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1 Introduction

In empirical research, many data sets are contaminated by measurement errors. Thus, there is

a large body of literature that studies the identification and estimation of measurement error

models. Chen, Hong, and Nekipelov (2011) and Hu (2017) provide excellent reviews of recent

developments and applications of measurement errors models in economics.

One of the most fundamental problems in this literature is how to recover the distribution of

an unobserved variable (denoted by X) from one or more mismeasured variables. The classical

nonparametric deconvolution approach (see Fan 1991, for example) assumes that there is an

observed measurement (denoted by Y ) contaminated by an independent measurement error

(denoted by ε), i.e., Y = X+ε, and that the distribution of ε is known. However, the assumption

of knowing the error’s distribution is too strong for most applications. Thus, many studies

on structural identification in economics rely on Kotlarski’s identity (see Kotlarski 1967 and

Evdokimov and White 2012), which provides an explicit identification result for the unknown

distributions of X and ε based on two different contaminated measurements — see Li, Perrigne,

and Vuong (2000), Bonhomme and Robin (2010), Arcidiacono et al. (2011), Kennan and Walker

(2011), Krasnokutskaya (2011) and Arellano and Bonhomme (2012) for examples.

Based on Kotlarski’s identity, a class of nonparametric deconvolution estimators for the

characteristic functions and density functions of the error-free variable and the measurement

errors (denoted by ϕX , ϕε, fX , fε) was first proposed by Li and Vuong (1998). The uniform

convergence rates of the LV estimators were established, and it was shown that these rates

depend on the smoothness of fX and fε, which is characterized by the decay rates of their

characteristic functions. Recently, based on a new maximal inequality for the multivariate

empirical characteristic function process, Kurisu and Otsu (2022) (KO, hereafter) showed that

the LV estimators can achieve faster uniform convergence rates under weaker assumptions (e.g.,

unbounded supports of X and ε).

The main goal of this study is to establish faster uniform convergence rates for nonparametric

deconvolution estimators based on Kotlarski’s identity. This paper makes two main contribu-

tions. First, it is shown that the uniform convergence rates of the LV estimators established

in KO can be further improved under the same assumptions, and the faster convergence rates

obtained in this paper can provide some new insights. For example, we find that the uniform

convergence rate of the LV estimator for ϕε only depends on the smoothness of the distribution

of X, while in LV and KO this rate also depends on the smoothness of the distribution of ε.

Second, we propose a new class of nonparametric deconvolution estimators based on a variant

of Kotlarski’s identity, where the roles of the measurement errors and the error-free variable are

switched. Under very similar assumptions, the uniform convergence rates of these new estima-

tors are established, and they are compared with the rates of the LV estimators. It is found that
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these new estimators can have much faster convergence rates than the LV estimators in some

cases. Moreover, since the deconvolution estimators are often used as the first-step nonparamet-

ric estimators in the estimation of some semiparametric models, the faster rates of convergence

obtained in this paper will facilitate the asymptotic analysis of these two-step semiparametric

estimators (see Newey 1994 for example).

The rest of the paper is organized as follows. Section 2 defines the models and the estimators.

The uniform convergence rates of the estimators are presented and compared in Section 3.

Section 4 gives a heuristic explanation of how we can obtain the faster convergence rates for the

LV estimators. Finally, Section 5 concludes.

2 The Models and The Estimators

Let X be an error-free random variable of interest, and let Y1, Y2 be two noisy measurements of

X with measurement errors ε1 and ε2 respectively. In particular, the model can be written as

Y1 = X + ε1,

Y2 = X + ε2.
(1)

The following assumption is standard in the literature to derive Kotlarski’s identity.

Assumption 1. Let ϕX(·) and ϕε(·) denote the characteristic functions of X and ε respectively.

(i) X, ε1 and ε2 are mutually independent.

(ii) The distributions of ε1 and ε2 are identical to the distribution of ε, and E[ε] = 0.

(iii) ϕX(·) and ϕε(·) are non-vanishing everywhere.

(iv) E|X| <∞ and E|ε| <∞.

Let ψ(u1, u2) = E[eiu1Y1+iu2Y2 ] be the characteristic function of (Y1, Y2), where i =
√
−1,

then it is well known that Kotlarski’s identify provides an explicit identification result for ϕX

and ϕε.

Lemma 1. Under Assumption 1,

ϕX(t) = exp

(∫ t

0

∂ψ(0, u2)/∂u1

ψ(0, u2)
du2

)
= exp

(∫ t

0

iE[Y1e
isY2 ]

E[eisY2 ]
ds

)
, (2)

and ϕε(t) = ψ(t, 0)/ϕX(t) = ψ(0, t)/ϕX(t).

Let {Yj1, Yj2}nj=1 be an i.i.d sample from the joint distribution of (Y1, Y2), and let fX(·) and

fε(·) denote the density functions of X and ε respectively. In a seminal work, Li and Vuong
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(1998) proposed the following estimators for ϕX and fX based on Lemma 1:

ϕ̂X(t) = exp

(∫ t

0

∑
j iYj1e

isYj2∑
j e

isYj2
ds

)
, and f̂X(x) =

1

2π

∫
e−itxϕ̂X(t)ϕK(hnt)dt,

where ϕK is the Fourier transform of a kernel function K and hn is a bandwidth parameter.

Moreover, ϕε and fε can be estimated by

ϕ̂ε(t) =
ψ̂(t, 0)

ϕ̂X(t)
, and f̂ε(u) =

1

2π

∫
e−ituϕ̂ε(t)ϕK(hnt)dt,

where ψ̂(t, 0) = n−1
∑n

j=1 e
itYj1 .

Alternatively, model (1) can be written as

Y1 =ε1 +X,

Y1 − Y2 =ε1 − ε2,
(3)

where Y1 and Y1 − Y2 can be viewed as the measurements, and ε1 is treated as the error-free

variable. Thus, one can derive an alternative set of estimators for (ϕX , fX , ϕε, fε) based on the

application of Kotlarski’s identity to (3). In particular, the following identification result gives

an alternative explicit formula for ϕε.

