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Abstract

A major issue of the increasingly popular robust optimization is the tendency to
produce overly conservative solutions. This paper deals with this by proposing
a new parameterized robust criterion that is flexible enough to offer fine-tuned
control of conservatism. The proposed criterion also leads to a new approach
for competitive ratio analysis, which can reduce the complexity of analysis to
the level for the minimax regret analysis. The properties of this new criterion
are studied, which facilitates its applications, and validates the new approach
for competitive ratio analysis. Finally, the criterion is applied to the well stud-
ied robust one-way trading problem to demonstrate its potential in controlling
conservatism and reducing the complexity of competitive ratio analysis.
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1 Introduction

Robust optimization is a popular method for decision making under uncertainty,
which changes the values of parameters in the problem. Another well known
method for such task is stochastic programming, which demands a probabil-
ity distribution to describe the uncertainty. In practice, however, it is often
difficult to correctly estimate this distribution, due to reasons such as lack of
data, inaccurate data, or nonstationarity of the stochastic process. A proba-
bility distribution is not needed in robust optimization, which only requires an
uncertainty set that contains the possible scenarios. Thus robust optimization
does not assume risk neutrality, as no expectations can be calculated, and it
requires less information or historic data to apply, which makes it applicable in
more situations. Successful applications of robust optimization are widely seen
in many fields, the interested reader is referred to [BTEGN09] and [BBC11].
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However, a major issue in robust optimization is that of over-conservatism,
meaning that too much performance is sacrificed for the sake of robustness. The
robustness of a solution pertains to maintaining its feasibility or a certain level
of performance amid the uncertain realizations of scenarios, where the former is
feasibility robustness and the latter performance robustness. Over-conservatism
has been a very important topic in piorneering works in robut optimization such
as [BTEGN09]. The literature on mitigating over-conservatism can be grouped
by the component of the robust optimization model being worked upon, namely,
(i) the uncertainty set of scenarios, (ii) the robust criterion to evaluate solutions,
and (iii) the set of robust feasible solutions.

The method of uncertainty budget of [BS04] belongs to group (i) as it puts a
special budget constraint on the uncertainty set so that some extreme scenarios
may be excluded from consideration. This way it allows a level of flexibility in
choosing the tradeoff between robustness and performance without significantly
increasing the computational complexity. However, the recommended solution
with a tight budget can be infeasible under an extreme scenario that is excluded
by the budget constraint. Therefore, it is more suitable for applications where it
is tolerable for an implemented solution to violate constraints in some extreme
scenarios, but not for mission critical applications, such as spaceship design,
where all extreme scenarios must be fully considered to avoid disasters.

In group (ii), criteria with different levels of conservatism have been pro-
posed. For clean presentation, reward maximization is assumed, as it is similar
for cost minimization. The maximin criterion is initially developed by [Neu28]
for game theory. It looks for a robust solution by maximizing the worst scenario
reward. This criterion certainly appeals to conservative decision makers who
love solutions with a worst case performance guarantee. It is usually highly
tractable and can produce acceptible solutions similar to those by stochastic
programming in many applications. However, it only focuses on worst scenar-
ios and sometimes fails to take advantage of favorable scenarios, and is likely
to sacrifice too much performance for robustness. Trying to alieviate such ex-
treme converatism, [Hur51] proposes a criterion that evaluates a solution by ”a
weighted sum of its worst and best possible outcomes”. Although the Hurwicz
criterion often gives reasonable results, it could also lead to quite illogical an-
swers, see [GW14] for a detailed analysis with examples. Such inconsistency
makes it difficult to manage and control the degree of conservatism in a reliable
way.

The minimax regret criterion by [Sav51] is based on the idea of regret or
opportunity loss. The regret of a solution is the difference between its reward
realized in a scenario and the best possible reward in that same scenario. The
maximum regret across all possible scenarios is a guarantee of worst regret by a
solution, and a solution with the best or minimal regret guarantee is chosen. In
the competitive ratio criterion, the ratio instead of the difference is considered,
therefore it is also known as the relative minimax regret criterion, whereas the
regret by difference is known as absolute. Both criteria are still considered as
conservative, but they are less than the maximin criterion. For other less known
criteria, the reader is referred to [CSCS+14].
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The methods in group (iii) screens out overly conservative solutions from
the robust feasible set beforehand, such as the p-robustness method by [Sny06].
This method excludes solutions whose worst regret exceeds an upper limit, where
both relative and absolute regret may be used. The choice of the limit must be
careful: too tight a limit may disqualify all possible solutions, while too loose a
limit can not screen out overly conservative ones. This method is not so popular
in practice as it may add a constraint for each scenario, which soon becomes
intractable. It is also noted by [Sny06] that it can be very difficult to determine
if a limit renders a problem feasible or not in some applications.

This paper introduces a new robust criterion to mitigate the conservatism
without tampering with the uncertainty set, avoiding the disadvantage of the
uncertainty budget method. Unlike the Hurwicz criterion, this new criterion
introduces a parameter to recalibrate the benchmark against which the regret
is defined, thus it may be called the adjustable regret criterion (ARC). As no
artificial constraints are introduced, it is free from the problems faced by the p-
robustness method. Though many criteria for robust optimization with different
levels of conservatism have been proposed in the literature, the choices are very
limited, which can not provide fine control of conservatism. By adjusting the
introduced parameter continuously, the ARC can provide a continuum of choices
that includes some of the most widely used robust criteria. Such a continuum
of choices provides a basis for a framework of analysis that enables fine control
of conservatism.

