss of generality that s = 1 in Axiom C1. The proof
relies on the following two lemmas, which depend heavily on the properties of the interior points of the set

B 2=
{

ỹ = 4ỹ11 : : : 1 ỹm5 ∈�n
� y1

1 ≤ y1
2 ≤ · · · ≤ y1

n1
3 : : : 3 ym1 ≤ ym2 ≤ · · · ≤ ymnm

}

0 (A1)

The results for boundary points will be obtained by approximating the boundary points by the interior points
and by employing continuity and uniform convergence.

Lemma A.1. Let B be defined in (A1) and Bo be the interior of B. For any fixed z̃ ∈Bo and any �̂ satisfying
Axioms C1–C4 and �̂4z̃5 = 1, there exists a weight w̃ = 4w̃11 : : : 1 w̃m5 ∈ �n such that the linear functional
�4x̃5 2=

∑n1
j=1 w

1
j x

1
j +

∑n2
j=1 w

2
j x

2
j + · · · +

∑nm
j=1 w

m
j x

m
j satisfies

�4z̃5= 11 (A2)

�4x̃5 < 11 for any x̃ such that x̃ ∈B and �̂4x̃5 < 10 (A3)

Proof. Let U =8x̃=4x̃11: : : 1x̃m5 � �̂4x̃5<19∩B. For any x̃=4x̃11: : : 1x̃m5∈B and ỹ=4ỹ11: : : 1ỹm5∈B, x̃
and ỹ are scenario-wise comonotonic. Then Axioms C1 and C3 imply that U is convex, and, hence, the closure
Ū of U is also convex. For any � > 0, since �̂4z̃ − �15 = �̂4z̃5 − � = 1 − � < 1, it follows that z̃ − �1 ∈ U .
Because z̃ − �1 tends to z̃ as � ↓ 0, we know that z̃ is a boundary point of U because �̂4z̃5 = 1. There-
fore, there exists a supporting hyperplane for Ū at z̃, i.e., there exists a nonzero vector w̃ = 4w̃11 : : : 1 w̃m5 =

4w1
11 : : : 1w

1
n1
1 : : : 1wm

1 1 : : : 1w
m
nm
5 ∈ �n such that �4x̃5 2=

∑n1
j=1 w

1
j x

1
j +

∑n2
j=1 w

2
j x

2
j + · · · +

∑nm
j=1 w

m
j x

m
j satisfies

�4x̃5≤ �4z̃5 for any x̃ ∈ Ū 0 In particular, we have

�4x̃5≤ �4z̃51∀x̃ ∈U0 (A4)

We shall show that the strict inequality holds in (A4). Suppose, by contradiction, that there exists r̃ ∈U such
that �4r̃5= �4z̃5. For any � ∈ 40115, we have

�4�z̃+ 41 −�5r̃5= ��4z̃5+ 41 −�5�4r̃5= �4z̃50 (A5)

In addition, because z̃ and r̃ are scenario-wise comonotonic, we have

�̂4�z̃+ 41 −�5r̃5≤ ��̂4z̃5+ 41 −�5�̂4r̃5 < �+ 41 −�5= 11 ∀� ∈ 401150 (A6)
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Since z̃ ∈Bo, it follows that there exists �0 ∈ 40115 such that �0z̃+41−�05r̃ ∈Bo. Hence, for any small enough
�> 01

�0z̃+ 41 −�05r̃ + �w̃ ∈B0 (A7)

With wmax 2= max8w1
11w

1
21 : : : 1w

1
n1
3w2

11w
2
21 : : : 1w

2
n2
3 : : : 3wm

1 1w
m
2 1 : : : 1w

m
nm
9, we have �0z̃+ 41 −�05r̃ + �w̃ ≤

�0z̃+ 41 −�05r̃ + �wmax1. Thus, the monotonicity in Axiom C2 and translation scaling in Axiom C1 yield

�̂
(

�0z̃+ 41 −�05r̃ + �w̃
)

≤ �̂
(

�0z̃+ 41 −�05r̃ + �wmax1
)

= �̂
(

�0z̃+ 41 −�05r̃
)

+ �wmax0 (A8)

Since �̂4�0z̃+ 41 − �05r̃5 < 1 via (A6), we have by (A8) and (A7) that for any small enough � > 0, �̂4�0z̃+

41 −�05r̃ + �w̃5 < 1, �0z̃+ 41 −�05r̃ + �w̃ ∈ U . Hence, (A4) implies �4�0z̃+ 41 −�05r̃ + �w̃5 ≤ �4z̃5. How-
ever, we have, by (A5), an opposite inequality �4�0z̃ + 41 − �05r̃ + �w̃5 = �4�0z̃ + 41 − �05r̃5 + ��w̃�2 >

�4�0z̃+ 41 −�05r̃5= �4z̃51 leading to a contradiction. In summary, we have shown that

�4x̃5 < �4z̃51∀x̃ ∈U0 (A9)

Since �̂405 = 0, we have 0 ∈ U . Letting x̃ = 0 in (A9) yields �4z̃5 > 0, so we can rescale w̃ such that �4z̃5 =

1 = �̂4z̃5. Thus, (A9) becomes �4x̃5 < 1 for any x̃ such that x̃ ∈B and �̂4x̃5 < 1, from which (A3) holds.

Lemma A.2. Let B be defined in (A1) and Bo be the interior of B. For any fixed z̃ ∈Bo and any �̂ satisfying
Axioms C1–C4, there exists a weight w̃ = 4w̃11 : : : 1 w̃m5 ∈�n such that w̃ satisfies (5) and (6), and

�̂4x̃5≥

m
∑

i=1

ni
∑

j=1

wi
jx

i
j for any x̃ ∈B1 and �̂4z̃5=

m
∑

i=1

ni
∑

j=1

wi
jz

i
j 0 (A10)

Proof. We will show this by considering three cases.
Case 1. �̂4z̃5 = 1. From Lemma A.1, there exists a weight w̃ = 4w̃11 : : : 1 w̃m5 ∈ �n such that the linear

functional �4x̃5 2=
∑m

i=1

∑ni
j=1 w

i
jx

i
j satisfies (A2) and (A3).

Firstly, we prove that w̃ satisfies (5), which is equivalent to �415 = 1. To this end, first note that for any
c < 1, Axiom C1 implies �̂4c15 = c < 1. Thus, (A3) implies �4c15 < 1, and, by continuity of �4·5, we obtain
that �415 ≤ 1. On the other hand, for any c > 1, Axiom C1 implies �̂42z̃− c15 = 2�̂4z̃5− c = 2 − c < 1. Then
it follows from (A3) and (A2) that 1 >�42z̃− c15= 2�4z̃5− c�415= 2 − c�415, i.e. �415 > 1/c for any c > 1.
So �415≥ 1, and w̃ satisfies (5).

