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1 Introduction

Real-life markets display a large degree of heterogeneity in the way in which economic agents

meet and trade with each other: for example, in traditional bazaars, meetings between buyers

and sellers tend to be bilateral; in real estate markets, multiple buyers may bid on the same

house; and in labor markets, a typical vacancy receives a large number of applications but only

interviews a subset.1 Similarly, there is variation over time as the internet has made it easier

for agents to meet multiple potential trading partners simultaneously; prominent examples of

platforms utilizing this feature include eBay in the product market, Match.com in the dating

market, CareerBuilder in the labor market, and Google AdWords in the market for online

advertising. In this paper, we construct a formal framework in which the selling mechanism

and market segmentation respond to changes in the meeting technology. Although our main

contribution is theoretical, our model can help us understand those observations.

Economic theory has been mostly silent on the question how agents in these markets get

to meet each other and how this meeting process a↵ects equilibrium outcomes. This silence is

most apparent in work that sidesteps a detailed description of the meeting process altogether

by assuming a Walrasian equilibrium. Perhaps more surprisingly, the search literature—

which aims to analyze trade in the absence of a Walrasian auctioneer—does not provide

much more guidance: without much motivation, the vast majority of papers in this literature

simply assumes one of two specific meeting technologies: either meetings between agents are

one-to-one (bilateral meetings) or they are n-to-1, where n follows a Poisson distribution

(urn-ball meetings).2

This approach seems restrictive for a number of reasons. First, neither bilateral meetings

nor urn-ball meetings are necessarily an adequate description of real-life markets; in many

cases, e.g. in the labor market example above, it appears necessary to consider alternatives.

Second, assuming a particular meeting technology inevitably a↵ects aggregate outcomes, i.e.

crowding out of high-type agents by low-type agents is a larger concern when meetings are

bilateral than when they are many-on-one.

We aim to make progress by presenting a unified framework that allows for a wide class

of meeting technologies. We do so in an environment in which a continuum of buyers with

ex ante heterogeneous private valuations and a continuum of identical sellers try to trade.3

1See Geertz (1978) for a characterization of the market interaction at a bazaar, Han and Strange (2014)
for empirical evidence on bidding wars in real estate markets, and Woltho↵ (2018) and Davis and de la Parra
(2017) for evidence on applications and interviews in the labor market.

2Bilateral meetings can be found in e.g. Albrecht and Jovanovic (1986), Moen (1997), Guerrieri et al.
(2010), and Menzio and Shi (2011). Urn-ball meetings are used in e.g. Peters (1997), Burdett et al. (2001),
Shimer (2005), Albrecht et al. (2014) and Auster and Gottardi (2017). In addition, some papers in the
mechanism design literature explore urn-ball meetings in a finite market, making n binomial rather than
Poisson, by allowing for entry of buyers into a monopolistic auction Levin and Smith (1994).

3The fact that buyers know their valuation before visiting a seller distinguishes our work from Lester et al.
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The class of technologies that we consider allows for various types of meeting externalities.

For example, when a buyer tries to meet a seller, this action may reduce the likelihood

that the seller can meet another buyer because of congestion externalities (e.g. websites

become inaccessible when many buyers try to purchase tickets for a popular show). While

meeting externalities are often negative in real-life, our model also allows for positive meeting

externalities. The well-known bilateral and urn-ball meeting technologies as well as other

meeting technologies in the literature are all special cases of our general meeting technology.

This allows us to not only clarify existing results but to also analyze which of them carry

over to our more general setting where sellers can meet multiple buyers but where there also

is some rationing.

For some results, this generalization matters. For example, the finding that reserve prices

are driven to the seller’s valuation in an environment with competing auctions—see e.g.

Albrecht et al. (2012)—only holds for some meeting technologies but not for others. In

addition, we show that some meeting technologies give rise to partial separation rather than

complete pooling or complete separation, which have been the focus of the literature so far

(see e.g. Eeckhout and Kircher, 2010b; Cai et al., 2017).

The equilibrium mechanism that we identify includes both auctions without fees or ex-

plicit reserve prices (e.g. when meetings are urn-ball) and posted prices (when meetings are

bilateral) as special cases.4 Varying the degree of search frictions in our model changes the

optimal mechanism. This interaction contrasts with much of the search literature (with the

exception of some of the above papers), which assumes that the trading mechanism (e.g.

bilateral bargaining) is independent of the frictions. However, changes in mechanisms due to

changes in the meeting process are frequently observed in real-life. For example, as soon as

eBay provided a platform for sellers and buyers to meet, auctions quickly gained popularity

for the sale of e.g. second-hand products.5 Einav et al. (2017) argue however that in recent

years the popularity of auctions on eBay has declined relative to posted prices, which they

explain by an increase in the hassle cost associated with purchasing in an auction (see Backus

et al. (2015) for a particular example of such a cost). However, their study restricts attention

to cases in which a seller sells multiple units of the same product (mostly retail items). They

acknowledge that auctions remain the trading mechanism of choice for most sellers with a

single unit, which is the case that we consider here. Note further that various other platforms,

e.g. Catawiki or liveauctioneers continue to exclusively use auctions. In order to highlight

the role of meeting technologies, we therefore abstract from hassle costs here.

(2015). See below for a more detailed comparison.
4When meetings are bilateral, buyers either bid the reserve price or pay the entrance fee and bid 0; both

are equivalent to a posted price.
5Lucking-Reiley (2000) presents various statistics regarding the growing popularity of online auctions in

the late 1990s.
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Our model also helps to understand what happened in the market for freelance services,

where new platforms like Upwork (previously oDesk) or Freelancer enable employers from

high-income countries to outsource tasks to contractors from mainly low-income countries (see

for a detailed description Agrawal et al., 2015).6 These online platforms facilitate many-to-

one meetings (also for small firms), creating scope for wage mechanisms other than bilateral

bargaining. In particular, contractors apply to posted jobs by submitting a cover letter and

a bid indicating the compensation that they demand for the job, after which procurers select

one of the applicants.7 These examples nicely illustrate how a new technology can a↵ect the

meeting process and how the market responds by adjusting the price or wage mechanism

accordingly. Although our framework abstracts from many details of real-life markets, it

helps to understand this novel fact.

Most related to our work is Eeckhout and Kircher (2010b) who showed that the meeting

technology matters for posted mechanisms and market segmentation. The pioneering work

of McAfee (1993), Peters (1997) and Peters and Severinov (1997) on competing auctions has

focused on urn-ball meetings, with Albrecht et al. (2014) being a recent example. Relative

to Eeckhout and Kircher (2010b), we fully characterize the equilibrium. That is, we show

under what conditions di↵erent forms of market segmentation arise. Lester et al. (2015)

provide a full characterization of the equilibrium, but in a simpler environment in which all

buyers are ex ante identical and learn their type only after meeting a seller, which results

in all agents participating in the same (sub)market in equilibrium. In contrast, models with

ex ante heterogeneity, as we consider here, yield very di↵erent equilibrium outcomes: buyers

and sellers must determine with whom they are willing to interact and multiple submarkets

may arise.

Our paper makes three main contributions. First, we go further than the existing liter-

ature and characterize equilibrium for a wide class of meeting technologies, including cases

where a seller can meet multiple but not all buyers, so low-type buyers may crowd out high-

type buyers. For those cases, we establish that partial market segmentation may arise: all

high-type buyers and a subset of the low-type buyers form a submarket, while the remaining

low-type buyers form a separate submarket. Whether this outcome is obtained, or rather

complete pooling or complete separation, or an equilibrium in which low-type buyers stay out

6Although still relatively new, these platforms already have a substantial impact on this market. The
number of hours worked at Upwork increased by 55% between 2011 and 2012, with the 2012 total wage bill
being more than 360 million dollar. A 2014 New York Times article states: “It’s also helping to raise the
standard of living for workers in developing countries. The rise of these marketplaces will increase global
productivity by encouraging better matching between employers and employees.” (Korkki, 2014).

7A more exotic example from the dating market is the following case where Amir Pleasants, a
21-year woman from New Jersey invited 150 men on a Tinder date to meet in Union square where
she organized a pop-up dating competition where first all guys who were shorter than 5 foot 10
were eliminated and after a number of other rounds she ultimately selected a single winner. See
https://www.nytimes.com/2018/08/20/style/tinder-dating-scam-union-square.html
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of the market, depends both on the meeting technology and the dispersion in buyer types,

and we provide a precise characterization. Motivated by the above real-world life examples,

we then show how the meeting technology a↵ects the optimal selling mechanism and market

segmentation. For example, we discuss how the equilibrium changes when sellers can screen

more buyers or when they can better distinguish the low-valuation from the high-valuation

buyers. We also consider how a change in the spread of buyer valuations a↵ects equilibrium.

This exercise could be interpreted as an increase in inequality or globalization which leads

to more dispersion in the population of buyers.

Cai et al. (2017) apply the tools that are developed in this paper (which we discuss in

more detail below) to derive conditions on the meeting technology for which the equilibrium

features either perfect separation or perfect pooling of di↵erent types of buyers; they find that

perfect separation occurs if and only if meetings are bilateral (i.e. sellers can meet at most one

buyer), and perfect pooling arises if and only if the meeting technology is jointly concave.8

Cai et al. (2017) do not discuss more realistic meeting technologies where sellers can meet

multiple but not all buyers, which are the main focus of our work here. We show that for

these technologies partial segmenetation arises, of which the results on perfect separation

and pooling discussed in Cai et al. (2017) are two special cases.

Second, we make a methodological contribution. In particular, we introduce an alternative

representation of meeting technologies which keeps the analysis tractable. This representation

is the probability � that a seller meets at least one buyer from a given subset; usually, the

relevant subset consists of buyers with a valuation above a certain threshold. This probability

depends on two arguments: the total queue length � that the seller faces as well as the queue

of buyers µ belonging to the subset. We show that using � instead of the more standard

representation of meeting technologies o↵ers a few important advantages. First, the partial

derivatives of � have natural interpretations corresponding to key variables such as a buyer’s

winning probability and the degree of meeting externalities. Second, expected surplus is

linear in �, which makes it straightforward to relate the objective of a planner to properties

of �.9 Finally, the use of � guarantees that the expression for a seller’s payo↵ retains a

similar structure as in the seminal work by Myerson (1981), i.e. as the integral of buyers’

virtual valuation with respect to the distribution of highest valuations, with the di↵erence

that this distribution now also depends on how likely each buyer is to meet a seller which in

turn depends on the meeting technology. In other words, the introduction of � adds a lot of

generality to the competing mechanism literature at relatively low cost.

Finally, our e�ciency result contributes to the literature on directed search. In particular,

8They also relate those conditions to other properties of meeting technologies that have been derived in
the literature, like invariance Lester et al. (2015) and non-rivalry Eeckhout and Kircher (2010b).

9Cai et al. (2017) exploit this feature in their work.
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it extends the result by Albrecht et al. (2014) that all agents earn their marginal contribution

to surplus in the special case in which meetings are urn-ball and sellers post regular auctions.10

In that environment, there are no meeting externalities, so a buyer contributes to surplus only

if he has the highest valuation among all buyers meeting a seller. The general case is more

complicated because now a buyer can also impose positive or negative meeting externalities on

meetings between the seller and other buyers, which should be reflected in the equilibrium

payo↵s. We show that an appropriate reserve price or meeting fee/subsidy is both profit

maximizing and socially e�cient.11 As a result, all agents continue to receive their marginal

contribution to surplus and e�ciency survives.

