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1 Introduction

This paper studies the estimation of nonparametric quantile panel data models. To facilitate

the discussion, consider the following model:
Yie = Q(Xit, v, €p), fori=1,... N;t=1,...,T, (1)

where Y;; € R is the observed dependent variable, X;; € X C R? is the observed regressors, o; €
R is the unobserved individual effect representing individual heterogeneity, and €;|( X, o) ~
U(0,1). Similar models have also been studied by Altonji and Matzkin (2005) and Chernozhukov
et al. (2013) under different assumptions. Assuming that the mapping 7 — Q(zx,a, 7) is strictly

increasing for almost all (x,a) in the support of (X, a;), then almost surely,
def
Qv (7| Xt = 2,0 = a] = Q(z,a,7) = Qr(z,0),

where Qy;,[7|-] denotes the 7-th conditional quantile of Y;;. Our main object of interest is the
quantile partial effects (QPE, hereafter) of X;; on Yj; while controlling for the individual effects,
ie., 0Q-(x,a)/0x for T € (0,1).

Recent development in the literature of quantile panel data models with large T, including
Koenker (2004), Lamarche (2010), Galvao and Montes-Rojas (2010), Galvao (2011), Canay
(2011), Kato et al. (2012) and Galvao and Kato (2016), has mainly focused on the linear models
where Qr(z,a) = B(7)'x + A\r(a). This linearity specification for Q. (x,a) is convenient for
constructing estimators of the QPE based on quantile regressions and analyzing their asymptotic
properties, but it entails two possibly strong restrictions. First, in these models, 0Q.(x, a)/0x =
B(7), i.e., the QPE is homogeneous across « and a. Second, the linearity assumption on Q- (z, a)
usually impose strong restrictions on the regressors. For example, consider location-scale shifting
models: Y = /Xy + a; + g(Xit) - €ir, where €;; is independent of (Xj, ;). In order to have
Q- (z,a) linear in x for all 7, we need g(z) = v’z > 0 for some v € R? and almost all z in the

support of X;;. Thus, for d = 1, X;; must be positive almost surely if v > 0.

To overcome the limitations of the linearity assumption, in this paper, we consider the

following more general specification:

Qr(x,a) = ¢-(2) + Ar(a), (2)

which is a separable nonparametric model in the sense that ¢, and A, are both unknown func-

tions. In this case,
def

3Q7($,a)/a$ = a%’($)/8$ = B‘r(x)

Thus, the QPE is allowed to be heterogeneous across . Two estimators of 3, (x) are proposed.



The first one is based on local linear quantile regressions (LLQR, hereafter) and the second one
is based on local linear smoothed quantile regressions (LLSQR, hereafter). The main advantage
of the proposed estimators is that computationally, they are as efficient as the estimators of
Kato et al. (2012) and Galvao and Kato (2016) for linear quantile panel models.

Despite being computationally simple, analyzing the asymptotic properties of the LLQR
estimator and the LLSQR estimator in the large T' framework is a nontrivial task, mainly due
to the well-known problem of “incidental parameters” — see and Lancaster (2000), Hahn and
Newey (2004) and Ferndndez-Val and Weidner (2018). Another major contribution of this paper
is that it provides a set of regularity conditions under which the proposed estimators are shown
to be asymptotically normally distributed. In particular, for the LLQR estimator, the incidental-
parameter biases are hard to characterize (see the discussions of Kato et al. 2012) and we need
N < Td%‘l to ignore the asymptotic biases. On the other hand, under the assumption that
N =< Th? (h is the bandwidth parameter in the local linear regression), we are able to derive
the asymptotic bias of the LLSQR estimator for the boundary points of A'. Interestingly, the
LLSQR estimator for the interior points of X are shown to be free of asymptotic bias. Moreover,
our asymptotic analysis provides the theoretical basis of using split-panel jackknife (see Dhaene

and Jochmans 2015) for bias corrections.

Other Related Literature

As pointed out by Arellano and Bonhomme (2011), the identification of nonlinear panel
data models with fixed T is a nontrivial problem. Similarly, in the “small T7” framework, the
identification of 0Q;(x,a)/0x is not straightforward. Invoking the result of Hu and Schennach
(2008), one can show that for T' = 3, if €;1,¢€;2 and ¢;3 are mutually independent conditional
on X; def (Xi1,...,X;r)" and some other high level conditions are satisfied, the general model
(1) is nonparametrically identified, i.e., all the conditional densities fy;,|x,, for t = 1,2,3
and f,,x, are identified (see Proposition 2.1 of Arellano and Bonhomme 2016). Given this
result, the identification of 0Q-(z,a)/0x follows easily. Evdokimov (2010) considers a separable
model where Q (X, i, €;t) = m(Xi, ;) + Uy and Uy def U(Xit, €i¢). In this model, Q- (z,a) =
m(x,a) + Qu,,[7| Xy = z]. For T = 2, Evdokimov (2010) provides sufficient conditions for
the identification of m(z,a) and fy;,, x,,, which implies the identification of 0Q(z,a)/0z. Yan
and Li (2018) considers a similar model with Q(X, a;, 1) = m(Xi) + a; + 0(Xit)eir. They
propose a multiple-step estimator of the conditional quantile function: m(z) + o(x)Qc(7), but
no asymptotic theory was provided for this estimator. Moreover, varying-coefficients quantile

/

panel models where Q- (z,a) = f;(x2)'z1 + a and x = (2], 2%)" is studied by Su and Hoshino

(2016) and Cai et al. (2018).

The identification of the quantile treatment effects (QTE) in nonseparable panels with fixed
T is considered by Chernozhukov et al. (2013) and Chernozhukov et al. (2015). Note that the

QTE considered in these papers is the derivative of the quantile structural function: QX(x),



which is defined by P[Y;; < Q%(z)| X = z] = 7. Therefore, it is obvious that Q%(z) # Q-(x,a),
and the QTE is different from the QPE. More recently, Graham et al. (2018) considers the
case where Q%(x) = [;(z)'z and focuses on the identification and estimation of the average
conditional quantile effects (ACQEs) defined as E[5,(X)].

Last but not least, this paper extends a large literature on nonparametric quantile regressions
(see Chaudhuri et al. 1991, Fan et al. 1994, Yu and Jones 1998, Honda 2000, Su and Ullah 2009,
Qu and Yoon 2015, etc.) to panel data models with fixed effects.

Structure of the Paper

The rest of the paper is organized as follows: Section 2 introduces the models and provides
some illustrative examples. Section 3 defines the estimators, whose asymptotic properties are
established in Section 4. In Section 5, A Monte Carlo simulation is used to evaluate the perfor-
mance of the proposed estimators and the bias-correction method. Finally, Section 6 concludes.

All the proofs are collected in the appendix.

2 The Model and Some Examples

Specification (2) implies the following panel data model:
Yit = ¢r(Xit) + Ar(i) + uie(7), (3)
where the error terms satisfy the following quantile restrictions:
Pluj (1) < 0| X, o] = 7.

It follows that the conditional quantile of the outcomes Yj; given the observed covariates X;;

and the individual effect o; can be written as
Qv [T| Xt = 7,05 = a] = Qr(z,a) = ¢ (7) + A\-(a),

and as discussed in the introduction, our main object of interest is the QPE: 8, (z) = ¢, (z)' for
allz € X C R? and all 7 € T, where T is a compact subset of [0, 1].

'To simply the notations we use ¢-(z) and §,(z) to denote the first and second order derivatives of g, (-)
respectively.



Consider the following 3 examples:
Example 1: Y = 68Xy + o + \/1+’YXZ%'6¢1:
Example 2: Yie = BXit + o + <\/1+'yXi2t+ \/1+9a?) - €t

Example 3: Yie = BXi + o + Xipa; +4/1 + ’yXZ?t - €t

where ¢;; is independent of X, o; with quantile function Q.. It follows that

Example 1: Q- (z,a) = Br + m - Qe(T)+_a

ar(z) Ar(a)
Example 2: Qr(z,a) = fr+ m ‘Qe(T)+a+ <\/m> “Qe(T) -
qr (@) Ar ()

Example 3: Q-(z,a) =pr+a+za+ 1+ vy22- Q7).

Note that both Example 1 and Example 2 are nested by our model. In particular, the function
Ar(+) in Example 1 are invariant across 7 € (0,1). Example 3 is not nested by our model, since
the conditional quantile function is not additive separable as functions of z and a. Our model
implies that the QPE is a function of X;; only, while in Example 3 the QPE depends on both

Xt and «y.

3 The Estimators

Suppose that we have a random sample of (Yj;, X;;) fori =1,..., N and t = 1,...,T, where the
realized values of the individual effects are (g1, ...,aon). We follow a fixed effects approach,
treating (Ao17,- .-, Aonr) d:ef()\T(am), ..., Ar(apn)) as fixed parameters, and consider the asymp-

totic framework where both dimensions of the panel data go to infinity, i.e., N,T — oc.

