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Abstract

The least square Monte Carlo (LSM) algorithm proposed by Longstaff and Schwartz (2001) is widely

used for pricing American options. The LSM estimator contains undesirable look-ahead bias, and the

conventional technique of removing it necessitates doubling simulations. We present the leave-one-

out LSM (LOOLSM) algorithm for efficiently eliminating look-ahead bias. We also show that look-

ahead bias is asymptotically proportional to the regressors-to-simulation paths ratio. Our findings are

demonstrated with several option examples, including the multi-asset cases that the LSM algorithm

significantly overvalues. The LOOLSM method can be extended to other regression-based algorithms

that improve the LSM method.

Keywords: American option, Least square Monte Carlo, Look-ahead bias,

Leave-one-out-cross-validation

1. Introduction

1.1. Background

Derivatives with early exercise features are popular, with American- and Bermudan-style options being

the most common types. Nonetheless, the pricing of these options is a difficult problem in the absence of

closed-form solutions, even in the simplest case of valuing American options on a single asset. Researchers

have thus developed various numerical methods for pricing that largely fall into two categories: the

lattice-based and simulation-based approaches.

In the lattice-based approach, pricing is performed on a dense lattice in the state space by valuing the

options at each point of the lattice using suitable boundary conditions and the mathematical relations

among neighboring points. Examples include the finite difference scheme (Brennan and Schwartz, 1977),
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binomial tree (Cox et al., 1979), and its multidimensional generalizations (Boyle, 1988; Boyle et al.,

1989; He, 1990). These methods are known to work well in low-dimensional problems. However, they

become impractical in higher-dimensional settings, mainly because the lattice size grows exponentially

as the number of state variables increases. This phenomenon is commonly referred to as the curse of

dimensionality.

In the simulation-based approach, the price is calculated as the average of the option values over

simulated paths, each of which represents a future realization of the state variables with respect to the

risk-neutral measure. While the methods in this category are not challenged by dimensionality, they

entail finding the optimal exercise rules. Several simulation-based methods propose various approaches

for estimating the continuation values as conditional expectations. Equipped with stopping time rules,

they calculate the option price by solving a dynamic programming problem whose Bellman equation is

essentially the comparison between the continuation values and exercise values.

The randomized tree method (Broadie and Glasserman, 1997) estimates the continuation value at

each node of the tree as the average discounted option values of its children. This non-parametric

approach is of the most generic type, but its use is limited in scope because the tree size still grows

exponentially in the number of exercise times. The stochastic mesh method (Broadie and Glasserman,

2004) overcomes this issue by using the mesh structure in which all the states at the next exercise

time are the children of any state at the current exercise time. The conditional expectation is com-

puted as a weighted average of the children, where the weights are determined by likelihood ratios.

Regression-based methods (Carriere, 1996; Tsitsiklis and Van Roy, 2001; Longstaff and Schwartz, 2001)

use regression techniques to estimate the continuation values from the simulated paths. Those approaches

are computationally tractable, as they are linear not only in the number of simulated paths, but also

in the number of exercise times. Among the regression-based methods, the least square Monte Carlo

(LSM) algorithm proposed by Longstaff and Schwartz (2001) is the most popular for its simplicity and

efficiency. Fu et al. (2001) and Glasserman (2003) provide comprehensive reviews of the implementation

and comparison of simulation-based methods.

The LSM method is essential for pricing callable structured notes whose coupons have complicated

dependency on other underlying assets such as equity prices, foreign exchange rates, and benchmark

interest swap rates. The financial institutions that issue notes are the effective buyers of the Bermudan

option to redeem notes early. On the contrary, investors, be them individual or institutional, are the

effective sellers of the option. They receive the premium in the form of an enhanced yield compared

with that of non-callable notes with the same structure. Because a multi-factor model is required for the

underlying assets as well as the yield curve term structure, the use of Monte Carlo simulation along with

the LSM method is inevitable for pricing and risk-managing such notes. Like many previous studies

of this topic (Kolodko and Schoenmakers, 2006; Beveridge et al., 2013), this study is motivated and

developed in the context of callable structured notes.
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1.2. Biases in the LSM Method

In simulation-based methods including the LSM method, there are two main sources of bias, which

run in opposite directions. Low-side bias is related to suboptimal exercise decisions owing to various

approximations adopted in the method. In the LSM method, for example, finite basis functions cannot

fully represent the conditional payoff function. The resulting exercise policy deviates from the most

optimal one and therefore leads to a lower option price. For this reason, it is also called suboptimal bias.

High-side bias comes from using one simulation set for both the exercise decision and the payoff valuation.

As explained by Broadie and Glasserman (1997), this practice creates a fictitious positive correlation

between exercise decisions and future payoffs; the algorithm is more likely to continue (exercise) precisely

when the future payoff in the simulation is higher (lower). For this reason, it is called look-ahead or

foresight bias. The LSM estimator has both low- and high-side biases; hence, Glasserman (2003) calls it

an interleaving estimator. Other simulation estimators in the literature are typically either low-biased or

high-biased. For example, Broadie and Glasserman (1997) carefully construct both low- and high-biased

estimators to form a confidence interval for the true option price.

In callable note markets, look-ahead bias is more dangerous than suboptimal bias, and look-ahead

bias being mixed with suboptimal bias is a significant drawback of the LSM estimator. This is closely

related to the fact that buyers (financial institutions) act as market makers and pricing agents. Because

buyers have to risk-manage and optimally exercise the option, they typically use the LSM method.

Sellers (investors) usually hold the note until maturity without hedging and therefore are less sensitive

to accurate valuation. From buyers’ perspective, look-ahead bias is malicious because it wrongly inflates

the option premium they pay. No matter how well the option is delta-hedged, the option value attributed

from look-ahead bias shrinks to zero when the position is near the maturity or the early exercise because

there is no more future to look into by then. Suboptimal bias, on the contrary, is benign. Although it

deflates the option value, the gain realized through delta-hedging under the suboptimal exercise policy

is just as much as the deflated option value. In short, option buyers get what they pay for. The only

downside of suboptimal bias is for buyers to lose trades to competitors who bid a higher (more optimal)

option premium. Therefore, buyers prefer the low-biased estimator to ensure that the premium they pay

is lower than the true value. However, look-ahead bias mixed in the LSM method makes a conservative

valuation difficult for buyers.

A standard technique for eliminating look-ahead bias is to calculate the exercise decision by using an

additional independent set of Monte Carlo paths, thereby eliminating the correlation between the exercise

decision and simulated payoff. While this two-pass approach removes look-ahead bias, it comes at the

cost of doubling the computational cost, which is already heavy because the simulation of stochastic

processes frequently requires the time-discretized Euler scheme. The design of the LSM estimator to

include the biases in both directions primarily aims to retain computational efficiency rather than raise

accuracy by letting these two biases partially offset. Moreover, Longstaff and Schwartz (2001) claim
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that the look-ahead bias of the LSM estimator is negligible by presenting a single-asset put option case

tested with the two-pass simulation as supporting evidence. In this regard, the LSM estimator has been

considered to be low-biased.

However, researchers and practitioners have raised concerns that look-ahead bias may not be small

in multi-asset problems, where the simulation has to be the method of last resort. The numerical results

of Létourneau and Stentoft (2014); Fabozzi et al. (2017) show that look-ahead bias increases when the

simulation size becomes smaller or the polynomial order of the basis becomes higher. Carriere (1996)

and Fries (2005) remark the same. Practitioners in the structured notes market also observe that, when

higher-order regression variables are used to better capture the exercise boundary (i.e., reduce suboptimal

bias), look-ahead bias also increases. Given the desire to keep the one-pass LSM implementation for

computational efficiency, they are reluctant to include higher-order terms in the LSM regression in

fear of overpricing. It is possible to check the validity of the LSM price against several methods to

estimate both the lower and the upper bounds of American options based on policy iteration (Kolodko

and Schoenmakers, 2006; Beveridge et al., 2013) and duality representation (Haugh and Kogan, 2004;

Andersen and Broadie, 2004), respectively. However, their computational cost is too heavy to be used in

day-to-day pricing and risk management, as nested simulations are required. Therefore, it is of significant

practical importance to understand the magnitude of look-ahead bias in the LSM estimator and develop

an efficient algorithm for removing it.