The contribution of this paper is threefold. First, a new criterion named
ARC is proposed with its framework of analysis that offers continuous control
of conservatism of robust optimization, which is of both theoretical and prac-
tical interest. Second, the properties of ARC are investigated, deepening our
theoretical understanding and facilitating its practical applications. And finally,
a new approach for competitive ratio analysis is developed based on ARC. The
competitive ratio analysis originates from algorithm designs in computer sci-
ence, and is now widely applied in many fields. However, for some problems the
competitive ratio criterion is much more difficult to analyze than the minimax
regret criterion. See [LGBK08] for an example with both criteria on the same
problem where the minimax regret analysis turns out to be the much easier
one. This new approach for competitive ratio analysis can significantly reduce
the complexity of analysis to a comparable level as that of the minimax regret
analysis.

The rest of this paper is arranged as follows. Section 2 gives robust formu-
lations with ARC for problems under uncertainty. The properties of ARC are
studied in Section 3 to facilitate its applications in robust optimization. The
novel approach for competitive ratio analysis based on a clever use of ARC is
also discussed. In section 4 the well-studied robust one-way trading problem is
employed to demonstrate the application of ARC with its flexibility and poten-
tial. Finally, in section 5 conclusions are drawn with future research directions.
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2 Formulation

This section formulates ARC in a framework conducive to both theoretical anal-
ysis and practical applications. The framework is first introduced in a single
stage setting, and then extended to multistage problems.

In a single stage problem, an action x is first taken from the set of all robustly
feasible actions X, then a scenario ω is realized from all possible scenarios Ω.
The set X can be described as X = {x : ∀ω ∈ Ω fi∈I(x, ω) = 0, gj∈J(x, ω) ≥ 0},
with index set I and J for the various constraints, whose parameters are affected
by ω. Integral constraints can be added here, so that X does not have to be
continuous. The final reward depends on both x and ω, and it is given by the
reward function r(x, ω). Let r∗(ω) = maxx∈X r(x, ω) denote the ex post optimal
reward after ω is realized. For a disasterous scenario ω, if there is a way to avoid
the risk entirely, such as clearing all holdings in the stock market, then r∗(ω) ≥ 0
can be maintained for all ω ∈ Ω. As for applications where even the best action
can not avoid a net loss (r∗(ω) < 0) in a terrible scenario, a reference point
of performance can be provided by a function f(ω), and the relative reward
r+(x, ω) = r(x, ω) − f(ω) that indicates the reduced loss above the reference
may be employed instead. The function f(ω) is chosen according to the context,
for example, f(ω) = minx∈X r(x, ω) or simply f(ω) = minω∈Ω r

∗(ω). As long as
f(ω) ≤ r∗(ω), the r∗(ω) based on r+(x, ω) restores the condition of r∗(ω) ≥ 0.

In order to enable continuous control of conservatism, a parameter β ∈
[0,∞) is introduced to moderate r∗(ω) and produce a benchmark performance
of βr∗(ω). The regret in ARC for action x after the realization of scenario ω is
defined as D(x, ω;β) = βr∗(ω)− r(x, ω). Note that ω is not known at the time
of decision on x, the maximal regret D̄(x;β) = maxω∈ΩD(x, ω;β) is defined
as a way to evaluate x, which can be interpreted as a guarantee of worst case
regret. The ARC then chooses an x to have the best guarantee of

D(β) = min
x∈X

D̄(x;β) = min
x∈X

max
ω∈Ω

D(x, ω;β).

Some intuition is offered on how β helps enable continuous control of conser-
vatism. The maximal regret D̄(x;β) can be seen as a measure of how much the
performance of x falls behind the β-moderated benchmark performance. There-
fore the ARC ends up choosing an x whose performance most closely follows
that benchmark. With the assumption of r∗(ω) ≥ 0 for all ω ∈ Ω, the bench-
mark gets more aggressive as β increases, hence β may be called the parameter
of aggressiveness here. Intuitively, as the benchmark becomes more aggressive
as β increases, the solution that most closely follows it will also become so.

This criterion unifies the well-known, seemingly unrelated robust criteria
into a continuum as β takes on different values. At β = 0, it is the maximin
criterion. It then becomes the competitive ratio criterion if β takes a special
value between 0 and 1 (more details on this later). Then at β = 1 it is the
minimax regret criterion, and finally it transforms into the maximax criterion
as β →∞.

The formulation developed so far easily extends to multistage problems,
which call for sequential decision making under uncertainty. Let t = 1, · · · , T
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label the sequential stages, with smaller t for an earlier stage. The decision vari-
able x now consists of T subverctors (x1, · · · , xT ), with xt (the stage decision)
corresponding to the decision in stage t. Likewise a whole scenario now consists
of sub-scenarios or stage scenarios for each stage: ω = (ω1, · · · , ωT ). Without
loss of generality, in a stage of standard formulation, the stage decision xt is
first implemented, then the stage scenario ωt is always realized afterwards. For
applications where a stage scenario is first realized in the very beginning before
any actions are taken, a dummy decision with only one choice of action (i.e.
to participate in the decision process) can be inserted in the very beginning
to transform to the standard formulation. Therefore the standard formulation
helps simplify discussions, but the results are general nevertheless.

Just as in multistage stochastic programming (MSP), there is an implicit
assumption: the realization of scenarios is independent of decisions, in other
words, the decision maker can not influence how the scenario develops. All
scenarios in Ω makes up a scenario tree, which has the stage scenarios ωt as
nodes such that a path from the root (representing the state right before the
first stage) to a leaf node of some ωT defines a scenario by sequencing the
nodes of stage scenarios in the path to get (ω1, · · · , ωT ). As the stage scenarios
realize themselves, one moves along a particular path in the scenario tree. The
possible future scenarios faced by the decision maker at a certain node in the
path correspond to the ever shrinking sub-tree of scenarios from the current
node. Therefore in stage t, only scenarios that do agree with the partial scenario
ω1:t revealed before stage t, as given by ω1:t = (ω1, · · · , ωt−1), can be included
in the set of future scenarios: Ω(ω1:t) = {ω′ ∈ Ω : ω′1:t = ω1:t}.