Focus on a single point z € X'. Expanding ¢,(X;;) around z, we have
¢ (Xit) = 4 (2) + ¢ () (Xir — ) + 0.5(Xst — 2)'G-(2) (Xt — 2) + Rr(z, Xit)
where R, (z, Xj;) is the remainder term. It follows that
Yit = Xoijr + ¢r (@) + ¢- (@) (Xit — ) + 0.5(Xie — 2)'Gir (2)(Xit — ) + Ry (2, Xit) + wir (1),

The above representation motivates that following LLQR estimator for no; () = Aoir + ¢-(2)



and B, (z):

~

N T X — o
(@), - i (2), B () = argminszmt—ni—(xu—x)’m-ff( d )

MyMN B i=1 t=1 h

where p-(u) = (7 — 1(u < 0))u is the check function, K (-) is a multivariate kernel function, and

h is a bandwidth parameter. Note that

pr(Yie = mi — (Xi — 2)'B) - K((Xir — 2)/h)
= [T = 1Y <m + (Xit — m)lﬁ)] (Vi —mi — (X — $)/5) -K((Xit —x)/h)
= [r— 1(3711 < niKi + Xz{tﬁ)] : (?zt — i Kt — Xz(t/B)
= p’r(ffit —ni Kt — Xz(tﬁ)a
where K;; = K((Xy — z)/h), Yit = YK, and X;; = (Xit — 2)Kys. Thus, the LLQR estimator

can be easily calculated by running a standard quantile regression of Yj; on X;; and N additional

regressors: 1(i = 1)Ky, ..., 1(i = N)Kj, therefore it is very computationally efficient.

Inspired by Galvao and Kato (2016), we also consider the following LLSQR estimator:

(fll,‘r(x)’ s aﬁN,T(Jj)a BT(:’U>)
:argminZZ<T—G<th T Z()th )B>>(}/7,t_777,_(X7,t_x)/6)K(XZh >’

N1ye7IN B i=1 t=1

where G(z) = 1— [*__g(u)du, g(-) is a continuously differentiable function with support [—1, 1],
and b is a bandwidth parameter. The idea of smoothed quantile regression (see Amemiya
1982 and Horowitz 1998) is to approximate the non-smooth indicator function with a smooth

cumulative distribution function.

4 Asymptotic Results

Before presenting the asymptotic results, it is useful to define some new notations. Let xy be

on the boundary of X. The boundary points are defined as
x = xy + ch for some ¢ € supp(K),
and the domain for integration is defined as

B={veR?: (c+v)h e X}Nsupp(K).



Define

co = / K(u)du, C; = / uK (u)du, Co = / u' K (u)du, C = Cy — C1C1/co,
B B B

_ c
Co = @ = , do = / K?(u)du, D, :/uKQ(u)du, Ky = /uulK(u)du, Ko = /uu'KQ(u)du.
Ci G B B

4.1 Asymptotic Distribution of the LLQR Estimator

Write u;; instead of u;(7) to simply the notations. Let B¢ be a neighbourhood of 0. We first

impose the following assumptions:

(A1) X is compact.

(A2) (Y, Xit) are independent of (Yjs, Xjs) for any i # j or t # s. (Yi1, Xi2), ..., (Yir, Xir) are
identically distributed for each <.

(A3) Let fyi(-|x) denote the conditional density of w;; given X;; = x and let fx ;(-) denote the
density of Xj:. There exists ca > ¢; > 0such that ¢; < f,,;(0]z) < ¢z and ¢1 < fxi(x) < 2
for all ¢ and all x € X.

(A4) Define fq(hli)(c|x) = Ofui(clx)/dc and f)((l)l(x) = Ofx,i(x)/0x. There exists a M > 0 such
that £\ (clz)] < M for all ¢ € Be and |f{)(2)],10fui(clz)/0z] < M for all z € X.
Moreover, [0%q,(x)/0z;0x,| < M, |03q,(z)/0x ;0,01 < M for all j,p,h < d.

(A5) The kernel function K has bounded support and [ uK (u)du =0, [ wjupupK (u)du = 0 for
all j,p,h <d.

(A6) co >0, K1 >0,C2>0and C >0, and that

0 < ey mroo NS, fri(a)
Ty oo [N"2SN | i (@) fui(0]|2))2

for all z € X.
(A7) Let N < T and h < T~ for some cy,cp > 0. Then ¢y < (1%4 and dlﬁ <cp < 17(210N.

Remark 1.1: The above assumptions, except (A2) and (A7), are standard in the literature of
local linear quantile regressions and quantile regressions. Note that we only need the existence
and smoothness of the conditional density of u;; given X, thus the estimator is robust to heavy

tails and outliers in wu;;.

Remark 1.2: The independence assumption (A2) is also adopted by Kato et al. (2012) and it
excludes time-invariant regressors. This independence assumption can be relaxed to allow for
[B-mixing on the time dimension along the line of Galvao and Kato (2016) at the cost of much

lengthier proofs. Thus, to keep the proofs tractable, (A2) is maintained throughout the paper.



Remark 1.3: Assumption (A7) ensures that log N < Thit4 N <« Thi+2 NTh¥+6 — 0, and
N? <« Th®. These conditions are needed to prove Theorem 1 below. For example, for d = 2 and
ey = 1/4, we can choose ¢;, = 1/5. Note that due to the nonparametric nature of our estimator,
the condition N? < Th® imposed here is stronger than the condition N? < T required by Kato

—3/4 while

et al. (2012), since the order of the incidental-parameter bias is approximately (Th¢)
in Kato et al. (2012) the bias is approximately of order T—3/%. Such conditions are hard to justify
in practice, this is why we also consider the LLSQR estimator, whose asymptotic distribution

can be established under more realistic assumptions about the relative sizes of N and T.

The following theorem gives the asymptotic distribution of the LLQR estimator.

Theorem 1. Suppose that Assumptions (A1) to (A7) hold, then:

(i) For any interior point x of X, we have
\/W[BT(CE) — Br(2)] LN N(O,T(l - T)U(a:)lelnglCl_l).
(ii) For any boundary point x of X, i.e., x = ch for some ¢ > 0 in the support of K(-), we have
VNTRI2 [ (2) - B:(x) — hBW] % N (0,7(1 = )0 (0)92),
where

Q=c! [ /B (= Cr feo)(u—C /co)'KQ(u)du} ¢ and BY = 050! /B Wi (0)u (u — C feo) K (u)du.

Remark 1.4: The LLQR estimator suffers from two types of biases: a bias due to the estimation
of incidental parameters, and another one due to local linear approximations. As discussed in
Remark 1.3, the first bias can be ignored at the expense of a very strong condition: N <« Td%‘l.
The term hB() is the leading bias term in the local linear approximations (see Fan et al. 1994
for example). This bias can be further reduced by using local polynomial regressions. Note that
BM = 0 for the interior points, thus the leading bias term for the estimators of the interior
points is O(h?).

Remark 1.5: In general, it is straightforward to construct consistent estimators of the asymp-
totic variances, since K1,y and © only depend on the kernel function K(-), and o(x) can be
consistently estimated using standard nonparametric methods. In particular, if the distribution
of (us, X;) are identical across i, i.e., f,;(0lz) = fu,(0|z) and fx;(z) = fx(z) for all i, then
o(2) = (fx (@)™ (fulOl) >



4.2 Asymptotic Distribution of the LLSQR Estimator

We impose the following assumptions:

(B1) Assumptions (A1) to (A6) hold.

(B2) fu,i(clz) is m + 2 times continuously differentiable in ¢ for all + € X. Let flsjl) (clz) =
& fu.i(clx)/Oc?, then there exists some M such that ]fqijz) (clz)| < M for all j < m+ 2.

(B3) g(v) is a symmetric function with support [—1,1] and [ g(v)dv = 1. For some positive
integer m >4, [vig(v)dv=0for j=1,...,m—1, and [v"g(v)dv < co.

(B4) N/(Th?) — x? for some £ > 0. h < T~ and b < T~ for some ¢y, c, > 0 that satisfy

1 1 cp, Moy 1—mcy, 1—3¢
- - “o T 4
Che<d+3ad+1>u(2a2>u< d ; m > ()
2 2
m21d @ dre 5)

Remark 2.1: Assumptions (B2) and (B3) are also imposed in Galvao and Kato (2016). In
particular, we need g(-) to be a fourth (or higher) order kernel function. Assumption (B4)
is new. Condition (4) implies that Th®! — oo, Th**3 — 0, Th%> — oo, Th™ — 0 and
b < h? < b. These conditions will be used in the proof of Theorem 2. Moreover, m > 4 and
(5) ensure that ¢, lies in a non-empty set. For example, for m = 4 and d = 2, one can choose
¢y =1/6 and ¢, € (1/5,1/4).

The following theorem gives the asymptotic distribution of the LLSQR estimator.
Theorem 2. Suppose that Assumptions (B1) to (B4) hold, then:
(i) For any interior point x of X, we have
> d _ _
VNTRI2 [ (@) = B ()] 5 N (0,71 = 1) (@)KT KT ).
(ii) For any boundary point x of X, i.e., x = ch for some ¢ > 0 in the support of K(-), we have

VNTh#2[B, (z) — B, (z) — hBD] % N(/iB(Q), (1 - 7)0(0)9),

where
T—1/2

_limN_mO N-1 sz\il fX,z(x)fu,z(mx)

BO _ 7Y (D1 /ey — Crdo/cd).

Remark 2.2: It can be seen that the asymptotic distributions of the LLSQR estimators and the
LLQR estimators are very similar, with one noticeable difference: the LLSQR estimator for the
boundary points suffers from an asymptotic bias: xB® which is the consequence of estimating

incidental parameters. In the proof of Theorem 2, it is found that the incidental-parameter bias



of the LLSQR estimator for the boundary points is of order (Th?)~! rather than 7= — this is
why we need N < Th? to derive the analytical expression of the asymptotic bias. Interestingly,
the LLSQR estimators for the boundary points at 7 = 0.5 and the LLSQR estimators for the
interior points at all 7s are all free of asymptotic biases. These findings are further confirmed

by a Monte Carlo simulation in Section 5.