Secondly, we prove that w̃ satisfies (6). For any fixed i and 1 ≤ j ≤ ni, let k = n1 + n2 + · · · + ni−1 + j and
ẽ = 401 : : : 1011101 : : : 105 be the kth standard basis of �n. Then wi

j = �4ẽ5. Since z̃ ∈ Bo, there exists � > 0
such thatz̃− �ẽ ∈ B. For any � > 0, Axioms C1 and C2 imply �̂4z̃− �ẽ − �15 = �̂4z̃− �ẽ5− � ≤ �̂4z̃5− � =

1 − � < 1. Then (A3) and (A2) imply 1 > �4z̃ − �ẽ − �15 = �4z̃5 − ��4ẽ5 − ��415 = 1 − � − ��4ẽ5. Hence,
wi

j = �4ẽ5 >−�/�, and the conclusion follows by letting � go to 0.
Thirdly, we prove that w̃ satisfies (A10). It follows from Axiom C1 and (A3) that

∀c > 01 �4x̃5 < c for any x̃ such that x̃ ∈B and �̂4x̃5 < c0 (A11)

For any c ≤ 0, we choose b > 0 such that b + c > 0. Then by (A11 ), we have �4x̃ + b15 < c + b for any x̃

such that x̃ ∈B and �̂4x̃+ b15 < c+ b. Since �4x̃+ b15= �4x̃5+ b�415= �4x̃5+ b and �̂4x̃+ b15= �̂4x̃5+ b,
we have

∀c ≤ 01 �4x̃5 < c for any x̃ such that x̃ ∈B and �̂4x̃5 < c0 (A12)

It follows from (A11) and (A12) that �̂4x̃5 ≥ �4x̃5 for any x̃ ∈ B, which in combination with �̂4z̃5 = 1 = �4z̃5

completes the proof of (A10).
Case 20 �̂4z̃5 6= 1 and �̂4z̃5 > 0. Since �̂441/�̂4z̃55z̃5 = 1 and 41/�̂4z̃55z̃ ∈ Bo, it follows from the result

proved in Case 1 that there exists a weight w̃ = 4w̃11 : : : 1 w̃m5 ∈ �n such that w̃ satisfies (5), (6), and the
linear functional �4x̃5 2=

∑m
i=1

∑ni
j=1 w

i
jx

i
j satisfies �̂4x̃5≥ �4x̃5 for ∀x̃ ∈B and �̂441/�̂4z̃55z̃5= �441/�̂4z̃55z̃5, or,

equivalently, �̂4z̃5= �4z̃5. Thus, w̃ also satisfies (A10).
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Case 3. �̂4z̃5 ≤ 0. Choose b > 0 such that �̂4z̃ + b15 > 0. Since z̃ + b1 ∈ Bo, it follows from the results
proved in Case 1 and Case 2 that there exists a weight w̃ = 4w̃11 : : : 1 w̃m5 ∈�n such that w̃ satisfies (5) and (6),
and the linear functional �4x̃5 2=

∑m
i=1

∑ni
j=1 w

i
jx

i
j satisfies �̂4x̃5≥ �4x̃5 for ∀x̃ ∈B, and �̂4z̃+ b15= �4z̃+ b15,

or, equivalently, �̂4z̃5= �4z̃5. Thus, w̃ also satisfies (A10).

Proof of Theorem 3.1 Firstly, we prove part (i). Suppose �̂ is defined by (7); then obviously �̂ satisfies
Axioms C1 and C4. To check Axiom C2, suppose x̃ ≤ ỹ. For each i = 11 : : : 1m, let 4pi111 : : : 1 pi1ni

5 be the
permutation of 411 : : : 1 ni5 such that 4yi4151 y

i
4251 : : : 1 y

i
4ni5

5 = 4yipi111 y
i
pi12

1 : : : 1 yipi1ni
5. Then for any 1 ≤ j ≤ ni and

1 ≤ i ≤m, yi4j5 = yipi1j = max8yipi1k3 k = 11 : : : 1 j9≥ max8xi
pi1k

3 k = 11 : : : 1 j9≥ xi
4j5, which implies that �̂ satisfies

Axiom C2 because

�̂4ỹ5= sup
w̃∈W

{ m
∑
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ni
∑
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wi
jy

i
4j5

}

≥ sup
w̃∈W

{ m
∑

i=1

ni
∑

j=1

wi
jx

i
4j5

}

= �̂4x̃50

To check Axiom C3, note that if x̃ and ỹ are scenario-wise comonotonic, then for each i = 11 : : : 1m, there
exists a permutation 4pi111 : : : 1 pi1ni

5 of 411 : : : 1 ni5 such that xi
pi11

≤ xi
pi12

≤ · · · ≤ xi
pi1ni

and yipi11 ≤ yipi12 ≤ · · · ≤ yipi1ni
.

Hence, we have 4x̃i + ỹi54j5 = xi
pi1j

+ yipi1j = xi
4j5 + yi4j5, j = 11 : : : 1 ni3 i = 11 : : : 1m. Therefore,

�̂4x̃+ ỹ5= �̂
(

4x̃1
+ ỹ11 : : : 1 x̃m

+ ỹm5
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= sup
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+ ỹi54j5

}
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∑
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}

= �̂4x̃5+ �̂4ỹ51

which implies that �̂ satisfies Axiom C3.
Secondly, we prove part (ii). Let B be defined in (A1). By Axiom C4, we only need to show that there exists

a set of weights W= 8w̃9⊂�n such that each w̃ ∈W satisfies condition (5) and (6), and

�̂4x̃5= sup
w̃∈W

{ m
∑

i=1

ni
∑

j=1

wi
jx

i
j

}

for ∀x̃ ∈B.
By Lemma A.2, for any point ỹ ∈ Bo, there exists a weight ˜w4ỹ5 = 4w4ỹ51

11 : : : 1w4ỹ5
1
n1
3 : : : 3w4ỹ5m1 1 : : : 1

w4ỹ5mnm5 ∈�n such that (5) and (6) hold and that
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i
j 0 (A13)

Define W as the collection of such weights; i.e., W 2= 8 ˜w4ỹ5 � ỹ ∈Bo9, then each w̃ ∈W satisfies (5) and (6).
From (A13), for any fixed x̃ ∈Bo, we have

�̂4x̃5≥

m
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ni
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w4ỹ5ijx
i
j for ∀ỹ ∈Bo and �̂4x̃5=

m
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i
j 0

Therefore,

�̂4x̃5= sup
ỹ∈Bo
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}

1 ∀x̃ ∈Bo0 (A14)

Next, we prove that the above equality is also true for any boundary points of B; i.e.,

�̂4x̃5= sup
w̃∈W

{ m
∑

i=1

ni
∑

j=1

wi
jx

i
j

}

1 ∀x̃ ∈ ¡B0 (A15)