After describing the environment and the alternative representation of the meeting tech-

nology in detail in section 2, we start our analysis in section 3 by solving the problem of a

social planner. Section 4 shows how the planner’s solution can be decentralized. It provides a

characterization of the equilibrium, and it shows that under mild restrictions on the meeting

technology there exists a unique queue for each fee/subsidy or reserve price (in combination

with an auction) that a seller posts. In section 5, we show how our main results can be

generalized to N buyer types.

2 Model

2.1 Environment

Agents and Preferences. A static economy is populated by risk-neutral buyers and sell-

ers. Each seller possesses a single unit of an indivisible good, for which each buyer has unit

demand. All sellers have the same valuation for their good, which we normalize to zero.

Buyers are heterogeneous in their valuation x, which takes one of two di↵erent values, sat-

isfying 0 < x1 < x2. We will generally normalize x1 to 1, turning x2 into a measure of the

dispersion in valuations. The measure of sellers is 1; the measure of buyers with value xk is

Bk for k 2 {1, 2}. Buyers’ valuations are private information and the market is anonymous

in the sense that buyers and sellers cannot condition their strategies on the identities of their

counterparties.

Mechanisms. In the first stage, each seller posts and commits to a direct anonymous

mechanism to attract buyers. The mechanism specifies, for each buyer i, a probability of

trade and an expected payment as a function of: (i) the total number n of buyers that

10Although we assume a fixed number of sellers to simplify exposition, our results carry over to an envi-
ronment with free entry of sellers, as in Albrecht et al. (2014), in a straightforward manner.

11The reserve price or fee can vary across sellers in equilibrium. This is a key di↵erence with Lester et al.
(2015), where the fee is the same for all sellers as it only depends on exogenous parameters.
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successfully meet with the seller; (ii) the valuation vi that buyer i reports; and (iii) the

valuations v�i reported by the n� 1 other buyers.12

Search. After observing all mechanisms, each buyer chooses the one at which he wishes to

attempt to match. To capture the idea that coordination is not feasible in a large market,

we follow the literature (see e.g. Montgomery, 1991; Burdett et al., 2001; Shimer, 2005) and

restrict buyers to symmetric strategies. We refer to all buyers and sellers choosing a particular

mechanism as a submarket.

Meeting Technology. Consider a submarket with a measure b of buyers and a measure s

of sellers. The meetings within the submarket are frictional and governed by a meeting tech-

nology, which we model analogous to Eeckhout and Kircher (2010b). The meeting technology

is anonymous; it treats all buyers (sellers) in a symmetric way, i.e., independent of their iden-

tity. A buyer can meet at most one seller, while a seller may meet multiple buyers. Define

� = b/s as the queue length in this submarket.13 The probability of a seller meeting n buyers,

n = 0, 1, 2, . . . , is given by Pn(�), which is assumed to be continuously di↵erentiable.14 Be-

cause each buyer can meet at most one seller,
P1

n=1 nPn(�)  �. By an accounting identity,

the probability for a buyer to be part of an n-to-1 meeting is Qn(�) ⌘ nPn(�)/� with n � 1.

Finally, the probability that a buyer fails to meet any seller is Q0(�) ⌘ 1�
P1

n=1 Qn(�).15

Strategies. Let D be the set of all direct anonymous mechanisms equipped with some

natural �-algebra D. A seller’s strategy is a probability measure �
s on (D,D). A buyer

needs to decide on whether or not to participate in the market, and if he does, which sellers

(who are characterized by the mechanisms they post) to visit. To acknowledge that a buyer’s

strategy depends (only) on his value xk and the fact that—due to the lack of coordination—

buyers treat all sellers who post the same mechanism symmetrically, we denote his strategy

by �
b

k
, a measure on (D,D). If �b

k
(D) < 1, then buyers with value xk will choose not to

participate in the market with probability 1��
b

k
(D), in which case their payo↵ will be zero.16

Since a buyer can only visit a mechanism if a seller posted it, we require that for each k = 1, 2,

the measure �b
k
is absolutely continuous with respect to �

s.17 The Radon-Nikodym derivative

12In line with most of the literature, we abstract from mechanisms that condition on other mechanisms
present in the market. See Epstein and Peters (1999) and Peters (2001) for a detailed discussion.

13This assumes, for simplicity, that a positive measure of buyers and sellers visit the submarket. If this is
not the case, we can use Radon-Nykodym derivatives to define queue lengths.

14The assumption that Pn only depends on the queue length and not its composition is a natural benchmark
since it creates a distinction between meetings and matches.

15It is straightforward to allow buyers to observe only a fraction of the sellers. If the fraction of sellers that
a buyer observes is type independent, this will not change our results.

16The assumption that all sellers post a mechanism is without loss of generality, because they can stay
inactive by posting a su�ciently inattractive mechanism, e.g. a reserve price above x2.

17This rules out the scenario in which a zero measure of sellers attracts a positive measure of buyers. This
restriction is natural and can be justified by the optimal choices of buyers and sellers (see below).
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d�
b

k
/d�

s determines the queue length and queue composition—i.e., how many buyers and

what types of buyers are available per seller—for each mechanism (almost surely) in the

support of �s. Formally, for (almost every) mechanism ! in the support of �s and k = 1, 2,

the queue length of buyers with value xk, qk(!), is given by

qk(!) = Bk

d�
b

k

d�s
. (1)

Payo↵s. Note that for any mechanism ! 2 D, the expected payo↵ of a seller who posts

mechanism ! is completely determined by ! and its queue q(!) ⌘ (q1(!), q2(!)). Therefore,

we can denote it by ⇡(!, q(!)). Similarly, let Vk(!, q(!)) denote the expected payo↵ of a

buyer with value xk from visiting a submarket with mechanism ! which has queue q(!).

Market Utility and Beliefs. We now define conditions on buyers’ and sellers’ strategy

(�s, �b1, �
b

2) which need to be satisfied in equilibrium. First, consider the optimality of buyers’

strategies. The market utility function Uk is defined to be the maximum utility that a buyer

with value xk can obtain by visiting a seller or being inactive.

Uk = max

✓
max

!2supp(�s)
Vk(!, q(!)), 0

◆
,

where q(!) is given by equation (1). Of course, optimality of buyers’ choices requires that

buyers choose the mechanism that yields the highest payo↵. Formally, we have

Vk(!, q(!))  Uk with equality if ! is in the support of �b
k
.

Next, we consider the optimality of sellers’ strategies. All posted mechanisms should

generate the same expected payo↵ ⇡
⇤ and there should be no profitable deviations. A seller

considering a deviation to a mechanism e! not in the support of �s needs to form beliefs

regarding the queue q(e!) that he will be able to attract. We call a queue q(e!) compatible

with the mechanism ew and the market utility function Uk if for any k 2 {1, 2},

Vk(e!, q(e!))  Uk with equality if qk(e!) > 0. (2)

Of course, for any mechanism ! in the support of �s, q(!) is compatible with mechanism

! and the market utility function because of the optimal search behavior of buyers. The

literature usually assumes that when posting ew, the seller will expect the most favorable

queue among all queues that are compatible with e! and the market utility function (see, for

7



example, McAfee, 1993; Eeckhout and Kircher, 2010a,b). That is,

q(e!) = argmax
eq

⇡(e!, eq) (3)

where the choice of eq is subject to the constraint in equation (2).18 Initially, we will adopt

this convention, but later we will show that—with some mild restrictions on the meeting

technology—this assumption is unnecessary: when e! is (without loss of generality) a second-

price auction with reserve price or entry fee, these restrictions imply that there is only one

possible queue compatible with e! and the market utility function.

Equilibrium Definition. We can now define an equilibrium as follows.

Definition 1. A directed search equilibrium is a tuple (�s, �b1, �
b

2) of strategies with the fol-

lowing properties:

1. Each ! in the support of �
s
maximizes ⇡(!, q(!)), where, depending on whether or not

! belongs to the support of �
s
, q(!) is given by equations (1) and (3), respectively.

2. For each buyer type xk, �
b

k
is absolutely continuous with respect to �

s
. If �

b

k
(D) >

0, every ! in the support of �
b

k
maximizes Vk(!, q(!)). If �

b

k
(D) = 0, then for any

mechanism ! in the support of �
s
the buyer value Vk(!, q(!)) is non-positive.

3. Aggregating queues across sellers does not exceed the total measure of buyers of each

type. That is,
R
qk(!)d�s(w)  Bk for each k 2 {1, 2}.

2.2 Alternative Representation of Meetings

We first present a transformation of the meeting technology that greatly simplifies the anal-

ysis. In particular, we introduce a new function �(µ,�) with 0  µ  �, defined as

�(µ,�) = 1�
1X

n=0

Pn(�)
⇣
1� µ

�

⌘n
. (4)

To understand this function, consider a submarket in which sellers face a queue length �.

Suppose that a fraction µ/� of the buyers in the submarket has the high value x2. Since

the meeting technology treats di↵erent buyers symmetrically, �(µ,�) then represents the

probability that a seller meets at least one high-value buyer.

18For some mechanism ew there may not exist a compatible queue because ew is either too attractive or too
unattractive. If ew is too unattractive, we can set eq to be the zero vector. In Section 4, we show that sellers
can not do better than posting a second-price auction with a reserve price, which implies that ew will not be
too attractive in the above sense.
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The function �(µ,�) allows us to study competing mechanisms with general meeting

technologies in a way that is both more tractable and more intuitive than with Pn(�), n =

0, 1, . . . . The following Proposition establishes that no information is lost by considering

�(µ,�) instead of Pn(�), since we can always recover one from the other.

Proposition 1. If �(µ,�) is generated by some {Pn(�) : n = 0, 1, 2, . . . }, then we can recover

Pn(�) from �(µ,�) by

Pn (�) =
(��)n

n!

@
n

@µn
(1� � (µ,�))

����
µ=�

. (5)

Proof. See Appendix A.1.

To develop intuition for �(µ,�), suppose that �� more buyers visit this submarket, then

the probability that the seller meets at least one incumbent high-value buyer becomes �(µ,�+

��), where µ is the measure of the incumbent high-value buyers. Therefore, ��(µ,�) ⌘
@�(µ,�)/@� measures the e↵ect of the new entrants on the meeting probabilities between

sellers and incumbent high-value buyers: ��(µ,�) < 0 (resp. > 0) represents negative (resp.

positive) meeting externalities. In the special case of ��(µ,�) = 0, there are no meeting

externalities among buyers.

For future reference, note that

�µ(µ,�) ⌘
@�(µ,�)

@µ
=

1X

n=1

Qn(�)
⇣
1� µ

�

⌘n�1

. (6)

That is, �µ(µ,�) is the probability for a buyer to be part of a meeting in which all other

buyers (if any) have low valuations. In this case, a high-type buyer increases social surplus

directly, since the good would have been allocated to a low-type buyer in his absence. In a

second-price auction, this is also the probability that a high-type buyer wins the auction with

strictly positive payo↵, which we define to be the winning probability of high-type buyers.19

Since for each n, (1 � µ/�)n�1 is decreasing in µ, �µ(µ,�) is then also decreasing in µ,

implying that �(µ,�) is concave in µ, which holds strictly if and only if P0(�) +P1(�) < 1.20

19Because buyers types are discrete, buyers’ winning and trading probability are di↵erent: a buyer may
compete with another buyer with the same value. But as we will see later, this di↵erence is not important
for our analysis. The use of this winning probability is a canonical technique developed by McAfee (1993)
and Peters and Severinov (1997). They show that buyers’ winning probability must be equal at competing
sellers. Our function �(µ,�) incorporates their approach by its first partial derivative �µ(µ,�) and does more
because its second partial derivative ��(µ,�) represents meeting externalities. Moreover, the function �(µ,�)
itself is intimately linked with surplus. See Lemma 1 and also Lemma 3 for the formal statements.