Remark 2.3: Theorem 2 provides the theoretical basis for bias corrections using the split-
panel jackknife method proposed by Dhaene and Jochmans (2015). In particular, divide the
whole sample into two subsamples: (Y, Xj) fori=1,... ,N;t =1,...,7/2, and (Yis, Xiz) for
i=1,...,N;t=T/2+1,...,T, and let Bnl(:p), BT,z(x) denote the LLSQR estimators using the

two subsamples respectively’. The bias-corrected estimator is simply given by

Br(a) = 267 () — 0.5[Br () + Bra(z)).
Under Assumptions (B1) to (B4) we can show that for the boundary points,

VNThI2[3(z) — B,(x) — hBY] % N(o, (1 - T)a(om).

Remark 2.4: Assumption (B4) requires that N =< Th®, which is much less restrictive than
Assumption (A6) which imposes N < VThe. As discussed in Remark 2.1, for d = 2, Assumption
(B4) admits the choice: ¢, = 1/4.5 and therefore N =< T°/9. Thus, given the nonparametric
nature of the problem, Assumption (B4) is still more stringent than the usual assumption N < T
imposed for nonlinear fixed-effects estimators (see Hahn and Newey 2004 and Fernandez-Val and
Weidner 2018).

5 A Monte Carlo Simulation

In this section, we evaluate the performance of the proposed estimators in finite samples using

the following data generating process (DGP):

Yie = BXit 4+ o + /1 + X2 - €,

where X ~ i.i.d N(0,1) - 1{| Xy < 2}, o ~ i.i.d N(0,1). It is easy to see that B,(z) =
1+ Qc(7) - 2/v/1 + 22, where €; are i.i.d with quantile function Q.. We consider two different
distributions of €;: (i) N (0,1), and (ii) t distribution with 3 degrees of freedom, and compare
the biases and mean-square errors (MSEs) of four different estimators: the LLQR estimator Br,

the LLSQR estimator j3;, and the bias-corrected versions of these two estimators, denoted as

2The bandwidth parameter h should be the same for 5, (z), 8,1(x) and B, 2(x).

10



(¢ and B¢ respectively.

To same space, we only report the results for N = T = 100, 7 = 0.25,0.5,0.75 and = =
—2,—1.6,...,1.6,2. For all estimators, we choose h = 0.8, and for the LLSQR estimators, we

choose b = 0.5 and consider the following fourth-order kernel function:

105
k(w) = =+ (1 —5u? + 7u* — 3u®) 1(Ju| < 1).
We have also tried other bandwidth values and find that the results is more sensitive to the

choice of h than the choice of b.

Table 1 reports the results for 7 = 0.25 and €;; ~ N(0,1) while Table 2 reports the results
for 7 = 0.25 and ¢;; ~ T'(3). The results for 7 = 0.5 and 7 = 0.75 are reported in Table 3 to
Table 6.

For 7 = 0.25, four conclusions can be drawn from the results in Tables 1 and 2. (i) The
performance of 3, and -, in terms of biases and MSEs, are very close. (ii) As predicted by our
Theorem 2, the bias-correction method significantly reduces the biases of the LLSQR estimators,
especially at the boundary points (e.g., |z| = 2,1.6). Interestingly, the bias-correction method
can also effectively reduce the biases of the LLQR estimators. (iii) The bias-corrected estimators
for the boundary points have much lower MSEs due to the large decrease in biases. (iv) The
performance of the estimators are robust to heavy tails of ¢;;. Similar conclusions are supported
by the results for 7 = 0.75. However, for 7 = 0.5, the bias correction at the boundary points
is not very effective — this is predicted by Theorem 2, which shows that the LLSQR, estimator

for the boundary points is free of asymptotic biases at 7 = 0.5 (see Remark 2.2).

6 Conclusion

To the best of our knowledge, this is the first paper that considers nonparametric quantile regres-
sions in the context of large T panels. Our model is additively separable as unknown functions
of the regressors and the individual effects, and it allows the QPE to be heterogeneous across
individuals. We propose two estimators of the QPE based on local linear approximations, and
establish their asymptotic distributions under a set of regularity assumptions. Our theoretical
results highlight the importance of incidental-parameter biases and justify the use of convenient
jackknife method to correct the asymptotic biases. The good performance of the bias-correction

method in finite samples is confirmed using a Monte Carlo simulation.

Like any other nonparametric estimators, the choice of bandwidth is crucial in practice. In
this paper we have focused on the theoretical conditions that the bandwidth parameters have
to satisfy, but how to choose those bandwidths in practice is an important question that is left

for further investigation.
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A  Proofs of The Main Results

A.1 Proof of Theorem 1

To simply the notations, we suppress the dependence of the parameters on 7 and z. For ex-

ample, we write 7)0@,771,3 Bo instead of n; - (), ;- (x), ,5’7( ), B-(x). Moreover, we first define
the following notations: ¢ = hf3,é = hf3, ¢o = hB-(x), 0 = (1, &), 0 = (1, ...,n, &), O =

(7702’¢0) 90_(77013-"77’0N7¢0) lt—(lﬂ( Zt*x)/) 9 (iﬂg)/’e:(nla"'vn]\hgﬁ)/?
() = 1{u < 0} — 7,

Sr.4(0 Thd Zpr i — OWi)Kie,  Si(0;) = Elpr((60; — 0;) Wit + uie) Kt /1]
and Syr(0) = N~ 3L, 57.4(6:), Sn(60) = N7 30, 5:(61)-
Lemma 1. Under Assumptions Al to A6, we have ||¢ — ¢ol|1 = op(1) and max;<n |7 — noi| =

Op(l).

Proof. For any § > 0, define B;(8) = {6; : | —noi| +1|¢ — ¢oll1 < 6}. For any §; € BE(6), define
0; = rif; + (1 —r;)00, where r; = 6/(|7; — noi| + || — ¢ol|1) < 1. Note that ; is on the boundary
of B;(d). By the convexity of St ;(6;) we have

S7:(0:;) < 1:iS7.i(0;) + (1 — 7:)S7.:(00:), or S7.:(0:) — S1.4(00i) < r:(S1.4(0:) — S1.4(00i))-

Next, by the definition of the estimator, we have STZ(éz) < S7,i(60;) for some i < N. Thus,
if | — ¢oll1 > 6, then 7; € BE(J), which (by the above inequality) implies that

(S7,:(0;) — Sr.:(00:)) /ri < St.:(0;) — Sr.,8(005) < 0.
Adding the subtracting terms, the above inequality can be written as

Si(0;) — Si(00:) < St.i(00i) — Si(00i) — [ST.4(0:) — Si(6s))-

For interior points, using Taylor expansion, we have for some C > 0 that does not depend on ¢,

and small enough ¢,

Si(0;) — Si(00:) = Etbr (wit) Wit Kir /%) (0; — 00:)
+0.5fu,i(012) fx,i(2)[(F — 10i)* + (¢ — ¢0)'K1(d — ¢0)](1 + o(1)) > C3*(1 + o(1)),

12



where we have used the fact that B[, (wi) Wi K /h%] = 0. Similarly, for the boundary points,
we have

S (é ) S’ (901) = 0.5fu7i(0|:L')fX,i({L‘)(9~i — 900’@2(9} — 90@')(1 + 0(1)) > 052(1 + 0(1)).

Thus, if follows from the union bound that
A N ~ —_ ~
Pll|¢ = ¢oll1 > 4] < Z [S7,i(B0i) = Si(00i) — (S1,4(0;) — Si(6:)) > C6*(1 4 o(1))].

To prove ||¢ — dol|1 = op(1), it then suffices to show that for any e > 0

max P sup |ST,i(001') - 31(901) - (ST,z(Hz) — S’Z(GZ))‘ > el = O(N_l)' (Al)
iSN | 9,eB,(5)
Note that
St.i(6:) — Si(6:)
1 £l ) 1 T ,
= Thd Z pr(Yie — 0;Wi) Ky — Thi ZE[pT((GOi —0;) Wit + uip) Kit]
t=1 t=1
;I
= Thd Z (- (Yie — OWi) — pr((B0i — 6;)' Wit + uge) | Kt
t=1
At i (0:)
1 I
Ti ; [ ((Boi — 0:) Wiy + uit) Kiy — Elpr((00; — 0;)' Wiy + i) Kil |,
Br;(6;)
SO

sup |S7.i(00:) — Si(00i) — (ST,i(0;) —Si(0:))] < sup 2|Ari(6;)|+ sup |Bri(6:;)— Br.i(60i)]-
0,€B;(5) 0,EB;(5) 0,EB;(6)

Write Yi; = 00, Wi + 0.5(Xy — )G (2)(Xit — )2 + R(x, Xit) + wit, so from pr(u1) — pr(ug) <

13



2|uy — ugl,

sup |A7,i(6;)]
GEB'(&)

ThdZ [ = lF 4 11X — o) K

IN

= dZ{ 1 Xie — 21T + | Xir — [|}) Kie — B [(I1 X — 2§ + [| Xir — 2[)7) Kit] } + O(h?).
Th

Next, consider supy,cp, (5) |Br,i(0i) — Br,i(f0i)|- By compactness of B;(d), there exist a finite L
and 01(1), .. ,GEL) € B;(0) such that ”‘91@ — Hl(k)Hl < w for all j,k < L. For some Cy,C3 > 0

sup |Br,i(6;) — Br,i(foi)| < max ’BTJ(H,Q)) — Br,i(00:)]
0;€B;(5) i<k

T
1
+eCopga 3 (Wil Kt — B Wil Kl | + wCoBIWa | K /).