1.3. Contribution of this Study

In this study, we present an efficient approach for removing look-ahead bias, motivated by the cross-

validation practice in statistical learning. Standard practice is to separate the datasets for training and

testing to avoid overfitting. In this context of statistical learning, look-ahead bias is an overfitting caused

by using the same dataset for both training (i.e., the estimation of the exercise policy) and testing (i.e.,

the valuation of the options). Similarly, using an independent simulation set for the exercise policy

corresponds to the hold-out method, one of the simplest cross-validation techniques.

Among advanced cross-validation techniques, we recognize that leave-one-out cross-validation (LOOCV)

fits with the LSM method. When making a prediction for a sample, LOOCV trains the model with all

samples except the one, thereby separating the dataset for testing in the most minimal way. In linear

regression, it is well known that the corrections from the full regression on all samples can be computed

altogether with a simple linear algebra operation (Hastie et al., 2009, § 7.10). Therefore, our new leave-

one-out LSM (LOOLSM) algorithm eliminates look-ahead bias from the LSM method without incurring

an extra computational cost. The LOOLSM method can thus be understood as an extension of the

low-biased estimator of Broadie and Glasserman (1997) in the sense that self-exclusion is conducted on

all simulation paths rather than on each state separately. By using the LOOLSM method, practitioners

can therefore reliably obtain the low-biased price—even with higher-order regression basis functions.

The LOOLSM algorithm can also be applied along with other regression methods proposed to improve
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least squares regression (Tompaidis and Yang, 2014; Chen et al., 2019; Ibáñez and Velasco, 2018; Fabozzi

et al., 2017; Belomestny, 2011; Ludkovski, 2018).

Furthermore, this study contributes to the line of research dealing with the convergence of the LSM

algorithm, which is a problem of fundamental importance given the popularity of the method. Several

authors theoretically analyze the convergence of the LSM method; Clément et al. (2002) prove the

convergence of the LSM price for a fixed set of regressors based on the central limit theorem. Stentoft

(2004) analyzes the convergence rate of the continuation value function when the number of regressors

M also goes to infinity. Glasserman and Yu (2004) discuss how quickly the simulation size N has to

grow relative to M to achieve uniform convergence. Zanger (2018) estimates the stochastic component

of the error for a general class of approximation architecture.

Previous studies focus primarily on the convergence of the continuation value functions in the L2

space. By construction, they do not analyze the convergence rate of look-ahead bias specific to the LSM

method, in which the estimated continuation value functions are evaluated for the training samples. We

bridge this research gap. In particular, we formulate look-ahead bias as the difference between the LSM

and LOOLSM prices, with which we theoretically analyze its convergence rate and derive the upper

bounds in Theorem 1. Empirically, the formulation provides a way to measure look-ahead bias that

is more robust to Monte Carlo noise. We conduct numerical studies for options whose true prices are

known and obtain results consistent with our theoretical findings.

To the best knowledge of the authors, previous works estimating look-ahead bias, theoretically or

empirically, are scarce and those correcting such bias are rare. Carriere (1996) predicts that the high-side

bias of the estimator asymptotically scales to 1/N + O(1/N2). Our analysis and simulation results not

only reaffirm this observation, but also show that any realistic look-ahead bias decays at the rate of M/N

at least. Fries (2005, 2008) formulates look-ahead bias as the price of the option on the Monte Carlo

error and derives the analytic correction terms from the Gaussian error assumption. Compared with

these studies, our LOOLSM method does not depend on any model assumption and more accurately

targets look-ahead bias in the LSM setting.

Beyond the American option pricing, our new method can be applied to various stochastic control

problems in finance where least squares regression is used to approximate the optimal strategy. For

examples, see Huang and Kwok (2016) for variable annuities, Nadarajah et al. (2017) for energy real

options, and Bacinello et al. (2010) for life insurance contracts.

The rest of the paper is organized as follows. In § 2, we describe the LSM pricing framework and

introduce the LOOLSM algorithm. In § 3, we analyze the convergence rate of look-ahead bias in the

LSM method. In § 4, the numerical results are presented. Finally, § 6 concludes.
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2. Method

In this section, we briefly review American option pricing, primarily to develop our method later. For

a detailed review, see Glasserman (2003). We first introduce the conventions and notations used in the

rest of the paper:

� The option can be exercised at a discrete time set {0 < t1 < · · · < tI = T}. As is customary, we

assume that the present time t0 = 0 is not an exercise time.

� S(t) = (S1(t), · · · , SJ(t)) denotes the Markovian state vector at time t. We denote the value at ti

by S[i] = S(ti).

� Z [i](s) denotes the expected payout given the option is exercised at time ti and state S[i] = s. It is

discounted to the present time t0 = 0. For example, Z [i](s) = e−r ti max(K− s1, 0) for the classical

single-stock put option with strike price K and risk-free rate r. In general, the exact payout may

depend on the path of S(t) after ti; hence, the expected payout.

� V [i](s) and C [i](s) denote the discounted option values at time ti and state S[i] = s given that the

option was not exercised up to (and at) ti−1 and ti, respectively. Prior studies commonly refer to

C [i](s) as the continuation value.

The exercise time index [i] or the time dependency (t) may be omitted when it is clear from the context.

We can formulate the valuation of options with early exercise features as a maximization problem of

the expected future payoffs over all possible choices of discrete stopping times taking values in {1, · · · , I}:

V [0](s) = max
τ∈T

E[Z [τ ](S[τ ]) |S[0] = s]. (1)

This is equivalent to a dynamic programming problem using the continuation value. Since C [i](s) and

V [i+1](s) are related by

C [i](s) = E[V [i+1](S[i+1]) |S[i] = s ] for 0 ≤ i < I,

we calculate the option value at ti by backward induction,

V [i](s) = max(C [i](s), Z [i](s)). (2)

This effectively means that the option continues at ti if C [i](s) ≥ Z [i](s) and is exercised otherwise. For

consistency, we assume Z [0](s) = C [I](s) = −∞ to ensure that V [0](s) = C [0](s) (i.e., must continue at

t0 = 0) and V [I](s) = Z [I](s) (i.e., must exercise at tI = T if not before). Therefore, we express the

optimal stopping time τ in terms of C [i](s) and Z [i](s) as

τ = inf{0 < i ≤ I : C [i](S[i]) < Z [i](S[i])}.
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To see how the pricing works in the simulation setting, we further introduce the following conventions

and notations:

� We generate N simulation paths of S[i] (1 ≤ i ≤ I) with the initial value S[0]. We denote the n-th

simulation value of S[i] by S
[i]
n .

� X [i](s) = (1, f1(s), · · · , fM−1(s)) denotes the set of M basis functions at time ti and state S[i] = s.

� The N -by-M matrix X [i] is the simulation result of X [i](s). The n-th row of X [i], denoted by x
[i]
n ,

corresponds to X [i](S
[i]
n ). We assume the basis functions are diverse enough to ensure that X [i]

has full column rank, M .

� The function Ĉ [i](s) is an estimation of C [i](s) obtained from the simulation set, X [i].

� The length-N column vectors, C [i] and Z [i], are the simulation values of Ĉ [i](s) and Z [i](s), re-

spectively. We denote the n-th elements by C
[i]
n = Ĉ [i](S

[i]
n ) and Z

[i]
n = Z [i](S

[i]
n ).

� The vector Y [i] is the length-N column vector consisting of the option payout at the stopping time

along the simulated paths, conditional on that the option was not exercised before ti. We denote

the n-th element by Y
[i]
n and it is equal to Z

[τ ]
n for some i ≤ τ ≤ I.

� For other variables to be defined later, we use the subscript n and superscript [i] consistently to

denote the value of the n-th path at t = ti.

� We use two types of expectation. In the first, we denote the expectation over the N paths in one

simulation set by En. In the second, we denote the expectation over repeated simulations by Eω.