20For each n � 0, �(1 � µ/�)n is increasing and concave in µ, and it is strictly concave in µ if and only
if n � 2. Therefore, �(µ,�) is strictly concave in µ if and only if there exists at least one n � 2 such that
Pn(�) > 0.
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Two special cases of equation (6) are worth mentioning: i) �µ(0,�) = 1 � Q0(�), i.e. the

probability that a buyer meets a seller, and ii) �µ(�,�) = Q1(�), i.e. the probability that a

buyer meets a seller without other buyers.

Examples of Meeting Technologies.

1. Bilateral. With bilateral meeting technologies, each seller meets at most one buyer,

i.e., P0 (�) + P1 (�) = 1 with P1(�) strictly concave. In this case, � (µ,�) = P1 (�)µ/�.

2. Invariant (e.g. urn-ball or geometric). Invariant meeting technologies are defined by

the absence of meeting externalities, i.e. ��(µ,�) = 0 for any 0  µ  �.21 One

example is the urn-ball technology, which specifies that the number of buyers meeting

a seller follows a Poisson distribution with a mean equal to the queue length �. That is,

Pn (�) = e
��

�
n
/n! or � (µ,�) = 1� e

�µ. A second example is the geometric technology

of Lester et al. (2015), where agents in a submarket are uniformly positioned on a circle

and buyers walk clockwise to the nearest seller. This yields Pn (�) = ( 1
1+�

)
�

�

1+�

�n
or

� (µ,�) = µ/(1 + µ).

3. Geometric truncated at 2. The number of buyers that a seller meets follows a geometric

but the maximum number of meetings is 2. Thus Pn(�) = ( 1
1+�

)
�

�

1+�

�n
for n < 2, and

P2(�) = 1� P0(�)� P1(�). Appendix B.4.1 fully characterizes this case.

4. Geometrically truncated geometric. This meeting technology is similar to the geometric

technology, except sellers may face time or capacity constraints, stopping them from

meeting all buyers that try to visit them. The maximum number of buyers that a seller

can meet follows a geometric distribution with parameter � and support {1, 2, 3, . . . }.
The number of meetings taking place is therefore the minimum of two geometric vari-

ables, the number of buyers that try to meet/contact the seller and the seller’s capacity.

This technology reduces to a bilateral one when � = 0 and to an invariant one when

� = 1.22 This technology satisfies all assumptions in this paper, including the ones in

Online Appendix, and is analyzed in detail in Appendix B.4.2, which shows that for

intermediate �, there will be two submarkets in equilibrium: one submarket contains

all high-type buyers and some low-type buyers and the other submarket contains the

remaining low-type buyers. This phenomenon of partial segmentation is new to the

literature.
21Lester et al. (2015) first introduced invariant meeting technologies in terms of Pn(�). Cai et al. (2017)

show that their definition is equivalent to ��(µ,�) = 0.
22For a similar technology with Poisson applications, see Woltho↵ (2018).
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Assumptions. In most of our analysis, we will remain agnostic about the exact meeting

technology and just make a few weak assumptions regarding �(µ,�) which provide the min-

imal structure we need to prove our results. Two assumptions are necessary for most of our

results, so we present them here; the remaining assumptions are introduced just before the

specific results that require them. The meeting technologies that we presented above satisfy

the assumptions that we introduce below. To introduce the assumptions, we first apply a

change of notation and define z = µ/� as the fraction of high-type buyers in the queue.

Further, to simplify notation, we define m(�) ⌘ �(�,�), which is the probability that a seller

meets at least one buyer.

Assumption 1. �(�z,�) is strictly concave in � for any z 2 (0, 1]. Furthermore, lim�!0 m
0(�) =

1 and lim�!1 m(�)� �m
0(�) = 1.

This assumption states that if we hold the fraction of high-type buyers constant, the

marginal e↵ect of an extra buyer on the seller’s probability of meeting at least one high-type

is decreasing in the total queue length. Since m(�) ⌘ �(�,�), this assumption also implies

that m(�) is strictly concave. The second part of Assumption 1 is more a normalization

than an assumption. It implies that in a submarket with only buyers with valuation xk,

the marginal contribution of these buyers is xk when � ! 0, while for sellers it is xk when

� ! 1.

Our second assumption concerns the probability �µ(�z,�) that a high-type buyer increases

surplus directly—i.e., faces no competition from other high-type buyers. We assume that this

probability decreases if we add more buyers to the queue, holding the fraction of high-type

buyers constant at z.

Assumption 2. �µ(�z,�) is strictly decreasing in � for 0  z  1.

As mentioned after equation (6), �µ(�,�) = Q1(�) and �µ(0,�) = 1 � Q0(�). Thus,

Assumption 2 implies that (i) in submarkets with longer queues, it is less likely that a buyer

turns out to be the only one present, and (ii) buyers are less likely to meet a seller if the

queue length in the submarket increases, which could be interpreted as a form of congestion.

3 Social Planner

3.1 Surplus and Planner’s Problem

Surplus. We start our analysis with the following lemma which derives total surplus and

agents’ marginal contribution to this surplus in a submarket with queue q. To use our

alternative representation of meeting technologies, we apply a change of notation and, as

11



before, define µ as the queue length of buyers with value x2 and � as the total queue length,

i.e., µ = q2 and � = q1 + q2.

Lemma 1. Consider a submarket with a measure 1 of sellers and a queue (µ,�) of buyers.

Total surplus in the submarket then equals

S(µ,�) = m(�) + (x2 � 1)�(µ,�) (7)

The marginal contribution to surplus of low-type and high-type buyers are, respectively,

T1(µ,�) = m
0(�) + (x2 � 1)��(µ,�) (8)

T2(µ,�) = m
0(�) + (x2 � 1) (�µ(µ,�) + ��(µ,�)) . (9)

A seller’s marginal contribution to surplus equals

R(µ,�) = m(�)� �m
0(�) + (x2 � 1) (�(µ,�)� µ�µ(µ,�)� ���(µ,�)) . (10)

Proof. See below and Lemma 3 for the general case with N buyer types.

The first term in equation (7) accounts for the fact that a surplus of (at least) 1 is

generated whenever a seller meets at least one buyer. The second term captures that an

additional surplus of x2 � 1 is realized when a seller meets at least one high-type buyer.

To understand (8), note that T1(µ,�) = S�(µ,�) since adding a low-type buyer to the

submarket increases � but has no e↵ect on µ. The first term of (8) reflects the e↵ect of the

extra buyer on the number of matches, while the second term represents the externalities that

he may impose on meetings between sellers and high-type buyers. Since m
0(�) = �µ(�,�) +

��(�,�), equation (8) can also be written as

T1(µ,�) = �µ(�,�) + ��(�,�) + (x2 � 1)��(µ,�),

where the first term describes the buyer’s direct contribution to surplus which arises when

there are no other buyers, as discussed below equation (6). The second term and third term

represent the externalities that the buyer may impose on sellers’ meetings with, respectively,

other low-type and high-type buyers.

To understand (9), note that T2(µ,�) = Sµ(µ,�) + S�(µ,�) since adding an additional

high-type buyer to the submarket increases both µ and �. Therefore, T2(µ,�) = T1(µ,�) +

(x2 � 1)�µ(µ,�). That is, the additional high-type buyer creates the same meeting exter-

nalities as an extra low-type buyer, but creates additional surplus when there are no other

buyers or only low-type buyers, which happens with probability �µ(µ,�).

12



Finally, to understand equation (10), define z = µ/� to be the fraction of high-type buyers

in the queue. If we add � more buyers to the submarket while keeping z fixed, then adding

one more seller increases surplus by S(�z,�). Therefore, R(�z,�) = S(�z,�)� �
@S(�z,�)

@�
, or,

alternatively R(µ,�) = S(µ,�)� µT2(µ,�)� (�� µ)T1(µ,�).

Planner’s Problem. One can think of the planner’s problem as a three-step optimization

problem: first, the planner chooses the number of submarkets to open; second, he determines

the allocation of buyers and sellers to the di↵erent submarkets; third, he decides on the

allocation of the good after meetings have taken place. The third step is trivial: at each

seller, the good is always allocated to the buyer with the highest valuation. The first two

steps will depend on the meeting technology and the distribution of valuations. Suppose that

the planner creates L submarkets with positive seller measures ↵1
, . . . ,↵

L, respectively, and

potentially an additional submarket with no sellers but only buyers. Of course, this additional

submarket generates no surplus but could be useful for reducing meeting externalities. The

queue in submarket ` = 1, . . . , L is (µi
,�

i). The planner’s problem is thus

S⇤(B1, B2) = sup
L�1

sup
{(↵`,µ`,�`) | `=1,...,L}

LX

`=1

↵
`
S(µ`

,�
`) (11)

subject to the standard accounting constraints
P

L

`=1 ↵
` = 1,

P
L

`=1 ↵
`
µ
`  B2, and

P
L

`=1 ↵
`(�`�

µ
`)  B1.23

3.2 Characterization of the Planner’s Solution

In this section, we characterize the planner’s solution. Since the case of bilateral meeting

technologies is well understood and to avoid the issue of division by zero, we impose the

restriction that P0(�) + P1(�) < 1 for any � > 0 so that �µµ(µ,�) is never zero.

Number of Submarkets. It is not clear a priori that there is an upper bound on the

number of submarkets L for any endowment of buyers (B1, B2). However, the following

Proposition shows that such an upper bound exists. To state the result, we define an idle

submarket as a market that either contains only buyers or only sellers (as opposed to an

active submarket in which both buyers and sellers are present).24

Proposition 2. When there are two buyer types, the planner’s problem can be solved by

opening at most three submarkets, including one potentially idle submarket.

Proof. See Appendix A.2.

23The inequalities reflect that the planner may require some buyers to be inactive and not visit any seller.
24The planner will of course never simultaneously choose an idle market for buyers and one for sellers.
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Proposition 2 serves two goals. First, it is a technical result on existence in the sense that

it establishes that the supremum of surplus over all possible allocations can indeed be reached

as a maximum. Second, it limits the complexity of the planner’s problem by bounding the

number of submarkets. The intuition is as follows. By equation (11), total surplus is a convex

combination of the surpluses generated by individual submarkets. The planner chooses the

number of submarkets to find the maximum value that such convex combinations can reach,

which simply corresponds to finding the concave hull of the surplus function S as presented

in equation (7). As a result of this correspondence, the Fenchel-Bunt Theorem provides an

upper bound for the number of submarkets needed to solve the planner’s problem.25

Concavity. If the surplus function S(µ,�) is jointly concave in (µ,�) then the concave hull

is of course S itself. In this case, merging any two submarkets always increases total surplus

and the planner’s solution is simply to pool all buyers and sellers into a single submarket (see

Cai et al., 2017). However, as we will show below, joint concavity is often violated. In these

cases, the planner needs to solve a non-concave optimization problem, which is notoriously

di�cult. We make progress below by formulating weak restrictions on the meeting technology.

Under those restrictions, the first-order conditions are both necessary and su�cient, and a

simple algorithm will solve the planner’s problem.

Even if concavity of S(µ,�) fails globally, it still needs to hold locally in any submarket

(µ,�) satisfying 0 < µ < �. Otherwise, by definition, we can break the submarket into two

and reallocate su�ciently small measures of buyers �µ and �� to increase total surplus, i.e.