Take w = ¢/(6C3M) where M = sup, E[||Wi||1 Kit/h?] < oo, then for large enough N, T, we

have

P sup |ST,1'(90i) — S’Z(eol) — (ST,Z(GZ) — 51(91))| > €

0,€B;(0)

<

P

T

C

TTzld > A UXa = 2l + 11X — 2lI}) Kir — B [(I1Xa — 2l + | X — 2lI}) Ki] } > ¢/10C,
t=1

L
+y°P
j=1

1B (09— Bri(606:)| > /5

(2

1
Pl
* Thd

T
S [I1Witlh Kie—ElIWatll Kl | > 6C21/5C|
t=1

(A.2)

Consider the last term on the RHS of (A.2), since h|Wj|[1K; is uniformly bounded, and
E [||[Wie||3K2] = O(h?), by Bernstein’s inequality, we have

Tp2d
<e Ty (hF+hd=T)

Thd Z (Wl K — B[ Wl Kl > €

for some Cs > 0. We can establish the same bound for the other two terms on the RHS of (A.2).
Thus, (A.1) holds since our assumptions imply that log N/(Th®*!') — 0. Thus, it follows that

16 = doll = op(1).

Now consider ;. By definition of the estimators, we have STyi(ﬁZ-,QAS) < ST,i(no,',qZS) for all

14



i < N. Therefore, if |f}; — 10;| > & for some i < N, then we have §; € BY(4), and
(ST.:(0:) — S1.4(00:)) /s < S1.4(65) — ST.4(80i) < St8(108, ) — S726 (B0 )-

where r; and 6 is as define above. Adding the subtracting terms, the above inequality can be

written as
Si(0;) — Si(00i) < St.4(60s) — Si(00i) — [S7.4(0s) — Si(0:)] + 74 (S7i (103> &) — S1.5(603))-
Thus, for any > 0, we have

N

P I}%%(mz‘—mi\ >5] S;P

sup |Sri(00i) — Si(00i) — (ST.i(0;) — Si(6:))] > 0652]
GiGBi(ﬁ)

+ P [1?%}5\/ ‘ST,i(nOia ) — St,i(00:)

> 0752} (A.3)

for some Cg,C7 > 0. The first term on the RHS of (A.3) was shown to be o(1) above. To prove

max;<n |7 — noi| = op(1) it suffices to show that for any ¢ > 0,

P max ST (M0is @) — S.4(00:)| > 6] = o(1). (A.4)
Note that T’
. « 1
|ST,i(n0i> @) — S1.:(00i)| S |l — doll1 - Thi ; |(Xit — )/h||1 K.
Moreover,

<i<N

T T
1 1
max ; 1(Xie—2)/hl1 Kir < max - ; (Xt — 2)/h[1 Kit — E[|(Xit — ) /hl|1 K]}

+ max E[|(Xi — 2)/h|1 Ki/RY. (A.5)

1<i<N

Similar to the proof above, we can show that the first term on the RHS of (A.5) is op(1), and
the second term is max;<i<n fx.i(z) + o(1) < oo by our assumptions. Then (A.4) follows by

| — ¢oll1 = op(1). This concludes the proof. O
Define

_ K; . xK,

S (0:) = B | [L{use < (000 Wie) ~71 58|, 82(00) = [[1{% (Bi—00r) W) —r) =2
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Denote S/ (6;) = 85" (6;)/0n;, and S2?(6;), 57" (6;) etc. are defined in a similar fashion.

The arguments of these functions are dropped when they are evaluated at 6p;. Let f;(x) =

Fui(Ol2) fx (@), f(z) = N7V, filw), fla) = limyoe fr(2).

Lemma 2. For a boundary point x, i.e., x = ch for some c in the support of K(-), we have
S = Cofi(0) + O(h), 87" =Cifi(0)+O(h) S = ¢of:(0) + O(h).
For a interior point x, we have
SP? = Kifi(x) +O(h), 8" =0(h) S = fi(x) + O(h).

Proof. The proof follows from standard calculations for kernel density estimators. Therefore, it
is omitted. O

Lemma 3. The following representation holds under Assumptions (A1) to (A6):

For a boundary point x, i.e., x = ch for some ¢ > 0 in the support of K(-), we have

c 1 X2 X c
) p2p() v L <0 it — G
é— ¢ — h®B T NT ; 1: t§ 1[1{uzt <0}—1] [ ; hd op(1/VNThY).
For a interior point x, we have
. K1 L X —x Ky
. —_ < N % % dy.
¢ — do —NT ;:1 tEZI[l{uzt <0} — 7] N i +op(1/VNTh?)

Proof. We only provide the proof for the boundary point, which is more involved. Let {dn7}
be a non-increasing sequence such that max;<n |7 — noi| = Op(dnT), and let {yn7} be a non-

increasing sequence such that max;<n |7 — noi| V Hqg — ¢ol|l = Op(yNT)-
Step 1 (Expansion):
Expanding 57 (6;) and S?(6;) around y; gives:

S2(0;) = 52°(d — o) + S (A — noi) + Op(yn) - |6 — doll + Op(6%7),
T0;) = (§?i¢)/(€5—¢0) ST (1 — 10:) + Op(ynt) - |6 — dol| + Op(637).

Plugging the second equation into the first one, and using the results of Lemma 1 and Lemma

2 gives
[£:(0)(C2=C1C1 /o) +O(R)]-(6—0) = S7'(0:) (5™ /57™)-57" (0;)+Op(yn)l|6—boll+-Op (67)-
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It follows that

N

[fN(0)(Ca = CiC1 /co)] - (¢ — o) = st) 0;) — — Z(Sf’”i/S‘?""i) - 57 (6;)

=1
+Op(h+yn7)|d — ¢oll + Op(6%7). (A.6)

Similarly, for each 7 we can obtain:
[£:(0)co + O(h)] - (7 — noi) = S (6;) — £:(0)C1 (6 — do) + Op(h+n1)ll6 — dol| + Op (7). (A7)

57(6:):

=11

Step 2 (N"' 2N, §2(6;) and N~1 30N
First consider N ! ZZ LS 5?(6;). Define Zy = (X — ) /h - Ky /h?. We can write

N | NI
— S2(0;) = —— [1{Yis < OiWi} — 1] Zis
N ; T NT ; ;
;N
ﬁ Z Z { l{uzt 9 — 901) zt} - 7'] it [[1{Uzt (9 - 902) zt} - 7—] zt] }
i=1 t=1
| NT A
ﬁ ZZ {uir < (6; — 00)) Wis} — 1{Vi; < OiWir}| Zit
i=1 t=1
Define
| NI
Anr(0) = <= 300 { Wi < (0 — 00 Witk — 71210 — B[ (1w < (01 — 00i) Wi} — 7174] }
=1 t=1
and
N T
BNT ZZ l{uzt 9 — 901) zt} - I{th < 0, zt}] ity
z:l t=1

then adding and subtracting terms, we can write

NT i=1 t=1

N N T
Z S?(0;) LZZU{Y}% < O Wi} =7 Zis— Ant(00)+(AnT (60) — ANT(9))+BNT(6).

(A.8)
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Moreover, define

N

BJ(\]/L)T % Z; ;{ {uie < (0; — 00;)' Wi} — 1{Y;; < 9§Wit}]Z
[[1{%:5 (0; — 00;) Wit} —1{Y;s < 0] Wt}] }}
L
B](\?)(H) = N Z [[1{1% (6; — 901) Wit} — 1{Yi < 9/ zt}] m]
i=1

we can write:

Byr(6) = Byr(6o) + (Byr(9) ~ Byp(6)) + By (9).
First, by the computational property of quantile regressions, the first term on the right-hand
side of (A.8) is Op(T~th=471).

Second, consider Anr(0) — Anr(0). Following the proof of Kato et al. (2012), we will show
that

| log(h42yN7)| y YINT V[ log(hd+2y )]

Ant(6) — An7(0) = Op(EnT) Where &g =

Thi+1 VThd
(A.9)
Note that
1 I
|Ant(60) — AnT(0)] < th+1 Z Sup Z[l(m’(b’ Vie) — El(mi, &, Vi),
1 |mi—no:l,|6— ¢o\<“/NT t=1

where Vi = [Yie, Xit), and U(n;, &, Vi) = [L{uie < (0; — 00;)'Wir} — 1{use < 0}]Z;th®™!. Define
Ly ={l(ni, ¢, Vit) : [ni — 1ol V ||¢ — ¢ol| < 7}, then the above inequality can be written as

N
R 1
|[AnT(00) — AnT(0)| < 5777
=1

L T
T > U(Vit) — BI(Vit)
=1

["YNT

Thus, to prove (A.9), it suffices to show that

max E
i<N

— El(Vit) T JT

1 T
72 (Vi
t=1

_op <| log(n**2 )] |, VAP /| log<hd+2w>|>
L

YNT

(A.10)
Since Z;;h?t! = Ky - (X3 — ) is uniformly bounded, the class of functions Lo, = {I(nm:, ¢, Vit) :
¢,nm; € R} is a VC subgraph class, and E[l(1;, ¢, Vit)?] = O(ynyrh®2) for 1(ni, ¢, Vit) € Loy,
(A.10) follows from Proposition B.1 of Kato et al. (2012). Similarly, we can show that

B\1(0) — BY1(60) = Op(Ent). (A.11)
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Third, consider B](\})T(Ho). Note that

N T
_ ﬁ Z Z { [1{Uit <0}—1{uy < —m(Xit)}] Zit—E[[l{uit < 0}—1{uy < _m(Xit)}]Zit]}

i=1 t=1

B

where Yy = 0,Wi + 0.5(Xi — 2)'Gr(2) (X — 2) + R(Xit, ) + ui and m(X) = 0.5(Xi —
x) Gr(2) (Xt — x) + R(Xy, ). Since

N
B[ B0 60| < b SB[ <0 — 1w < ~m(X0} - 1Zal?] = O (VD))
=1

it follows that

BU)(60) = op(1/VNTRI). (A.12)