Lemma 2. Under Assumption 1,

ϕε(t) = exp

(∫ t

0

iE[Y1e
is(Y1−Y2)]

E[eis(Y1−Y2)]
ds− itE[Y1]

)
.

Based on the above result, the following estimators for (ϕX , fX , ϕε, fε) are proposed:

ϕ̃ε(t) = exp

∫ t

0

∑
j iYj1e

is(Yj1−Yj2)∑
j e

is(Yj1−Yj2)
ds− 1

n

∑
j

itYj1

 ,

f̃ε(u) =
1

2π

∫
e−ituϕ̃ε(t)ϕK(hnt)dt,

ϕ̃X(t) =
ψ̂(t, 0)

ϕ̃ε(t)
, f̃X(x) =

1

2π

∫
e−itxϕ̃X(t)ϕK(hnt)dt.

3 Main Results

The main purpose of this section is to establish the uniform convergence rates of (ϕ̂X , ϕ̂ε) and

(ϕ̃X , ϕ̃ε). Following the literature, we require one of the following assumptions to hold for the
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characteristic functions of X and ε.

Assumption 2. (Ordinary Smooth) There exist some positive constants βx > 1, Cx ≥ cx,

ωx, βε > 1, Cε ≥ cε and ωε such that

(i) cx|t|−βx ≤ |ϕX(t)| ≤ Cx|t|−βx for all |t| ≥ ωx.

(ii) cε|t|−βε ≤ |ϕε(t)| ≤ Cε|t|−βε for all |t| ≥ ωε.

Assumption 3. (Supersmooth) There exist some positive constants ρx, Cx ≥ cx, ωx, µx, ρε, Cε ≥
cε, ωε, µε and some constants βx, βε such that

(i) cx|t|βx exp(−|t|ρx/µx) ≤ |ϕX(t)| ≤ Cx|t|βx exp(−|t|ρx/µx) for all |t| ≥ ωx.

(ii) cε|t|βε exp(−|t|ρε/µε) ≤ |ϕε(t)| ≤ Cε|t|βε exp(−|t|ρε/µε) for all |t| ≥ ωε.

The concepts of ordinary smooth (OS, hereafter) and supersmooth (SS, hereafter) distri-

butions were first introduced by Fan (1991) in the study of the optimal convergence rates for

nonparametric deconvolution estimators. In his setup, there is only one measurement for X and

the distribution of the measurement error is known. Moreover, the smoothness condition is im-

posed on the error’s characteristic function, while the density function of X is assumed to satisfy

a Lipschitz condition. In this paper, we follow Li and Vuong (1998) and KO to distinguish the

following four cases1:

Case 1: ϕX and ϕε are both OS.

Case 2: ϕX is OS and ϕε is SS.

Case 3: ϕX is SS and ϕε is OS.

Case 4: ϕX and ϕε are both SS.

In addition, the following assumption is imposed.

Assumption 4. (i) The kernel function K satisfies Assumption of KO.2 (ii) E[|X|3+δ] < ∞,

E[|ε|3+δ] <∞ for some δ > 0.

Note that Assumption 4(ii), which strengthens Assumption 1(iv), is required to apply the

maximal inequality for multivariate empirical characteristic function processes (Lemma 1 of

KO).3 The next four subsections provide the uniform convergence rates of (ϕ̂X , ϕ̂ε) and (ϕ̃X , ϕ̃ε)

for Case 1 to Case 4, which are the main theoretical results of this paper.

1For simplicity, in this paper a characteristic function is called OS (SS) if it satisfies Assumption 2 (Assumption
3). But it should be kept in mind that the smoothness condition is actually imposed on the density functions
through the decay rate of the characteristic functions.

2This condition is only required for establishing the convergence rates of the estimated density functions.
3To apply Lemma 1 of KO with k = (1, 0), one needs E[|Y1|2+η|Y2|1+η/2] <∞ for some η > 0, which is ensured

by Assumption 4(ii). However, KO only assumes that E|Y1|2+η <∞, which we believe is not sufficient.
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3.1 Case 1: OS ϕX and OS ϕε

Theorem 1. Suppose that Assumptions 1, 2 and 4 hold, then:

sup
|t|≤Tn

|ϕ̂X(t)− ϕX(t)| = Op

(
n−1/2T βx+βε+1

n log Tn

)
,

sup
|t|≤Tn

|ϕ̂ε(t)− ϕε(t)| = Op

(
n−1/2T 2βx+1

n log Tn

)
,

if n−1/2T 2βx+βε+1
n log Tn → 0, and

sup
|t|≤Tn

|ϕ̃X(t)− ϕX(t)| = Op

(
n−1/2T (3βε−βx+1)∨βε

n log Tn

)
,

sup
|t|≤Tn

|ϕ̃ε(t)− ϕε(t)| = Op

(
n−1/2T 2βε+1

n log Tn

)
,

if n−1/2T 3βε+1
n log Tn → 0.

3.2 Case 2: OS ϕX and SS ϕε

Theorem 2. Suppose that Assumptions 1, 2(i), 3(ii) and 4 hold, then:

sup
|t|≤Tn

|ϕ̂X(t)− ϕX(t)| = Op

(
n−1/2T βx−βε+1

n exp(T ρεn /µε) log Tn

)
,

sup
|t|≤Tn

|ϕ̂ε(t)− ϕε(t)| = Op

(
n−1/2T 2βx+1

n log Tn

)
,

if n−1/2T 2βx−βε+1
n exp(T ρεn /µε) log Tn → 0, and

sup
|t|≤Tn

|ϕ̃X(t)− ϕX(t)| = Op

(
n−1/2T−βx−3βε+1

n exp(3T ρεn /µε) log Tn

)
,

sup
|t|≤Tn

|ϕ̃ε(t)− ϕε(t)| = Op

(
n−1/2T−2βε+1

n exp(2T ρεn /µε) log Tn

)
,

if n−1/2T−3βε+1
n exp(3T ρεn /µε) log Tn → 0.