Following the stopping time formulation (1), we compute Y [i] as a path-wise backward induction

step: Y
[I]
n = Z

[I]
n and

Y [i]
n =

Z
[i]
n if Z

[i]
n > C

[i]
n

Y
[i+1]
n if Z

[i]
n ≤ C [i]

n

= I[C [i]
n ≥ Z [i]

n ] · (Y [i+1]
n − Z [i]

n ) + Z [i]
n for 0 ≤ i < I, (3)

where I[·] is the indicator function equal to 1 if the condition is satisfied and 0 otherwise. Many authors

adopt this backward induction approach, notably Tilley (1993); Carriere (1996); Longstaff and Schwartz

(2001). In the final step of the backward induction, we calculate the option price estimate at t0 = 0 as

the average option value over the simulated paths:

V̂ [0] = En[Y [0]
n ] =

1

N

N∑
n=1

Y [0]
n . (4)

The estimation V̂ [0], as opposed to the true value V [0], depends on the estimation Ĉ [i](s) and the

simulation set.

7



In an alternative backward induction formulation based on (2),

Y ′[i]n = max(C [i]
n , Z

[i]
n ) = I[C [i]

n ≥ Z [i]
n ] · (C [i]

n − Z [i]
n ) + Z [i]

n , (5)

which some authors such as Carriere (1996); Tsitsiklis and Van Roy (2001) adopt. However, we do not

consider this approach. Carriere (1996), Longstaff and Schwartz (2001), and Stentoft (2014) report that

this alternative approach results in a bias significantly higher than the former approach, (3). See Stentoft

(2014) for the detailed comparison of the two approaches.

2.1. The LSM Algorithm

The main difficulty in pricing Bermudan options with simulation methods lies in obtaining Ĉ [i](s) (hence-

forth C [i]) from the simulated paths. This is primarily because the Monte Carlo path generation goes

forward in time, whereas the dynamic programming for pricing works backward in time by construction.

Longstaff and Schwartz (2001) obtain the estimate Ĉ
[i]
lsm(s) as the ordinary least squares (OLS) regression

of the next path-wise option values Y [i+1] on the current state X [i]:

Ĉ
[i]
lsm(s) = X [i](s)β[i],

where β[i] is a length-M column vector of the regression coefficients. Omitting the exercise time super-

scripts [i] from X [i] for simple notation, C
[i]
lsm and β[i] are

C
[i]
lsm = Xβ[i] = H [i]Y [i+1] where β[i] = (X>X)−1X>Y [i+1], H [i] = X(X>X)−1X>,

where H [i] is the hat matrix. Note that H [i] depends on the current state, X [i], not on the future

information, Y [i+1]. Using (3), we inductively run the regression for i = I − 1, · · · , 1 until we obtain the

option price V̂
[0]
lsm.

To identify how look-ahead bias arises in the LSM algorithm, we focus on the exercise decision at

time ti and state s. For this purpose, we consider only the simulations of size N that have a path passing

through the state S
[i]
n = s for a dummy path index n. Taking the expectation of (3) over such simulation

sets, the option value from the LSM method (with the choice of basis functions) is

Eω[V̂
[i]
lsm(s)] = Eω[Y [i]

n ] = Eω[ I[C
[i]
n,lsm ≥ Z [i]

n ] · (Y [i+1]
n − Z [i]

n ) |S[i]
n = s ] + Z [i](s).

Ideally, the exercise decision, I[C
[i]
n,lsm ≥ Z [i](s)], and the continuation premium, Y

[i+1]
n −Z [i]

n , should be

independent because the former cannot take advantage of the future information of the simulation path.

In the LSM method, however, C
[i]
n,lsm depends on Y

[i+1]
n via C [i] = H [i]Y [i+1]. Therefore, the source of
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look-ahead bias is the covariance between the two terms:

B[i](s) = Covω

(
I[C

[i]
n,lsm ≥ Z [i]

n ], Y [i+1]
n − Z [i]

n |S[i]
n = s

)
. (6)

Look-ahead bias is positive because C
[i]
n,lsm is always biased toward Y

[i+1]
n .

We can remove look-ahead bias by de-correlating C [i] from Y [i+1]. One method is the standard

technique of running an independent simulation set to estimate Ĉ [i](s). Applying this type of method,

say lsm′, to remove look-ahead bias, the option value from the method is suboptimal:

Eω[V̂
[i]
lsm′(s)] = Eω[ I[C

[i]
n,lsm′ ≥ Z [i]

n ] |S[i]
n = s ] · Eω[Y [i+1]

n − Z [i]
n |S[i]

n = s ] + Z [i](s)

= p
[i]
lsm′(s)Eω[Y [i+1] |S[i]

n = s ] + (1− p[i]lsm′(s))Z
[i](s)

≤ p[i]lsm′(s)C
[i](s) + (1− p[i]lsm′(s))Z

[i](s)

≤ max(C [i](s), Z [i](s)) = V [i](s).

Here, p
[i]
lsm′(s) = Eω[ I[C

[i]
n,lsm′ ≥ Z

[i]
n ] |S[i]

n = s ] is the exercise probability at state s averaged over

repeated simulations.

Our look-ahead bias expression is subtly different from that of Fries (2005, 2008). He defines it as

the value of the option on the Monte Carlo error in the estimation of the continuation values:

B
[i]
Fries(s) = Covω

(
I[C

[i]
n,lsm ≥ Z [i]

n ], C
[i]
n,lsm − Z [i]

n |S[i]
n = s

)
.

We argue that this definition is inconsistent because it is based on the alternative backward induction

(5), even though Fries (2005, 2008) claim to deal with the look-ahead bias in the LSM method.

2.2. The LOOLSM Algorithm

We remove look-ahead bias in the LSM method simply by omitting each simulation path from the

regression and making the exercise decision on the path from the self-excluded regression. The bias

formulation (6) is free from the correlation because we exclude Y
[i+1]
n from the estimation of C

[i]
n . Figure 1

illustrates this idea with a toy example with three simulation paths.

This idea is well known as LOOCV in statistical learning. This is a special type of the k-fold

cross-validation method, where k is equal to the number of data points n. We can obtain the adjusted

prediction values analytically without running regressions N times. We express the prediction error with

the leave-one-out regression as a correction to that with the full regression (Hastie et al., 2009, § 7.10):

Y [i+1] −C [i]
loo =

Y [i+1] −C [i]
lsm

1N − h[i]
,

where 1N is the size-N column vector of 1s, h[i] = (h
[i]
n ) is the diagonal vector of H [i], and the arithmetic
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Figure 1: Illustration of the look-ahead bias correction via LOOCV. The x-axis is the current state variable S
[i]
n , and the

y-axis is the continuation premium Y
[i+1]
n − Z

[i]
n . There are three simulated paths: n = 1, 2, and 3. The full regression

(ŷ = 1 + x) under the LSM method indicates that path 2 should be continued (ŷ2 = 1 > 0). However, this is look-ahead
bias influenced by an outlier, path 2 (y2 = 4). Based on the regression without path 2 (ŷ′ = − 2

3
+ 5

6
x) under the LOOLSM

method, it should be exercised (ŷ′2 = − 2
3
< 0). The leverage scores, h

[i]
n , are 13/14, 5/13, and 10/14.

x = S
[i]
1

y = Y
[i+1]
n − Z [i]

n

ŷ = 1 + x

ŷ′ = − 2
3 + 5

6x

Path 1: (−4,−4)

Path 2: (0, 4)

Path 3: (2, 1)
−ŷ2 = 1

−
ŷ′2 = − 2

3

Continue

Exercise

operations between vectors are element-wise. The diagonal element h
[i]
n , measures the leverage of the

prediction C
[i]
n on the observation Y

[i+1]
n ; that is, h

[i]
n = ∂C

[i]
n /∂Y

[i+1]
n . The value is high when the

observation point x
[i]
n is far enough away from the others that the regression is more likely fitted close

to the observation (see the leverage values in the caption to Figure 1). It also satisfies2

1

n
≤ h[i]n < 1 and

N∑
n=1

h[i]n = rank(X [i]) = M. (7)

Note that the leave-one-out error is larger in magnitude than the original error because the full regression

contains overfitting due to self-influence.

The LOOLSM method we propose is simply to use the corrected continuation value C
[i]
n,loo from the

LOOCV in the backward induction step (3):

C
[i]
loo = C

[i]
lsm −

h[i] · e[i]

1N − h[i]
for e[i] = Y [i+1] −C [i]

lsm. (8)

We can compute the whole vector h[i] as the row sum of the element-wise multiplication between X and

X(X>X)−1, which is straightforward from h
[i]
n = xn(X>X)−1 x>n . This is much more efficient than

2The lower bound 1/n occurs due to the intercept column in X[i]. We exclude the case where h
[i]
n = 1 because it

happens only when X[i] with the n-th observation removed is not full-rank. For the proof and equality condition, see
Mohammadi (2016).
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obtaining h[i] from the full H [i] matrix. As we must compute the transpose of X(X>X)−1 for the full

regression, we can obtain h[i] with only O(NM) additional operations.