Finally, consider Bﬁ)(é) Write

N
1
)=y 2E (Mt < (0 = 00:) Wiek = L{uae < (05 = 000) Wat = m(Xie)}] Zu
since for some ¢ € (0,1) we have

E|[1{wi < (0 — 00) Wi} = Luie < (0 — 00s) Wi = m(Xin)}] Zi|
= E[fuz((ez — 00i)' Wi — ¢ m(Xit)‘Xz‘t)m(Xit)Zit}

E | fus 01X )m(Xi) Zi| + B[ i (01 = 005 Wit = ¢ - m(Xit) | Xia) = Fui (O Xt} Xie) Zit |

where the first term of the last expression is 0.5f;(0)h? [, u/Gr(0)uuK (u)du + O(h*), and the

second term of the last expression is bounded by
Cll6: = Boill - B[ Wil - [m(Xao)| - || Zaell] + CE[m(Xae) | Zac]] = 16 — b0l - O(h*) + O(nY).
It then follows that

B® (@) = 0.51%Fx (0) /B i, (0VuuK (w)du + Op(ywr - B2) + Op(hY).  (A.13)

Combining results (A.8), (A.9), (A.11), (A.12) and (A.13) gives

1 N 1 N T .
— =—— Huy <0} —7)Zit +0.5h° fn(0) | ' (0)uuK (u)du
¥ 200 = Dl £0) A0SR O) |

+ O0p(1/(Th*Y)) + Op(EnT) + 0p(1/VNThA) + Op(ynT - h?) 4+ Op(h3). (A.14)
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Similarly, we can show that

N

T
(S0 S10) - S1 ) =~ 30 SO/ SI™) - [ < 0} = 7l /1
i=1 t=1

052y (0)C1 /o - /B W (0)uK (u)du + Op(1/(ThH1))

+ Op(ént) + 0p(1/VNThY) + Op(ynrh?) + Op(h®). (A.15)

||M2

Step 3 (Rate of convergence):
Plugging (A.14) and (A.15) into (A.6) and using g?m/gzmm = Ci1/co + O(h) give

[fN( )(C2 — Clci/co)] (¢ — o)

it — T Cl it 2 /.. Cl
;;;;ump<m— 4 hd+0WﬁM@XLu%ﬂm4u—%>KWMu
+op (IIQg - <Z>0H> +OP(5]2VT)+OP(1/(Thd+1))+OP(§NT)+0P(1/V NTh?)+0p(h*)+O0p(ynTh?).
(A.16)
It then follows from our assumptions that
¢ — ¢ = 0p(1/VThe) + Op(6%7) + Op(h?). (A.17)

Next, the above inequality and (A.7) imply that for some C' > 0,

max s — ol < Cmaxc |5} (00)| + 0p (1L/ VT + Op(h?).

Similar to the proof of Step 2, we can show that

S7(0;) = Op(T~*h=4"14+-0p(h?)+6p(1/VThd)—Dr(80:)+(Dr(00:) — Dr(6;))+Gr (6;) —Gr(0oi)
where

0;) ]’jgj{ [ {uie < (6 — 60) Wi} — 7K /h? — B[ [{uia < (6 — 00s) Wi} — 71K/ 1] },

t=1

T
Z { T{uie < (6; — 60i) Wit} — 1{Y; < 6;Wyi}] Kit/h?

t=1

'ﬂ\'—‘

—EW@M (0; — 00:) Wit} — 1{Yiy < 0,Wit}] Mh”
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Applying Lemma 2.2.9 and Lemma 2.2.10 of Van der Vaart and Wellner (1996) we can show
that

max | Dr(00i)| = Op(v/log N/VTh).

Next, following the proof of Kato et al. (2012), we can show that:

max | D (6:) = Dr (60:)| = op(\/log N/VTh?), and max |Gr(0;)~Gr(00:)| = op(y/log N/VTh)

i<N

It then follows that

HiaX\Sm )| = Op(y/log N /VThd) + Op(h?),

max [ — 1oi| = Op(v/10g N/v The) + Op(h?), (A.18)
16 — oll = op(\/log N/VThd) + Op(h?). (A.19)

Step 4 (Bahadur Representation):

Xi—w Cl
h

v (A.18), (A.19) we have dnr = yn1 = Iog N/VThe. Tt then follows from (A.16) that
A C‘l N T
¢ —¢o— h*BY = ZZ 1{uz < 0} — 7]

-+ % o (116 = g0l )

+ Op(1/(Th*)) + Op(log N/Thd) + Op(énT) + 0p(1/V NThI) + op(h3) + Op(ynTh?).
(A.20)

hd

Assumption (A6) implies that Op(1/(Th*1)), Op(log N/Th?), Op(ynTh?) and Op(h?) are all
op(VNTh?). Further, it can be shown that

Op(énT) = Op <(1Og M) (log T)1/2> ;

(Thd)3/4

which is also op(VNTh?) by Assumption (A6). So the desired result for the boundary point
follows. The desired result for the interior points can be proved in the same way, by noting that
for interior points ¢g =1,C; =0, C =K1 and b = 0. O

Proof of Theorem 1:

Proof. By Lyapunov’s CLT, we can show that:

& Xi—x G| Ky
> {u <0} - 7] [ - ] s 4 N0, 7(1 — 7)), (A.21)

i=1 t=1

3l
N
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where

Q*=<hm 1fol )/Bucl/cw(ucl/co)ff?( )du

N—oo

then the desired result for the boundary points follows from (A.21) and Lemma 3. The desired

result for the interior points follows similarly. O

A.2 Proof of Theorem 2

We write 7;, 5 instead of ﬁi,T(a:),BT(az). Moreover, let ¢ = hf3, 6; = (7;,¢'), 0 = (71, ..., 7N, &),
and define o, (u) = [T — G(u/b)]u,

T
1 _
St.(0; = Thd E — O Wi)Ki,  S;(0:) = Elo, ((00; — 0:)' Wit + wir) Kit /1%,

and Syp(0) = N7UY, S50(6:), Sy (0) = N7UY0L, S (6).
We only prove the result for the boundary points. The proof for the interior points is almost

the same.

Lemma 4. Under Assumptions B1 to B, we have ||¢ — ¢oll1 = op(1) and max;<n |7 — noi| =
op(1).

Proof. First consider ¢. By the definition of the estimators, there exists some i < N such that
S:*pl(él) < S7:(6oi). For any 6 > 0, B;(6) is as defined in the proof of Lemma 1. Suppose that
¢ — ¢oll1 > 0, then ; € BE(§). Similarly, by the convexity of St;, we have

St.:(6;) — Sti(00i) < 74(STi(6:) — S1.4(00i)),

where 0; = #0; + (1 — 7;)0p; is on the boundary of B;(8) and #; = 8 /(|7 — noi| + |6 — doll1) < 1

Adding and subtracting terms gives

Si(0:)=8:(001) < Sr.i(00:)—Si(00:) = [S4(0:) = Si(0:)]+7(S1,6(6:) — S1.4(Boi) — S5 (0:) +57F.4 (601)) -

The last term on the right-hand side of the above inequality is Op(b), because we can show that
supy, |S7,i(0;) — S5 ;(6;)| < Cb-T* Z?:l K;i/h? for some C' < oo (see Horowitz 1998), and it is

casy to show that sup;<y 7! ST Kit/h? = Op(1) + Op(+/log N/Thd). The rest of the proof
is similar to the proof of Lemma 1 given that b — 0 as N,T — oco.

Now consider 7;. By definition of the estimators, we have S}Z(ﬁ,,qvﬁ) < S:’Ei(n()i,gﬁ) for all

22



i < N. Therefore, if |1}; — no;| > & for some i < N, then we have §; € B (), and
(S7.4(6;) — S7.:(00:)) /7 < S7.:(6;) — ST (80:)-

where r; and 6 is as define above. Adding the subtracting terms, we can write

S1,i(6:) =51, (60:) = S74(0:) — S5 (M0i> §)+SF i (noi» &)= 574 (60)+ [S1,:(65) — S74(6:) — Sr.6(00i) + S54(60s)] -

Thus, from 5%, (775, ) < Tz(7702> $) we have

Si(0;) — Si(00s) < Sti(60i) — Si(00i) — [ST,6(0:) — Si(6y)]
(0:)

+ 7 (S5 (noi, @) — St.4(00) + [S1.6(6:) — S7:(0:) — S1i(B0i) + S74(604)]) -

Since ||¢ — ¢oll1 = op(1), the last term on the RHS of the above inequality is op(1) + Op(b).