The same notion of nonanticipativity as in MSP, which requires that deci-
sions must occur before observations in the later stages, is treated here by having
stage decisions determined by what is already observed in the earlier stages. The
stage decision xt depends on the knowledge of the current history of both stage
decisions and stage scenarios in the earlier stages. Let x1:t = (x1, · · · , xt−1)
be the partial sequence of stage decisions before stage t. Note that the set of
robustly feasible actions in the current stage t depends not only on x1:t, but
also on ω1:t, as Ω(ω1:t) determines the possible values for parameters in the
constraints defining X. Therefore let Xt(ht) denote the set of robustly feasible
stage actions xt for stage t, with ht = (x1:t, ω1:t) as a shorthand.

The rewards may be accrued over time or may be received at once in
the end, so let r(x, ω) denote the total reward over all stages. Let r∗(ω) =
maxx∈X(ω) r(x, ω) be the ex post optimal reward, where X(ω) = {x ∈ X|xt ∈
Xt(x1:t, ω1:t), t = 1, · · · , T} is the set of all actions compatible with scenario ω.
At the end of the last stage, the complete history hT+1 = (x, ω) is known, and
the regret is

DT (hT+1;β) = βr∗(ω)− r(x, ω). (1)

To evaluate xt in the context of ht at t = T , a guarantee of worst regret is

D̄t(xt, ht;β) = max
ωt∈Ωt(ω1:t)

Dt(ht+1;β), (2)

where ht+1 is formed by appending xt and ωt to x1:t and ω1:t respectively. An
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optimal stage action xt is chosen to minimize the guarantee of regret

Dt−1(ht;β) = min
xt∈Xt(ht)

D̄t(xt, ht;β),

= min
xt∈Xt(ht)

max
ωt∈Ωt(ω1:t)

Dt(ht+1;β). (3)

The definition in (3) can be applied recursively for t = T, · · · , 1 backwards,
which gives a plain formulation that incorporates nonanticipativity. Note that
when t = 1, there is no history in h1, so let D(β) = D0(h1;β), which is the best
guarantee of regret for the entire problem.

An alternative formulation is based on policies. A policy π can be described
as a sequence of functions π = {πt : ht → Xt(ht), t = 1, 2, · · · , T} to make
stage decisions according to xt = πt(ht), which automatically takes care of
nonanticipativity. Note that Xt(ht) can be replaced by the set of probabilistic
mixtures of elements in Xt(ht) to allow for random policies, but the discussions
here focus on deterministic policies for the sake of clarity. The regret under a
policy π is defined as follows. It is possible to start applying a policy from stage
t on with an arbitrary history ht. As there is nothing left to do, the regret in
the end with a full history hT+1 = (x, ω) is simply

Dπ
T (hT+1;β) = βr∗(ω)− r(x, ω). (4)

For t = T, · · · , 1 the regret is defined backwards and recursively by

Dπ
t−1(ht;β) = max

ωt∈Ωt(ω1:t)
Dπ
t (hπt+1;β), (5)

where hπt+1 = ((x1:t, πt(ht)), (ω1:t, ωt)) denote the history evolution under π. To
compute the overall regret Dπ(β) = Dπ

0 (h1, β) (since h1 is empty), simply apply
(5) recursively to have

Dπ(β) = max
ω1∈Ω1(ω1:1)

Dπ
1 (hπ2 ;β)

= max
ω1∈Ω1(ω1:1)

max
ω2∈Ω2(ω1:2)

Dπ
2 (hπ3 ;β)

= max
ω1∈Ω1(ω1:1)

· · · max
ωT∈ΩT (ω1:T )

Dπ
T (hπT+1;β)

= max
ω∈Ω

Dπ
T (hπT+1;β) (6)

Let Π be the set of all policies, and rπ(ω) = r(π(ω), ω), where π(ω) is the action
by policy π in scenario ω from start to end. The policy-based formulation is
given by

min
π∈Π

Dπ(β) = min
π∈Π

max
ω∈Ω

βr∗(ω)− rπ(ω). (7)

3 Properties

The analysis starts by establishing the correspondence and equivalence between
the two formulations. It is assumed that the min and max operators in the
formulations are well defined so that there is always an optimal solution.
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Theorem 3.1 (Correspondence). The plain formulation and the policy-based
formulation are equivalent in that (i) with an arbitrary history ht there is

Dt−1(ht;β) = Dπ∗

t−1(ht;β), for t = 1, · · · , T + 1, (8)

for any optimal policy π∗, and (ii) an optimal policy π∗ is constructed by

π∗t (ht) = argmin
xt∈Xt(ht)

max
ωt∈Ωt(hω

t )
Dt(ht+1;β), t = 1, · · · , T, (9)

where the argmin operator arbitrarily takes one when there are many minimizers.