Let b̃ = 4b1
11 : : : 1 b

1
n1
1 : : : 1 bm

1 1 : : : 1 b
m
nm
5 be any boundary point of B. Then there exists a sequence 8˜b4k59�

k=1

⊂Bo such that ˜b4k5→ b̃ as k → �. By the continuity of �̂ and (A14), we have

�̂4b̃5= lim
k→�

�̂4˜b4k55= lim
k→�
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w̃∈W

{ m
∑
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ni
∑

j=1

wi
jb4k5

i
j

}

0 (A16)
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If we can interchange sup and limit in (A16)—i.e. if

lim
k→�

sup
w̃∈W

{ m
∑

i=1

ni
∑

j=1

wi
jb4k5

i
j

}

= sup
w̃∈W

{

lim
k→�

m
∑

i=1

ni
∑

j=1

wi
jb4k5

i
j

}

= sup
w̃∈W

{ m
∑

i=1

ni
∑

j=1

wi
jb

i
j

}

1 (A17)

—then (A15) holds and the proof is completed. To show (A17), note by Cauchy-Schwarz inequality
∣

∣

∣

∣

m
∑

i=1

ni
∑

j=1

wi
jb4k5

i
j −

m
∑

i=1

ni
∑

j=1

wi
jb

i
j

∣

∣

∣

∣

≤

( m
∑

i=1

ni
∑

j=1

4wi
j5

2

)1/2( m
∑

i=1

ni
∑

j=1

4b4k5ij − bi
j5

2

)1/2

≤

( m
∑

i=1

ni
∑

j=1

4b4k5ij − bi
j5

2

)1/2

1 ∀w̃ ∈W1

because wi
j ≥ 0 and

∑m
i=1

∑ni
j=1 w

i
j = 11∀w̃ ∈W0 Hence,

∑m
i=1

∑ni
j=1 w

i
jb4k5

i
j →

∑m
i=1

∑ni
j=1 w

i
jb

i
j uniformly for all

w̃ ∈W as k → �. Therefore, (A17) follows.

Appendix B. The second representation via acceptance sets. A statistical acceptance set is a subset of
�n that includes all the data considered acceptable by a regulator in terms of the risk measured from them.
Given a statistical acceptance set A, the risk statistic �̂A associated with A is defined to be

�̂A4x̃5 2= inf8h � x̃−h1 ∈A91 ∀x̃ ∈�n0 (B1)

�̂A4x̃5 is the minimum amount of cash that has to be added to the original position corresponding to x̃ in order
for the resulting position to be acceptable.

On the other hand, given a risk statistic �̂1 one can define the statistical acceptance set associated with �̂ by

A�̂ 2= 8x̃ ∈�n
� �̂4x̃5≤ 090 (B2)

We shall postulate the following axioms for the statistical acceptance set A:

Axiom D1. A contains �n
−

, where �n
−
2= 8x̃ ∈�n � xi

j ≤ 01 j = 11 : : : 1 ni3 i = 11 : : : 1m90

Axiom D2. A does not intersect the set �n
++

, where �n
++

2= 8x̃ ∈�n � xi
j > 01 j = 11 : : : 1 ni3 i = 11 : : : 1m90

Axiom D3. If x̃ and ỹ are scenario-wise comonotonic and x̃ ∈ A, ỹ ∈ A, then �x̃ + 41 − �5ỹ ∈ A, for
∀� ∈ 60117.

Axiom D4. A is positively homogeneous: if x̃ ∈A, then �x̃ ∈A for any �≥ 0.

Axiom D5. If x̃ ≤ ỹ and ỹ ∈A, then x̃ ∈A.

Axiom D6. A is empirical-law-invariant: if x̃ = 4x1
11 x

1
21 : : : 1 x

1
n1
1 : : : 1 xm

1 1 x
m
2 1 : : : 1 x

m
nm
5 ∈ A, then for any

permutation 4pi111 pi121 : : : 1 pi1ni
5 of 41121 : : : 1 ni5, i = 11 : : : 1m, it holds that 4x1

p111
1 x1

p112
1 : : : 1 x1

p11n1
1 : : : 1 xm

pm11
,

xm
pm12

1 : : : 1 xm
pm1nm

5 ∈A.

The following theorem shows that a natural risk statistic and a statistical acceptance set satisfying
Axioms D1–D6 are mutually representable.

Theorem B.1. (i) If �̂ is a natural risk statistic, then the statistical acceptance set A�̂ is closed and satisfies
Axioms D1–D6.

(ii) If a statistical acceptance set A satisfies Axioms D1–D6, then the risk statistic �̂A is a natural risk statistic
(with s = 1 in Axiom C1).

(iii) If �̂ is a natural risk statistic, then �̂= s�̂A�̂
.

(iv) If a statistical acceptance set D satisfies Axioms D1–D6, then A�̂D
= D̄, the closure of D.

Proof. (i) (1) For ∀x̃ ≤ 0, Axiom C2 implies �̂4x̃5 ≤ �̂405 = 0. Hence, x̃ ∈ A�̂ by definition. Thus, D1
holds. (2) For any x̃ ∈ �n

++
, there exists � > 0 such that 0 ≤ x̃ − �1. Axioms C1 and C2 imply that �̂405 ≤

�̂4x̃ − �15 = �̂4x̃5− s�. So �̂4x̃5 ≥ s� > 0 and hence x̃ y A�̂; i.e., D2 holds. (3) If x̃ and ỹ are scenario-wise
comonotonic and x̃ ∈A�̂, ỹ ∈A�̂, then �̂4x̃5≤ 0, �̂4ỹ5≤ 0, and �x̃ and 41 −�5ỹ are scenario-wise comonotonic
for any � ∈ 60117. Thus, Axiom C3 implies �̂4�x̃+ 41−�5ỹ5≤ �̂4�x̃5+ �̂441−�5ỹ5= ��̂4x̃5+ 41−�5�̂4ỹ5≤ 0.
Hence, �x̃ + 41 − �5ỹ ∈ A�̂; i.e., D3 holds. (4) For any x̃ ∈ A�̂ and a > 0, we have �̂4x̃5 ≤ 0 and Axiom C1
implies �̂4ax̃5 = a�̂4x̃5 ≤ 0. Thus, ax̃ ∈ A�̂; i.e., D4 holds. (5) For any x̃ ≤ ỹ and ỹ ∈ A�̂, we have �̂4ỹ5≤ 0.
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By Axiom C2, �̂4x̃5≤ �̂4ỹ5≤ 0. Hence, x̃ ∈A�̂; i.e., D5 holds. (6) If x̃ ∈A�̂, then �̂4x̃5≤ 0. For any permutation
4pi111 pi121 : : : 1 pi1ni

5 of 41121 : : : 1 ni5, i = 11 : : : 1m, Axiom C4 implies �̂44x1
p111

1 x1
p112

1 : : : 1 x1
p11n1

1 : : : 1 xm
pm11

1

xm
pm12

1 : : : 1 xm
pm1nm

55 = �̂4x̃5≤ 0. So 4x1
p111

, x1
p112

, : : : 1 x1
p11n1

1 : : : 1 xm
pm11

1 xm
pm12

1 : : : 1 xm
pm1nm

5 ∈ A�̂; i.e., D6 holds.