The rest of the proof is similar to the proof of Lemma 1. O

Lemma 5. Let B; 5 be a neighbourhood of 6y;, then under Assumptions B1 to B4, we have

*PPp; = *1); = *Pdn;
sup [|S777 (8:)]| = Op(1), sup [|S7%%%(6;)] = Op(1), sup |[S5577(6:)]| = Op (1),
97;637;75 0; EBI 5 0; EBZ s

sup [|S7E(6:)] = Op(1), sup [|S75™(6:)]| = Op(1), sup |S7H"™(6;)] = Op(1),
96525 96815 96615

sup [|S7"% (0:)] = Op(1), sup |S72™% (6;)] = Op(1).
0;€B; s 0,€B; 5

Proof. To save space, we only prove that supg,ep, ; [Sr; """ (6;)] = Op(1). The proofs of the
=0

other results are similar. Define QS )( ) = ¥ or(u)/0w! and gU) = @g(u)/du?. Then we can

write
S 1
Sy (0;) = T Z 0P (Yi — 0)Wig) Ky /1

__32T: ay (Yie — OiWa .1.Kit_1zT: @ (Y —OiWi\ Yy — Wy Ky
Tt b 2l T Y b 2 nd

Thus, we have

s o) = [sgrnn 0] = oo (B )

i b 2 pd
_E|s® Yie — ;Wi\ Y — Wi Ky
/ b b3 X
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First,

el — Wi\ 1 Ky
b b2 hd

— (0 — 00i) Wit + m(X; 1 K;
= [E [/g(l) (u ( 0 )b ¢t + m( t)) lﬁfu,i(U’Xit)du't]

= -E -/g(v)fé,li) (vb + (0; — Ooi) Wir — m(Xye)| Xir) B ]

hd
() ; Ky m
= “E\f.i ((6: — 00i) Wi — m(Xir)| Xst) - T +0@™)
(1) : Kt e
= —E ([, (6 = 00)) Wit| Xir) - oI | T O(b™) + O(h?) = O(1).
Second,
E [ @) (Y —OiWa\ Yi—0Wi Ki
9 b b d
B — FR— . / . . —_ Fp— . , . . .
- E /9(2) U (01 901) Wlt + m(X’Lt) u (91 907,) Wlt + m(XZt) fu Z(u|XZt)du ) ﬁ
I b b3 g B
[ (2) v / Kt
= E (1)) gfuﬂ (?)b + (0, - HOZ) Wi — m(th)]th) dv - W

g
= -E [/ g (v) vfl(:i) (b + (65 — 00i) Wir — m(Xir)| Xir) I;d }
gl

Kt
a N

= b E| [ g@)of (vb+ (6 — 0:) Wir — m(Xi)| Xir) fﬁf]—zm[m (”V>1K}

b b2 hd
SAv id A
— O(b™) - 2E [g(l) (Y“ ‘)z””) - Kﬂ |

g (v) 1/bfug (vb + (0; — 00;) Wi — m(Xar) | Xat) dv

b b2 hd

It then follows that

R Y;—QQWZ‘ 1 Kz m

Ky

=K [fi,li) ((6; — 00i)' Wit Xs) - T ] +0(™) +0(h?) =0(1). (A.22)

Third, consider

S[}kfh niMi (01) S;nz Ui 7]7,

»? 52

Z { G (Vi — /W) Kir/h? — E [QE’)(Yit - Hzl‘Wit)Kit/hd] } .

t=1

H\H
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Similar to Lemma B.2 of Galvao and Kato (2016), we can show that

T, R log N
max sup ||SpE(0;) — SpET(0;)|| = o < ) A.23
B s[5t 00 = S| = or T (429
Finally, the desired result follows from (A.22), (A.23) and log N/VTb3*h? — 0. O

Lemma 6. Under Assumptions Bl to B/, we have
S = o £(0)+6p(log N/VThIB)+Op(h+5™), S5 = C1 £(0)+5p(log N/VThib)+Op (h+b™)
Sy% = Cafi(0) + 6p(log N/VThib) + Op(h + b™)

Proof. The proof is similar to the previous lemma, therefore it is omitted. O

Lemma 7. Under Assumptions B1 to B, we have
16— éull = Op(1/ VAT + Op(1 +”) + op (b — )

Proof. Expanding the first order conditions we have

0= S80(0) = S+ S8 (d—o)+ N~ 125*¢m i—10i)+0. 525*“””’] (0)(d—b0) (65— o)+

=1 7j=1

N
0.5N 1> " S5%(6:)(¢ — o) (7 — moi) + 0.5N ! Z SO (0:) (77 — m0i) >+
=1 =1

05N ! Z Z S*d’m% —10i)(d; — doj), (A.24)

j=111=1

0= Sy (6:) = Sy + S - (1 — i) + S - (6 — o) +05ZS*771¢¢] (6:) (6 — o) (d5 — boj)+

7=1

0.5.5775™ (85) (& o) (1~ 10i) +0.55775 ™ (6,) (i — o) +05ZS*”““¢J (1= 0i) (6 = 6v;).

(A.25)
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where 0; is between 6y; and 6;, and 6 = (01,...,0n). It then follows from Lemma 4 to Lemma
6 and (A.24), (A.25) that

Cafw(0)- (3= 0) = —Sify— sz@ ) +or (19— dul) + op (s~ ) - (.20

cofi(0) - (71 — noi) = =S7s — fi(0)C1(d — do) + op([|d — doll) + op (1112\)[; |7 — ?70@'!) - (A27)

Plugging (A.26) into (A.27) gives

Top(lé - ¢0||)+0P<max|m n01|). (A.28)

_ . N C X
CIn(0) - (&~ d0) = — !SN‘]} o Z Sy
Write Z% = ((Xi — 2)/h — C1/co) - Kit/h?, we have
C 1 1 L&
*¢ 1 *1; : *
SN — CON;SM = N—ZZQS)( — 00:Wit) Z3y,

where o\ )( ) =7 —G(u/b) + g(u/b)u/b. We can write

N

C 1 N T 1 N T

* 1

Ve~ oS = v 0 2 o) 2= o D3 o i = i) — o il i
i=1 t=1 i=1 t=1

The first term on the right-hand side of the above equation is Op(1/V NTh?) + O(b™) by the
proof of the next lemma. Next, we focus on the second term on the RHS of the above equation,

which can be written as:

T
> o (i) (0-5(Xiu — )i (2)(Xio — @) + Rr(, Xir)) Z

1
~ NT ¢
t=1

;N
_WZ

=11

M= M=

0w +c0.5( X —)' - () (Xi—2)+cRr (z, X)) [0.5(Xse — @)/ (2)(Xit — ) + Re(z, Xit)] Z%,
1

(A.29)

where ¢ € [0,1] and we have used the identity: Yy = 6(,Wy + 0.5(Xy — x)'¢-(z) (Xt — ) +
Ry (z, Xit) + it
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First,

S

N
% SN 0P (ui)(Xis—2) ()Xo —2) 2 = ZE o (uie) (Xt — Y i () (Xt — ) Z5] +
i=1 t=1
;| NT
NT Z Z [QSQ) (wit)(Xit — )G () (X3 — ) 2}, — Elo\: (2 )(Uzt)( o — )i () (Xo — x)Z;;]]

1 1

-
Il
o~
I

(A.30)

For the first term on the RHS of (A.30) we have:

E[0® (uit)(Xi — 2)'ir (2)(Xis — 2)[(Xit — 2)/h — C} /co) Kir /1]

:thi(O)/Bun( Yu(u — C1 /o) K (u)du + Op(h3) = Op(h?), (A.31)

and the second term can be shown to be Op(h?/V NTh) = op(1/V NTh9).

Second, we can show that

N T
1
7 DD 6 (win) R, X Z3, = Op(h) + 0p(1/VNTR),
=1 t=1

Third, we can show in a similar way that the second term of (A.29) is op(h3)+Op(h*/V NThib3) =
op(h%) + op(1/VNTHA).

Combining the results above, we have

N T
1 *
= 30 S (Vi — 04, Wie) — o (wi)) 25, = Op(h?) + 0p(1/VNTH)
i=1 t=1
and
Siip — EN S;”; = Op(h* +b™) + Op(1/VNThd).
Then the desired result follows from (A.28). O

Lemma 8. Under Assumptions B1 to B, we have

max]m noi| = Op(\/log N/VTh
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Proof. From Lemma 7 and (A.27)
C()fz( )( ’1701) = —S;{]; + Op(l/\/ NThd) + Op(h2 + bm) +op <IZIE%\};( |’I7Z - 7701‘0 y

it then suffices to show that

Hg@(!S i Zg(l) — 00 Wi) Kt /h?| = Op(\/log N/VThd)+0p(h?+b™). (A.32)
Write

'ﬂ \

Zf: Yii—60,Wir) Kt /h* = ;ZT:{QSI)(Y — 00, W) Kt /b — {g&l)(Y 00, Wit) Zt/h”

t=1

+{B | (Vi = 0 Wir) Ko /1| — B [ o (i) /1) | 4+ [0 (i) K/ 1

From Lemma 2.2.9 and Lemma 2.2.10 of Van der Vaart and Wellner (1996) it can shown that
the first term on the RHS of the above equation is Op(y/log N/VTh%), and similar to the proof
of Lemma 3 we can show that the second term is Op(h?). For the last term on the RHS of the

above equation, we have
E | o (uir) Kie/ |
— 7E[Ku/hi] —E _G(uit/b)Kit/hd] +E [g(uit/b)uit/b - Kit/hd}

- 7K :Kit/hd: _E / G(u/b)fu7,~(u|Xit)du‘Kit/hd} +E [/Q(U/b)u/b‘ fu,i(u|Xit)du'Kit/hd]

= 7E _Kit/hd_ ~E _ / g(v) Fy i(vb| X ) dv - Kit/hd} + bE [ / g(v)v- fu,i(vb|Xit)dv-Kit/hd]

- 7E :Kz-t/hd: —TE[ n/h} O(b™) = O(b™).

Then the desired result follows. O

Lemma 9. Under Assumptions Bl to B/, we have

IN(0)C - (¢ — ¢o) = BW +0(h?)