3. Convergence Rate of Look-ahead Bias

3.1. Measuring Look-ahead Bias

In this section, we analyze the convergence rate of look-ahead bias via the LOOLSM method. Given

that the LOOCV correction removes the self-influence in the continuation price estimation, it is natural

to define look-ahead bias as the difference between the LSM and LOOLSM prices:

B[i]
n = Y [i]

n − Y
[i]
n,loo and B̂ = En[B[0]

n ] = V̂
[0]
lsm − V̂

[0]
loo, (9)

where B
[i]
n is the path-wise bias and B̂ is the final bias in the option value at t = 0. To keep the notation

simple, we use Y
[i]
n instead of Y

[i]
n,lsm. Measuring look-ahead bias with the LOOLSM method has two

advantages over using the two-pass LSM method. First, we eliminate Monte-Carlo error significantly

because no extra randomness is required (see Table 2). Moreover, we can analyze the convergence rate

of look-ahead bias mathematically thanks to the analytic expression in (8).

There is a subtle difficulty in analyzing B
[i]
n . The difference between Y

[i]
n and Y

[i]
n,loo is easy to measure

only when the LSM and LOOLSM methods use the same observations, Y [i+1] = Y
[i+1]
loo , for regression.

However, this is only guaranteed at the first induction step i = I − 1. From the next step, Y [i+1]

and Y
[i+1]
loo start deviating. To resolve this difficulty, we introduce a modified LOOLSM method that

substitutes Y [i] for Y
[i]
loo in the LOOLSM regression.

Y [i]
n = I[C

[i]
n,lsm ≥ Z [i]

n ] · (Y [i+1]
n − Z [i]

n ) + Z [i]
n ,

Y
[i]
n,loo = I[C

[i]
n,loo ≥ Z [i]

n ] · (Y [i+1]
n,loo − Z [i]

n ) + Z [i]
n ,

C
[i]
n,loo = C

[i]
n,lsm − (Y [i+1]

n − C [i]
n,lsm)h[i]n /(1− h[i]n )

(10)

We numerically verify that the impact of this modification is negligible in pricing because the substitution

affects only the estimated continuation value. Therefore, we assume that the LOOLSM price in (9) is

measured with the modified method throughout this section.

3.2. Main result

Before stating the main result, we first build an intuition for the convergence rate of look-ahead bias.

Suppose the n-th path is an outlier in the LSM regression such that the sample point Y
[i+1]
n is much

bigger than the prediction C
[i]
n,lsm.3 Then, look-ahead bias inverts the exercise decision when C

[i]
n,loo <

3By symmetry, one can also assume that Y
[i+1]
n is much smaller than C

[i]
n,lsm.
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Z
[i]
n ≤ C [i]

n,lsm. In Lemma 2 in Appendix A, we will show that this is equivalent to

0 ≤ C [i]
n,lsm − Z [i]

n < h[i]n (Y [i+1]
n − Z [i]

n ). (11)

We can guess that the probability for above events would decay at the rate of M/N . This is because,

as the simulation size N grows larger, h
[i]
n becomes smaller as En[h

[i]
n ] = M/N from (7) while the size of

the other terms remain the same. Indeed, this turns out to be the case, as we discuss below in detail.

The main results rely on two technical assumptions common in studies analyzing the convergence

of the LSM algorithm (Clément et al., 2002; Stentoft, 2004). First, we work only with realistic payoff

functions that grow moderately and well-defined option prices. This is a minimal condition from a

practical standpoint.

Assumption 1. The payout functions, Z [i](s), are in L2.

The second assumption deals with the complication in pricing that arises when the option and contin-

uation values are arbitrarily close with a non-negligible probability. This outcome might lead to a wrong

exercise decision at the limit and the LSM algorithm fails to converge to the true price; see Stentoft

(2004) for example. Henceforth, we assume that the continuation value is different from the exercise

value almost surely.

Assumption 2. Fix an ordered set of countable basis functions {fm(s) : m = 0, 1, · · · } in the L2 space.

Let C
[i]
M (s) be the continuation value obtained from the LSM method with the first M basis functions at

the limit as N →∞, such that C
[i]
M (s)→ C [i](s) as M →∞. Furthermore, let

P
[i]
M (c) = P[ |C [i]

M (S[i])− Z [i](S[i])| ≤ c ]

be the probability of the absolute continuation premium not exceeding c. Then, we assume that

lim
c→0

P
[i]
M (c) = 0 for all M = 1, 2, · · · .

The following theorem is the main result of this section. In analyzing the convergence rate, we regard

any derived quantity (e.g., B̂) as a random variable, and examine how its expected value behaves as N

increases.

Theorem 1. The following hold under Assumptions 1 and 2.

(i) B
[i]
n ∼ Op(M/N).

(ii) For any given ε > 0, there exists rε > 0 such that the expected look-ahead bias satisfies Eω[B̂] ≤
ε+ rεM/N .

(iii) B̂ converges to zero in probability.

Here, the probabilistic asymptotic notation Op is defined in the probability space of all possible simulation
runs of size N . The subscript for path n in (i) is a dummy index because the Monte Carlo paths are
drawn independently.

We prove Theorem 1 in Appendix A. Two cases are treated separately in the proof: (a) the contribu-

tions to look-ahead bias near the exercise boundary and when the tails of the asset distributions can be
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made arbitrarily small, and (b) the probability of look-ahead bias occurring elsewhere can be bounded

by a constant multiple of leverage h
[i]
n with expected value M/N . Since any realistic bias is controlled

by (b), its expected value decays at the rate of a constant multiple of M/N at least. Indeed, we report

a strong linear relationship between look-ahead bias and M/N with a few examples, see Figures 2, 3,

and 4. Although Theorem 1 does not guarantee linearity, we believe this is a direct consequence of h
[i]
n

primarily determining the convergence rate.

4. Numerical Results

4.1. Overview of Experiments

We price four Bermudan option cases to compare the LSM and LOOLSM methods. We present them

in increasing order of the number of underlying assets: single-stock put options, best-of options on two

assets, basket options on four assets, and cancellable exotic interest swap under the LIBOR market

model. Therefore, the number of regressors, M , also increases in general given the same polynomial

orders to include.

We run nmc sets of simulations with N paths each and use the following three estimators for com-

parison:

� LSM: the one-pass (i.e., in-sample) LSM estimator.

� LSM-2: the two-pass (i.e., out-of-sample) LSM estimator. We apply the exercise policy computed

from an extra set of N paths to the payoff valuation with the original simulation set.

� LOOLSM: the LOOLSM estimator.

Using the same N simulation paths for the payoff valuation across the three methods works as a control to

reduce the variability of the measured bias (i.e., price difference between methods). We use the antithetic

random variate (N/2 + N/2) to reduce the variance. We also vary M by selecting different basis sets.

From the results of nmc independent simulation sets, we obtain the mean and standard deviation of the

option price. If the exact option value V [0] is available, then we report the price offset from V [0]:

Price Offset = Eω[V̂ [0]]− V [0],

where V̂ [0] is the price estimate from each simulation. Otherwise, we report the price Eω[V̂ [0]]. We

implemented the numerical experiments in Python (Ver. 3.7, 64-bit) on a personal computer running

Windows 10 with an Intel core i7 1.9 GHz CPU and 16 GB RAM.
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4.2. Bermudan Options under the Black-Scholes Model

The underlying asset prices Sj(t) of the three examples in this section follow geometric Brownian motions:

dSj(t)

Sj(t)
= (r − qj)dt+ σj dWj(t),

where r is the risk-free rate, qj is the dividend yield, σj is the volatility, and the Wj(t)’s are the standard

Brownian motions correlated by dWj(t) dWj′(t) = ρjj′ dt (ρjj = 1). The choice of geometric Brownian

motion for the price dynamics has several advantages and does not oversimplify the problem. It is easy to

implement because an exact simulation is possible. The geometric Brownian motion is a standard choice

in the literature and we can take advantage of the exact Bermudan option prices reported previously.