3.3 Case 3: SS ϕX and OS ϕε

Theorem 3. Suppose that Assumptions 1, 2(ii), 3(i) and 4 hold, then:

sup
|t|≤Tn

|ϕ̂X(t)− ϕX(t)| = Op

(
n−1/2T−βx+βε+1

n exp(T ρxn /µx) log Tn

)
,

sup
|t|≤Tn

|ϕ̂ε(t)− ϕε(t)| = Op

(
n−1/2T−2βx+1

n exp(2T ρxn /µx) log Tn

)
,
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if n−1/2T−2βx+βε+1
n exp(2T ρxn /µx) log Tn → 0, and

sup
|t|≤Tn

|ϕ̃X(t)− ϕX(t)| = Op

(
n−1/2T βεn log Tn

)
,

sup
|t|≤Tn

|ϕ̃ε(t)− ϕε(t)| = Op

(
n−1/2T 2βε+1

n log Tn

)
,

if n−1/2T 3βε+1
n log Tn → 0.

3.4 Case 4: SS ϕX and SS ϕε

Theorem 4. Suppose that Assumptions 1, 3 and 4 hold, then:

sup
|t|≤Tn

|ϕ̂X(t)− ϕX(t)| = Op

(
n−1/2T−βx−βε+1

n exp(T ρxn /µx + T ρεn /µε) log Tn

)
,

sup
|t|≤Tn

|ϕ̂ε(t)− ϕε(t)| = Op

(
n−1/2T−2βx+1

n exp(2T ρxn /µx) log Tn

)
,

if n−1/2T−2βx−βε+1
n exp(2T ρxn /µx + T ρεn /µε) log Tn → 0, and

sup
|t|≤Tn

|ϕ̃X(t)− ϕX(t)| = Op

(
n−1/2(an ∨ bn) log Tn

)
,

sup
|t|≤Tn

|ϕ̃ε(t)− ϕε(t)| = Op

(
n−1/2T−2βε+1

n exp(2T ρεn /µε) log Tn

)
,

if n−1/2T−3βε+1
n exp(3T ρεn /µε) log Tn → 0, where

an = T βx−3βε+1
n exp(3T ρεn /µε − T ρxn /µx) and bn = T−βεn exp(T ρεn /µε).

3.5 Summary of Results and Some Remarks

The uniform convergence rates of (ϕ̂X , ϕ̂ε) and (ϕ̃X , ϕ̃ε) for Case 1 to Case 4 are summarized in

Table 1 below. For comparison, we also include the convergence rates established in KO. There

are three main takeaways from the results in Table 1.

First, for the LV estimators, the rates obtained in this paper are obviously faster than those

obtained in KO, which have been shown to be faster than the rates proved by Li and Vuong

(1998) and Bonhomme and Robin (2010) under more restrictive conditions (see Remark 1 and

Remark 2 of KO). For example, if we set Tn = O
(
(n/ log log n)α/2(1+βx+βε)

)
with 0 < α < 1/2

as in Li and Vuong (1998), then our Theorem 1 implies that

sup
|t|≤Tn

|ϕ̂X(t)− ϕX(t)| = OP

((
n

log log n

)− 1
2

+α
2

)
,
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while the results of KO and Li and Vuong (1998) are

OP

((
n

log logn

)− 1
2

+α− α
2(1+βx+βε)

)
and OP

((
n

log logn

)− 1
2

+α
)

respectively.

Second, depending on the values of (µx, ρx, βx) and (µε, ρε, βε), the convergence rates of

(ϕ̃X , ϕ̃ε) can be faster than those of (ϕ̂X , ϕ̂ε), especially in Case 3 where the rates of the (ϕ̂X , ϕ̂ε)

are exponential functions of Tn while the rates of the (ϕ̃X , ϕ̃ε) are polynomial functions of Tn.

Third, with the faster convergence rates obtained in this paper, some interesting new insights

can be gained. It can be seen that for ϕ̂ε, the convergence rates only depends on the smoothness

of the distribution of X, while for ϕ̃ε, the convergence rates only depends on the smoothness of

the distribution of ε. Thus, if one is interested in estimating the distribution of the measurement

errors, ϕ̂ε should be used if ϕX is OS, while ϕ̃ε is preferred if ϕε is OS. In the case where both

ϕX and ϕε are OS or SS, these two estimators are very similar in terms of convergence rates.

Remark 1 (The density functions). To save space, we only report the results for the estimated

characteristic functions. Given Theorem 1 to Theorem 4, faster uniform convergence rates of

the estimated densities can be easily obtained. For example, with Tn = h−1
n , in Case 1, we can

show that the uniform convergence rates of f̂X and f̂ε are

Op

(
n−1/2T βx+βε+2

n log Tn + T 1−βx
n

)
and Op

(
n−1/2T 2βx+2

n log Tn + T 1−βε
n

)
respectively. The proofs are similar to those of KO, and therefore they are omitted.

Remark 2 (Regularized estimators). Comte and Kappus (2015) proposed a regularized version

of the LV estimators. KO showed that these regularized estimators have the same uniform

convergence rates as the LV estimators. With very small modifications of our proofs, it can be

shown that the uniform convergence rates established in this paper also apply to the regularized

LV estimators.
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Table 1: Comparison of Uniform Convergence Rates

Case 1 Case 2 Case 3 Case 4

ϕ̂X,KO T 2βx+2βε
n T 2βx−2βε

n exp(2T ρεn /µε) T−2βx+2βε
n exp(2T ρxn /µx) T−2βx−2βε

n exp(2T ρxn /µx + 2T ρεn /µε)

ϕ̂X Tβx+βεn Tβx−βεn exp(T ρεn /µε) T−βx+βεn exp(T ρxn /µx) T−βx−βεn exp(T ρxn /µx + T ρεn /µε)

ϕ̃X T
(3βε−βx)∨(βε−1)
n T−βx−3βε

n exp(3T ρεn /µε) Tβε−1
n ãn ∨ b̃n

ϕ̂ε,KO T 3βx+2βε
n T 3βx−2βε

n exp(2T ρεn /µε) T−3βx+2βε
n exp(3T ρxn /µx) T−3βx−2βε

n exp(3T ρxn /µx + 2T ρεn /µε)

ϕ̂ε T 2βx
n T 2βx

n T−2βx
n exp(2T ρxn /µx) T−2βx

n exp(2T ρxn /µx)

ϕ̃ε T 2βε
n T−2βε

n exp(2T ρεn /µε) T 2βε
n T−2βε

n exp(2T ρεn /µε)

Note: This table presents the uniform convergence rates of (ϕ̂X , ϕ̂ε) and (ϕ̃X , ϕ̃ε) for Case 1 to Case 4, up to a common

factor: n−1/2Tn log Tn. For comparison, we also include the rates established in KO, which are denoted by ϕ̂·,KO. ãn =

Tβx−3βε
n exp(3T ρεn /µε − T ρxn /µx), and b̃n = T−βε−1

n exp(T ρεn /µε).