N T
DI o[22 e 1

1
NT
N
Z S — CLSTI™ o] S /(0 fi(0)) + 0p (1|6 — doll) + 0p (1/VNTHI),
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Proof. Plugging (A.25) into (A.24) we get:

N
N=UN (S5 — oS feo) (i — 1oi)

i=1

fn(0)C - (= ¢o) = —[ S Z St

— 05N~ 12[ SHC clsé;?z”im(ei)/co] (1 = m0i)? + 0p(1|® — doll)  (A.33)

First, from the proof of Lemma 7 we have

s - O g LSy oy [Xemr o T K
NI egN &7 NT &z e=77 h hd

— 0.5h2fx (0) / (0l — Cy feo) K (u)du + Op(h®) + op(1/VNTHA).  (A.34)

Second, from the proof of Lemma 5 we have

* n ) ), ) " ° 1 4
ST¢mm(9 ) = Q(L}i)(o\o)fX,i(O) -C1+0p (HQZ - 90z‘”) +Op(h+0b™)+op ( 0og d> )

* ) ) h y " 0 : :
STmmm(‘g ) = é}i)(0|0)fX7i(0) -co+ Op (Hez - 901’”) +Op(h+b™)+o0p < 0og d> .

It then follows that

* ) _— ) B B o log N
S (0) = CLSTEM™(8;) feo = Op (116, = Boill) + Op(h +b™) + 5p (V%> |

The above equation and Lemma 8 imply that

N
NTEY S 0) — 515;7§nini(9i)/co] (1 —noi)* = Op <1;g%}\>,< |7 — 770i13>
i=1 -
log N
ST [ I 5 meil? ). o
+Op (Ilrgij\)f( 1% — noil ) Op (h) + Op (Ilg%( 1% — noil ) op (\/W)

B (log N)?/2 hlog N logN logN \ _ e
= OP (W +OP W +0P Thd : /7Thdb3 - OP(]-/ NTh ) (A35)

Third, by (A.25), Lemma 6 and Lemma 8 we have
co fi(0) (1 — moi) = =577 — (STA™ — co £:(0)) (7 — noi) + Op($ — ¢o) + Op (log N/(Th?))

N I TP _ (logN)3/2 ~ ([ hylog N
__%Z+OM¢_%HWP<Twa+OP<¢ﬁﬂ>
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Thus, it follows from the above result and Lemma 6 that
N

N
Nflz[s*qﬁm Cls*mm/CO]( —noi) = —N— 12 *¢m Cls*mm/cO] S /(Csz( )

i=1 =1

. (log N)/? h(log N)3/2 h%\/log N
+op(||[¢ — ¢ol|) + op ((Thd3/2b> ( Thivh +Op <\/W>

=N~ 12 Sy — CuSF™ o) Sy [ (co £i(0)) + 0p([lé — oll) + op(VNThAA).  (A.36)

=1

Finally, the desired result follows from (A.33) to (A.36). O

Lemma 10. We have

N
e . . —1/2 _
NTUN IS5 — €S [eol Sy / (o £i(0)) = —TThd/(Dl/Co — Cido/cg) + op((Th) ™).
i=1

Proof. Step 1:

First, write

E[S77 57 =

(TZQ(Q) zt_e()z >< Z zt_e()z ) 'Lt/h >]

1
= | (Vie — 00 Wie) o (Vi — 04, Wi (X — ) /K /1|

L0 (Vi 04y W) Za) - Blol?) (Yie — 0, W) Ko/ 1),

Second, it can be shown that
@y, — o WD oD (Y — 0. W, o 2 pd| _ (- _ ) 2 >
B o) (i = 05 Wi o) (Vi = 05, Wi (X = )/ WLIE /1] = (7 = 1/2)£0) [ () +o(1).

It then follows that

B S7) = (= 1/2000) [ uk*(u)d
— TRl (Vi — 0 W) Za) - E[o® (Vi — 04, Wie) K /1) + o((T%) ). (A37)
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Similarly, we can show that

E[S7L" ST =~ (r — 1/2)£:(0) / K2 (u)du

_%E[Q(T)( — 00 Wie) Kir/ 1Y) - E[oM) (Y — 06, Wie) Kir /1] + 6((Th) 1), (A.38)

Third, it follows from (A.37) and (A.38) that

N
E|NT'S IS5 = CiSyM o) Sy /(co £:(0)) | = —T;hldﬂ(pl/co — Cido/cg) + o((Th") ™)
T—-1 11:;7
T O (B0 (Vi 04,1Vin) Zu) ~El o (Yie— O Wit K /11Cr o | Lo (Yie—0: Wit K/ 1) (0 i(0)).
=1
(A.39)
and we can show that E[o\? (Y — 04, Wit) Zit] = C1£i(0) + O(h), E[o2 (Y — 04, Wit) K1 /h%] =

cofi(0) + O(h) and E[o\M (Vi — 04, Wie) Ky /0] = (h2) It then follows that

(Lo (Yie— 00 Wie) Zi) ~ Bl (Yie— 04, Wie) K [11C1 o |- B[ (Vi =0, W) Ko/ 1) = O(h®) = 5((Th*) ).

(A.40)
Finally, it follows from (A.39) and (A.40) that
ol T—1/2
B[N Y ISHT - Sy eolSy (o fil0 >>] = T2 D1 fey — Cudo/ ) + o(THY ).
i=1
(A.41)
Step 2: Now we will show that
N
Var|[N13 [s3 - 015;75"2'/co]S;??z/(cOfi(o»] — o(1/(Th?)2). (A42)
i=1
Then the desired result follows from (A.41) and (A.42).
Define g;aﬁzm = S;ﬁm — E[S;‘zm], and 5’;772“71 = S —E[S7"], then we can write
N N )
N7ES (S50 — €S feol S5 [ (o fi(0)) = N7HD T [S54T — CuSTE™ feol S3 /(o £i(0))
i=1 1=1

N SIS G el (0 i),

=1
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and it follows that for any w € R¢,

N
Var [ N~! Z wl[S;ﬁm_CIS;?;W/CO]S;t]ii/(c()fi(o))

=1

< 2Var

N
NTUY WS -0 g??fm/00]5;75/(Cofi(0))]

=1

+ 2Var

N
NV WS - 015}7fni/00]5:?75/(00f¢(0))] .

=1

First, we have

Var

N
Nt Z w/[g;im — Cls’;ﬂf];m/C(]]S;?Z/(Cofz(0))]

=1

_ 2ZVar{ 539 — S [l o)

IN

2
-2 ZE{ *¢7h S*"h"h/co] *771} /(Cofz(o))z
Note that
~ ~ 2
E{w’[s;‘f;"i — CLS™ feo) Sy }

LT 2 , T T
= E{ (Thd z_: ait> (Thd Z zt) } = Thd)4 Z . Z zle[aitaisbipbih]
T

t=1 s=1 p=1 h=
T T T v ! L oo
- 7 ;;;E aZbipbin] + (Thd)4 ;;E[a”bih] + Ty ;};E aZbishin)
1 T T T
+ (Thd)4 Z [ ztb 4 Z Z]E QitQis ztbzs
t=1 t=1 s=1

where ag = w' 0\ (Yiy — 00, Wir) [(Xir — 2)/h — C1 Jco) Ky — EBlw’ 0% (Vi — 04, Wi)[(Xis — 2)/h —
C1/co)Kit], and by = QQ)(Y;t — 0);Wit)Kir. It can be shown that

T T T T
7t 20 2 Y Elafbyha] = O /(ThD). o 37 S Eladbh] = O(1/[(Th)%),

1 T T
T 2 2 Elakbiubin] = O(W*/[(Th)%),

t=1 h=

—_

T
(T}lbd)z; ZE[a?tb?t] = O(l/[(Thd)Sb])v (T:Ld)4 Z Z E[aitaisbitbis] = O(l/[(Thd)Z])

t=1 s=1



Thus, we have

Var
i=1

N
NS WS- 015:?7,1"""/00]5:?75/(60fi(0))] —o1/(NTHY).  (A4D)
Second, define ¢; = w’[g;(ﬁm — 157" eol /(o fi(0)), then we can write

N
NLS WIS -GS Jeo) ST (o fi0)) | =

=1

Var

1
T 2o 3 Vel (0K

=1 t=1

Since (; = 0(1) and Var[os a )(Y;t — 00, Wit) Kit] = O(h%), it follows that

Var [N~} Zw S — CLSTM o) S /(co f3(0 ))] =o(1/(NTh%)). (A.44)
1=1
Finally, (A.42) follows from (A.43) and (A.44), and this concludes the proof. O

Proof of Theorem 2:

Proof. 1t follows from Lemma 10 and Lemma 11 that

. c1 X O
¢_¢0:W ZQT Uzt[

] Kit | 2o
=1 t=1

+ ﬁB(Q’ +op(|l¢ — ¢oll) + op(1/(Th%)) + O(h?).

It then suffices to show that

e Y [X1

zltl

4 N, 7(1 - 7)o(0)Q). (A.45)

First, we can show that

E | o® (ug) {Xith_ L cl/co} 5}72 = O(h*?b™) = 6(1/V'NT).

Second, we can show that

Var| o

Vhd

)| 247~/ K] = r(1=m)fxsl0) [ (u=Csfen) u=C1fen) K (w1,
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then (A.45) follows from Lyapunov’s CLT.

A.3 Tables

Table 1: Biases and MSEs of the Estimators at 7 = 0.25 with Gaussian
Errors.