For each example, we run two experiments. The first experiment is to ensure that the LOOLSM

method eliminates look-ahead bias in a similar way as the LSM-2 method. We run nmc = 100 sets of

simulations with N = 4 × 104 paths and price options with the three methods. Additionally, we price

the corresponding European options using the Monte Carlo method with the same sets of paths.

The second experiment is to validate the convergence rate of the bias in Theorem 1. We run the

LSM and LOOLSM methods with varying N and M . We first generate a pool of 720× 104 Monte Carlo

paths and split them into groups of N = 0.5, 1.5, 3, 6, 9, 12, 18, and 36 × 104 paths. Therefore, the

generated groups comprise nmc = 720× 104/N (= 1440, · · · , 20) Monte Carlo runs, and we compute the

price offset and standard deviation from the nmc prices. By varying N within the same path pool, we

control the Monte Carlo variance as much as possible and make the simulation size N the most important

factor to measure look-ahead bias. Simultaneously, we vary the number of regressors (M) by including

polynomials of higher terms. We thus measure look-ahead bias as a function of M/N .

The three examples are the Bermudan options whose payouts are determined entirely at the time of

exercise and are always non-negative. We take advantage of these properties in the implementation of the

methods. First, we include the payout function as a regressor, f1(s) = Z [i](s). The payout is an important

regressor improving the optimality of the exercise decision, as Glasserman (2003) shows. Including the

payout also eliminates a specification issue in regression. In an alternative LSM implementation, one

may regress the continuation premium, Y [i+1] −Z [i] (instead of Y [i+1]), to estimate C [i] −Z [i] (instead

of C [i]). While it is difficult to determine the superior approach, they become identical when we include

Z [i](s) as a basis function. Second, following Beveridge et al. (2013), we do not exercise the option

when Z
[i]
n = 0, even if C

[i]
n < Z

[i]
n . The negative continuation value is an artifact caused by simulation

noise or imperfect basis functions. It is always optimal to continue the option since the future payout is

non-negative.4

4On top of the exercise decision override, Longstaff and Schwartz (2001) even suggest running the regressions with

the in-the-money paths only; that is, {n : Z
[i]
n > 0}. In our experiment, however, this practice makes little difference.

Glasserman (2003) even reports that the result can be inferior in some cases. We use all simulation paths in this study.
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Case 1: Single-stock Put Option. We start with Bermudan put options on a single stock

Z [i](s) = e−rti max(K − s1, 0),

with the parameter set tested in Feng and Lin (2013):

S1(0) = 100, σ1 = 20%, r = 5%, q1 = 2%, ti =
i

5
, and I = 5 (T = 1).

We obtain the exact option prices for the strike prices: K = 80, 90, 100, 110, and 120 by implementing

the binomial tree method. Feng and Lin (2013) reports an exact price for K = 100 consistent with our

result. For the regressors, we use

X [i](s) = (1, Z [i](s1), s1, s
2
1, · · · ).

We use the first M = 5 functions (up to s31) for the first experiment and M = 4, 8, and 12 for the second.

Table 1 reports the result of the first experiment. As expected, the LOOLSM and LSM-2 prices are

similar and are slightly lower than the LSM price. This result implies that LOOLSM removes look-

ahead bias, although the size is small. To show the statistical significance of the look-ahead bias, Table 2

reports its mean and standard deviation separately. The bias measured with the LOOLSM method has

much less deviation than that measured with LSM-2 because the LOOLSM method requires no extra

simulation, whereas LSM-2 needs another independent simulation set.

Figure 2 shows the result of the second experiment. The top plot shows the price offset of the LSM

and LOOLSM methods as a function of M/N for varying M and N values. It demonstrates how the

LSM and LOOLSM prices converge as N increases for a fixed M . The LSM price converges from above

and the LOOLSM converges from below, indicating that the LOOLSM price is low-biased compared with

the convergent value for a given M . The bottom plot shows the look-ahead bias as a function of M/N .

Notably, the data from the three M values form a clear linear pattern, confirming the convergence rate

in Theorem 1. While the figure illustrates one specific option (K = 80), the other options in the case

exhibit the same pattern.

This single-asset case is similar to the example Longstaff and Schwartz (2001) uses to demonstrate that

look-ahead bias is negligible. Indeed, our finding is consistent. In light of the convergence rate analysis,

however, the example has the smallest ratio, M/N = 4/105, among the five examples in Longstaff and

Schwartz (2001). The convergence analysis indicates a danger that the LSM price might rise above the

true price when using larger basis sets (e.g., M = 8 and 12), even with a large simulation size N .

Case 2: Best-of Option on Two Assets. We price best-of (or rainbow) call options on two assets:

Z [i](s) = e−rti max(max(s1, s2)−K, 0),
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Table 1: Results for the single-stock Bermudan put options (Case 1). We use N = 40, 000, M = 5. The “Exact” columns
report the true option prices, while the other columns report the price offset and standard deviation from the nmc = 100
simulation results. All values are rounded to three decimal places.

Bermudan European
K Exact LSM LSM-2 LOOLSM Exact MC
80 0.856 -0.002 ± 0.014 -0.003 ± 0.014 -0.003 ± 0.014 0.843 -0.002 ± 0.015
90 2.786 -0.002 ± 0.019 -0.004 ± 0.019 -0.003 ± 0.018 2.714 -0.002 ± 0.024

100 6.585 -0.001 ± 0.020 -0.003 ± 0.020 -0.003 ± 0.020 6.330 -0.000 ± 0.029
110 12.486 -0.009 ± 0.024 -0.011 ± 0.023 -0.012 ± 0.024 11.804 -0.001 ± 0.026
120 20.278 -0.014 ± 0.033 -0.014 ± 0.033 -0.016 ± 0.033 18.839 -0.003 ± 0.018

Table 2: Results for the first experiment on the single-stock Bermudan put options in § 4.2. The columns report the
difference between the price of each method and the LSM price, and its error estimate.

K LSM − LSM-2 LSM − LOOLSM
80 0.0013 ± 0.0026 0.0011 ± 0.0005
90 0.0017 ± 0.0035 0.0014 ± 0.0007

100 0.0025 ± 0.0072 0.0024 ± 0.0014
110 0.0021 ± 0.0088 0.0024 ± 0.0011
120 0.0003 ± 0.0086 0.0022 ± 0.0013

Figure 2: The price offset (top) and look-ahead bias (bottom) as functions of M/N for the single-stock put option with
K = 80 (Case 1). At the top, given the fixed values of M and N , the higher value corresponds to the LSM method and
the lower one to the LOOLSM method.
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with the parameter set tested by Glasserman (2003) and Andersen and Broadie (2004):

K = 100, σj = 20%, r = 5%, qj = 10%, ρj 6=j′ = 0, ti =
i

3
, and I = 9 (T = 3).

The options are priced with three initial asset prices, S1(0) = S2(0) = 90, 100, and 110. We use the

following basis functions (M=11) for the first experiment:

X [i](s) = (1, Z [i](s), s1, s2, s
2
1, s1s2, s

2
2, s

3
1, s

2
1s2, s1s

2
2, s

3
2).

For the second experiment, we use M = 4, 7, and 11, which correspond to the linear, quadratic, and

cubic polynomial terms, respectively. We use the exact Bermudan option prices from Andersen and

Broadie (2004) and compute the exact European option prices from the analytic solutions expressed in

terms of the bivariate cumulative normal distribution (Rubinstein, 1991).

Table 3 and Figure 3 show the results. Look-ahead bias in the LSM method becomes more pro-

nounced, whereas the LSM price is still lower than the true price, primarily because the exercise bound-

ary of the best-of option is highly non-linear, as Glasserman (2003) observes. As depicted in Figure 3,

suboptimal bias quickly decreases as M increases. Nevertheless, look-ahead bias is clearly proportional

to M/N , regardless of the suboptimality level.

Table 3: Results for the best-of Bermudan call options (Case 2). We use N = 40, 000 and M = 11. The “Exact” columns
report the true option prices, while the other columns report the price offset and standard deviation from nmc = 100
simulation results. All values are rounded to three decimal places.