4 A Heuristic Explanation for the Faster Convergence Rate

In this section, we provide a heuristic explanation of why the faster convergence rates can be

obtained for the LV estimators in this paper. The discussion below focuses on Case 1 and the

estimation of ϕX , but the idea behind applies to the other three cases and the other estimators.

Define â(s) = n−1
∑n

j=1 iYj1e
isYj2 , a(s) = E[iY1e

isY2 ], b̂(s) = n−1
∑n

j=1 e
isYj2 , b(s) = E[eisY2 ],

and

∆(t) =

∫ t

0

(
â(s)

b̂(s)
− a(s)

b(s)

)
ds, ∆1(t) =

∫ t

0

â(s)− a(s)

b(s)
ds,

∆2(t) =

∫ t

0
a(s)

(
1

b̂(s)
− 1

b(s)

)
ds, ∆3(t) =

∫ t

0
(â(s)− a(s))

(
1

b̂(s)
− 1

b(s)

)
ds.

Note that ∆(t) = ∆1(t) + ∆2(t) + ∆3(t). Then it can be shown that (see equation A.2 of KO)4

|ϕ̂X(t)− ϕX(t)| ≤ 2|ϕX(t)| · |∆(t)| · I{|∆(t)| ≤ 1}+ 2I{|∆(t)| > 1} (4)

≤ 4|∆(t)| . |∆1(t)|+ |∆2(t)|+ |∆3(t)|. (5)

First, if one follows the proof of KO that starts with inequality (5), then we have:

sup
|t|≤Tn

|ϕ̂X(t)− ϕX(t)| . sup
|t|≤Tn

|∆1(t)|+ sup
|t|≤Tn

|∆2(t)|+ sup
|t|≤Tn

|∆3(t)| .

Compared to the proof of KO, this paper establishes a faster convergence rate for the second

term on the right-hand side of the above inequality, which turns out to be the dominating term.

4To facilitate the discussion we assume that |ϕ̂X(t)| ≤ 1 here.
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Note that

sup
|t|≤Tn

|∆2(t)| ≤ sup
|t|≤Tn

∫ t

0

∣∣∣∣∣a(s)[b̂(s)− b(s)]
b̂(s)b(s)

∣∣∣∣∣ ds (6)

≤ sup
|t|≤Tn

∣∣∣b̂(t)− b(t)∣∣∣ · 1

inf |t|≤Tn |b̂(t)|
·
∫ Tn

0

∣∣∣∣a(s)

b(s)

∣∣∣∣ ds︸ ︷︷ ︸
OP (Tβx+1

n )

(7)

≤ sup
|t|≤Tn

∣∣∣b̂(t)− b(t)∣∣∣︸ ︷︷ ︸
OP (n−1/2 log Tn)

· 1

inf |t|≤Tn |b̂(t)|︸ ︷︷ ︸
OP (Tβx+βεn )

· 1

inf |t|≤Tn |b(t)|︸ ︷︷ ︸
OP (Tβx+βεn )

·
∫ Tn

0
|a(s)| ds︸ ︷︷ ︸

OP (Tn)

. (8)

The main difference is that we use the sharper inequality (7) to derive the rate while KO use

(8). In particular, the first two terms of (7) and (8) can be shown to be OP (n−1/2 log Tn) and

OP (T βx+βε
n ) respectively. Moreover, the third term of (8) is OP (T βx+βε

n ) and the last term of

(8) is OP (Tn). This gives the derived uniform convergence rate for ϕ̂X(t) in KO. In comparison,

we show that the third term of (7) is OP (T β+1
n ), leading to a faster convergence rate.

Intuitively, the reason why (7) provides a better bound is that the large values of 1/|b(s)|
is partially offset by small values of |a(s)| when s approaches infinity. Such an effect is ignored

when one uses (8) and considers the uniform bounds for 1/|b(s)| and |a(s)| separately. To see

this, note that

a(s)

b(s)
=

iE[Y1e
isY2 ]

E[eisY2 ]
=

iE[XeisY2 ] + iE[ε1e
isY2 ]

E[eisY2 ]

=
iE[XeisXeisε2 ] + iE[ε1e

isXeisε2 ]

E[eisXeisε2 ]

=
iE[XeisX ]

E[eisX ]
.

Thus, it follows that∫ Tn

0

∣∣∣∣a(s)

b(s)

∣∣∣∣ ds ≤ Tn · E[|X|] · 1

inf |t|≤Tn |ϕX(t)|
= OP (T βx+1

n ).

which gives the rate in (7).

Second, our proof starts with inequality (4) instead of (5) to show that the uniform conver-

gence rate of ϕ̂X(t) is actually decided by sup|t|≤Tn |ϕX(t)| · |∆2(t)| rather than sup|t|≤Tn |∆2(t)|.
Since |ϕX(t)| is very small as |t| becomes large, the convergence rate can be further improved.

Remark 3 (Tighter bound for a(s)/b(s)). The discussion above implies that the uniform con-

vergence rate for ϕ̂X can be further improved if a sharper bound on a(s)/b(s) can be obtained.
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For example:

(i) When X ∼Normal (µ, σ2) (SS distribution), it can be shown that a(s)/b(s) = −σ2s+ iµ

and |a(s)/b(s)| ≤ C(1 + |s|) for some C > 0, thus the last term of (7) becomes OP (T 2
n) instead

of OP (T 1−βx
n exp(T ρxn /µx)).

(ii) When X ∼Cauchy (µ, θ) (SS distribution), it can be shown that a(s)/b(s) = iµ− sgn(s)θ

and |a(s)/b(s)| ≤ C for some C > 0, thus the last term of (7) becomes OP (Tn) instead of

OP (T 1−βx
n exp(T ρxn /µx)).