Proof. It is clear that (8) trivially holds for t = T + 1. For t ≤ T , recall (3) and
proceed as follows

Dt−1(ht;β) = min
xt∈Xt(ht)

max
ωt∈Ωt(ω1:t)

Dt(ht+1;β)

= max
ωt∈Ωt(ω1:t)

Dπ∗

t (hπ
∗

t+1;β)

= Dπ∗

t−1(ht;β),

where the second equality comes by (9), and the last equality comes by (5).
It remains to prove that π∗ is optimal to (7) by showing for an arbitrary

π ∈ Π there is
Dt−1(ht;β) ≤ Dπ

t−1(ht;β), (10)

for t = 1, 2, · · · , T + 1 via backward induction on t. As the initial step, it
trivially holds for t = T + 1. For the induction step, assume that (10) holds for
t + 1: Dt(ht+1;β) ≤ Dπ

t (ht+1;β), then show (10) also holds for t. Recall (3)
and replace Dt(ht+1;β) with Dπ

t (ht+1;β) to have

Dt−1(ht;β) ≤ min
xt∈Xt(ht)

max
ωt∈Ωt(ω1:t)

Dπ
t (ht+1;β)

≤ max
ωt∈Ωt(ω1:t)

Dπ
t (hπt+1;β)

= Dπ
t−1(ht;β),

where the second inequality comes by having xt = πt(ht), and the last equality
comes by (5). Therefore (10) holds for all t by backward induction, and π∗ is
indeed an optimal policy.

It is handy to have both formulations: the plain formulation is more useful in
solving problems for practical applications, while the policy-based formulation
facilitates theoretical analysis. Also note that there is Dπ∗(β) = D(β) by (8)
with t = 1.

Proposition 3.2 (Continuity). The best guarantee of worst regret D(β) is a
continuous function in β.
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Proof. Let fωπ (β) = βr∗(ω)− rπ(ω), which is a continuous function in β. Thus
f∗π(β) = maxω∈Ω f

ω
π (β), a point-wise max of continuous functions, is also con-

tinuous. Likewise, f∗(β) = minπ∈Π f
∗
π(β) is also continuous. By Theorem 3.1

and the policy-based formulation in (7), there is D(β) = f∗(β).

Proposition 3.3 (Slope Bounds). For 0 ≤ β1 < β2, let π∗i , i ∈ {1, 2} be an
optimal policy when β = βi, and ω∗ij = argmaxω∈Ω βir

∗(ω) − r(π∗j (ω), i, j ∈
{1, 2}, then there is

r∗(ω∗21) ≥ D(β2)−D(β1)

β2 − β1
≥ r∗(ω∗12). (11)

Proof. By the definition of π∗2 and ω∗12, as well as Theorem 3.1, there is

D(β1) = min
π∈Π

max
ω∈Ω

β1r
∗(ω)− rπ(ω)

≤ max
ω∈Ω

β1r
∗(ω)− rπ

∗
2 (ω)

= β1r
∗(ω∗12)− rπ

∗
2 (ω∗12).

And D(β2) = maxω∈Ω β2r
∗(ω) − rπ

∗
2 (ω) ≥ β2r

∗(ω∗12) − rπ
∗
2 (ω∗12). Therefore

D(β2)−D(β1) ≥ (β2 − β1) r∗(ω∗12). Similarly,

D(β2) = min
π∈Π

max
ω∈Ω

β2r
∗(ω)− rπ(ω)

≤ max
ω∈Ω

β2r
∗(ω)− rπ

∗
1 (ω)

= β2r
∗(ω∗21)− rπ

∗
1 (ω∗21).

And D(β1) = maxω∈Ω β1r
∗(ω) − rπ

∗
1 (ω) ≥ β1r

∗(ω∗21) − rπ
∗
1 (ω∗21). Therefore

D(β2)−D(β1) ≤ (β2 − β1) r∗(ω∗21).

3.1 Convexity

The convexity of D(β) is studied in this subsection. Note that βr∗(ω)− rπ(ω)
is linear in β, thus function

F (β;π) = max
ω∈Ω

βr∗(ω)− rπ(ω)

is convex in β for a given policy π. However, generally speaking, D(β) =
minπ∈Π F (β;π) is not convex in β. In order for D(β) to be convex, some special
condition is needed. A weak condition for convexity is introduced first.

Lemma 3.4 (Convexity). A continuous function f(y) with a convex domain Y
is convex if

∀y1, y2 ∈ Y ∃λ ∈ (0, 1) f(λy1 + (1− λ)y2) ≤ λf(y1) + (1− λ)f(y2). (12)
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Proof. By contradiction. Assume f(y) is not convex, then there exists y1, y2 ∈ Y
and λ ∈ (0, 1) such that g(λ) > 0, where g(k) = f(y(k))−(kf(y1)+(1−k)f(y2))
and y(k) = ky1 + (1 − k)y2. As g(k) is continuous with g(0) = g(1) = 0, there
exists k1 = max{k ∈ [0, λ) : g(k) = 0}, k2 = min{k ∈ (λ, 1] : g(k) = 0}, such
that 0 ≤ k1 < λ < k2 ≤ 1, g(k1) = g(k2) = 0 and ∀k′ ∈ (k1, k2) g(k′) > 0.

Let y′1 = y(k1), y′2 = y(k2), and k′ = λ′k1 + (1− λ′)k2 for a λ′ ∈ (0, 1), then
y(k′) = λ′y′1 + (1 − λ′)y′2. As f(y′i) = kif(y1) + (1 − ki)f(y2), i = 1, 2 from
g(k1) = g(k2) = 0, there is λ′f(y′1) + (1−λ′)f(y′2) = k′f(y1) + (1−k′)f(y2). By
g(k′) > 0 there is f(y(k′)) > k′f(y1)+(1−k′)f(y2), which implies f(λ′y′1 +(1−
λ′)y′2) > λ′f(y′1) + (1− λ′)f(y′2) for any λ′ ∈ (0, 1), which contradicts (12).