Bermudan European
Sj(0) Exact LSM LSM-2 LOOLSM Exact MC

90 8.075 -0.020 ± 0.055 -0.036 ± 0.056 -0.035 ± 0.054 6.655 0.011 ± 0.062
100 13.902 -0.036 ± 0.060 -0.052 ± 0.062 -0.054 ± 0.058 11.196 0.011 ± 0.078
110 21.345 -0.040 ± 0.065 -0.062 ± 0.068 -0.059 ± 0.064 16.929 0.013 ± 0.096

Case 3: Basket Option on Four Assets. Next, we price Bermudan call options on a basket of four

stocks:

Z [i](s) = e−rti max

(
s1 + s2 + s3 + s4

4
−K, 0

)
.

with the parameter set tested by Krekel et al. (2004) and Choi (2018) in the context of the European

payoff,

Sj(0) = 100, σj = 40%, r = qj = 0, ρj 6=j′ = 0.5, ti =
i

2
, and I = 10 (T = 5).

The options are priced for a range of strikes, K = 60, 80, 100, 120, and 140. Because the underlying

assets do not pay dividends, it is optimal not to exercise the option until maturity; hence, the European

option price is equal to the Bermudan price. Therefore, we refer to Choi (2018) for the exact prices. For
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Figure 3: The price offset (top) and look-ahead bias (bottom) as functions of M/N for the best-of call option with
Sj(0) = 100 (Case 2). At the top, given the fixed values of M and N , the higher value corresponds to the LSM method
and the lower one to the LOOLSM method.

the regressors, we use polynomials up to degree 2 (M = 16) for the first experiment:

X [i](s) = (1, Z [i](s), sj , · · · , s2j , · · · , sjsj′ , · · · ) for 1 ≤ j < j′ ≤ 4,

and the subsets M = 6, 10, and 16 for the second experiment.

Table 4 and Figure 4 report the results. In this example, the LSM method noticeably overprices the

option for all strike prices, whereas the LOOLSM and LSM-2 prices are consistently low-biased. Unlike

the best-of option case, the suboptimal level is unchanged for increasing M because the payoff function

is a linear combination of the asset prices, therefore only the linear basis functions (M = 6) capture the

exercise boundary accurately. The look-ahead biases for the different M ’s collapse into a function of

M/N , although linear convergence clearly appears when M/N is very small (see the inset of the bottom

plot of Figure 4).
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Table 4: Results for the four-asset basket options (Case 3). We use N = 40, 000 and M = 16. The “Exact” columns report
the true option prices, while the other columns report the price offset and standard deviation from nmc = 100 simulation
results. All values are rounded to three decimal places.

K Exact LSM LSM-2 LOOLSM European
60 47.481 0.233 ± 0.223 -0.205 ± 0.213 -0.209 ± 0.196 0.012 ± 0.309
80 36.352 0.230 ± 0.255 -0.174 ± 0.244 -0.158 ± 0.235 0.012 ± 0.316

100 28.007 0.235 ± 0.237 -0.117 ± 0.238 -0.109 ± 0.231 0.012 ± 0.309
120 21.763 0.226 ± 0.236 -0.084 ± 0.245 -0.080 ± 0.229 0.013 ± 0.293
140 17.066 0.213 ± 0.224 -0.086 ± 0.222 -0.075 ± 0.223 0.015 ± 0.275

Figure 4: The price offset (top) and look-ahead bias (bottom) as functions of M/N for the four-asset basket option with
K = 100 (Case 3). At the top, given the fixed values of M and N , the higher value corresponds to the LSM method and
the lower one to the LOOLSM method.

4.3. Cancellable Exotic Interest Rate Swap under the LIBOR Market Model

Finally, we apply the LOOLSM method to a cancellable exotic interest rate derivative under the LIBOR

market model (Brace et al., 1997; Jamshidian, 1997). This last example is different from the previous

three examples in that it is closer to the structured product traded in the market and has a much higher

computational cost than the previous examples. The exact option price is not available. We use this

example to demonstrate the computational advantage of the LOOLSM algorithm.

We briefly introduce the LIBOR market model first before introducing the payout. Let P (t, T ) denote
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the time t price of the zero-coupon bond paying $1 at T . For a set of equally spaced dates, Tj = jδ for

a tenor δ, the forward rate between Tj and Tj+1 seen at time t ≤ Tj is given by

Fj(t) =
1

δ

(
P (t, Tj)

P (t, Tj+1)
− 1

)
.

We also denote the spot rate by Fj = Fj(Tj). The LIBOR market model evolves {Fj(t)}, and then yields

the discount curve P (t, ·). Among the various model specifications, we follow the displaced-diffusion

stochastic volatility implementation of Joshi and Rebonato (2003); the forward rates follow displaced

geometric Brownian motions

dFj(t)

Fj(t) + α
= µj(t) dt+ σj(t) dWj(t) for 0 ≤ t ≤ Tj ,

where the Wj(t)s are the correlated standard Brownian motions, and the volatility takes the time-

homogeneous form

σj(t) =
(
a+ b(Tj − t)

)
e−c(Tj−t) + d for 0 ≤ t ≤ Tj .

This abcd volatility structure is popular in the literature (Joshi and Tang, 2014; Beveridge et al., 2013).

Joshi and Rebonato (2003) further makes volatility stochastic by letting a, b, log c, and log d evolve over

time following the Ornstein–Uhlenbeck process

d h(t) = λ(h∞ − h(t)) + σhdWh(t), (12)

whereWh(t) is a standard Brownian motion independent of theWj(t)s. Displaced diffusion and stochastic

volatility enable the model to exhibit the swaption volatility smile observed in the market. We choose

a spot measure where the numeraire asset is a discretely compounded money market account with $1

invested at t = 0. The value of the numeraire asset at t = Tj is

P ∗j =

j−1∏
k=0

(1 + δFj)

The drift, µj(t), is determined by the arbitrage condition depending the numeraire choice. The predictor–

corrector method (Hunter et al., 2001) provides an efficient approximation of the integrated drift required

for the simulation of Fj(t).

Case 4: Cancellable CMS Spread and LIBOR Range Accrual. Using the LIBOR market model,

we price a callable structure note with an exotic coupon rate. In the equivalent swap form, the note

issuer (option buyer) pays an exotic coupon with annual rate Rj and the investor (option seller) pays the

market rate Fj−1 at the end of each period, t = Tj . The exotic coupon is paid only when the spread of
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two constant maturity swaps (CMS) and LIBOR rates are within certain ranges. Specifically, we assume

Rj =

0.095 in the first one year (j = 1, . . . , 1/δ)

0.095 · I[Sw2y
j ≤ Sw10y

j ] · I[ 0 ≤ Fj ≤ 0.03 ] afterwards,

where Swny
j is the n-year swap rates implied from the forward rates at the time of cashflow exchange,

{Fk(Tj) : k ≥ j}. The two conditions embedded in Rj have been popular among investors since the

financial crisis in 2008; the inversion of the swap curve (i.e., Sw2y
j > Sw10y

j ) is historically rare and it

is expected that the Federal Reserve will maintain a low realized short-term rate (i.e., Fj). However,

the risk-neutral probability of the conditions implied from the option market is lower. Therefore, the

coupon rate (i.e., 9.5%) can be set high to balance the present values of the two parties. While most

market trades use daily range accrual to mitigate the fixing risk, our example uses a single observation

per coupon period to simplify pricing.

We assume that the forward rate tenor is 6 months (δ = 0.5) and that the swap matures in 20 years.

Therefore, we simulate 60 forward rates, {Fj(t) : 1 ≤ j ≤ 60}, until t = 20. The issuer can cancel the

swap every year at ti = T2i = i for i = 1, . . . , 20 (I = 20). Following the market convention, cancellation

does not apply to the cashflow exchange at the same time. To price the trade in a Bermudan option

form, we decompose the cancellable swap into two trades: the (non-cancellable) underlying swap and

the Bermudan swaption, where the holder has the right to enter the swap from ti to t = 20. The payout

of the Bermudan swaption to the option holder is

Z [i] =

2I∑
j=2i+1

δ

P ∗j
(Rj − Fj−1) (Z [I] = 0).

We obtain the price of the cancellable swap as the sum of the prices for the two trades accordingly.