(iii) When X follows Student’s t distribution with ν degrees of freedom (SS distribution),

it can be shown that a(s)/b(s) = −
√
ν · sgn(s) · Kν/2−1(

√
ν|s|)/Kν/2(

√
ν|s|), where Kν is the

modified Bessel function of the second kind, and |a(s)/b(s)| ≤ C for some C > 0, thus the last

term of (7) becomes OP (Tn) instead of OP (T 1−βx
n exp(T ρxn /µx)).

(iv) When X ∼Laplace (µ, b) (OS distribution), it can be shown that a(s)/b(s) = −2b2s/(1+

b2s2)+ iµ and |a(s)/b(s)| ≤ C for some C > 0, thus the last term of (7) becomes OP (Tn) instead

of OP (T βx+1
n ).

(v) When X ∼Gamma (k, θ) (OS distribution), it can be shown that a(s)/b(s) = ikθ/(1− isθ)
and |a(s)/b(s)| ≤ C for some C > 0, thus the last term of (7) becomes OP (Tn) instead of

OP (T βx+1
n ).

Based on the above examples, a natural conjecture is that |a(s)/b(s)| < C when ϕX is OS

and |a(s)/b(s)| < C(1+ |s|γ) when ϕX is SS, where C > 0 and γ ≥ 0 are some constants. If this

conjecture is true,5 it is obvious from (7) that a faster uniform convergence rate can be obtained

for ϕ̂X , especially when ϕX is SS. However, a formal justification for this conjecture is beyond

the scope of this paper.

5 Conclusions

As pointed out in the concluding remarks of KO, deconvolution estimators based on Kotlarski’s

identity are usually used as nonparametric plug-in components in many other studies (see Li

2002, Li and Hsiao 2004, Adusumilli et al. 2020 and Otsu and Taylor 2021 for examples). Thus a

faster uniform convergence rate for these estimators is essential for understanding the asymptotic

properties of the related test statistics and semiparametric estimators. Based on a maximal

inequality for the multivariate normalized empirical characteristic function process developed

in KO, this paper shows that the LV estimators can achieve faster uniform convergence rates

than those obtained in existing studies. Moreover, a new class of nonparametric deconvolution

estimators is proposed based on a variant of Kotlarski’s identity, and these estimators are shown

to have faster convergence rates than the LV estimators in some cases. Finally, we point out that

5A similar condition is imposed in Assumption ASYM of Evdokimov (2010).
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a even faster uniform convergence rate can be achieved by imposing a inequality for ordinary

smooth and supersmooth distributions. However, a formal justification of this inequality is

beyond the scope of this paper and is left for future research.
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A Proofs of the Main Results

A.1 Proof of Lemma 2

Proof of Lemma 2. First note that

ϕε1(t) = exp (lnϕε1(t)− ln 1) = exp

(∫ t

0

∂ lnϕε1(s)

∂s
ds

)
= exp

(∫ t

0

iE[ε1e
isε1 ]

E[eisε1 ]
ds

)
,

where the integrand is well-defined due to Assumption 1.

Next, we have

E[ε1e
isε1 ]

E[eisε1 ]
=
E[ε1e

isε1 ] · E[e−isε2 ]

E[eisε1 ] · E[e−isε2 ]
=

E[ε1e
is(Y1−Y2)] + E[Xeis(Y1−Y2)]− E[Xeis(Y1−Y2)]

E[eis(Y1−Y2)]

=
E[Y1e

is(Y1−Y2)]

E[eis(Y1−Y2)]
− E[X] =

E[Y1e
is(Y1−Y2)]

E[eis(Y1−Y2)]
− E[Y1].

This completes the proof.6

A.2 Proof of Theorem 1

Recall that a(s), b(s), â(s), b̂(s),∆1(t),∆2(t),∆3(t) are defined in Section 4.

Lemma 3. Suppose that Assumptions 1, 2 and 4 hold, then:

(i) sup|t|≤Tn |∆1(t)| = OP (n−1/2T βx+βε+1
n log Tn).

(ii) sup|t|≤Tn |∆2(t)| = OP (n−1/2T 2βx+βε+1
n log Tn).

(iii) sup|t|≤Tn |∆3(t)| = OP (n−1T 2βx+2βε+1
n (log Tn)2).

Proof. First, for ∆1(t), note that

sup
|t|≤Tn

|∆1(t)| ≤ sup
|t|≤Tn

|â(t)− a(t)| ·
∫ Tn

0

1

|b(s)|
ds.

Lemma 1 of KO and Assumption 2 imply that

sup
|t|≤Tn

|â(t)− a(t)| = OP (n−1/2 log Tn), and

∫ Tn

0

1

|b(s)|
ds = O(T βx+βε+1

n ).

Thus, the first result follows.

6Note that in this proof we only need the characteristic function of ε to be non-vanishing everywhere.
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Second, as discussed in Section 4, we have

sup
|t|≤Tn

|∆2(t)| ≤ sup
|t|≤Tn

|b̂(t)− b(t)| · 1

inf |t|≤Tn |b̂(t)|
·
∫ Tn

0

∣∣∣∣a(s)

b(s)

∣∣∣∣ ds.
From the discussion in Section 4, we have∫ Tn

0

∣∣∣∣a(s)

b(s)

∣∣∣∣ ds ≤ Tn · E[|X|] · 1

inf |t|≤Tn |ϕX(t)|
= OP (T βx+1

n ).

Moreover, Lemma 1 of KO and Assumption 2 imply that

sup
|t|≤Tn

|b̂(t)− b(t)| = OP (n−1/2 log Tn), and
1

inf |t|≤Tn |b̂(t)|
= OP (T βx+βε

n ).

Thus, the second result follows.

Finally, the last result follows from

sup
|t|≤Tn

|∆3(t)| ≤ Tn · sup
|t|≤Tn

|â(t)− a(t)| · sup
|t|≤Tn

|b̂(t)− b(t)| · 1

inf |t|≤Tn |b̂(t)|
· 1

inf |t|≤Tn |b(t)|
.

Proof of Theorem 1. We first establish the convergence rates for ϕ̂X and ϕ̂ε.