A policy π dominates another policy π′ (denoted as π � π′) if for all ω ∈ Ω
there is rπ(ω) ≥ rπ

′
(ω). Similarly, a scenario ω dominates another scenario ω′

(denoted as ω � ω′) if for all π ∈ Π there is rπ(ω) ≤ rπ(ω′).

Definition 3.1 (Reward Convexity (RC)). The set Π has the property of RC
if there is

∀π1, π2 ∈ Π ∃π ∈ Π ∃λ ∈ (0, 1) ∀ω ∈ Ω rπ(ω) = λrπ1(ω) + (1− λ)rπ2(ω). (13)

An example with the RC property is when all randomized policies (a ran-
domized policy uses a probability distribution to choose a deterministic policy
before the game starts) are allowed and the reward is given by the expected
reward.

Definition 3.2 (Reward Dominance Convexity (RDC)). The set Π has the
property of RDC if there is

∀π1, π2 ∈ Π ∃π ∈ Π ∃λ ∈ (0, 1) ∀ω ∈ Ω rπ(ω) ≥ λrπ1(ω) + (1− λ)rπ2(ω). (14)

Clearly, if Π has the RC property, then it also has the RDC property.
Another more sophisticated example is as follows. If r(x, ω) is concave in x
and X(ω) is convex for all ω ∈ Ω, then (14) is satisfied. To see this, sim-
ply let π(ω) = π1(ω)/2 + π2(ω)/2. By the concavity of r(x, ω) in x, there
is r(π(ω), ω) ≥ r(π1(ω), ω)/2 + r(π2(ω), ω)/2, and hence (14) is satisfied with
λ = 1/2.

Note that both dominated policies and scenarios can be eliminated from
consideration to simplify the analysis. Both the RC and RDC properties remain
after scenario elimination. However, the RC property can be lost in policy
elimination, while the RDC property remains untouched. Let Π̂ be the set of
all non-dominated policies in Π, so that any π ∈ Π is dominated by a π̂ ∈ Π̂.

Proposition 3.5 (Elimination Invariance). If the set Π has the RCD property,
then Π̂ also has the same property, and vice versa.

Proof. Let π1, π2 ∈ Π̂ ⊆ Π, thus there exists π ∈ Π and λ ∈ (0, 1) such that
rπ(ω) ≥ λrπ1(ω) + (1− λ)rπ2(ω). As there is a π̂ ∈ Π̂ such that p̂i � π. Hence
Π̂ has the RDC property. To show vice versa, let π1, π2 ∈ Π. Clearly there are
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π̂1, π̂2 ∈ Π̂ such that π̂1 � π1, π̂2 � π2. There exists π̂ ∈ Π̂ and λ ∈ (0, 1) such
that rπ̂(ω) ≥ λrπ̂1(ω) + (1 − λ)rπ̂2(ω) ≥ λrπ1(ω) + (1 − λ)rπ2(ω). As π̂ ∈ Π,
hence Π also has the RDC property.

The RDC property even transfers to the set of optimal policies. Let Π∗(β)
be the set of all optimal policies for a given β.

Theorem 3.6. If Π has the property of RDC, then Π∗(β) also has the same
property.

Proof. Consider ∀π∗1 , π∗2 ∈ Π∗(β) ⊆ Π, by (14) there is a π′ ∈ Π such that

∃λ ∈ (0, 1) ∀ω ∈ Ω rπ
′
(ω) ≥ λrπ

∗
1 (ω) + (1− λ)rπ

∗
2 (ω).

Now show that π′ ∈ Π∗(β) as follows:

D(β) = min
π∈Π

max
ω∈Ω

βr∗(ω)− rπ(ω)

≤ max
ω∈Ω

βr∗(ω)− rπ
′
(ω) = Dπ′(β)

≤ max
ω∈Ω

βr∗(ω)−
(
λrπ

∗
1 (ω) + (1− λ)rπ

∗
2 (ω)

)
≤ λ

(
max
ω∈Ω

βr∗(ω)− rπ
∗
1 (ω)

)
+

(1− λ)

(
max
ω∈Ω

βr∗(ω)− rπ
∗
2 (ω)

)
= λD(β) + (1− λ)D(β) = D(β).

Therefore Dπ′(β) = D(β) and so π′ ∈ Π∗(β).

The property of RDC is a sufficient condition for D(β) to be convex in β,
but it is not a necessary one.

Theorem 3.7. If Π has the property of RDC, then D(β) is convex in β.

Proof. Let π∗i be an optimal policy for βi, i = 1, 2. By (14) there exists π′ ∈ Π

such that ∃λ ∈ (0, 1) ∀ω ∈ Ω rπ
′
(ω) ≥ λrπ

∗
1 (ω) + (1 − λ)rπ

∗
2 (ω). Let β =

λβ1 + (1− λ)β2 and proceed as follows:

D(β) = min
π∈Π

max
ω∈Ω

βr∗(ω)− rπ(ω)

≤ max
ω∈Ω

βr∗(ω)− rπ
′
(ω)

≤ max
ω∈Ω

βr∗(ω)−
(
λrπ

∗
1 (ω) + (1− λ)rπ

∗
2 (ω)

)
≤ λ

(
max
ω∈Ω

β1r
∗(ω)− rπ

∗
1 (ω)

)
+

(1− λ)

(
max
ω∈Ω

β2r
∗(ω)− rπ

∗
2 (ω)

)
= λD(β1) + (1− λ)D(β2).

Therefore D(β) is convex in β by Lemma 3.4.
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3.2 Competitive Ratio

In reward maximization applications, the competitive ratio can be defined as

max
π∈Π

min
ω∈Ω

rω(π)/r∗ω. (15)

Theorem 3.8 (CR Equivalence). Assume r∗(ω) > 0 for all ω ∈ Ω, the β0 that
solves D(β) = 0 is exactly the competitive ratio, and the set of optimal policies
for (7) is the same as that for (15).