Table 5: The Ornstein–Uhlenbeck parameters of the stochastic abcd volatility for cancellable exotic interest rate swap
(Case 4). The parameter values are from Joshi and Rebonato (2003, Table 4)

h(t) h(0) (= h∞) σh λ
a −0.020 0.05 0.5
b 0.108 0.1 0.3

log c log(0.800) 0.1 0.5
log d log(0.114) 0.2 0.4268

We use the model parameters in Joshi and Rebonato (2003, § 8.4) for the simulation. The displace-

ment is α = 0.025 and the correlation between forward rates decays exponentially, dWj(t)dWj′(t) =

e−θδ|j−j
′| dt with θ = 0.1. The Ornstein–Uhlenbeck parameters for the abcd volatility are given in Ta-

ble 5. See Joshi and Rebonato (2003, § 8) for the swaption volatilities implied from the parameter set.

We simulate the stochastic volatility with the Euler scheme with time step, ∆t = 0.25. The initial

forward rates are Fj(0) = 0.045−0.0425 e−jδ/4 such that Fj increases from 0.25% to 4.5% as j increases.
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Because the payout Z [i] is not determined at the time of exercise, we require a different regression

implementation from the previous cases. We do not include Z [i] in the basis function. We apply the

regression to the continuation premium (or penalty), Y [i+1] − Z [i] instead.5 For the basis set X [i], we

consider two groups of variables: (i) the 6 variables related to interest rates, F2i, Sw
2y
2i , Sw

10y
2i , Sw

(20−i)y
2i

(co-terminal swap rate), I[Sw2y
2i ≤ Sw10y

2i ], and I[ 0 ≤ F2i ≤ 0.03 ]); and (ii) the 4 volatility parameters,

a, b, c, and d at ti. With these terms, we construct the 4 basis sets in increasing order of M :6

� M = 11: linear terms of both groups.

� M = 28: linear and quadratic terms of the interest rate group.

� M = 32: linear and quadratic terms of the interest rate group and linear volatility terms.

� M = 66: linear and quadratic terms of all variables in both groups.

In Table 6, we present the pricing result. Similar to the previous examples, the LOOLSM prices are

closer to the LSM-2 prices, indicating that the LOOLSM method removes look-ahead bias efficiently.

The look-ahead bias, measured as the difference between the LSM and LOOLSM prices, proportionally

increases as the number of basis M increases. In particular, the LOOLSM (and LSM-2) price no longer

increases after M = 28, whereas the LSM prices keeps increasing due to the look-ahead bias. Therefore,

it is safe to use higher-order basis functions under the LOOLSM algorithm.

Table 6: Results for the cancellable exotic swap (Case 4). The prices are for the notional value of 100. The prices are the
average of the nmc = 200 simulation results with N = 10, 000 paths. The standard deviations are constant around 0.22.
The price of the underlying swap is −4.19± 0.20. All values are rounded to two decimal places.

LSM LSM-2 LOOLSM LSM − LOOLSM
M = 11 9.09 9.04 9.06 0.04 ± 0.01
M = 28 9.45 9.38 9.38 0.07 ± 0.02
M = 32 9.48 9.39 9.39 0.09 ± 0.02
M = 66 9.53 9.40 9.36 0.18 ± 0.03

Table 7: Average computation time in seconds for pricing the cancellable exotic swap (Case 4) with N = 10, 000 paths
(2N paths for LSM-2) and M = 66 basis functions. For smaller basis sets (M = 11, 28, and 32), the “Regression and
Pricing” time is smaller in proportion to M , while the “Path Generation” time is unchanged.

LSM LSM-2 LOOLSM
Path Generation 65.19 130.38 65.19

Regression and Pricing 0.35 0.64 0.42
Total 65.54 131.02 65.60

In Table 7, we compare the computation time of the three methods. We separately measure the

time to generate paths and perform the regression and valuation. Note that path generation takes the

5In general, we can separately regress Y [i+1] and Z[i] (Piterbarg, 2003).

6All basis sets include 1 for the intercept.
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majority of the total pricing time due to the complexity of the stochastic LIBOR market implementation.

Since LSM-2 requires another set of simulation paths, it takes twice as much as time to generate paths.

Regarding the time for regression and valuation, the increment from LSM to LOOLSM is marginal, as

in § 2.2, but LSM-2 takes longer than LOOLSM because we must evaluate the regression on the two

simulation sets. Overall, the computational gain of the LOOLSM method is significant compared to the

LSM-2 method, while they achieve the same goal of removing look-ahead bias.

5. The extension of LOOLSM to the other regression estimators

Many studies have aimed to improve the LSM method using advanced regression methods, such as ridge

regression (Tompaidis and Yang, 2014), least absolute shrinkage and selection operator (LASSO) (Tom-

paidis and Yang, 2014; Chen et al., 2019), weighted least squares regression (Fabozzi et al., 2017; Ibáñez

and Velasco, 2018), and non-parametric kernel regression (Belomestny, 2011; Ludkovski, 2018). The

LOOLSM method can be flexibly extended to these alternatives to the LSM method because they are

essentially linear projections via the hat matrix. As long as h[i] is available, the corrections from the origi-

nal regression are obtained from (8) in the same manner and the two-pass approach becomes unnecessary.

Below, we present their hat matrices with discussions.

Ridge regression and LASSO are linear regressions with L2 and L1-regularization, respectively (Hastie

et al., 2009, § 3.4). These methods outperform the LSM method in small simulation paths (Tompaidis

and Yang, 2014) and provide stable estimates of the value-at-risk (Chen et al., 2019). The hat matrix of

ridge regression is

H [i] = X(X>X + λIM )−1X>,

where λ is the regularization strength. From its diagonal, we can see the implication of regularization for

look-ahead bias. The effective degree of freedom, defined as the sum of the leverages (see Hastie et al.

(2009, (3.50))), is less than that of the OLS regression in (7):

N∑
n=1

h[i]n =

M∑
j=1

d2j
d2j + λ

< M,

where dj is the j-th singular value of X [i]. Therefore, we expect the look-ahead bias to decrease as λ

increases, following Section 3. However, regularization alone cannot remove look-ahead bias completely,

and we still need an additional method such as the LOOLSM method. The hat matrix of LASSO is

not analytically available, not to mention that the method is not exactly a linear projection. Given the

selected regressors from shrinkage, however, it is a linear projection. Therefore, an approximation of the

hat matrix can be obtained accordingly. The effective degree of freedom is equal to the number of the

selected regressors under the approximation, which also indicates that LASSO has an effect of reducing

look-ahead bias to some extent.
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In the weighted linear regression, the hat matrix is

H [i] = X(X>WX)−1X>W ,

where W is an N -by-N diagonal weight matrix. Fabozzi et al. (2017) adopt this approach to deal with

heteroscedasticity and Ibáñez and Velasco (2018) to give higher weights to the paths near the exercise

boundary.

Despite heavy computation, the non-parametric kernel regression is an alternative to the OLS regres-

sion (Belomestny, 2011; Ludkovski, 2018). For kernel function K(x, y), the hat matrix is the normalized

kernel value between sample points. The (n, n′) element of H [i] is

H
[i]
n,n′ =

K(X
[i+1]
n , X

[i+1]
n′ )∑N

k=1K(X
[i+1]
n , X

[i+1]
k )

.

The adjusted prediction value from (8) is simply the self-excluded kernel estimate:

C
[i]
n,loo =

∑
k 6=nK(X

[i+1]
n , X

[i+1]
k )Y

[i+1]
k∑

k 6=nK(X
[i]
n , X

[i]
k )

.

In the kernel regression, the LOOLSM algorithm not only saves out-of-sample path generation, but also

saves costly kernel evaluations.

6. Conclusion

This study shows that it is possible to eliminate undesirable look-ahead bias in the LSM method

(Longstaff and Schwartz, 2001) using LOOCV without extra simulations. By measuring look-ahead

bias with the LOOLSM method, we also find that the bias size is asymptotically proportional to the

regressors-to-simulation paths ratio. With numerical examples, we demonstrate that the LOOLSM

method effectively prevents the possible overvaluation of multi-asset American options without extra

computation.
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Appendix A. Proof of Theorem 1

We first introduce two technical Lemmas 2 and 3, then prove the main Theorem 1 in Section 3. For ease

of notation, we omit the exercise time superscripts [i] from Z
[i]
n , C

[i]
n , h

[i]
n , and B

[i]
n when the context is

clear. However, we preserve the superscript in Y
[i]
n and Y

[i+1]
n to avoid ambiguity.