Step 1: Convergence rate for ϕ̂X

Similar to the proof of Theorem 1 in KO, one can show that

|ϕ̂X(t)− ϕX(t)| ≤ 2|ϕX(t)||∆(t)|+ |ϕ̂X(t)− ϕX(t)| I{|∆(t)| > 1}

Thus, for any sequence {cn} of positive constants that converges to 0 as n diverges, we have

P

[
sup
|t|≤Tn

|ϕ̂X(t)− ϕX(t)| > cn

]
≤ P

[
sup
|t|≤Tn

|ϕX(t)||∆(t)| > cn/4

]
+P

[
sup
|t|≤Tn

I{|∆(t)| > 1} > 0

]
.

Note that

P

[
sup
|t|≤Tn

I{|∆(t)| > 1} > 0

]
≤ P

[
sup
|t|≤Tn

|∆(t)| > 1

]
,

and the right-hand side of the above inequality goes to 0 by Lemma 3. Then, to establish the

uniform convergence rate of ϕ̂X(t), it suffices to show that

sup
|t|≤Tn

|ϕX(t)||∆(t)| = OP (n−1/2T βx+βε+1
n log Tn). (A.1)

14



Let λx ∈ [ωx, Tn] such that Cxλ
−βx
x ≤ inf |s|≤ωx |ϕX(s)|, and let λε ∈ [ωε, Tn] such that

Cελ
−βε
ε ≤ inf |s|≤ωε |ϕε(s)|. Then for λ = max{λx, λε} and any t ∈ [λ, Tn], we have inf |s|≤t |ϕX(s)| =

infωx≤|s|≤t |ϕX(s)| because

inf
ωx≤|s|≤t

|ϕX(s)| ≤ inf
λ≤|s|≤t

|ϕX(s)| ≤ Cxλ−βx ≤ Cxλ−βxx ≤ inf
|s|≤ωx

|ϕX(s)|.

Thus, it follows from Assumption 2 that

inf
|s|≤t
|ϕX(s)| ≥ cxt−βx for any t ∈ [λ, Tn]. (A.2)

Similarly, it can be shown that

inf
|s|≤t
|ϕε(s)| ≥ cεt−βε for any t ∈ [λ, Tn]. (A.3)

To prove (A.1), note that

sup
|t|≤Tn

|ϕX(t)||∆(t)| ≤ sup
λ≤|t|≤Tn

|ϕX(t)||∆(t)|+ sup
|t|≤λ
|ϕX(t)| · sup

|t|≤λ
|∆(t)|, (A.4)

where the second term on the right-hand side of the above inequality is OP (n−1/2) by Lemma

3 and the property of characteristic functions, and the first term is bounded by

sup
λ≤|t|≤Tn

|ϕX(t)||∆(t)| ≤ sup
λ≤|t|≤Tn

|ϕX(t)||∆1(t)|

+ sup
λ≤|t|≤Tn

|ϕX(t)||∆2(t)|+ sup
λ≤|t|≤Tn

|ϕX(t)||∆3(t)|. (A.5)

By the definition of ∆2(t), we have

sup
λ≤|t|≤Tn

|ϕX(t)| |∆2(t)|

≤ sup
λ≤|t|≤Tn

|ϕX(t)|
∫ |t|

0

∣∣∣∣∣a(s)[b̂(s)− b(s)]
b̂(s)b(s)

∣∣∣∣∣ ds
≤ sup

λ≤|t|≤Tn
|ϕX(t)| · sup

|s|≤|t|

∣∣∣∣ a(s)

b(s)2

∣∣∣∣ · |t| sup
|s|≤|t|

∣∣∣∣∣b(s)[b̂(s)− b(s)]b̂(s)

∣∣∣∣∣
≤ sup

|s|≤Tn

∣∣∣∣∣b(s)[b̂(s)− b(s)]b̂(s)

∣∣∣∣∣ · sup
λ≤|t|≤Tn

|t| · |ϕX(t)| · gt

≤ Cx · sup
|s|≤Tn

∣∣∣∣∣b(s)[b̂(s)− b(s)]b̂(s)

∣∣∣∣∣ · sup
λ≤|t|≤Tn

|t|1−βx · gt
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where

gt := sup
|s|≤|t|

∣∣∣∣ a(s)

b(s)2

∣∣∣∣ ≤ sup
|s|≤|t|

∣∣∣∣a(s)

b(s)

∣∣∣∣ · sup
|s|≤|t|

∣∣∣∣ 1

b(s)

∣∣∣∣ ≤ sup|s|≤|t|
∣∣iE[XeisX ]

∣∣
inf |s|≤|t| |ϕX(s)|2 · inf |s|≤|t| |ϕε(s)|

.

By (A.2) and (A.3), for |t| ≥ λ we have gt . |t|2βx+βε . It follows that

sup
λ≤|t|≤Tn

|t|1−βx · gt . T βx+βε+1
n .

Moreover, similar to the proof of Lemma 3, it can be shown that

sup
|s|≤Tn

∣∣∣∣∣b(s)[b̂(s)− b(s)]b̂(s)

∣∣∣∣∣ = OP (n−1/2 log Tn).

Thus we have

sup
λ≤|t|≤Tn

|ϕX(t)| |∆2(t)| = OP (n−1/2T βx+βε+1
n log Tn). (A.6)

Finally, it follows from Lemma 3 that

sup
λ≤|t|≤Tn

|ϕX(t)| |∆1(t)| ≤ sup
|t|≤Tn

|∆1(t)| = OP (n−1/2T βx+βε+1
n log Tn), (A.7)

and

sup
λ≤|t|≤Tn

|ϕX(t)| |∆3(t)| ≤ sup
|t|≤Tn

|∆3(t)| = oP (n−1/2T βx+βε+1
n log Tn). (A.8)

Therefore, (A.1) follows from (A.4) to (A.8), and this completes the proof for ϕ̂X .