Proof. It needs to show for any π∗ ∈ Π∗(β0) that π∗ is an optimal solution to
(15), and vice versa. By Theorem 3.1 and (7) there is{

0 = minπ∈Π maxω∈Ω β0r
∗(ω)− rπ(ω)

π∗ ∈ argminπ∈Π maxω∈Ω β
∗r∗(ω)− rπ(ω)

⇔
{

0 = maxω∈Ω β0r
∗(ω)− rπ∗(ω)

∀π ∈ Π 0 ≤ maxω∈Ω β0r
∗(ω)− rπ(ω)

⇔

 ∃ω ∈ Ω 0 = β0r
∗(ω)− rπ∗(ω)

∀ω ∈ Ω 0 ≥ β0r
∗(ω)− rπ∗(ω)

∀π ∈ Π ∃ω ∈ Ω 0 ≤ β0r
∗(ω)− rπ(ω)

⇔

 ∃ω ∈ Ω : β0 = rπ
∗
(ω)/r∗(ω)

∀ω ∈ Ω : β0 ≤ rπ
∗
(ω)/r∗(ω)

∀π ∈ Π ∃ω ∈ Ω β0 ≥ rπ(ω)/r∗(ω)

⇔
{
β0 = minω∈Ω r

π∗(ω)/r∗(ω)
∀π ∈ Π β0 ≥ minω∈Ω r

π(ω)/r∗(ω)

⇔
{
β∗ = maxπ∈Π minω∈Ω r

π(ω)/r∗(ω)
π∗ ∈ argmaxπ∈Π minω∈Ω r

π(ω)/r∗(ω)

As the reasoning can go in both directions, the theorem is established.

Based on the result of Theorem 3.8, the next proposition gives the condition
for the existence of a unique competitive ratio.

Proposition 3.9. If D(0) < 0 then there is r∗(ω) > 0 for all ω ∈ Ω, and there
is a unique β0 ∈ (0, 1] such that D(β0) = 0.

Proof. Note that at β = 0 it becomes equivalent to the maximin criterion:

D(0) = min
π∈Π

max
ω∈Ω
−rπ(ω) = −max

π∈Π
min
ω∈Ω

rπ(ω).

Suppose there is a ω̇ such that r∗(ω̇) ≤ 0, then there is

−D(0) = max
π∈Π

min
ω∈Ω

rπ(ω) ≤ max
π∈Π

rπ(ω̇) = r∗(ω̇) ≤ 0.

Therefore D(0) ≥ 0, a contradiction! Thus there is r∗(ω) > 0 for all ω ∈ Ω,
so D(β) strictly increases in β. Note that at β = 1 it is the minimax regret
criterion, thus D(1) ≥ 0 > D(0), and the conclusion follows by the monotony
and continuity of D(β).
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4 One-way Trading

The one-way trading problem has been well studied under both the compet-
itive ratio criterion (see [EYFKT01]) and the minimax regret criterion (see
[WWLZ16]). Therefore it provides a great opportunity to show the advantages
of ARC, which gives a much more general result with its degree of conserva-
tivism adjustable by β. The newly proposed approach to competitive ratio
analysis involves only plain backward induction, without depending on acute
intuitions and special insights as in [EYFKT01].

4.1 Problem Formulation

Consider the one-way trading problem to sell a total amount of fully divisible
goods (like gasoline or steel) in a finite time horizon while the price fluctuates
in the range of [m,M ]. For comparable results, the tradition of dividing time
into T discrete periods is followed. A fixed price pt ∈ [m,M ] is revealed in
each period t = 1, · · · , T . The trader is a price-taker and must decide on the
amount xt to sell at the current price pt in each period without knowing the
future prices. The goal is to maximize the total sales revenue in the end.

It is helpful to adopt the notations in section 2. A scenario ω here simply
corresponds to the prices p = (p1, · · · , pT ) revealed over time, with ωt = pt.
As the prices are independent from each other, there is Ωt(p1:t) = [m,M ], and
Ω = [m,M ]T . Without loss of generality, the total amount of goods is one unit,

and the action is x = (x1, · · · , xT ) with X = {x :
∑T
t=1 xt = 1, x ≥ 0}. For

t < T there is Xt(ht) = [0, qt] where ht = (x1:t, p1:t) and qt = 1 −
∑t−1
s=1 xt is

the remaining amount to sell given ht, but in the last period there is XT (hT ) =
[qT , qT ] in order to sell everything. The reward is accumulated over time, so

let rt =
∑t−1
s=1 psxs be the rewards accumulated in ht, the reward in the end is

r(x, p) = rT+1. Let p̂t = max{ps : s = 1, · · · , t − 1} denote the highest price

seen in ht, then r∗(p) = max{r(x, p) :
∑T
t=1 xt = 1} = p̂T+1. At the end of the

last stage (1) becomes

DT (hT+1;β) = βp̂T+1 − rT+1. (16)

In this multistage problem it is natural to have periods coincide with stages,
in which the uncertain price is first revealed, then an action is taken. Therefore
it calls for a different formulation from the standard formulation in (3):

Dt−1(ht;β) = max
pt∈[m,M ]

min
xt∈Xt(ht)

Dt(ht+1;β), (17)

but the difference is superficial: all of the results in section 3 remain valid.