(7) Suppose 8˜x4k59�
k=1 ⊂A�̂, and ˜x4k5 → x̃ as k → �. Then �̂4˜x4k55 ≤ 01 ∀k. The continuity of �̂ (see the

comment following the definition of Axiom C2) implies �̂4x̃5= limk→� �̂4˜x4k55≤ 0. So x̃ ∈A�̂; i.e., A�̂ is closed.
(ii) (1) For ∀x̃ ∈�n1∀b ∈�, we have

�̂A4x̃+ b15= inf
{

h � x̃+ b1 −h1 ∈A
}

= b+ inf
{

h− b � x̃− 4h− b51 ∈A
}

=b+ inf
{

h � x̃−h1 ∈A
}

= b+ �̂A4x̃50

For ∀x̃ ∈ �n1∀a ≥ 0, if a = 0, then �̂A4ax̃5 = inf
{

h � 0 − h1 ∈ A
}

= 0 = a�̂A4x̃51 where the second equality
follows from Axioms D1 and D2. If a> 0, then

�̂A4ax̃5= inf
{

h � ax̃−h1 ∈A
}

= a · inf
{

u � a4x̃− u15 ∈A
}

= a · inf8u � x̃− u1 ∈A9= a�̂A4x̃51

by Axiom D4. Therefore, Axiom C1 holds (with s = 1). (2) Suppose x̃ ≤ ỹ. For any h ∈ �, if ỹ − h1 ∈ A,
then Axiom D5 and x̃ − h1 ≤ ỹ − h1 imply that x̃ − h1 ∈ A. Hence, 8h � ỹ − h1 ∈ A9 ⊆ 8h � x̃ − h1 ∈ A9. By
taking infimum on both sides, we obtain �̂A4ỹ5≥ �̂A4x̃5; i.e., C2 holds. (3) Suppose x̃ and ỹ are scenario-wise
comonotonic. For any g and h such that x̃ − g1 ∈ A and ỹ − h1 ∈ A, because x̃ − g1 and ỹ − h1 are scenario-
wise comonotonic, it follows from Axiom D3 that 1

2 4x̃ − g15 +
1
2 4ỹ − h15 ∈ A. By Axiom D4, the previous

formula implies x̃+ ỹ − 4g + h51 ∈ A0 Therefore, �̂A4x̃+ ỹ5 ≤ g + h. Taking infimum of all g and h satisfying
x̃− g1 ∈A, ỹ − h1 ∈A, on both sides of the above inequality yields �̂A4x̃+ ỹ5≤ �̂A4x̃5+ �̂A4ỹ5. So C3 holds.
(4) Fix any x̃ ∈�n and any permutation 4pi111 pi121 : : : 1 pi1ni

5 of 41121 : : : 1 ni5, i = 11 : : : 1m. Then for any h ∈�,
Axiom D6 implies that x̃ − h1 ∈ A if and only if 4x1

p111
1 x1

p112
1 : : : 1 x1

p11n1
1 : : : 1 xm

pm11
1 xm

pm12
1 : : : 1 xm

pm1nm
5− h1 ∈ A.

Hence, 8h � x̃ − h1 ∈ A9 = 8h � 4x1
p111

1 x1
p112

1 : : : 1 x1
p11n1

1 : : : 1 xm
pm11

1 xm
pm12

1 : : : 1 xm
pm1nm

5 − h1 ∈ A9. Taking infimum,
we obtain �̂A4x̃5= �̂A44x

1
p111

1 x1
p112

1 : : : 1 x1
p11n1

1 : : : 1 xm
pm11

1 xm
pm12

1 : : : 1 xm
pm1nm

55; i.e., C4 holds.
(iii) For ∀x̃ ∈ �n, we have �̂A�̂

4x̃5 = inf8h � x̃ − h1 ∈ A�̂9 = inf8h � �̂4x̃ − h15 ≤ 09 = inf8h � �̂4x̃5 ≤ sh9 =

41/s5�̂4x̃5, where the third equality follows from Axiom C1.
(iv) For any x̃ ∈ D, we have �̂D4x̃5 ≤ 0. Hence, x̃ ∈ A�̂D

. Therefore, D ⊆ A�̂D
. By the results (i) and (ii),

A�̂D
is closed. So D̄ ⊆ A�̂D

. On the other hand, for any x̃ ∈ A�̂D
, we have by definition that �̂D4x̃5 ≤ 0; i.e.,

inf8h � x̃ − h1 ∈ D9 ≤ 0. If inf8h � x̃ − h1 ∈ D9 < 0, then there exists h < 0 such that x̃ − h1 ∈ D. Then since
x̃ < x̃− h1, by D5 x̃ ∈D. Otherwise, inf8h � x̃− h1 ∈D9= 0. Then there exists hk such that hk ↓ 0 as k → �

and x̃− hk1 ∈D. Hence, x̃ ∈ D̄. In either case we obtain x̃ ∈ D̄. Hence, A�̂D
⊆ D̄. Therefore, we conclude that

A�̂D
= D̄.

Appendix C. Proof of Theorem 3.3. In this section, we assume without loss of generality that s = 1 in
Axiom C1. The proof for Theorem 3.3 follows the same line as that for Theorem 3.1. We first prove two lemmas
that are similar to Lemma A.1 and A.2.

Lemma C.1. Let B be defined in (A1). For any fixed z̃ ∈B and any �̂ satisfying Axioms C1–C2, C4, and E1,
and �̂4z̃5 = 1, there exists a weight w̃ = 4w̃11 : : : 1 w̃m5 ∈ �n satisfying (12) such that the linear functional
�4x̃5 2=

∑n1
j=1 w

1
j x

1
j +

∑n2
j=1 w

2
j x

2
j + · · · +

∑nm
j=1 w

m
j x

m
j satisfies

�4z̃5= 11 (C1)

�4x̃5 < 1 for any x̃ such that �̂4x̃5 < 10 (C2)

Proof. Let U = 8x̃ � �̂4x̃5 < 19. Axioms C1 and E1 imply that U is convex, and, hence, the closure Ū of U
is also convex.