Lemma 2. Let I[ · ] be the indicator function. Then,

B[i]
n ≤ I

[
|Cn,lsm − Zn| ≤ hn |Y [i+1]

n − Zn|
]
|Y [i+1]
n − Zn|+B[i+1]

n .

Proof (Proof of Lemma 2.).
We first formulate the conditions under which look-ahead bias changes the exercise decision. From (10),

B[i]
n = Y [i]

n − Y
[i]
n,loo

= (I[Zn ≤ Cn,lsm]− I[Zn ≤ Cn,loo])(Y [i+1]
n − Zn) + I[Zn ≤ Cn,loo]B[i+1]

n

≤ (I[D+
n ]− I[D−n ])(Y [i+1]

n − Zn) +B[i+1]
n .

where D+
n ⇐⇒ {C [i]

n,loo < Zn ≤ C
[i]
n,lsm} and D−n ⇐⇒ {C [i]

n,lsm < Zn ≤ C
[i]
n,loo}. Here, D+

n (D−n ) is the
condition in which the LSM algorithm incorrectly continues (exercises) due to look-ahead bias, but the

LOOLSM algorithm exercises (continues), and the term (Y
[i+1]
n −Zn), is the price change caused by the

inverted exercise decision. From (8), we obtain the following equivalence:

D+
n ⇐⇒ 0 ≤ Cn,lsm − Zn < Cn,lsm − Cn,loo

⇐⇒ 0 ≤ Cn,lsm − Zn <
hn

1− hn
(Y [i+1]
n − Cn,lsm)

⇐⇒ 0 ≤ Cn,lsm − Zn < hn(Y [i+1]
n − Zn);

similarly,
D−n ⇐⇒ hn(Y [i+1]

n − Zn) ≤ Cn,lsm − Zn < 0.

Since D+
n and D−n are mutually exclusive events, we get

B[i]
n ≤ I[D+

n ∪D−n ] · |Y [i+1]
n − Zn|+B[i+1]

n

≤ I
[
|Cn,lsm − Zn| ≤ hn|Y [i+1]

n − Zn|
]
· |Y [i+1]

n − Zn|+B[i+1]
n . �

Lemma 3. The following hold under Assumptions 1 and 2.

(i) Y
[i+1]
n − Zn ∼ Op(1) and Eω

[
(Y

[i+1]
n − Zn)2

]
are finite.

(ii) hn ∼ Op(M/N).

(iii) |Cn,lsm − Zn|−1 ∼ Op(1).

Proof (Proof of Lemma 3.). (i) Since Y
[i+1]
n = Z

[τ ]
n for some i+ 1 ≤ τ ≤ I, we obtain

(
Y [i+1]
n − Z [i]

n

)2
≤

 I∑
j=i

|Z [j]
n |

2

≤ (I − i+ 1)

I∑
j=i

(
Z [j]
n

)2
for any N . Then, the statements follow from Assumption 1 that Z [i](s) is in L2.

(ii) For any given ε > 0,

Pω
[
hn >

1

ε

M

N

]
≤ εN

M
Eω [hn] < ε
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using Markov’s inequality and En[hn] = M/N .

(iii) It is sufficient to prove that for any given ε > 0, there exists c > 0 such that Pω [ |Cn,lsm − Zn| < c ] <
ε for any sufficiently large N . From Assumption 2, we can choose c so that

Pω [ |Cn,M − Zn| < 2c ] <
ε

2
,

From Clément et al. (2002, Lemma 3.2), which is also based on Assumption 2, Ĉ
[i]
lsm(s) almost surely

converges to CM (s) for a large N :

Pω [ |Cn,lsm − Cn,M | ≥ c ] <
ε

2
.

Here, the choice of c does not depend on M because Assumption 2 holds uniformly on M . Then,

Pω [ |Cn,lsm − Zn| < c ] ≤ Pω [ {|Cn,lsm − Zn| < c} ∩ {|Cn,lsm − Cn,M | < c} ] + Pω [ |Cn,lsm − Cn,M | ≥ c ]

< Pω [ |Cn,M − Zn| < 2c ] + Pω [ |Cn,lsm − Cn,M | ≥ c ]

=
ε

2
+
ε

2
= ε. �

Theorem 1. The following hold under Assumptions 1 and 2.

(i) B
[i]
n ∼ Op(M/N).

(ii) For any given ε > 0, there exists rε > 0 such that the expected look-ahead bias satisfies Eω[B̂] ≤
ε+ rεM/N .

(iii) B̂ converges to zero in probability.

Here, the probabilistic asymptotic notation Op is defined in the probability space of all possible simulation
runs of size N . The subscript for path n in (i) is a dummy index because the Monte Carlo paths are
drawn independently.

Proof. Proof of Theorem 1.

(i) We prove this Theorem inductively. First, B
[I]
n = 0, and we assume that B

[i+1]
n ∼ Op(M/N) for

i < I. We define En, Fn and Gn as

En ⇐⇒ {hn > kM/N} ∪ {|Cn,lsm − Zn| < c},
Fn ⇐⇒ {|Y [i+1]

n − Zn| > l},
Gn ⇐⇒ {B[i+1]

n > sM/N}.

For ε > 0, we choose c, k, l, and s such that Pω[En ∪ Fn ∪Gn] < ε by Lemma 3 and the induction
assumption. If I[En ∪ Fn ∪Gn] = 0, then

B[i]
n ≤ I

[
|Cn,lsm − Zn| ≤ hn|Y [i+1]

n − Zn|
]
|Y [i+1]
n − Zn|+B[i+1]

n

≤ I
[
c ≤ kM

N
|Y [i+1]
n − Zn|

]
|Y [i+1]
n − Zn|+B[i+1]

n ≤ (
kl2

c
+ s)

M

N

by Lemma 2 and Markov’s inequality. Finally,

Pω
[
Bn > (

kl2

c
+ s)

M

N

]
≤ Eω [I[En ∪ Fn ∪Gn]] < ε.

Therefore, B
[i]
n ∼ Op(M/N).
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(ii) Set ε > 0. From Lemma 3, we can choose c and k for En such that

Pω[En]Eω[(Y [i+1]
n − Zn)2] <

ε2

(I − 1)2

for any sufficiently large N . Then,

Eω[B[i]
n −B[i+1]

n ] ≤ Eω
[
[ |Cn,lsm − Zn| ≤ hn|Y [i+1]

n − Zn| ] · |Y [i+1]
n − Zn|

]
(by Lemma 2)

≤ Eω
[
I[En] · |Y [i+1]

n − Zn|
]

+ Eω
[
I[Ecn ∩ (|C [i]

n,lsm − Zn| ≤ hn|Y [i+1]
n − Zn|)] · |Y [i+1]

n − Zn|
]

≤ Eω
[
I[En] · |Y [i+1]

n − Zn|
]

+ Eω
[
I

[
c ≤ kM

N
|Y [i+1]
n − Zn|

]
· |Y [i+1]

n − Zn|
]

≤ Eω
[
I[En] · |Y [i+1]

n − Zn|
]

+
kM

cN
Eω
[
(Y [i+1]
n − Zn)2

]
(by Markov’s inequality)

≤
(
Pω [En] Eω

[
(Y [i+1]
n − Zn)2

] )1/2
+
kM

cN
Eω
[
(Y [i+1]
n − Zn)2

]
(by the Cauchy–Schwarz inequality)

<
ε

I − 1
+
M

N
r[i]ε . (for some r

[i]
ε , by Lemma 3(i))

Finally, we can aggregate the step-wise bounds for the incremental bias to obtain an upper bound
for the overall bias:

Eω[B̂] = Eω[En[B[1]
n ] ] = Eω[B[1]

n ] =

I−1∑
i=1

Eω[B[i]
n −B[i+1]

n ] < ε+
M

N

I−1∑
i=1

r[i]ε .

This completes the proof.

(iii) For any given δ and ε, we can choose ε1 and ε2 such that Eω[B
[1]
n ] ≤ ε1 + rε1M/N < δε for any

M/N < ε2. Then,

Pω[B̂ > δ ] ≤ 1

δ
Eω[B̂ ] =

1

δ
Eω[B[1]

n ] < ε.

Therefore, B̂ ∼ op(1). �
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