4.2 Analytic Solution

The analysis starts from the last period T and reasons backwards. In the last
period clearly there is xT = qT , and (17) becomes

DT−1(hT ;β) = max
pT∈[m,M ]

βmax(p̂T , pT )− (rT + pT qT ),

12



which is convex in pT , and the maximizer is either pT = m or pT = M . Define
auxiliary functions that map a quantity q ∈ [0, 1] to a price in [m,M ],

Pj(q) = (M −m)

(
1− q

βj

)+j

+m, j = 1, 2, · · · ,

where y+j = max(0, y)j denote the positive part of y raised to the jth power.
Let P−n (y) = q be the inverse of y = Pn(q) for q ∈ [0, βj].

DT−1(hT ;β) = max(βp̂T −RT , βM − (rT +MqT ))

= max(βp̂T , βM − (M −m)qT )−RT
= βmax(p̂T , P1(qT ))−RT ,

where Rt = rt+mqt for t = 1, · · · , T is the lower bound on rT+1 given ht. Note
that the special but trivial case of β = 0 is not included here. Continue on with
(17) for t = T − 1, · · · , 1, the result is obtained and presented as follows.

Theorem 4.1. The best adjustable regret guarantee for the one-way trading
problem for t = 1, 2, · · · , T is

Dt−1(ht;β) = βmax(p̂t, P1+T−t(qt))−Rt, (18)

and the optimal trading policy is π∗t (ht, pt) = qt − q∗t+1, with q∗T+1 = 0 and

q∗t+1 = min(qt, P
−
n (p̂t+1)), t = 1, · · · , T − 1. (19)

Proof. By backward induction. It is already verified for t = T , which completes
the initial step. For the induction step, assume that (18) holds at t + 1 with
Dt(ht+1;β) = βmax(p̂t+1, PT−t(qt+1)) − Rt+1, and show that it also holds at
t < T using (17). For the nested minimization in (17), let n = T − t and

D̄t(ht, pt;β) = min
xt∈Xt(ht)

Dt(ht+1;β)

= min
qt+1∈[0,qt]

βmax(p̂t+1, Pn(qt+1))−Rt+1, (20)

with qt+1 = qt−xt, andRt+1 = rt+1+mqt+1. The derivative ∂Dt(ht+1;β)/∂qt+1

involves the derivative of Pn(q), which is

P ′n(q) = −M −m
β

(
1− q

βn

)+(n−1)

≤ 0.

By the monotony of Pn(q), if qt+1 ≤ P−n (p̂t+1) then Pn(qt+1) ≥ p̂t+1. Similarly
qt+1 > P−n (p̂t+1) ensures Pn(qt+1) ≤ p̂t+1. Thus there is

Dt(ht+1;β) =

{
βPn(qt+1)−Rt+1 qt+1 ≤ P−n (p̂t+1)
βp̂t+1 −Rt+1 qt+1 > P−n (p̂t+1)

(21)

∂Dt(ht+1;β)

∂qt+1
=

{
pt −m+ βP ′n(qt+1) qt+1 < P−n (p̂t+1)
pt −m qt+1 > P−n (p̂t+1)

(22)
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Note that in the first branch with qt+1 < P−n (p̂t+1), there is pt ≤ p̂t+1 <
Pn(qt+1) ≤ −βP ′n(qt+1) + m, so pt − m + βP ′n(qt+1) < 0. And in the second
branch with qt+1 > P−n (p̂t+1), there is pt−m ≥ 0. Therefore an optimal solution
to (20) is (19), which from (21) gives

D̄t(ht, pt;β) = βPn(q∗t+1)− (rt+1 +mq∗t+1). (23)

Let p̄t = max(p̂t, Pn(qt) ∈ [m,M ], and from (17) there is

Dt−1(ht;β) = max
pt∈[m,M ]

D̄t(ht, pt;β)

= max

(
maxpt∈[m,p̄t] D̄t(ht, pt;β)
maxpt∈[p̄t,M ] D̄t(ht, pt;β)

)
(24)

For the branch with pt ∈ [m, p̄t] in (24), consider two cases: (i) p̄t = p̂t ≥ p̆t
and (ii) p̄t = p̆t > p̂t. In case (i) there is p̂t+1 = max(p̂t, pt) = p̂t ≥ Pn(qt),
therefore P−n (p̂t+1) ≤ qt and (19) simplifies to q∗t+1 = P−n (p̂t+1), thus Pn(q∗t+1) =
p̂t+1 = p̄t. In case (ii) there is p̂t+1 ≤ Pn(qt), therefore P−n (p̂t+1) ≥ qt and (19)
simplifies to q∗t+1 = qt, thus Pn(q∗t+1) = Pn(qt) = p̄t. As in both cases there
is Pn(q∗t+1) = p̄t, from (23) there is D̄t(ht, pt;β) = βp̄t − (rt+1 + mq∗t+1) =
βp̄t − rt − ptx

∗
t − mq∗t+1, which is linear in pt with a slope of −x∗t ≤ 0 as

x∗t = qt − q∗t+1 ≥ 0. Thus p∗t = m is a maximizer, which gives

max
pt∈[m,p̄t]

D̄t(ht, pt;β) = βp̄t − rt −mqt = βp̄t −Rt.

For the branch in (24) with pt ∈ [p̄t,M ], as pt ≥ p̄t ≥ p̂t, there is p̂t+1 =
pt ≥ p̄t ≥ Pn(qt), thus P−n (p̂t+1) ≤ qt and (19) simplifies to q∗t+1 = P−n (p̂t+1).
Therefore Pn(q∗t+1) = p̂t+1 = pt, and (23) simplifies to D̄t(ht, pt;β) = βpt−rt−
ptx
∗
t −mq∗t+1 = βpt−rt−pt(qt−q∗t+1)−mq∗t+1 = (β−qt+q∗t+1)pt−mq∗t+1−rt =

(β − qt + q∗t+1)Pn(q∗t+1)−mq∗t+1 − rt. Now consider function

d(z) = (β − qt + z)Pn(z)−mz − rt, z ∈ [0, qt].