For any �> 0, since �̂4z̃−�15= �̂4z̃5−�= 1−�< 1, it follows that z̃−�1 ∈U . Because z̃−�1 converges to
z̃ as � ↓ 0 and �̂4z̃5= 1, z̃ is a boundary point of U . Therefore, there exists a supporting hyperplane for Ū at z̃;
i.e., there exists a nonzero vector ũ = 4u1

11 : : : 1 u
1
n1
1 : : : 1 um

1 1 : : : 1 u
m
nm
5 ∈ �n such that �4x̃5 2=

∑m
i=1

∑ni
j=1 u

i
jx

i
j

satisfies �4x̃5≤�4z̃5 for any x̃ ∈ Ū 0 In particular, we have

�4x̃5≤�4z̃51 ∀x̃ ∈U0 (C3)
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For each i = 11 : : : 1m, let �i 2 81121 : : : 1 ni9 → 81121 : : : 1 ni9 be a bijection such that ui
�i415

≤ ui
�i425

≤ · · · ≤

ui
�i4ni5

, and �i4·5 be the inverse of �i4·5. Define a new weight w̃ and a new linear functional �4·5 as follows:

wi
j 2= ui

�i4j5
1 j = 11 : : : 1 ni3 i = 11 : : : 1m1 (C4)

w̃ 2=
(

w1
11 : : : 1w

1
n1
1 : : : 1wm

1 1 : : : 1w
m
nm

)

1 (C5)

�4x̃5 2=
m
∑

i=1

ni
∑

j=1

wi
jx

i
j1 (C6)

then by definition w̃ satisfies condition (12). For any fixed x̃ ∈ U , by Axiom C4, �̂44x1
�1415

1 : : : 1 x1
�14n15

1 : : : 1

xm
�m415

1 : : : 1 xm
�m4nm5

55= �̂4x̃5 < 1, so 4x1
�1415

1 : : : 1 x1
�14n15

1 : : : 1 xm
�m415

1 : : : 1 xm
�m4nm5

5 ∈U . Then, we have

�4x̃5 =

m
∑

i=1

ni
∑

j=1

wi
jx

i
j =

m
∑

i=1

ni
∑

j=1

ui
�i4j5

xi
j =

m
∑

i=1

ni
∑

j=1

ui
�i4�i4j55

xi
�i4j5

=

m
∑

i=1

ni
∑

j=1

ui
jx

i
�i4j5

= �
(

x1
�1415

1 : : : 1 x1
�14n15

1 : : : 1 xm
�m415

1 : : : 1 xm
�m4nm5

)

≤�4z̃5 4by (C3)50 (C7)

Noting that zi1 ≤ zi2 ≤ · · · ≤ zini , i = 1121 : : : 1m, we obtain

�4z̃5=

m
∑

i=1

ni
∑

j=1

ui
jz

i
j ≤

m
∑

i=1

ni
∑

j=1

ui
�i4j5

zij = �4z̃50 (C8)

By (C7) and (C8), we have
�4x̃5≤ �4z̃51 ∀x̃ ∈U0 (C9)

We shall show that the strict inequality holds in (C9). Suppose, by contradiction, that there exists r̃ ∈U such
that �4r̃5 = �4z̃5. With wmax 2= max8w1

11 : : : 1w
1
n1
1 : : : 1wm

1 1 : : : 1w
m
nm
9, we have r̃ + �w̃ ≤ r̃ + �wmax1 for any

�> 0. Thus, Axioms C1 and C2 yield

�̂4r̃ + �w̃5≤ �̂4r̃ + �wmax15= �̂4r̃5+ �wmax1 ∀�> 00 (C10)

Since �̂4r̃5 < 1, we have by (C10) that for small enough � > 0, �̂4r̃ + �w̃5 < 1. Hence, r̃ + �w̃ ∈ U and (C9)
implies �4r̃ + �w̃5 ≤ �4z̃5. However, �4r̃ + �w̃5 = �4r̃5 + ��w̃�2 > �4r̃5 = �4z̃51 leading to a contradiction. In
summary, we have shown that

�4x̃5 < �4z̃51 ∀x̃ ∈U0 (C11)

Since �̂405 = 0, we have 0 ∈ U . Letting x̃ = 0 in (C11) yields �4z̃5 > 0, so we can re-scale w̃ such that
�4z̃5= 1 = �̂4z̃5. Thus, (C11) becomes �4x̃5 < 1 for any x̃ such that �̂4x̃5 < 1, from which (C2) holds.

Lemma C.2. Let B be defined in (A1). For any fixed z̃ ∈B and any �̂ satisfying Axioms C1–C2, E1, and C4,
there exists a weight w̃ = 4w̃11 : : : 1 w̃m5 ∈�n satisfying (10), (11), and (12), such that

�̂4x̃5≥

m
∑

i=1

ni
∑

j=1

wi
jx

i
j for any x̃ ∈�n1 and �̂4z̃5=

m
∑

i=1

ni
∑

j=1

wi
jz

i
j 0 (C12)

Proof. We will show this by considering two cases.
Case 10 �̂4z̃5= 1. From Lemma C.1, there exists a weight w̃ = 4w̃11 : : : 1 w̃m5 ∈�n satisfying (12) such that

the linear functional �4x̃5 2=
∑m

i=1

∑ni
j=1 w

i
jx

i
j satisfies (C1) and (C2).

Firstly, we prove that w̃ satisfies (10), which is equivalent to �415 = 1. To this end, first note that for any
c < 1, (C1) implies �̂4c15 = c < 1. Thus, (C2) implies �4c15 < 1, and, by continuity of �4·5, we obtain that
�415 ≤ 1. On the other hand, for any c > 1, (C1) implies �̂42z̃− c15 = 2�̂4z̃5− c = 2 − c < 1. Then it follows
from (C1) and (C2) that 1 > �42z̃ − c15 = 2�4z̃5 − c�415 = 2 − c�415; i.e. �415 > 1/c for any c > 1. So
�415 ≥ 1, and w̃ satisfies (10). Secondly, we prove that w̃ satisfies (11). For any fixed i and 1 ≤ j ≤ ni, let
k = n1 + n2 + · · · + ni−1 + j and ẽ = 401 : : : 1011101 : : : 105 be the kth standard basis of �n. Then wi

j = �4ẽ5.
For any � > 0, Axioms C1 and C2 imply �̂4z̃− ẽ− �15= �̂4z̃− ẽ5− �≤ �̂4z̃5− �= 1 − � < 1. Then (C1) and
(C2) imply 1 >�4z̃− ẽ−�15= �4z̃5−�4ẽ5−��415= 1−�−�4ẽ5. Hence, wi

j = �4ẽ5 >−�, and the conclusion
follows by letting � go to 0. Thirdly, we prove that w̃ satisfies (C12). It follows from Axiom C1 and (C2) that

∀c > 01 �4x̃5 < c for any x̃ such that �̂4x̃5 < c0 (C13)
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For any c ≤ 0, we choose b > 0 such that b+ c > 0. Then it follows from (C13) that �4x̃+ b15 < c+ b for any
x̃ such that �̂4x̃+ b15 < c+ b. Since �4x̃+ b15= �4x̃5+ b�415= �4x̃5+ b and �̂4x̃+ b15= �̂4x̃5+ b, we have

∀c ≤ 01 �4x̃5 < c for any x̃ such that �̂4x̃5 < c0 (C14)

It follows from (C13) and (C14) that �̂4x̃5 ≥ �4x̃5 for any x̃ ∈ �n, which in combination with �̂4z̃5 = 1 = �4z̃5
completes the proof of (C12).