1

2
S(µ��µ,����) +

1

2
S(µ+�µ,�+��) > S (µ,�) .

The Hessian matrix of the surplus function S (µ,�) must therefore be negative semi-definite

at the point (µ,�). This normally requires two inequalities to hold since the Hessian is a

2 ⇥ 2 matrix. However, the surplus function S (µ,�) is linear in �(µ,�), which in turn is

always concave in µ. The only remaining condition therefore is that the determinant of the

Hessian is positive, such that we have the following result.

Lemma 2. A submarket (µ,�) with 0 < µ < � can be part of the planner’s solution only

if the Hessian matrix of the surplus function (7) is negative semi-definite at (µ,�), which is

25The classical Caratheodory theory states that any point in the convex hull of a set A ⇢ Rn can be
represented as a convex combination of n+ 1 points of A. The Fenchel-Bunt Theorem states that if the set
A is connected, then for the above construction we only need n points instead of n + 1. Since the graph of
S : R2 ! R is a connected subset in R3, the Fenchel-Bunt Theorem implies that we only need three points
to construct the concave hull of S.
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equivalent to:

H(µ,�) ⌘ 1

�m00(�)

✓
���(µ,�)�

�µ�(µ,�)2

�µµ(µ,�)

◆
 1

x2 � 1
(12)

Proof. See Appendix A.3.

This condition is automatically satisfied if �µµ��� � �
2
µ�

� 0, i.e. joint concavity of the

meeting technology therefore implies joint concavity of the surplus function (see Cai et al.,

2017). However, the second-order condition (12) may hold even if the meeting technology

�(µ,�) is non-concave everywhere, as is for example the case for the geometrically truncated

geometric technology with � < 1.26 To understand this, note that the expression for surplus

S(µ,�) in equation (7) has two terms. If �(µ,�) is non-concave, the second term in (7)

provides a force against pooling; the factor ��� � �
2
µ�
/�µµ in (12) measures its strength.

However, because sellers’ probability to meet at least one buyer is concave, the first term in

(7) is always a force for pooling, with �m
00(�) in (12) representing its strength.27

Participation. The expressions for the marginal contribution to surplus of buyers and

sellers in lemma 1 allow us to address the planner’s participation decisions. Intuitively, all

high-type buyers must always all participate. If a subset of high-type buyers were idle, then

all low-type buyers would have to be idle as well because they create less surplus. However,

with only high-type buyers present, adding high-type buyers always increases surplus since

m(�) is strictly increasing. If Assumption 1 holds, the marginal contribution of sellers in

a submarket is always positive so they should all be active. Lemma 4 in Appendix A.4

formalizes this and derives conditions for the planner under which either all buyers or all

sellers should be assigned to active submarkets (i.e. submarkets that contain both buyers

and sellers).

Level Curves. The next step in our analysis is to consider how conditions that the plan-

ner’s solution must satisfy constrain the submarkets (�z,�) that may be formed. One such

condition is that sellers’ contribution to surplus must be equal in all active submarkets cre-

ated by the planner. These submarkets must therefore lie on some level curve R(�z,�) = R
⇤.

Intuitively, sellers’ marginal contribution to surplus is higher if there are either more buyers

(holding z constant) or more high-type buyers (holding � constant). Thus the level curves

26It is easy to verify that �µµ��� � �
2
µ� = �(1� �)2/(1 + �µ+ (1� �)�)4 < 0 in this case.

27To see this, suppose that we divide a submarket (µ,�) into two submarkets (µ � �µ,� � ��) and
(µ+�µ,�+��) with �� > 0 and �µ of indeterminate sign. Then, the loss of total surplus stemming from
the first part of the surplus function is m(�)� 1

2m(�+��)� 1
2m(����), which equals �m

00(�)��
2
> 0.

The surplus gain from the second part of the surplus function is (x2�1)(�µµ�µ
2+2�µ��µ��+�����

2)/2.
The gain is maximized when �µ = ����µ�/�µµ, and the maximal gain is (x2 � 1)(��� � �

2
µ�/�µµ).
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of R(�z,�) are downward sloping in the �-z plane, as we prove formally in Lemma 6 of

Appendix A.4. Figure 1 illustrates two downward-sloping level curves of R(�z,�).

A further requirement on the planner’s solution is that buyers’ marginal contribution to

surplus must be equal in all submarkets that they visit. This requires knowledge of how

a buyer’s marginal contribution T1(�z,�) or T2(�z,�) varies along level curves of R(�z,�).

It turns out that the answer depends on the sign of the determinant of the Hessian of the

surplus function. In Figure 1, the red solid curve is where the determinant is zero; the area to

its left is where the determinant is negative and the area to its right is where the determinant

is positive. Lemma 7 in Appendix A.4 shows that along a level curve of R(�z,�), high-type

buyers’ marginal contribution T2(�z,�) is strictly decreasing in z in the segment to the left

of the red solid curve (e.g., segment S0S1) and strictly increasing in z in the segment to the

right of the red solid curve (e.g., segment S1S2). The reverse holds for T1(�z,�).

Therefore, each level curve of R(�z,�) can be divided into two intervals, and buyers’

marginal contributions, T1(�z,�) and T2(�z,�), vary monotonically within each interval.

However, inspecting Figure 1 shows that this requires that the level curve of R(�z,�) inter-

sects with the red curve only once and from the left. For this to hold in general, we require

one additional (weak) assumption on the meeting technology.

Assumption 3 (Single Crossing). At any point (z,�) where H(�z,�) > 0, we have @H(�z,�)/@� >

0 and

�@�µ(�z,�)/@z

@�µ(�z,�)/@�
< �@H(�z,�)/@z

@H(�z,�)/@�
. (13)

It is worth highlighting that—like our other assumptions—Assumption 3 concerns the

meeting technology only.28 The left-hand side (resp. right-hand) of (13) denotes the slope

of the level curve of �µ(�z,�) (resp. H(�z,�)) in the z-� plane. Thus, Assumption 3 states

that any level curve of �µ(�z,�) crosses any positive level curve of H(�z,�) at most once

and from left. Perhaps surprisingly, it also implies that each level curve of R(�z,�) crosses

the curve H(�z,�) = 1/(x2 � 1) (where the determinant of the Hessian matrix is zero) at

most once and from left. This claim is made precise in Lemma 8 in Appendix A.4.

Two Submarkets. We can now further tighten the bound on the number of submarkets.

We illustrate the argument in Figure 1. Suppose that at the social optimum, the marginal

contribution to surplus of sellers is R
⇤ and the black dashed level curve R(�z,�) = R

⇤

intersects the red curve H(�z,�) = 1/(x2 � 1) at point S1 = (�⇤
z
⇤
,�

⇤). The first part of

28By the definition in equation (12), H(�z,�) > 0 if and only if �µµ�����
2
µ� < 0 at the point (z,�). Hence,

the above assumption becomes void and is satisfied automatically for jointly concave meeting technologies
(see Cai et al., 2017). In this paper, we consider the more realistic case where � is not always or never concave
in (µ,�).
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Figure 1: Illustration of Assumption 3 (Single Crossing)

Assumption 3 ensures that the second-order condition (12) is satisfied left of the red line and

violated right of the red line. In other words, submarkets with 0 < z < z
⇤ (i.e., points on

the S1S2 trajectory) cannot be part of the planner’s solution. The only feasible submarket

on this side is therefore the corner S2 where z
⇤ = 0.

In contrast, the second-order condition is satisfied in submarkets with z � z
⇤, i.e. points

on the S0S1 trajectory. However, by Lemma 7, T2(�z,�) is strictly decreasing in z along this

trajectory. Since the marginal contribution of high-type buyers must be the same among

all submarkets containing such buyers, there can therefore only exist one submarket with

z � z
⇤
. To sum up, there exist at most two submarkets in the social optimum: one with

z � z
⇤ and one with z = 0.

The above observation greatly simplifies the analysis because it implies that there are only

three possible solutions: (i) complete pooling, i.e. all agents are in one market; (ii) complete

separation, i.e. there is one submarket for all high-type buyers and one (possibly idle) for all

low-type buyers; (iii) mixing, i.e. there is one submarket that contains all high-type and some

low-type buyers, and one (possibly idle) submarket with the remaining low-type buyers. From

Cai et al. (2017) , we know that invariant—or more generally, jointly concave—technologies

imply complete pooling, while bilateral technologies imply complete separation. The third

possibility, which spans the range between these extremes, is new. It allows the planner to

take advantage of multilateral meetings to screen ex post by pooling high types with some

low types, while reducing the degree of crowding out by separating other low types.

The optimal extent of separation depends on the magnitude of the meeting externalities,

the measures of high and low types, and the dispersion in valuations. To solve for it, assume,
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without loss of generality, that the planner opens two submarkets, one with a high average

valuation containing all high-type buyers, and one with a low average valuation without

high-type buyers. Two decisions then remain: i) how to allocate low-type buyers and ii) how

to allocate sellers. We solve these decisions sequentially.

Allocation of Sellers. Suppose the planner assigns a measure b1 of low-type buyers to

the submarket with the high average valuation. The optimal allocation of sellers, denoted by

↵
⇤(b1), then solves

S(b1) = max
↵

↵S

✓
B2

↵
,
B2 + b1

↵

◆
+ (1� ↵)S

✓
0,

B1 � b1

1� ↵

◆
. (14)

Of course, ↵⇤(B1) = 1. For b1 < B1, both terms on the right-hand side are concave in ↵

by Lemma 5 in Appendix A.4, such that ↵⇤(b1) is uniquely characterized by the first-order

condition, i.e.

↵
⇤ = 1 if R(B2, B2 + b1) � 1

R

✓
B2

↵⇤ ,
B2 + b1

↵⇤

◆
= R

✓
0,

B1 � b1

1� ↵⇤

◆
if R(B2, B2 + b1) < 1

(15)

The first case in (15) describes a corner solution, where sellers’ marginal contribution to

surplus is higher in the submarket with the high average valuation even when all sellers are

allocated to this submarket. The second case describes an interior solution, where sellers’

marginal contributions must be the same across the two submarkets. Note that ↵⇤(b1) can

never be 0, because the planner will never leave high-type buyers idle.

Allocation of Low-Type Buyers. Having solved for ↵⇤(b1), we next consider the alloca-

tion of low-type buyers. By the envelope theorem, S(b1) is di↵erentiable and for b1 < B1,

S
0
(b1) = T1

✓
B2

↵⇤(b1)
,
B2 + b1

↵⇤(b1)

◆
� T1

✓
0,

B1 � b1

1� ↵⇤(b1)

◆
. (16)

That is, the additional surplus generated by moving one low-type buyer from the low-average-

valution to the high-average-valuation submarket is simply the di↵erence between the buyer’s

marginal contributions to surplus in the two submarkets.

The special case b1 = B1 warrants discussion as it is not defined by the above equation

(because it leads to 0/0 in the final argument). In this case, the planner allocates all sellers

and buyers to the submarket with the high average valuation, and considers the welfare e↵ect

of moving an " number of low-type buyers to a separate submarket. Whether the planner

also moves sellers to this separate submarket depends on R(B2, B2 + B1). In particular,

if R(B2, B2 + B1) � 1, then the planner will keep all sellers in the submarket with the
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high average valuation, because sellers’ contribution to surplus in the second submarket is

bounded by 1; in contrast, if R(B2, B2+B1) < 1, then the planner will move a small number

of sellers to the separate submarket to equalize sellers’ contribution to surplus across the two

submarkets. Regardless,

S
0
(B1) = T1(B2, B2 +B1)� T1(0,�) (17)

where � is such that R(B2, B2 +B1) = R(0,�) if R(B2, B2 +B1) < 1, otherwise � = 1.

The optimal b1, b⇤1, must then satisfy the first-order condition, i.e.