The derivative is d′(z) = (β− qt+ z)P ′n(z) +Pn(z)−m. Note that Pn(z)−m =
−(β− z/n)P ′n(z), thus d′(z) = (β− qt + z)P ′n(z)− (β− z/n)P ′n(z) = (z+ z/n−
qt)P

′
n(z). As P ′n(z) ≤ 0, there is d′(z) ≥ 0 when z+ z/n− qt ≤ 0, and d′(z) ≤ 0

when z + z/n− qt ≥ 0, hence z∗ = nqt/(n+ 1) is a maximizer of d(z), and

d(z∗) = (β − qt + z∗)Pn(z∗)−mz∗ − rt

= (β − qt + z∗)(M −m)

(
1− z∗

βn

)+n

+ βm−mqt − rt

= β(1− qt
β(n+ 1)

)(M −m)

(
1− qt

β(n+ 1)

)+n

+ βm−Rt

= β(M −m)

(
1− qt

β(n+ 1)

)+(n+1)

+ βm−Rt

= βPn+1(qt)−Rt.
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Clearly, there is D̄t(ht, pt;β) = d(P−n (pt)) for pt ∈ [p̄t,M ], consider two
cases. Case (i) Pn(z∗) ≥ p̄t. As P−n (M) = 0 ≤ z∗ ≤ P−n (p̄t), there is
maxpt∈[p̄t,M ] D̄t(ht, pt;β) = d(z∗). Therefore according to (24) there is

Dt−1(ht;β) = max(βp̄t −Rt, d(z∗)).

Case (ii) Pn(z∗) < p̄t. As qt ≥ z∗ ≥ P−n (p̄t), there is

max
pt∈[p̄t,M ]

D̄t(ht, pt;β) = max
pt∈[p̄t,M ]

D̄t(ht, pt;β)d(P−n (pt))

= max
z∈[0,P−n (p̄t)]

d(z)

≤ max
z∈[0,qt]

d(z) = d(z∗).

Direct comparison finds Pn(z∗) ≥ Pn+1(qt), thus p̄t ≥ Pn+1(qt). Therefore
d(z∗) = βPn+1(qt)−Rt ≤ βp̄t −Rt, and according to (24) there is

Dt−1(ht;β) = βp̄t −Rt = max(βp̄t −Rt, d(z∗)).

So in both cases there is Dt−1(ht;β) = max(βp̄t − Rt, d(z∗)). Note that
p̄t = max(p̂t, Pn(qt)), and Pn(qt) ≤ Pn+1(qt), thus

Dt−1(ht;β) = max(βp̄t −Rt, d(z∗))

= max(βp̄t −Rt, βPn+1(qt)−Rt)
= βmax(p̄t, Pn+1(qt))−Rt
= βmax(p̂t, Pn(qt), Pn+1(qt))−Rt
= βmax(p̂t, Pn+1(qt))−Rt

Therefore, as n = T − t, it is clear that (18) also holds for t.

Corollary 4.2. The adjustable regret guarantee for the one-way trading problem
throughout all periods or stages is a convex function of β:

D(β) = β(M −m)

(
1− 1

βT

)+T

− (1− β)m, (25)

Proof. In the first period there is q1 = 1, r1 = 0, p̂1 = m. Use these in (18)
and simplify to have the result. The convexity of D(β) is a consequence of the
reward convexity in the one-way trading problem and Theorem 3.7.

Note that the result of [WWLZ16] is a special case of Theorem 4.1 and
Corollary 4.2 with β = 1. Note that this general result is not appreciably
harder to obtain than their special results.

Corollary 4.3 (Competitive Ratio). The competitive ratio defined in (15) for
the one-way trading problem is the unique root β0 of D(β) as defined in (25).

Proof. As r∗(ω) ≥ m > 0, it follows from Theorem 3.8 and Proposition 3.9.

This is in perfect agreement with [EYFKT01], except that they define com-
petitive ratio as the inverse of β0. Their analysis heavily depends on insights
of the worst case price paths, and is much more complicated than the plain
analysis here that can deduce the insights as results.
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5 Conclusion

This paper tackles the issue of over-conservatism in robust optimization by
proposing the new ARC criterion based on the idea of adjustable regret. The
ARC chooses a solution that most closely follows an adjustable benchmark,
therefore as the benchmark becomes more aggressive, so is the chosen solution.
The theoretical analysis of ARC is built upon a general framework that allows
both a plain formulation and a policy-based formulation, both of which are
equivalent and can deal with both single stage and multistage problems. Various
theoretical properties of the adjustable regret, such as continuity, monotony,
and convexity are studied. Based on ARC, a new approach for the competitive
ratio analysis is discovered. Finally, the ARC framework is applied to the well
studied robust one-way trading problem, which produces the results for both
the competitive ratio and the minimax regret analysis.

The ARC is a new criterion, this paper only provides an initial theoretical
study of its properties, and only presents one application for the purpose of
illustration. It is believed that there are still many unknown properties for
future study, and ARC can be used in many other applications as well. How to
choose an appropriate β in real applications depends on the actual context, and
is another worthy topic for future study. Note that in the current formulation
of ARC, the benchmark is adjusted along a straight line through the origin. It
is conceivable that this line of adjustment can be further customized for special
applications, and it could even be a parameterized curve motivated by some
practical rationale.
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