Case 2. �̂4z̃5 6= 1. The argument is the same as that in case 2 and case 3 of the proof for Lemma A.2.

Proof of Theorem 3.3 Without loss of generality, we assume s = 1 in Axiom C1.
Firstly, we prove part (i). We only need to show that under condition (12), the risk statistic (13) satisfies sub-

additivity for any x̃ and ỹ ∈�n. Let 4pi111 pi121 : : : 1 pi1ni
5 be the permutation of 411 : : : 1 ni5 such that 4x̃i + ỹi5pi11

≤ 4x̃i + ỹi5pi12 ≤ · · · ≤ 4x̃i + ỹi5pi1ni
. Then for k = 11 : : : 1 ni − 1, the partial sum up to k satisfies

k
∑

j=1

4x̃i
+ ỹi54j5 =

k
∑

j=1

(

x̃i
+ ỹi

)

pi1j
=

k
∑

j=1

(

xi
pi1j

+ yipi1j
)

≥

k
∑

j=1

(

xi
4j5 + yi4j5

)

0 (C15)

In addition, we have for the total sum
ni
∑

j=1

(

x̃i
+ ỹi

)

4j5
=

ni
∑

j=1

(

x̃i
+ ỹi

)

j
=

ni
∑

j=1

(

xi
j + yij

)

=

ni
∑

j=1

(

xi
4j5 + yi4j5

)

0 (C16)

Rearranging the summation terms yields

�̂4x̃+ ỹ5 = �̂
(

4x̃1
+ ỹ11 x̃2

+ ỹ21 : : : 1 x̃m
+ ỹm5

)

= sup
w̃∈W

{ m
∑

i=1

ni
∑

j=1

wi
j4x̃

i
+ ỹi54j5

}

= sup
w̃∈W

{ m
∑

i=1

[ni−1
∑

j=1

4wi
j −wi

j+15
j
∑

k=1

4x̃i
+ ỹi54k5 +wi

ni

ni
∑

k=1

4x̃i
+ ỹi54k5

]}

1

which, along with (C15) and (C16), and because wi
j −wi

j+1 ≤ 0, shows that

�̂4x̃+ ỹ5 ≤ sup
w̃∈W

{ m
∑

i=1

[ni−1
∑

j=1

4wi
j −wi

j+15
j
∑

k=1

4xi
4k5 + yi4k55+wi

ni

ni
∑

k=1

4xi
4k5 + yi4k55

]}

= sup
w̃∈W

{ m
∑

i=1

ni
∑

j=1

wi
jx

i
4j5 +

m
∑

i=1

ni
∑

j=1

wi
jy

i
4j5

}

≤ sup
w̃∈W

{ m
∑

i=1

ni
∑

j=1

wi
jx

i
4j5

}

+ sup
w̃∈W

{ m
∑

i=1

ni
∑

j=1

wi
jy

i
4j5

}

= �̂4x̃5+ �̂4ỹ50

Secondly, we prove part (ii). Let B be defined in (A1). By Axiom C4, we only need to show that there exists
a set of weights W= 8w̃9⊂�n such that each w̃ ∈W satisfies (10), (11), and (12), and

�̂4x̃5= sup
w̃∈W

{ m
∑

i=1

ni
∑

j=1

wi
jx

i
j

}

for ∀x̃ ∈B.

By Lemma C.2, for any ỹ ∈ B, there exists a weight ˜w4ỹ5 = 4w4ỹ51
11 : : : 1w4ỹ5

1
n1
3 : : : 3w4ỹ5m1 1 : : : 1w4ỹ5

m
nm
5

satisfying (10), (11), and (12), such that

�̂4x̃5≥

m
∑

i=1

ni
∑

j=1

w4ỹ5ijx
i
j for any x̃ ∈�n1 and �̂4ỹ5=

m
∑

i=1

ni
∑

j=1

w4ỹ5ijy
i
j 0 (C17)

Define W as the collection of such weights; i.e., W 2= 8 ˜w4ỹ5 � ỹ ∈ B9. Then each w̃ ∈ W satisfies (10),
(11), and (12). From (C17), for any fixed x̃ ∈ B, we have �̂4x̃5 ≥

∑m
i=1

∑ni
j=1 w4ỹ5

i
jx

i
j for ∀ỹ ∈ B, and �̂4x̃5 =

∑m
i=1

∑ni
j=1 w4x̃5

i
jx

i
j . Therefore,

�̂4x̃5= sup
ỹ∈B

{ m
∑

i=1

ni
∑

j=1

w4ỹ5ijx
i
j

}

= sup
w̃∈W

{ m
∑

i=1

ni
∑

j=1

wi
jx

i
j

}

1 ∀x̃ ∈B1

which completes the proof.
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Appendix D. Proof of Theorem 3.4.

Proof. We assume, without loss of generality, that s = 1 in Axiom 4. The “if” part can be proved by
using the same argument as that in the proof for part (i) of Theorem 3.1. To prove the “only if” part, we shall
first prove

�̂4cx̃5= c�̂4x̃51 ∀c ≥ 01∀x̃ ≥ 00 (D1)

By Axiom 3, we have �̂405 = �̂405 + �̂405, so �̂405 = 0. Axiom 3 also implies �̂4mx̃5 = m�̂4x̃51 ∀m ∈ �1
x̃ ∈ �n, and �̂4 k

m
x̃5 =

1
m
�̂4kx̃5 =

k
m
�̂4x̃5, for ∀m ∈ �1 k ∈ � ∪ 8091 x̃ ∈ �n, or, equivalently, for the set of

nonnegative rational numbers �+,

�̂4qx̃5= q�̂4x̃51 ∀q ∈�+1 x̃ ∈�n0 (D2)

In general, for any c ≥ 0 there exist two sequences 8dn9
�
n=1 ⊂ �+ and 8en9

�
n=1 ⊂ �+, such that dn ↑ c and

en ↓ c as n → �. Then for ∀x̃ ≥ 0, ∀n, we have dnx̃ ≤ cx̃ ≤ enx̃. It follows from Axiom 2 and (D2) that
dn�̂4x̃5= �̂4dnx̃5≤ �̂4cx̃5≤ �̂4enx̃5= en�̂4x̃51 ∀n1 ∀x̃ ≥ 0. Letting n→ �, we obtain (D1).