Step 2: Convergence rate for ϕ̂ε

Note that

ϕ̂ε(t)− ϕε(t) =
ϕ̂Y1(t)

ϕ̂X(t)
− ϕY1(t)

ϕX(t)

=
ϕ̂Y1(t)− ϕY1(t)

ϕX(t)
+ ϕY1(t) ·

(
1

ϕ̂X(t)
− 1

ϕX(t)

)
+ (ϕ̂Y1(t)− ϕY1(t)) ·

(
1

ϕ̂X(t)
− 1

ϕX(t)

)
:=∆4(t) + ∆5(t) + ∆6(t).

First, by Lemma 1 of KO and Assumption 2,

sup
|t|≤Tn

|∆4(t)| ≤
sup|t|≤Tn |ϕ̂Y1(t)− ϕY1(t)|

inf |t|≤Tn |ϕX(t)|
= OP (n−1/2T βxn log Tn). (A.9)
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Second, by the result of the previous step,

sup
|t|≤Tn

|∆6(t)| ≤
sup|t|≤Tn |ϕ̂Y1(t)− ϕY1(t)| · sup|t|≤Tn |ϕ̂X(t)− ϕX(t)|

inf |t|≤Tn |ϕX(t)| · inf |t|≤Tn |ϕ̂X(t)|

= OP (n−1/2T 2βx+1
n log Tn) ·OP (n−1/2T βx+βε

n log Tn). (A.10)

Finally, we will show that

sup
|t|≤Tn

|∆5(t)| = OP (n−1/2T 2βx+1
n log Tn), (A.11)

which together with (A.9) and (A.10) lead to the desired result.

To prove (A.11), note that

sup
|t|≤Tn

|∆5(t)| = sup
|t|≤Tn

∣∣∣∣ϕY1(t) (ϕ̂X(t)− ϕX(t))

ϕ̂X(t)ϕX(t)

∣∣∣∣
= sup
|t|≤Tn

{∣∣∣∣ ϕε(t)ϕX(t)

∣∣∣∣ · |ϕ̂X(t)− ϕX(t)| ·
∣∣∣∣ϕX(t)

ϕ̂X(t)

∣∣∣∣}
≤ sup
|t|≤Tn

{∣∣∣∣ ϕε(t)ϕX(t)

∣∣∣∣ · |ϕ̂X(t)− ϕX(t)|
}
· sup
|t|≤Tn

∣∣∣∣ϕX(t)

ϕ̂X(t)

∣∣∣∣ .
Since, |ϕ̂X(t)− ϕX(t)| ≤ 2|ϕX(t)| · |∆(t)|+ |ϕ̂X(t)− ϕX(t)| I(|∆(t)| > 1), it follows that

sup
|t|≤Tn

|∆5(t)| ≤ 2 sup
|t|≤Tn

{|ϕε(t)| · |∆(t)|} · sup
|t|≤Tn

∣∣∣∣ϕX(t)

ϕ̂X(t)

∣∣∣∣
+ sup
|t|≤Tn

{∣∣∣∣ ϕε(t)ϕX(t)

∣∣∣∣} · sup
|t|≤Tn

I(|∆(t)| > 1) ·OP (1). (A.12)

Since Lemma 3 implies that sup|t|≤Tn |∆(t)| = oP (1), the second term on the right-hand side of

(A.12) is equal to 0 with probability approaching 1. It is easy to show that sup|t|≤Tn |ϕX(t)/ϕ̂X(t)| =
OP (1). Moreover, similar to the proof of the previous step, it can be shown that

sup
|t|≤Tn

{|ϕε(t)| · |∆(t)|}

≤ sup
|t|≤Tn

{|ϕε(t)| · |∆1(t)|}+ sup
|t|≤Tn

{|ϕε(t)| · |∆2(t)|}+ sup
|t|≤Tn

{|ϕε(t)| · |∆3(t)|}

= OP (n−1/2T βx+1
n log Tn) +OP (n−1/2T 2βx+1

n log Tn) + oP (n−1/2T 2βx+1
n log Tn).

This completes the proof.

Next, we establish the convergence rates for ϕ̃X and ϕ̃ε.

Step 3: Convergence rate for ϕ̃ε
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Define

c(s) = E
[
iY1e

is(Y1−Y2)
]
, c̃(s) =

1

n

n∑
j=1

iYj1e
is(Yj1−Yj2),

d(s) = E
[
eis(Y1−Y2)

]
, d̃(s) =

1

n

n∑
j=1

eis(Yj1−Yj2),

∆̃(t) =

∫ t

0

(
c̃(s)

d̃(s)
− c(s)

d(s)

)
ds− 1

n

n∑
j=1

(itYj1 − E[itYj1]) ,

∆̃1(t) =

∫ t

0

c̃(s)− c(s)
d(s)

ds, ∆̃2(t) =

∫ t

0
c(s)

(
1

d̃(s)
− 1

d(s)

)
ds,

∆̃3(t) =

∫ t

0
(c̃(s)− c(s))

(
1

d̃(s)
− 1

d(s)

)
ds, ∆̃4(t) =

1

n

n∑
j=1

(itYj1 − E[itYj1]) .

Then ∆̃(t) = ∆̃1(t) + ∆̃2(t) + ∆̃3(t)− ∆̃4(t), and ϕ̃ε(t)− ϕε(t) = ϕε(t) · (e∆̃(t) − 1).

Similar to the proof of Lemma 3, it can be shown that

sup
|t|≤Tn

|∆̃1(t)| = OP (n−1/2T 2βε+1
n log Tn), sup

|t|≤Tn
|∆̃2(t)| = OP (n−1/2T 3βε+1

n log Tn), (A.13)

sup
|t|≤Tn

|∆̃3(t)| = OP (n−1T 4βε+1
n (log Tn)2), sup

|t|≤Tn
|∆̃4(t)| = OP (n−1/2Tn). (A.14)