Bias MSE
z Br (33) Br 536 Br Bf—c Br ﬁ?c B B-,lzc

-2.0 1.603 | -0.762 0.156 -0.747 -0.092 | 0.934 0.727 0.866 0.485
-1.6  1.572 | -0.179 -0.015 -0.189 -0.023 | 0.082 0.084 0.088 0.098
-1.2  1.518 | -0.082 -0.031 -0.084 -0.028 | 0.021 0.023 0.022 0.026
-0.8 1.421 | -0.077 -0.052 -0.071 -0.048 | 0.013 0.013 0.011 0.013
-0.4 1.251 | 0.061 -0.052 -0.061 -0.051 | 0.007 0.008 0.008 0.009
0.0 1.000 | 0.001 0.000 -0.005 -0.005 | 0.003 0.004 0.003 0.005
0.4 0.750 | 0.060 0.049 0.055 0.046 | 0.007 0.007 0.007 0.008
0.8 0.579 | 0.076 0.051 0.074 0.053 | 0.012 0.012 0.013 0.015
1.2 0482 | 0.091 0.040 0.085 0.031 | 0.022 0.022 0.022 0.028
1.6 0428 | 0.188 0.021 0.183 0.021 | 0.090 0.087 0.093 0.113
20 0397 | 0.736 -0.175 0.730 0.086 | 0.872 0.679 0.814 0.464

Note: The DGP considered in this table is: Yy = X + a; + /1 + X2 - €ir,
Xz't ~ i.1.d N(O, 1) . 1{‘X1f| S 2}7 Ay €5 ™ i.4.d N(O, 1), SO 67-(1‘) =1 + (1)71(7') .

Table 2: Biases and MSEs of the Estimators at 7 = 0.25 with T'(3) Errors.

Bias MSE
z 57—(‘r) BT ﬁ‘llj'c BT /B‘?'C BT B‘IIJ'C BT B‘I;C

-2.0 1.684 | -0.981 0.150 -0.915 -0.198 | 1.428 0.896 1.308 0.715
-1.6 1.649 | -0.241 -0.026 -0.230 -0.007 | 0.130 0.125 0.129 0.144
-1.2  1.588 | -0.112 -0.041 -0.117 -0.046 | 0.032 0.033 0.037 0.041
-0.8 1.478 | -0.090 -0.057 -0.091 -0.058 | 0.018 0.018 0.018 0.019
-0.4 1.284 | -0.069 -0.055 -0.069 -0.057 | 0.010 0.011 0.010 0.012
0.0 1.000 | 0.001 0.007 -0.004 -0.006 | 0.005 0.007 0.005 0.008
0.4 0.716 | 0.071 0.059 0.070 0.059 | 0.010 0.011 0.010 0.012
0.8 0.522 | 0.095 0.059 0.097 0.063 | 0.019 0.018 0.020 0.021
1.2 0412 | 0.116 0.046 0.115 0.039 | 0.033 0.035 0.036 0.042
1.6 0.351 | 0.218 -0.001 0.219 0.004 | 0.125 0.128 0.129 0.151
2.0 0.316 | 0.895 -0.238 0.911 0.220 | 1.2563 0.949 1.266 0.701

Note: The DGP considered in this table is: Y;; = 68X + a3 + /1 + Xft © €its
Xz't ~ 1.1.d N(O,l) . 1{‘th| S 2}, o i.4.d /\/(0, 1), Eit ™~ T(3), SO 60.25(.’)3) =
1—0.765-z/v1 + z2.
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Table 3: Biases and MSEs of the Estimators at 7 = 0.5 with Gaussian
Errors.

Bias MSE
z  Be(z) | B Bhe B- pee | B B B B

-2.0  1.000 | -0.002 0.007 -0.014 -0.009 | 0.236 0.455 0.259 0.493
-1.6 1.000 | 0.005 0.015 0.007 -0.020 | 0.041 0.070 0.043 0.079
-1.2 1.000 | 0.007 0.006 0.005 -0.006 | 0.012 0.018 0.013 0.022
-0.8 1.000 | -0.003 -0.003 -0.005 -0.006 | 0.005 0.007 0.005 0.008
-0.4 1.000 | -0.004 -0.003 -0.006 -0.007 | 0.003 0.005 0.003 0.005
0.0 1.000 | -0.005 -0.006 -0.007 -0.009 | 0.003 0.004 0.003 0.004
0.4 1.000 | -0.003 -0.004 -0.003 -0.004 | 0.003 0.004 0.003 0.004
0.8 1.000 | 0.003 0.005 0.002 0.003 | 0.006 0.008 0.006 0.009
1.2 1.000 | 0.002 0.002 0.001 0.003 | 0.012 0.017 0.012 0.020
1.6 1.000 | -0.003 -0.001 -0.006 -0.012 | 0.047 0.077 0.047 0.081
2.0 1.000 | 0.002 0.039 0.001 0.032 | 0.256 0.447 0.273 0.472

Note: The DGP considered in this table is: Yy = X + a; + /1 + X2 - €ir,
Xy ~ id.d N(0,1) - 1{| Xy| <2}, iy €40 ~ i.i.d N(0,1), s0 Br(z) =1+ & 1(7) -

Table 4: Biases and MSEs of the Estimators at 7 = 0.5 with 7'(3) Errors.
Bias MSE

x_ Brlx) | Br B Br By Br  BY B B
-2.0 1.000 | -0.041 -0.032 0.007 -0.012 | 0.369 0.587 0.337 0.561
-1.6 1.000 | -0.008 -0.007 0.011 0.015 | 0.050 0.079 0.052 0.088
-1.2 1.000 | -0.005 -0.004 0.004 0.005 | 0.012 0.018 0.017 0.027
-0.8 1.000 | -0.004 -0.002 0.001 0.002 | 0.006 0.009 0.007 0.010
-0.4 1.000 | -0.003 -0.003 -0.000 0.000 | 0.004 0.005 0.004 0.006
0.0 1.000 | 0.002 0.002 -0.002 -0.003 | 0.003 0.004 0.003 0.005
0.4 1.000 | 0.002 0.003 0.002 -0.003 | 0.004 0.005 0.004 0.006
0.8 1.000 | -0.005 -0.006 0.008 0.007 | 0.007 0.010 0.007 0.011
1.2 1.000 | -0.032 -0.002 0.001 0.002 | 0.012 0.018 0.017 0.026
1.6 1.000 | -0.001 -0.009 -0.012 -0.022 | 0.048 0.075 0.057 0.094
2.0 1.000 | 0.016 -0.007 -0.012 -0.009 | 0.342 0.565 0.354 0.580

Note: The DGP considered in this table is: Y;; = 68X + a3 + /1 + Xft - €t
Xit ~ i.4.d /\/(O, 1) . 1{‘X1t| S 2}7 [673ad i.1.d ./\/(0, 1), €t T(3), SO 50‘5(£C) =1.
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Table 5: Biases and MSEs of the Estimators at 7 = 0.75 with Gaussian
Errors.

Bias MSE
x Br (17) Br Bic Br Bf—c Br ﬁ?c Br ﬂqlzc

-2.0 0.397 | 0.744 -0.147 0.751 0.112 | 0.828 0.599 0.863 0.518
-1.6  0.428 | 0.194 -0.034 0.194 0.027 | 0.084 0.077 0.088 0.096
-1.2 0.482 | 0.087 0.033 0.089 0.041 | 0.022 0.024 0.022 0.028
-0.8 0.579 | 0.068 0.043 0.069 0.045 | 0.011 0.011 0.011 0.014
-0.4 0.750 | 0.0564 0.042 0.054 0.044 | 0.006 0.007 0.007 0.008
0.0 1.000 | -0.001 -0.001 -0.001 -0.001 | 0.003 0.004 0.003 0.005
0.4 1.251 | -0.058 -0.049 -0.058 -0.048 | 0.007 0.008 0.008 0.009
0.8 1.421 | -0.072 -0.048 -0.071 -0.046 | 0.011 0.011 0.011 0.012
1.2 1.518 | -0.087 -0.035 -0.090 -0.041 | 0.022 0.022 0.023 0.027
1.6 1.572 | -0.195 -0.030 -0.197 -0.024 | 0.083 0.071 0.087 0.085
20 1.603 | -0.737 0.217 -0.737 -0.053 | 0.868 0.696 0.875 0.497

Note: The DGP considered in this table is: Yy = X + o + /1 + X2 - €ir,
Xz't ~ i.1.d N(O, 1) . 1{‘X1t| § 2}7 Qi €Ejp ™~ i.4.d N(O, 1), SO 6T(£E) =1+ (I)il(’l') .

Table 6: Biases and MSEs of the Estimators at 7 = 0.75 with T'(3) Errors.

Bias MSE
x Br (CL‘) Br ﬁﬁc B‘r B-,Z{C Br BEC BT Bqli(’

-2.0 0.316 | 0.936 -0.222 0.960 0.264 | 1.311 0.932 1.408 0.832
-1.6  0.351 | 0.242 0.019 0.258 0.058 | 0.130 0.117 0.139 0.133
-1.2 0412 | 0.110 0.037 0.120 0.044 | 0.032 0.033 0.036 0.040
-0.8 0.522 | 0.086 0.051 0.088 0.048 | 0.017 0.016 0.017 0.018
-0.4 0.716 | 0.065 0.049 0.066 0.050 | 0.009 0.010 0.010 0.012
0.0 1.000 | -0.003 -0.006 -0.000 -0.001 | 0.005 0.007 0.005 0.008
0.4 1.294 | -0.070 -0.057 -0.067 -0.055 | 0.010 0.011 0.010 0.012
0.8 1.478 | -0.087 -0.052 -0.083 -0.047 | 0.016 0.015 0.016 0.017
1.2 1.588 | -0.105 -0.034 -0.104 -0.038 | 0.032 0.033 0.034 0.041
1.6 1.649 | -0.257 -0.059 -0.242 -0.030 | 0.144 0.135 0.136 0.147
2.0 1.684 | -0.980 0.155 -0.985 -0.302 | 1.434 0.918 1.475 0.796

Note: The DGP considered in this table is: Yy = X + a; + /1 + X2 - €,
Xit ~ i.4.d N(O,l) . 1{‘Xit| S 2}, o i.1.d N(O, 1), €t T(3), SO 60_75(%‘) =
1+0.765 - z/v1 + 22.
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