Now we are ready to prove the “only if” part. Let ẽj 2= 401 : : : 1011101 : : : 105 be the jth standard basis of
�n, and `1 2= 0, `i 2=

∑i−1
j=1 nj , i = 21 : : : 1m. By Axioms 1 and 3,

�̂4x̃5 = �̂
(

4x1
4151 x

1
4251 : : : 1 x

1
4n15

1 : : : 1 xm
4151 x

m
4251 : : : 1 x

m
4nm5

5
)

= �̂

( m
∑

i=1

40101 : : : 101 xi
4151 x

i
4251 : : : 1 x

i
4ni5

10101 : : : 105
)

=

m
∑

i=1

�̂
(

40101 : : : 101 xi
4151 x

i
4251 : : : 1 x

i
4ni5

10101 : : : 105
)

0 (D3)

Further, by Axiom 3,

�̂
(

401 : : : 101 xi
4151 x

i
4251 : : : 1 x

i
4ni5

101 : : : 105
)

= �̂
(

401 : : : 10101 xi
425 − xi

4151 : : : 1 x
i
4ni5

− xi
415101 : : : 105

)

+ �̂

(

xi
415

`i+ni
∑

j=`i+1

ẽj

)

= �̂
(

401 : : : 1010101 xi
435 − xi

4251 : : : 1 x
i
4ni5

− xi
425101 : : : 105

)

+ �̂

(

4xi
425 − xi

4155
`i+ni
∑

j=`i+2

ẽj

)

+ �̂

(

xi
415

`i+ni
∑

j=`i+1

ẽj

)

= · · ·

= �̂

(

4xi
4ni5

− xi
4ni−155

`i+ni
∑

j=`i+ni

ẽj

)

+ · · · + �̂

(

4xi
425 − xi

4155
`i+ni
∑

j=`i+2

ẽj

)

+ �̂

(

xi
415

`i+ni
∑

j=`i+1

ẽj

)

=
(

xi
4ni5

− xi
4ni−15

)

�̂

( `i+ni
∑

j=`i+ni

ẽj

)

+ · · · + 4xi
425 − xi

4155�̂

( `i+ni
∑

j=`i+2

ẽj

)

+ �̂

(

xi
415

`i+ni
∑

j=`i+1

ẽj

)

1 (D4)

where the last equality follows from (D1). If xi
415 ≥ 0, then by (D1) we have

�̂

(

xi
415

`i+ni
∑

j=`i+1

ẽj

)

= xi
415�̂

( `i+ni
∑

j=`i+1

ẽj

)

0 (D5)

If xi
415 < 0, then because xi

415

∑`i+ni
j=`i+1 ẽj and −xi

415

∑`i+ni
j=`i+1 ẽj are scenario-wise comonotonic, we have by Axiom 3

that �̂4xi
415

∑`i+ni
j=`i+1 ẽj5+ �̂4−xi

415

∑`i+ni
j=`i+1 ẽj5= �̂405= 0, which implies

�̂

(

xi
415

`i+ni
∑

j=`i+1

ẽj

)

= −�̂

(

−xi
415

`i+ni
∑

j=`i+1

ẽj

)

= xi
415�̂

( `i+ni
∑

j=`i+1

ẽj

)

1 (D6)
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where the last equality follows from (D1). Then by (D3), (D4), (D5), and (D6), we obtain

�̂4x̃5=

m
∑

i=1

ni
∑

j=1

wi
jx

i
4j51 where wi

j 2= �̂

( `i+ni
∑

k=`i+j

ẽk

)

− �̂

( `i+ni
∑

k=`i+j+1

ẽk

)

0

Because by Axiom 2 wi
j ≥ 0 and

∑m
i=1

∑ni
j=1 w

i
j = �̂415= 1, the proof is completed.

Appendix E. Proof of Theorem 4.1 and Theorem 4.2.

Proof of Theorem 4.1 Let x̃i = 4xi
11 : : : 1 x

i
ni
5 ∈�ni be the data subset that is used to calculate VaRt−i, i =

11 : : : 160, and x̃i+60 = 4xi+60
1 1 : : : 1 xi+60

ni+60
5 ∈�ni+60 be the data subset used to calculate sVaRt−i, i = 11 : : : 160. In

addition, define the 121th scenario x̃121 2= 0 ∈� and n121 2= 1. Let n 2=
∑121

i=1 ni. We will show that (16) and (17)
are natural risk statistics defined on �n. Define w̃ = 4w̃11 : : : 1 w̃1215= 4w1

11 : : : 1w
1
n1
1 : : : 1w121

1 1 : : : 1w121
n121

5 ∈�n

such that wi
j 2= 18j=�0099ni�9

, 1 ≤ j ≤ ni, i = 11 : : : 1121. Then we have

VaRt−i =

ni
∑

j=1

wi
jx

i
4j51 sVaRt−i =

ni+60
∑

j=1

wi+60
j xi+60

4j5 3 i = 11 : : : 1600 (E1)

By (E1), the Basel II risk measure (16) is equal to

k · max
{121
∑

i=1

ni
∑

j=1

ui
jx

i
4j51

121
∑

i=1

ni
∑

j=1

vijx
i
4j5

}

1 (E2)

where the two weights ũ= 4ũ11 : : : 1 ũ1215 and ṽ = 4ṽ11 : : : 1 ṽ1215 are defined by

ũ1 2=
1
k
w̃13 ũi 2= 01 i = 21 : : : 11203 ũ121 2=

k− 1
k

w̃1211

ṽi 2=
1

60
w̃i1 i = 11 0 0 0 1603 ṽi 2= 01 i = 611 : : : 11210

Hence, by Theorem 3.1, (16) is a natural risk statistic that corresponds to s = k in Axiom C1. Again, by (E1),
the Basel III risk measure (17) is equal to

k · max
{121
∑

i=1

ni
∑

j=1

ui
jx

i
4j51

121
∑

i=1

ni
∑

j=1

vijx
i
4j5

}

+ ` · max
{121
∑

i=1

ni
∑

j=1

gijx
i
4j51

121
∑

i=1

ni
∑

j=1

hi
jx

i
4j5

}

1 (E3)

where the two weights g̃ = 4g̃11 : : : 1 g̃1215 and h̃= 4h̃11 : : : 1 h̃1215 are defined by

g̃i 2= 01 ∀i 6= 61 and i 6= 1213 g̃61 2=
1
`
w̃613 g̃121

=
`− 1
`

w̃1211

h̃i 2= 01 i = 11 : : : 1603 h̃i 2=
1

60
w̃i1 i = 611 0 0 0 11203 h̃121

= 00

It is straightforward to verify that (E3) satisfies Axioms C1–C4, with s = k + ` in Axiom C1. Hence, (17) is
also a natural risk statistic.

Proof of Theorem 4.2 The IRC risk measure (18) corresponds to a natural risk statistic with s = 1, which
can be shown by following the same argument as that for proving Theorem 4.1.

Appendix F. Analysis of the robustness of MS and ES. The following tools in robust statistics show that
MS is more robust than ES is.