S
0
(b⇤1)  0 if b

⇤
1 = 0; S

0
(b⇤1) = 0 if 0 < b

⇤
1 < B1; S

0
(b⇤1) � 0 if b

⇤
1 = B1. (18)

It turns out that the first-order condition is su�cient even though S(b1) is not necessarily

concave. The following proposition formalizes our results.29

Proposition 3. Under Assumption 1, 2, and 3, at the social optimum, all sellers are active,

and there are at most two submarkets, one of which contains all high-type buyers and has

a shorter queue. Furthermore, the planner’s solution is unique, and the first-order condi-

tions (15) and (18) are necessary and su�cient.

Proof. See Appendix A.5.

Algorithm. Our analysis suggests a simple numerical algorithm to solve the planner’s

problem: start with b1 = B1 (i.e. pooling) and compute S
0
(B1) according to equation (17); if

S
0
(B1) � 0, then b1 = B1 is the solution, otherwise decrease b1 until the first-order condition

is satisfied or b1 = 0.

The knife-edge case S
0
(B1) = 0 deserves special attention because it pins down the bound-

ary between areas of pooling and partial segmentation. The detailed analysis of this special

case is technical and delegated to Appendix B.3. Finally, in Appendix B.4 we fully character-

ize and illustrate how the meeting technology a↵ects market segmentation for two cases with

a geometric meeting technology that is truncated either deterministically or stochastically.

3.3 Comparative Statics

Having solved the planner’s problem, we now analyze comparative statics. We are par-

ticularly interested in how the optimal allocation of buyers and sellers varies with (i) the

29As we show later, the market equilibrium decentralizes the planner’s solution and therefore features
endogenous market segmentation where both sellers and low-type buyers are indi↵erent between di↵erent
segments. Barro and Romer (1987) give a nice example that illustrates how sellers can promise utility by
either a low price or fewer other buyers: the Paris metro used to sell expensive first-class tickets for wagons
which were physically similar to the second-class ones but which were less crowded in equilibrium.
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dispersion in buyer values, and (ii) the properties of the meeting technology. The first com-

parative static can be thought of as analyzing the e↵ect of an increase in inequality, while

the second comparative static can be thought of as analyzing the e↵ect of new technologies

like automated resume screening. To simplify exposition, we focus on the example of the

geometrically truncated geometric meeting technology, which is characterized by a single pa-

rameter � that reflects the degree of search frictions. In Appendix B.5, we show that the

same results hold for general meeting technologies under certain assumptions.

The model now has 4 parameters: x2, which measures the dispersion of buyer values, �,

which indexes the meeting technology, and B1 and B2, the number of low-type and high-

type buyers (recall that the number of sellers is normalized to be 1). For a given tuple

(x2, �, B1, B2), Appendix B.4.2 fully characterizes the optimal allocation of buyers and sellers

(the planner’s solution). Below, we analyze how this allocation changes with � and x2.

Changes in Screening Capacity. Since the geometrically truncated geometric meeting

technology is indexed by a parameter �, we represent the meeting technology by �(µ,�, �).

The full analytic expression is given by equation (44) in Appendix B.4.2. Since � measures

screening capacity, �(µ,�, �) is increasing in �. However, the probability that a seller meets

at least one buyer, �(�,�, �), is independent of �. That is, a better screening technology

increases the probability that a seller finds a high-type buyer but does not change the prob-

ability that a seller meets at least one buyer. The following results show that when the

screening technology improves, the separation area shrinks and the area where pooling is

optimal increases.

Proposition 4. Given (x2, �, B1, B2), if the optimal allocation is complete pooling, then for

(x2, �
0
, B1, B2) with �

0
> �, the optimal allocation is again complete pooling.

Given (x2, �, B1, B2), if the optimal allocation is complete separation, then for (x2, �
0
, B1, B2)

with �
0
< �, the optimal allocation is again complete separation.

Proof. See the general results of Proposition 11 and 12 in Online Appendix B.5.

When � = 0, meetings are always bilateral and the optimal allocation is always complete

separation, since a low-type buyer meeting a seller always crowds out high-type buyers.

When � = 1, low-type buyers do not impose negative meeting externalities on high type

buyers and therefore it is optimal to pool all buyers and sellers in one market. Thus, for any

(x2, B1, B2), the above proposition shows that the optimal allocation changes smoothly from

complete separation to complete pooling as � increases from 0 to 1.

Changes in the Dispersion of Buyer Values. Since x1 is normalized to 1, the parameter

x2 measures the dispersion in buyer values. As we increase x2, the output loss due to low-

type buyers crowding out high-type buyers becomes larger. One may therefore expect that
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complete separation becomes a more likely outcome while complete pooling becomes less

likely. The following proposition presents the formal results.

Proposition 5. Given (x2, �, B1, B2), if the optimal allocation is complete pooling, then for

(x0
2, �, B1, B2) with x

0
2 < x2, the optimal allocation is again complete pooling.

Given (x2, �, B1, B2), if the optimal allocation is complete separation, then for (x0
2, �, B1, B2)

with x
0
2 > x2, the optimal allocation is again complete separation.

Proof. This result follows from Proposition 9 and 10 in Online Appendix B.5.

When x2 ! x1 = 1 and � > 0, then the optimal allocation is complete pooling because

the gain from partial separation is negligible, and the planner prefers to pool all buyers

and sellers in one place to maximize the matching probability. When x2 is su�ciently large

and � < 1, it is optimal to exclude the low-type buyers from participating and set up one

market for all sellers and high-type buyers. Thus, for any (�, B1, B2) with 0 < � < 1, the

above proposition shows that the optimal allocation always changes from complete pooling

to complete separation as x2 increases.

As we will show below, when the optimal allocation is complete separation, the optimal

allocation can be decentralized by sellers posting fixed prices while when the optimal allo-

cation is complete pooling, then the decentralized equilibrium necessarily involves auctions.

Thus as � changes, the optimal trading mechanism can change accordingly.

4 Market Equilibrium

In this section, we show that no seller can do better in equilibrium than posting a second-

price auction combined with either a reserve price or a meeting fee. The reserve price can

be positive or negative, where the latter just means that the seller is willing to sell the good

at a price below his valuation, which we normalized to 0. Similarly, the meeting fee can be

positive, in which case it is paid by each buyer meeting the seller, or negative, in which case

payments take place in the opposite direction. Finally, we establish that the equilibrium is

constrained e�cient.

4.1 E�ciency

Equivalence. To prove constrained e�ciency of equilibrium, we show that even if sellers

can buy queues directly in a hypothetical competitive market, they cannot do better than

in the decentralized environment. In other words, the following two problems are equivalent

for sellers.
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1. Sellers’ Relaxed Problem, in which there exists a hypothetical competitive market for

queues, with the price for each buyer given by the market utility function. That is,

sellers choose a queue (µ,�) to maximize

⇡(µ,�) = m(�) + (x2 � 1)�(µ,�)� µU2 � (�� µ)U1, (19)

where the first two terms are total surplus (7) and the last two terms are the price of

the queue.

2. Sellers’ Constrained Problem, in which sellers must post mechanisms to attract queues

of buyers, as described in detail in Section 2. For any mechanism, the corresponding

queue must be compatible with the market utility function, which means that it needs

to satisfy equation (2). In this case, a seller’s profit is again given by equation (19),

assuming that sellers post e�cient mechanisms, but now queue length and queue com-

position depend on the posted mechanism.

In the relaxed problem, a seller will “buy” queues of buyers with valuation xk until their

expected marginal contribution Tk to surplus is equal to their marginal cost Uk, where k =

1, 2. Hence, if sellers can post a mechanism which delivers buyers their marginal contribution

to surplus, then buyers’ payo↵s are equal to their market utility and the queue is compatible

with the mechanism and the market utility function, as defined by equation (2). The following

proposition establishes that auctions with an entry fee or a reserve price can achieve this.

Proposition 6. Any solution (µ,�) to the sellers’ relaxed problem is compatible with an

auction with an entry fee in the sellers’ constrained problem, where the fee is given by

t = �(x2 � 1)��(µ,�) + ��(�,�)

1�Q0(�)
. (20)

It is also compatible with an auction with a reserve price in the sellers’ constrained problem,

where the reserve price is given by

r = �(x2 � 1)��(µ,�) + ��(�,�)

Q1(�)
. (21)

Proof. See Appendix A.6.

Auctions with Meeting Fees. The intuition behind the case with meeting fees is the

following. Recall that a buyer’s marginal contribution Tk consists of two parts: (i) a direct

e↵ect, representing the fact that the buyer may increase the maximum valuation among the
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group of buyers meeting the seller,30 and (ii) an indirect e↵ect, (x2 � 1)��(µ,�) + ��(�,�),

representing the externalities that the buyer may impose by making it easier or harder for the

seller to meet other buyers. As is well-known, auctions (without reserve prices or fees) provide

buyers with a payo↵ equal to their direct contribution.31 Buyers’ indirect e↵ect on surplus

is independent of their type and can therefore be priced by an appropriate entry fee. Since

buyers pay the fee whenever they meet a seller, which happens with probability 1�Q0 (�),

a meeting fee equal to (20) guarantees that their expected payo↵ from the mechanism equals

exactly Tk, which yields the desired result.

Auctions with Reserve Prices. Perhaps surprisingly, an auction with an appropriate

reserve price is also an e�cient mechanism that can price all meeting externalities. After all,

in contrast to meeting fees, reserve prices may prevent e�cient trade. To see this, consider a

seller who sets a reserve price r 2 (x1, x2). Low-type buyers have a zero trading probability

at this seller, while their trading probability would be strictly positive at an auction by the

same seller with a meeting fee. However, this di↵erence between the two mechanisms only

a↵ects out-of-equilibrium behavior; in equilibrium, low-type buyers would visit neither seller.

High-type buyers are only a↵ected by the reserve price when they are the only bidder, which

happens with probability Q1 (�). A reserve price equal to (21) therefore guarantees that

buyers’ expected payo↵ again equals Tk.

Meeting Fees vs. Reserve Prices. Although the meeting fee is a useful instrument

from a theoretical point of view, one could argue that it may be di�cult to implement in

practice. For example, if the meeting fee is positive, fake sellers with no intent to sell could

open phantom auctions to collect the meeting fees from interested buyers, which would then

discourage buyers from visiting sellers who charge fees in the first place.32 Those concerns

do not apply to auctions with reserve prices. The optimal reserve price has the same sign

and plays a similar role as the optimal meeting fee, but is easier to implement because all

buyers who do not win, pay (or receive) nothing. If, however, some buyers have valuations

below sellers’ reservation value and the meeting externalities are positive, then auctions with

negative reserve prices are not e�cient, while auctions with entry subsidies and a reserve

price equal to sellers’ valuation remain e�cient.

Finally, consider Lester et al. (2015), where buyers are ex ante identical and learn their

valuation only upon meeting the seller. In their framework, just as in ours, pricing negative

30For low-type buyers, the direct e↵ect is given by �µ(�,�) = Q1(�), and for high-type buyers, the direct
e↵ect is given by (x2 � 1)�µ(µ,�) + �µ(�,�).

31This is easiest to see in a second-price auction. Suppose that the highest and the second highest value are
x2 and x1. Then, the payo↵ for the highest value buyer is x2 � x1, which is also his contribution to surplus.
Other bidders receive zero and their contributions to the surplus of the auction are also zero. Extension of
this result to other auction formats follows from revenue equivalence.