Since

|ϕ̃ε(t)− ϕε(t)| ≤ 2|ϕε(t)||∆̃(t)|I{|∆̃(t)| ≤ 1}+ |ϕ̃ε(t)− ϕε(t)|I{|∆̃(t)| > 1},

and (A.13) and (A.14) imply that the second term on the right-hand side of the above inequality

is equal to 0 with probability approaching 1, it suffices to show that

sup
|t|≤Tn

|ϕε(t)||∆̃(t)| = OP (n−1/2T 2βε+1
n log Tn). (A.15)
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First, by (A.3), we have

sup
|t|≤Tn

|ϕε(t)||∆̃1(t)|

≤ sup
|t|≤Tn

|ϕε(t)|
∫ |t|

0

|c̃(s)− c(s)|
|d(s)|

ds

≤ sup
|t|≤λ
|ϕε(t)|

∫ |t|
0

|c̃(s)− c(s)|
|d(s)|

ds+ sup
λ<|t|≤Tn

|ϕε(t)|
∫ |t|

0

|c̃(s)− c(s)|
|d(s)|

ds

≤ OP (n−1/2) + sup
λ<|t|≤Tn

|ϕε(t)| ·
|t|

inf |s|≤|t| |d(s)|
· sup
|s|≤|t|

|c̃(s)− c(s)|

≤ OP (n−1/2) + Cεc
−2
ε sup
|s|≤Tn

|c̃(s)− c(s)| · sup
λ<|t|≤Tn

|t|1+βε

= OP (n−1/2) +OP (n−1/2T βε+1
n log Tn).

Second, using a similar argument,

sup
|t|≤Tn

|ϕε(t)||∆̃2(t)|

≤ sup
|t|≤Tn

|ϕε(t)|
∫ |t|

0

∣∣∣∣c(s)( 1

d̃(s)
− 1

d(s)

)∣∣∣∣ ds
≤ sup

|t|≤λ
|ϕε(t)|

∫ |t|
0
|c(s)|

∣∣∣∣ 1

d̃(s)
− 1

d(s)

∣∣∣∣ ds+ sup
λ<|t|≤Tn

|ϕε(t)|
∫ |t|

0

∣∣∣∣c(s)( 1

d̃(s)
− 1

d(s)

)∣∣∣∣ ds
≤ OP (n−1/2) + sup

|s|≤Tn

|d(s)|
|d̃(s)|

· sup
|s|≤Tn

|d̃(s)− d(s)| · Cε sup
λ<|t|≤Tn

|t|1−βε sup
|s|<|t|

∣∣∣∣ c(s)d2(s)

∣∣∣∣
= OP (n−1/2) +OP (n−1/2T 2βε+1

n log Tn).

Third, it follows from (A.14) that

sup
|t|≤Tn

|ϕε(t)||∆̃3(t)| = oP (n−1/2T 2βε+1
n log Tn),

sup
|t|≤Tn

|ϕε(t)||∆̃4(t)| = OP (n−1/2Tn).

Thus, (A.15) follows from the above results. This completes the proof.

Step 4: Convergence rate for ϕ̃X
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Note that

ϕ̃X(t)− ϕX(t) =
ϕ̂Y1(t)

ϕ̃ε(t)
− ϕY1(t)

ϕε(t)

=
ϕ̂Y1(t)− ϕY1(t)

ϕε(t)
+ ϕY1(t) ·

(
1

ϕ̃ε(t)
− 1

ϕε(t)

)
+ (ϕ̂Y1(t)− ϕY1(t)) ·

(
1

ϕ̃ε(t)
− 1

ϕε(t)

)
:=∆̃5(t) + ∆̃6(t) + ∆̃7(t).

First, by Lemma 1 of KO and Assumption 2,

sup
|t|≤Tn

|∆̃5(t)| ≤
sup|t|≤Tn |ϕ̂Y1(t)− ϕY1(t)|

inf |t|≤Tn |ϕε(t)|
= OP (n−1/2T βεn log Tn). (A.16)

Second, by the result of Step 3,

sup
|t|≤Tn

|∆̃7(t)| ≤
sup|t|≤Tn |ϕ̂Y1(t)− ϕY1(t)| · sup|t|≤Tn |ϕ̃ε(t)− ϕε(t)|

inf |t|≤Tn |ϕε(t)| · inf |t|≤Tn |ϕ̃ε(t)|

= OP (n−1/2T 2βε+1
n log Tn) ·OP (n−1/2T 2βε

n log Tn).

Third, similar to the proof of Step 2, we have

sup
|t|≤Tn

|∆̃6(t)| ≤ sup
|t|≤Tn

∣∣∣∣ϕX(t)

ϕε(t)

∣∣∣∣ · ∣∣∣∣ϕε(t)ϕ̃ε(t)

∣∣∣∣ · |ϕ̃ε(t)− ϕε(t)|
≤ OP (1) · sup

|t|≤Tn
|ϕX(t)||∆̃(t)|+OP (1) · sup

|t|≤Tn

∣∣∣∣ϕε(t)ϕ̃ε(t)

∣∣∣∣ · sup
|t|≤Tn

∣∣∣∣ϕX(t)

ϕε(t)

∣∣∣∣ I{|∆̃(t)| > 1}.

Since the second term on the right-hand side of the last inequality is equal to 0 with probability

approaching 1, to establish the order of sup|t|≤Tn |∆̃6(t)|, it suffices to show that

sup
|t|≤Tn

|ϕX(t)||∆̃(t)| = OP (n−1/2T (3βε−βx+1)∨0
n log Tn). (A.17)

Similar to the proof of Step 3, it can be shown that

sup
|t|≤Tn

|ϕX(t)||∆̃1(t)| = OP (n−1/2T (2βε−βx+1)∨0
n log Tn), (A.18)

sup
|t|≤Tn

|ϕX(t)||∆̃2(t)| = OP (n−1/2T (3βε−βx+1)∨0
n log Tn), (A.19)

sup
|t|≤Tn

|ϕX(t)||∆̃3(t)| = oP (n−1/2T (3βε−βx+1)∨0
n log Tn), (A.20)

sup
|t|≤Tn

|ϕX(t)||∆̃4(t)| = OP (n−1/2Tn). (A.21)
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Thus, (A.17) follows from (A.18) to (A.21), and we have

sup
|t|≤Tn

|∆̃6(t)| = OP (n−1/2T (3βε−βx+1)∨0
n log Tn). (A.22)

The desired result then follows from (A.16) and (A.22).

A.3 Proofs of Other Theorems

The proofs of Theorem 2 to Theorem 4 are similar to the proof of Theorem 1. Therefore, we

relegate the proofs of these theorems to the Online Appendix.
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