(i) The influence function is an important tool for assessing the robustness of statistics. Let F be the distribution
function of X, x̃ = 4x11 : : : 1 xn5 be a sample of X, and Fn4·5 be the empirical distribution function. Let M
be the space of distribution functions on �. Consider estimating T 4F 5 from x̃ for some statistical functional
T 4·52 M→�. MS and ES are both such functionals, since

MS�4F 5= F −1

(

1 +�

2

)

1 ES�4F 5=
1

1 −�

∫ 1

�
F −14s5ds1 (F1)
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where the second equality follows in Tasche [47, Proposition 3.4]. A natural estimator for T 4F 5 is T 4Fn5, and

MS�4Fn5= x4�n41+�5/2�51 (F2)

ES�4Fn5=
k− n�

41 −�5n
x4k5 +

1
41 −�5n

n−1
∑

j=k

x4j+151 k = �n��0 (F3)

The robustness of the statistic T 4Fn5 can be asymptotically characterized by its influence function (IF)
IF4y1 T 1 F 5 2= lim�↓041/�56T 441−�5F +��y5−T 4F 571 y ∈�1 where �y is the point mass 1 at y that represents
a contamination point to the distribution F . If the influence function is bounded; i.e., supy∈� �IF4y1 T 1 F 5�<�,
then T 4Fn5 is robust; otherwise, T 4Fn5 is not robust, and outliers in the data may cause large changes to T 4Fn5
(Huber and Ronchetti [26]). The following proposition shows that ES has an unbounded influence function but
MS has a bounded one.

Proposition F.1. (1) If F has a probability density f 4·5 that is continuous and positive at MS�4F 5, then
the influence function of MS� is given by

IF4y1MS�1 F 5=











1
2 4�− 15/f 4MS�4F 551 if y < MS�4F 51

01 if y = MS�4F 51
1
2 41 +�5/f 4MS�4F 551 if y > MS�4F 50

(F4)

(2) If F has a positive probability density f 4·5, then the influence function of ES� is given by

IF4y1ES�1 F 5=











F −14�5− ES�4F 51 if y ≤ F −14�51

y

1 −�
− ES�4F 5−

�

1 −�
F −14�51 if y > F −14�50

(F5)

Proof. Because MS�4F 5 = F −1441 + �5/25, (F4) follows in Staudte and Sheather [44, Equation (3.2.3)].
To show (F5), define F�1y4z5 2= 41 − �5F 4z5+ ��y4z51 z ∈�. Then by definition,

F�1y4z5=

{

41 − �5F 4z51 if z < y1

41 − �5F 4z5+ �1 if z≥ y0

It follows in Tasche [47, Definition 3.2] that

ES�4F 5=
1

1 −�

∫

6F −14�51�5
zF 4dz5−

�

1 −�
F −14�5+

1
1 −�

F −14�5F
(

F −14�5−
)

0

Then we have

ES�4F�1y5=
1

1 −�

∫

6F −1
�1y 4�51�5

zF�1y4dz5−
�

1 −�
F −1
�1y 4�5+

1
1 −�

F −1
�1y 4�5F�1y

(

F −1
�1y 4�5−

)

0 (F6)

To compute IF4y1ES�1 F 5, we need to consider three cases:
Case 1. y < F −14�5. In this case, for � > 0 small enough, F −1

�1y 4�5 = F −144�− �5/41 − �551 and
F�1y4F

−1
�1y 4�5−5= F�1y4F

−144�− �5/41 − �55−5= 41 − �5F 4F −14�− �5/41 − �5+ �= �0 And then by (F6), for
�> 0 small enough,

G4�5 2= ES�4F�1y5=
1

1 −�

∫

6F −1
�1y 4�51�5

zF�1y4dz5

=
1 − �

1 −�

∫

6F −144�−�5/41−�551�5
zF 4dz5+

�

1 −�
y18y≥F −144�−�5/41−�559 =

1 − �

1 −�

∫

6F −144�−�5/41−�551�5
zF 4dz50

Hence,

IF4y1ES�1 F 5=G′405 = −
1

1 −�

∫

6F −144�−�5/41−�551�5
zF 4dz5

∣

∣

∣

∣

�=0

+
1 − �

1 −�
4−15F −1

(

�− �

1 − �

)

f

(

F −1

(

�− �

1 − �

))

d

d�
F −1

(

�− �

1 − �

)

∣

∣

∣

∣

�=0

= −
1

1 −�

∫

6F −14�51�5
zF 4dz5+ F −14�5 (F7)
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Case 2. y = F −14�5. In this case, F −1
�1y 4�5 = F −14�5, and F�1y4F

−1
�1y 4�5−5 = F�1y4F

−14�5−5 = 41 − �5 ·

F 4F −14�55= 41 − �5�0 And by (F6),

G4�5 = ES�4F�1y5=
1

1 −�

∫

6F −14�51�5
zF�1y4dz5−

��

1 −�
F −14�5

=
1 − �

1 −�

∫

6F −14�51�5
zF 4dz5+ �F −14�50

Hence,

IF4y1ES�1 F 5=G′405= −
1

1 −�

∫

6F −14�51�5
zF 4dz5+ F −14�50 (F8)

Case 3. y > F −14�5. In this case, for � > 0 small enough, F −1
�1y 4�5 = F −14�/41 − �55, and F�1y4F

−1
�1y 4�5−5 =

F�1y4F
−14�/41 − �55−5= 41 − �5F 4F −14�/41 − �555= �. And then by (F6), for �> 0 small enough,

G4�5 = ES�4F�1y5=
1

1 −�

∫

6F −1
�1y 4�51�5

zF�1y4dz5=
1 − �

1 −�

∫

6F −14�/41−�551�5
zF 4dz5+

�

1 −�
y18y≥F −14�/41−�559

=
1 − �

1 −�

∫

6F −14�/41−�551�5
zF 4dz5+

�

1 −�
y0

Hence,

IF4y1ES�1 F 5=G′405 =
y

1 −�
−

1
1 −�

∫

6F −14�/41−�551�5
zF 4dz5

∣

∣

∣

∣

�=0

+
1 − �

1 −�
4−15F −1

(

�

1 − �

)

f

(

F −1

(

�

1 − �

))

d

d�
F −1

(

�

1 − �

)

∣

∣

∣

∣

�=0

=
y

1 −�
−

1
1 −�

∫

6F −14�51�5
zF 4dz5−

�

1 −�
F −14�50 (F9)

Then (F5) follows from (F7), (F8), and (F9).

(ii) The asymptotic breakdown point is, roughly, the smallest fraction of bad observations that may cause an
estimator to take on arbitrarily large aberrant values; see Huber and Ronchetti [26, §1.4] for the mathemati-
cal definition. Hence, a high breakdown point is clearly desirable. It follows from Huber and Ronchetti [26,
Theorem 3.7] and Equation (F1) that the asymptotic breakdown point of MS� is 1 − � and the asymptotic
breakdown point of ES� is 0, which clearly shows the robustness of MS.

(iii) The finite sample breakdown point (see Huber and Ronchetti [26, Chap. 11]) of MS�4Fn5 is 4n −

�n41 +�5/2� + 15/42n− �n41 +�5/2� + 15≈ 41 −�5/43 −�5, but that of ES�4Fn5 is 1/4n+ 15, which means
one additional corrupted sample can cause arbitrarily large bias to ES�.
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