32Similarly, negative meeting fees are subsidies that could attract fake buyers with no intent to purchase.
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meeting externalities would require a positive reserve price. However, unlike in our setup,

a positive reserve price in their model would actually prevent mutually beneficial trade in

equilibrium: as buyers’ valuations are only revealed ex post, the highest buyer valuation

is between the seller’s own valuation and his reserve price with positive probability. This

ine�ciency prevents sellers from adopting reserve prices in equilibrium, instead they always

opt for meeting fees. In Albrecht et al. (2014), who restrict attention to urn-ball meetings

(�� = 0), this ine�ciency does not arise, because sellers always choose to set their reserve

price equal to their valuation.

E�ciency. Proposition 6 is an important step towards proving e�ciency of the market

equilibrium for general meeting technologies, but there is one remaining issue: for a given

auction with a reserve price or entry fee, there might be multiple queues compatible with

the market utility function. Therefore, even if a solution to the sellers’ relaxed problem

is compatible with an auction with reserve price or entry fee, it is not clear that sellers

will expect that solution to be the realized queue. Most of the literature resolves this issue

by assuming that sellers are optimistic: a (deviating) seller expects that he can coordinate

buyers in such a way that the solution to the sellers’ relaxed problem becomes the realized

queue.33 Since this assumption is somewhat arbitrary, we show in the next subsection that

we can relax it under some mild restrictions on the meeting technology. However, if we—

for the moment—follow the standard approach, then by Proposition 6, a seller’s relaxed and

constrained problem are equivalent in the sense that they achieve the same outcome. That is,

the directed search equilibrium is equivalent to a competitive market equilibrium for queues,

which also coincides with the socially e�cient planner’s allocation.

Proposition 7. If sellers are optimistic, the directed search equilibrium is constrained e�-

cient for any meeting technology.

Proof. See Appendix A.7.

Hence, we have shown that despite the potential presence of spillovers in the meeting

process, business stealing externalities and agency costs, the competing mechanisms problem

reduces to one where sellers can buy queues in a competitive market. This result, of course,

requires a su�ciently large contract space. If it is not possible for sellers to either commit to

a reserve price above their valuation or charge fees, the decentralized equilibrium will only

be e�cient for invariant meeting technologies (i.e. �� = 0). If �� < 0 (resp. > 0), buyers

impose negative (resp. positive) externalities on other meetings and will receive more (resp.

less) than their marginal social contribution.34

33See, for example, Eeckhout and Kircher (2010a,b).
34With free entry of sellers, the buyer-seller ratio would be too high (resp. too low) in this case.
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Equivalence of Di↵erent Mechanisms. As shown before, the planner’s solution is unique;

however, the equilibrium mechanism is not unique: it can be decentralized in multiple ways.

Note that in the submarket with low-type buyers only, a second-price auction with a reserve

price is equivalent to price posting. So price posting can also be an equilibrium mechanism.

4.2 Uniqueness of Beliefs

The e�ciency result in proposition 7 assumed that sellers are optimistic. Without this

assumption, it is not clear how sellers should evaluate the expected payo↵ of deviations

if multiple queues are compatible with market utility. In this subsection, we show that

such a scenario is rather special in the sense that—under mild restrictions on the meeting

technology—the solution to the market utility condition is in fact unique, rendering the

optimism assumption redundant.

Uniqueness. The following proposition then presents our result regarding uniqueness of

the beliefs for a seller posting a second-price auction with a reserve price. To avoid the

situation where the optimal response of low-type buyers is indeterminate, we assume that

their market utility is strictly positive.

Proposition 8. Assume that U1 > 0. Under assumptions 1 and 2, for each seller posting

a second-price auction with a reserve price r, there is a unique queue (µ,�) compatible with

the market utility function. Furthermore, for two sellers posting reserve prices r
a
and r

b
, it

holds that �
a
> �

b
if and only if r

a
< r

b
.

Proof. See Appendix A.8.

If both sellers attract low-type buyers, then the expected payo↵s for low-type buyers from

visiting any of the two sellers must be the same: Q1(�a)(1 � r
a) = Q1(�b)(1 � r

b), which

implies that �a
> �

b if and only if ra < r
b, since Q1(�) is strictly decreasing by Assumption 2.

When one seller attracts low-type buyers and the other does not, the latter seller must have

posted a high reserve price implying a shorter queue without low-type buyers.

Things are slightly more complicated when sellers post a second-price auction with an

entry fee. Below, we introduce one weak additional restriction on the meeting technology,

which is su�cient to guarantee that there exists a monotonic relation between meeting fees

and queue lengths. This implies that there exists a unique queue that is compatible with the

market utility function when sellers post an auction with an entry fee.

Assumption 4. (1�Q0(�))/Q1(�) is weakly increasing in �.

If we rewrite (1�Q0(�))/Q1(�) as 1+
P1

k=2 Qk(�)/Q1(�), then this assumption states that

with a higher buyer-seller ratio, it is relatively more likely that a buyer will meet competitors

in an auction rather than being alone.
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Proposition 9. Under assumptions 1, 2, and 4, for each seller posting an auction with entry

fee t, there is a unique queue (µ,�) compatible with the market utility function. Furthermore,

for two sellers posting entry fees t
a
and t

b
, it holds that �

a
> �

b
if and only if t

a
< t

b
.

Proof. See Appendix A.9.

The intuition behind Proposition 9 is similar to that of Proposition 8 and readily follows

from the correspondence between the reserve price and entry fee: t = rQ1/(1�Q0). Again,

consider two di↵erent queues a and b. We have shown in Proposition 8 that �a
> �

b if and

only if ra < r
b. Under Assumption 4, the two inequalities jointly lead to t

a
< t

b.

Hence, we have established that under mild restrictions on the meeting technology, there

exists only one queue which is compatible with market utility when sellers post an auction

with a reserve price or an entry fee. Consequently, the assumption that sellers are optimistic

is redundant for a large class of meeting technologies.

5 N Buyer Types

5.1 Surplus

In this section, we consider the case with N buyer values: 0 < x1 < · · · < xN . The measure

of xk buyers is Bk for k = 1, . . . , N . The rest of the model remains the same, including the

planner’s problem and the definition of the decentralized equilibrium. For example, we can

continue to denote the queue of a submarket by q = {q1, q2, . . . , qN} where qk is the number

of xk buyers per seller. To use our alternative representation of meeting technologies, we

apply a change of notation and define µk as the queue length of buyers with value xk or

higher, i.e. µk = qk + · · · + qN for k = 1, . . . , N . The queue in the submarket can then be

represented by µ ⌘ (µ1, . . . , µN), where µ1 is the total queue length. Thus �(µk, µ1) is the

probability that a seller meets at least one buyer with value xk or higher. We further adopt

the convention x0 ⌘ 0 and µN+1 ⌘ 0 to simplify notation.

The following Lemma extends Lemma 1 and 2 to the case of N buyer values. It turns out

that this general case does not add much complexity. The interpretation of equations (22) to

(25) closely resembles the corresponding interpretation in the two-type case. Here, we only

discuss equation (23) as an example and omit the others.35 In equation (23), the first term of

Tk(µ) reflects the direct contribution to surplus of a buyer with valuation xk when this buyer

has the highest value in an n-to-1 meeting; this contribution equals the di↵erence between

35A similar result appears in Cai et al. (2017), so it is worth emphasizing that the credit belongs with the
current paper: as they explicitly acknowledge in their article, Cai et al. (2017) borrow Lemma 1 directly
from our paper, of which a first draft was written in 2016. The same applies to a number of other results,
e.g. Proposition 6 here vs. Proposition 4 in Cai et al. (2017).
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the highest and the second-highest buyer values. The second term of Tk(µ) represents the

externalities that the buyer may impose on other buyers and the seller. It does not depend

on k, because the meeting function treats all buyers symmetrically. Specifically, if a buyer

makes it easier for the other buyers to meet the seller (�� � 0), he increases total surplus

through a positive meeting externality, even if he does not have the highest value . A similar

logic applies for negative meeting externalities (��  0).

Lemma 3. Consider a submarket with a measure 1 of sellers and a queue µ ⌘ (µ1, . . . , µN)

of buyers. Total surplus in the submarket then equals

S(µ) =
NX

j=1

(xj � xj�1)�(µj, µ1) (22)

The marginal contribution to surplus of a buyer with valuation xk equals

Tk(µ) =
kX

j=1

(xj � xj�1)�µ(µj, µ1) +
NX

j=1

(xj � xj�1)��(µj, µ1). (23)

A seller’s marginal contribution to surplus equals

R(µ) =
NX

j=1

(xj � xj�1) [�(µj, µ1)� µj�µ(µj, µ1)� µ1��(µj, µ1)] . (24)

The Hessian matrix of the surplus function S(µ) in equation (22) is negative definite if and

only if

�m
00(µ1)x1 �

NX

k=2

(xk � xk�1)

✓
���(µk, µ1)�

�µ�(µk, µ1)2

�µµ(µk, µ1)

◆
> 0 (25)

Proof. See Appendix B.1.

Decentralized Equilibrium. We can again show that in the decentralized equilibrium,

sellers can do no better than posting second-price auctions with an entry fee or a reserve price,

and their relaxed problem and constrained problem are equivalent so that the decentralized

equilibrium is constrained e�cient. Also the uniqueness result which makes the assumption

on optimistic beliefs redundant continues to hold. For the proofs and derivations, we refer

to the Online Appendix.
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5.2 Queues Across Submarkets

A larger number of buyer types increases the complexity of the planner’s problem. Although

the result in Proposition 2 generalizes in a straightforward way—i.e., with N types of buyers,

no more than N + 1 submarkets are required—a full characterization of these submarkets

quickly becomes intractable.36 Nevertheless, we provide a partial characterization by showing

that we can compare queue compositions between any two submarkets in terms of first-order

stochastic dominance, under Assumptions 1 and 2.

First-Order Stochastic Dominance. Consider two arbitrary submarkets, indexed by

` 2 {a, b}, that attract a queue µ` of buyers. The following proposition compares queue

compositions between the submarkets in terms of first-order stochastic dominance.

Proposition 10. Consider two submarkets a and b with respective queues µa
and µb

, satis-

fying µ
a

1 > µ
b

1. If assumptions 1 and 2 hold, then for any k,

µ
b

k

µ
b

1

� µ
a

k

µ
a

1

. (26)

Proof. See Appendix B.2.

This result is quite remarkable. It shows that under two weak assumptions on the meeting

technology, the buyer value distribution of a short queue always first-order stochastically

dominates that of a long queue. A simple consequence of this result is that the shorter queue

always has a weakly higher upper and a weakly higher lower bound.

To understand the above proposition, assume that buyers with valuations xk�1 and xk

both visit submarkets a and b with positive probability. Since at the planner’s solution, the

marginal contribution of buyers with valuations xk�1 and xk must be the same across the two

submarkets, by equation (23) we have �µ(µa

k
, µ

a

1) = �µ(µb

k
, µ

b

1). If µ
a

1 > µ
b

1, by assumption 2,

queue a must have a lower proportion of buyers with values weakly greater than xk.

Proposition 10 o↵ers some testable implications that do not require characterization of the

entire model. Also, since the assumptions are rather weak, they apply to almost all meeting

technologies that are currently used in the literature. Consider for example two identical

goods that are o↵ered on eBay where the queue lengths and the buyer value distributions

36Unless, of course, the meeting technology is bilateral or jointly concave, which lead to perfect separation
and perfect pooling, respectively. We conjecture that the following result, which is similar to Proposition 3,
continues to hold: At the social optimum, there will be one submarket for all xN buyers. Note that this
conjecture has sharp predictions. If we take the submarket for xN buyers out, then by the same logic, in the
remaining submarkets there will be exactly one which contains all the remaining xN�1 buyers. Repeating
this logic, implies then that there will be N submarkets where the highest buyer type in the `-th submarket
is xN+1�` and some submarkets can be idle. However, we were unable to prove this conjecture.
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di↵er. Our theory derives a sharp prediction on the relation between the queue length and

the buyer value distribution.

Proposition 10 is useful beyond the specific environment that we consider here. To see this,

suppose that we add an epsilon degree of seller heterogeneity to the model. The equilibrium

allocation of buyers and sellers will then change marginally. Without Proposition 10, we

cannot order the resulting buyer value distributions of di↵erent types of sellers, making an

analysis of sorting in terms of first-order stochastic dominance impossible. In other words,

Proposition 10 forms the foundation for the theory of sorting with multilateral meetings that

we develop in Cai et al. (2018).

6 Conclusion

In this paper, we analyze a directed search model where sellers compete for heterogeneous

buyers by posting trading mechanisms. We have shown how the meeting process between

buyers and sellers a↵ects the equilibrium selling mechanisms and market segmentation. This

framework can help us to understand why sellers who use online meeting tools often also use

auctions as selling mechanism. Concerning market segmentation, when low-valuation buyers

reduce the probability that sellers and high-valuation buyers meet, sellers will discourage the

low-valuation buyers from visiting. This can lead to complete or partial market segmentation,

depending on the dispersion of valuations and the degree of congestion in the meeting process.

All high-valuation buyers are always in one segment, either with or without a subset of low

value buyers.

We also introduce a new function � which makes the analysis of general meeting technolo-

gies tractable and allows us to generalize the competing mechanism literature. Using this

function, we show that in a large economy, despite the presence of private information and

possible search externalities, the directed search equilibrium is equivalent to a competitive

equilibrium (where the commodities are buyer types and the prices are the market utilities).

A seller can attract a desired queue by posting an auction with entry fee or by charging an

appropriate reserve price. Finally, we introduced conditions on the meeting technology such

that for any given market utility function, the queue attracted by an auction with reserve

price or entry fee is unique. This is necessary to establish the equivalence between the two

equilibria.
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Appendix A Proofs

A.1 Proof of Proposition 1

When n = 0, equation (5) is simply P0(�) = 1� �(�,�). When n � 1, by equation (4),

@
n

@µn
(1� � (µ,�)) =

1X

k=n

Pk(�)n!

✓
�1

�

◆n ⇣
1� µ

�

⌘k�n

.

Evaluating the above equation at µ = � yields equation (5).

A.2 Proof of Proposition 2

Recall that the social planner’s problem is given by (11). Below, we rewrite (11) slightly

by introducing a new function bS, total surplus per agent, which has two advantages: i) the

domain of bS is compact, and ii) the accounting constraints for buyers and sellers hold with

equalities so that we can apply directly the Fenchel-Bunt Theorem.

Suppose that the planner creates eL submarkets, which may include an inactive one.

In submarket `, the measure of sellers is e↵` and the measure of buyers with value xj is
eB`

j
for j = 1, 2. Therefore,

PeL
`=1 e↵` = 1 and

Pel
`=1

eB`

j
= Bj for j = 1, 2. Define ez`1 =

( eB`

1 + eB`

2)/(↵
` + eB`

1 + eB`

2) and ez`2 = eB`

2/(↵
` + eB`

1 + eB`

2), i.e. ez`1 is the fraction of buyers and

ez`2 is the fraction of x2 buyers in a submarket `.

Since total surplus in each submarket exhibits constant returns to scale with respect to

the number of sellers and the number of high-type and low-type buyers, we can normalize

the total number of buyers and sellers in each submarket (active or inactive) to 1, and define

the surplus per agent (both buyers and sellers) in submarket ` as bS(ez`1, ez`2). When e↵`
> 0, it

is given by

bS(z1, z2) =
1

↵` + eB`

1 + eB`

2

· e↵`
S

 
eB`

2

e↵`
,

eB`

2 + eB`

1

e↵`

!
.

and when e↵` = 0, it is simply zero. The function bS is well defined even in a submarket

with buyers only (ez`1 = 1) and its domain is compact. The total surplus generated from all

submarkets is

eLX

`=1

(↵` + eB`

1 + eB`

2)bS(ez`1, ez`2).

Therefore, as in equation (11), total surplus is a convex combination of the individual sub-
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markets’ surpluses, which are represented by bS here. The planner’s solution is thus the

supreme of all such convex combinations. Because the function bS is continuous and its

domain is compact, the graph of bS is compact, which implies that the convex hull of the

graph is also compact (see, for example, Theorem 17.2 of Rockafellar (1970)). Thus the

supreme can be reached as a maximum. Furthermore, note that the domain of bS is the set

{(z1, z2) | 0  z2  z1  1}, which is connected. By the Fenchel-Bunt Theorem [see Theorem

18 (ii) of Eggleston (1958)], which is an extension of Caratheodory’s theorem, it su�ces to

create 3 submarkets.

A.3 Proof of Lemma 2

This lemma is a special case of Lemma 3. Nevertheless, we give a short proof here. The

Hessian matrix of the surplus function is

 
Sµµ(µ,�) Sµ�(µ,�)

Sµ�(µ,�), S��(µ,�)

!
=

 
(x2 � x1)�µµ(µ,�), (x2 � x1)�µ�(µ,�)

(x2 � x1)�µ�(µ,�), x1m
00(�) + (x2 � x1)���(µ,�)

!

Since �µµ is always negative, by Sylvester’s criterion the Hessian matrix is negative semidef-

inite if and only if its determinant is positive. That is,

(x2 � x1)�µµ(µ,�) (x1m
00(�) + (x2 � x1)���(µ,�))� (x2 � x1)

2
�µ�(µ,�)

2
> 0

Dividing both sides by (x2 � x1)�µµ(µ,�) gives (12).

A.4 Collection of Technical Lemmas

Below, we collect several technical lemmas which will be useful to characterize the planner’s

solution established in Proposition 3. The first lemma addresses the participation problem.

Lemma 4. The planner will assign ...

i) all high-type buyers to active submarkets under assumption 1.

ii) all low-type buyers to active submarkets if ��(�z,�) � 0 for all z and �.

iii) all sellers to active submarkets under assumption 1.

Proof. Part i) is explained in he text after Lemma 4. For part ii), assume ��(µ,�) � 0.

By equation (8) we have T1 > 0. Hence, buyers’ marginal contribution to surplus is always

positive in this case.

For iii), since �(�z,�) is strictly concave in � for z > 0, we have �(�z,�) > �
@�(�z,�)

@�
.

For z = 1, this condition reduces to m(�) > �m
0(�). Also note that �@�(�z,�)

@�
= µ�µ(µ,�) +

���(µ,�). Thus R > 0 in equation (10).
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An alternative way of understanding Assumption 1 is the following. Holding fixed the

number of low-type and high-type buyers in a submarket, adding one more seller decreases

the queue length but keeps the fraction of high-type buyers constant. Assumption 1 then

implies that the total surplus in this submarket is always concave in the number of sellers.

Lemma 5. Consider a submarket where the measure of sellers, low-type buyers and high-

type buyers are ↵, b1, and b2 respectively. Under Assumption 1, total surplus ↵S
�
b2
↵
,
b1+b2

↵

�

is strictly concave in ↵.

Proof. Surplus generated from the submarket is ↵S( b2
↵
,
b1+b2

↵
). Defineeb = b1+b2 and z = b2/

eb.
Then the second-order derivative of the surplus function, ↵S( b2

↵
,
b1+b2

↵
), with respect to ↵ is

eb2

↵3

"
m

00(
eb
↵
) + (x2 � 1)

 
z
2
�µµ

 
zeb
↵
,

eb
↵

!
+ 2z�µ�

 
zeb
↵
,

eb
↵

!
+ ���

 
zeb
↵
,

eb
↵

!!#

Note that by Assumption 1, m00(
eb
↵
) is strictly negative and the second term in the bracket

is @
2
�(�z,�)
@�2 with � = eb/↵ and hence is weakly negative, which implies that the second-order

derivative with respect to ↵ is strictly negative.

The next lemma formally shows that R(�z,�), sellers’ marginal contribution to surplus,

is increasing in both z and �. Hence the level curve of R(�z,�) is downward-sloping.

Lemma 6. Under Assumptions 1 and 2, sellers’ marginal contribution R(�z,�) is strictly

positive, and strictly increasing in z and in �. The level curves of R(�z,�) are therefore

downward sloping in the �-z plane. Under the same assumptions, high-type buyers’ marginal

contribution T2(�z,�) is strictly positive, and strictly decreasing in z and in �.

Proof. Lemma 4 already showed that R(�z,�) is always strictly positive. The discussions

before Lemma 6 showed that @R(�z,�)/@z > 0 and @R(�z,�)/@� > 0 so we only need to

consider T2(�z,�).

First note that by equation (9), @T2(�z,�)/@z = (x2�x1)�(�µµ(�z,�)+�µ�(�z,�)). Note

that z�µµ+�µ� < 0 by Assumption 2 and (1�z)�µµ  0. Therefore, �µµ(�z,�)+�µ�(�z,�) <

0, which implies that T2(�z,�) is strictly decreasing in z. Furthermore, T2(�z,�) � T2(�,�) =

x2m
0(�) > 0.

Next, we have @T2(�z,�)/@� = x1m
00(�) + (x2 � x1)(z�µµ(�z,�) + (1 + z)�µ�(�z,�) +

���(�z,�)). Finally, note that,

z�µµ + (1 + z)�µ� + ��� = (1� z) (z�µµ + �µ�) +
�
z
2
�µµ + 2z�µ� + ���

�
.
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The first term on the right-hand side is negative by Assumption 2, and the second term is

negative by Assumption 1. Furthermore, the first term is zero if and only if z = 1, in which

case the second term is strictly negative. Therefore, @T2(�z,�)/@� < 0.

Our next lemma shows how T1(�z,�) and T2(�z,�), (the marginal contribution to surplus

by a buyer) vary along a level curve of R(�z,�) and how this depends on the sign of the

determinant of the Hessian matrix of the surplus function.

Lemma 7. For any given R
⇤
, let �(z) be implicitly determined by the level curve R(�z,�) =

R
⇤
. Then, T2(�(z)z,�(z)) is strictly decreasing in z if the determinant of the Hessian of

the surplus function in equation (7) is strictly positive (and decreasing if the determinant is

strictly negative). The reverse result holds for T1(�(z)z,�(z)).

Proof. Since T1(�z,�) and R(�z,�) are given by Equation (8) and (10), respectively, we have

dT1(�z,�)

dz

��
R(�z,�)=R⇤ =

@T1(�z,�)

@z
+

@T1(�z,�)

@�

✓
�@R(�z,�)/@z

@R(�z,�)/@�

◆

= (x2�1)��µ�+(m00(�) + (x2 � 1)(z�µ� + ���))

✓
� �(x2 � 1)�(z�µµ + �µ�)

��m00(�)� (x2 � 1)�(z2�µµ + 2z�µ� + ���)

◆
.

where in the second line we have suppressed the arguments (�z,�) from the relevant functions.

Simplifying the above equation gives

dT1(�z,�)

dz

��
R(�z,�)=R⇤ =

z(x2 � 1)��µµ

m00(�) + (x2 � 1) (z2�µµ + 2z�µ� + ���)

✓
�m

00(�)� (x2 � 1)(��� �
�
2
µ�

�µµ

)

◆

To prove the results regarding T2(�z,�), we first consider how �µ(�z,�) varies along a

level curve of R(�z,�).

d�µ(�z,�)

dz

��
R(�z,�)=R⇤ =

@�µ(�z,�)

@z
+

@�µ(�z,�)

@�

✓
�@R(�z,�)/@z

@R(�z,�)/@�

◆

= ��µµ + (z�µµ + �µ�)

✓
� �(x2 � 1)�(z�µµ + �µ�)

��m00(�)� (x2 � 1)�(z2�µµ + 2z�µ� + ���)

◆
,

which can be simplified to

1

z(x2 � 1)

✓
� z(x2 � 1)��µµ

m00(�) + (x2 � 1) (z2�µµ + 2z�µ� + ���)

✓
m

00(�) + (x2 � 1)(��� �
�
2
µ�

�µµ

)

◆◆

Note that the above equation is simply 1
z(x2�1)

dT1(�z,�)
dz

��
R(�z,�)=R⇤ . Since T2(�z,�) = T1(�z,�)+
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(x2 � 1)�µ(�z,�), we have thus proved that

d (T2(�z,�)� T1(�z,�))

dz

��
R(�z,�)=R⇤ = �1

z

dT1(�z,�)

dz

��
R(�z,�)=R⇤

which is equal to

dT2(�z,�)

dz

��
R(�z,�)=R⇤ = �1� z

z

dT1(�z,�)

dz

��
R(�z,�)=R⇤ (27)

Our last lemma shows the single-crossing result, which complements Lemma 7 and is

critical to the result that at the social optimum, there is one submarket for all x2 buyers.

Lemma 8. Under Assumption 3, each level curve of R(�z,�) intersects with the curve

H(�z,�) = 1/(x2 � 1) at most once and from the left in the z-� plane.

Proof. By direct computation we have,

@R(�z,�)/@z

@R(�z,�)/@�

����
x2=1+1/H(�z,�)

=
��µµ(�z,�)

z�µµ(�z,�) + �µ�(�z,�)
=

@�µ(�z,�)/@z

@�µ(�z,�)/@�
.

Suppose that a level curve of R(�z,�) intersects with the curve H(�z,�) = 1/(x2 � 1) at

point (�z,�) (with a slight abuse of notation). Then, x2 is given by 1 + 1/H(�z,�) and the

left-hand side of the above equation denotes the slope of the level curve of R(�z,�) at point

(�z,�) in the z-� plane. Assumption 3 then implies Lemma 8.

A.5 Proof of Proposition 3

Before moving to the main part of the proof, we need the following simple mathematical

fact. Suppose that f(x, y) is an arbitrary function and is strictly concave in y. Furthermore,

y as a function of x is implicitly defined by f2(x, y(x)) = 0 (subscripts of f indicate partial

derivatives).

Di↵erentiating with respect to x gives y0(x) = �f12(x, y(x))/f22(x, y(x)). Next,
d

dx
f(x, y(x)) =

f1(x, y(x)), and

d
2

dx2
f(x, y(x)) = f11(x, y(x))�

f11(x, y(x))2

f22(x, y(x))
(28)

Therefore, f(x, y(x)) is locally concave in x if and only if f(x, y) is locally concave in (x, y).

After the above preparation, we now proceed to the main proof. As mentioned before

Proposition 3, we need to prove the claim that if S
0
(b1) = 0, then S

00
(b1) < 0. Recall that
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the two-step problem of the planner is

max
b1

max
↵

eS(b1,↵) ⌘ ↵S(
B2

↵
,
B2 + b1

↵
) + (1� ↵)S(0,

B1 � b1

1� ↵
). (29)

Thus S(b1) = max↵ eS(b1,↵). Note that by Lemma 5, eS(b1,↵) is always strictly concave in ↵.

We define the first term on the right-hand side as eSa(b1,↵) and the second term as eSb(b1,↵).

As we mentioned in the main text, the planner’s solution can be solved by at most two

submarkets, one of which contains all high-type buyers. We first consider the case in which

the marginal contribution to surplus of x1 buyers in the first submarket is strictly positive,

i.e., T1(
B2

↵⇤(b1)
,
B2+b1
↵⇤(b1)

) > 0. In this case, T1 and R are the same between the two submarkets,

and the optimal ↵⇤(b1) is characterized by the first-order condition eS2(b1,↵) = 0 (subscripts

of S, eS, eSa, and eSb indicate partial derivatives), or equivalently R(B2
↵⇤ ,

B2+b1
↵⇤ ) = R(0, B1�b1

1�↵⇤ )

as in equation (15). In this case, by equation (28) to show that S
00
(b1) < 0 we only need to

show that eS(b1,↵) is locally concave in (b1,↵). In the following we will show both eSa(b1,↵)

and eSb(b1,↵) are locally concave in (b1,↵). By Lemma 5, both eSa(b1,↵) and eSb(b1,↵) are

strictly concave in ↵.

Consider eSb(b1,↵) first. Since eSb(b1,↵) = (1� ↵)S(0, B1�b1
1�↵

) = (1� ↵)m(B1�b1
1�↵

), we have

eSb

11(b1,↵)eSb

22(b1,↵)� eSb

12(b1,↵)
2 = 0

Thus eSb(b1,↵) is always concave in (b1,↵). Next, consider eSa(b1,↵). Since both R and T1

are the same between the two submarkets, by Assumption 3 and Lemma 7, S(µ,�) must be

locally concave at point (B2
↵
,
B2+b1

↵
). Furthermore, note that

eSa

11(b1,↵)eSa

22(b1,↵)� eSa

12(b1,↵)
2 =

B
2
2

↵4

✓
S11(

B2

↵
,
B2 + b1

↵
)S22(

B2

↵
,
B2 + b1

↵
)� S12(

B2

↵
,
B2 + b1

↵
)2
◆

Thus eSa(b1,↵) is locally concave in (b1,↵).

Next we consider the case T1(
B2

↵⇤(b1)
,
B2+b1
↵⇤(b1)

) = 0, which then implies R( B2
↵⇤(b1)

,
B2+b1
↵⇤(b1)

) � 1

and ↵
⇤(b1) = 1. Therefore, eSb(b1,↵) is zero, and we only need to show that the first term,

eSa(b1,↵), is locally concave at point (b1, 1). To proceed, we need the following lemma.

Lemma 9. Under Assumption 1, 2, and 3, if at some point (µ0,�0), R(µ0,�0) � 1 and

T1(µ0,�0) = 0, then the Hessian matrix of S(µ,�) at point (µ0,�0) is negative definitive.

Proof. Step 1: For any given z, lim�!1 T1(�z,�) = 0. To see this, note that lim�!1 m
0(�) =

0, by equation 8 we only need to show that lim�!1 ��(�z,�) = 0. Because �(µ,�) is always

concave in µ, we have �(�z,�) > �z�µ(�z,�). For z > 0, this implies that lim�!1 �µ(�z,�) 
lim�!1 �(�z,�)/�z = 0. Note that lim�!1 �µ(0,�) = 0 simply by continuity. Next, Assump-
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tion 1 implies that lim�!1 z�µ(�z,�)+��(�z,�) = 0, which then implies lim�!1 ��(�z,�) =

0.

Step 2: Since R(µ0,�0) � 1, there exists a unique z
⇤ such that lim�!1 R(�z⇤,�) =

R(µ0,�0). Along the level curve �-z where R(�z,�) = R(µ0,�0), we have T1(µ0,�0) = 0 and

limz!z⇤ T1(�z,�) = 0. By Lemma 7, T1(�z,�) is first decreasing and increasing with z along

the level curve of R(�z,�). Therefore, T1(�z,�) crosses the x-axis at most twice, once from

above and once from below. Since we know that at the limit point z⇤ of this level curve of

R(�z,�), T1(�z,�) is zero, it must cross zero exactly once and from below. This implies that

around point (µ0,�0), T1(�z,�) is decreasing in z along the level curve of R(�z,�). Thus the

Hessian matrix of S(µ,�) is negative definite by Lemma 7.

The above lemma implies that S is locally concave at point (B2, B2+b1) when T1(B2, B2+

b1) = 0 and R(B2, B2 + b1) � 1. Thus as above, eSa(b1,↵) is locally concave in (b1,↵).

We have thus proved that if S
0
(b1) = 0, then S

00
(b1) < 0. As mentioned before Proposi-

tion 3, this implies that the first-order condition is also su�cient.

A.6 Proof of Proposition 6

In the relaxed problem, sellers select a queue directly in a hypothetical competitive market.

The expected payo↵ for a seller in this market is the di↵erence between the surplus that

he creates and the price of the queue. Suppose that a queue (µ,�) solves sellers’ relaxed

problem. If queue (µ,�) contains buyers of value xk, then Tk(µ,�) = Uk, where Tk(µ,�)

is given by equations (8) and (9); if queue (µ,�) does not contain buyers of value xk, then

Tk(µ,�)  Uk.

Note that when a seller posts a second-price auction with entry fee, t and attracts queue

(µ,�), then the expected payo↵ of low-type buyers from visiting this seller is V1 = Q1(�)x1�
(1�Q0(�))t = �µ(�,�)x1 � (1�Q0(�))t, and the expected payo↵ of a high-type buyer from

visiting this seller is V2 = V1+(x2�x1)�µ(µ,�), which can be verified directly by considering

two di↵erent scenarios: a high-type buyer faces no competition from any other buyer types,

or he faces no competition from other high-type buyers but does compete with low-type

buyers.37 To summarize, the expected payo↵s from a second-price auction with an entry fee

are

V1 = �µ(�,�)x1 � (1�Q0(�))t,

V2 = (x2 � x1)�µ(µ,�) + �µ(�,�)x1 � (1�Q0(�))t.

37Alternatively, we can use standard auction theory (see Myerson, 1981) and consider the integral of the
trading probability (which in our case is �µ(µ,�).
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An important observation is that if we set t according to equation (20) in the above equation,

then Vk = Tk(µ,�) for k = 1, 2. Thus, buyers’ expected payo↵s from the auction equal

their marginal contribution to surplus, which implies that the solution (µ,�) to a seller’s

relaxed problem is also compatible with a second-price auction with entry fee t in the sellers’

constrained problem, where compatibility is defined by equation (2).

The reserve price case is similar except for one di↵erence. When r < x1, then things are

exactly the same as the case with an entry fee and we have Vk = Tk(µ,�), where k = 1, 2.

When r 2 (x1, x2), which happens only when there are no low-type buyers (µ = �), then

V1 = 0  U1 and V2 = T2(µ,�) = U2, in which case the queue is again compatible with a

second-price auction with reserve price r in the sellers’ constrained problem.

A.7 Proof of Proposition 7

The sellers’ relaxed problem boils down to a competitive market for buyer types. Therefore,

the first welfare theorem applies and the equilibrium is e�cient. Since the sellers’ constrained

problem is equivalent to the sellers’ relaxed problem, the directed search equilibrium is also

e�cient.

A.8 Proof of Proposition 8

Our proof consists of two parts: i) ra < r
b , �

a
> �

b, and ii) the queue length � determines

the whole queue uniquely. Denote by V
i

k
the expected payo↵ of xk buyers from visiting queue

i where k = 1, 2 and i = a, b.

For i), we first prove ra < r
b ) �

a
> �

b. Suppose otherwise that �a  �
b. We distinguish

between two cases, ra < x1 and r
a � x1. First, consider the case r

a � x1. Then x1 buyers

will not visit the two sellers since their market utility is strictly positive, so that both queues

contain only x2 buyers, and V
a

2 = Q1(�a)(x2� r
a) > Q1(�b)(x2� r

a) � Q1(�b)(x2� r
b) = V

b

2 .

We then reach a contradiction. Consider next ra < x1. Then by a similar logic, we have

V
a

1 = Q1(�
a)(x1 � r

a) > max(Q1(�
b)(x1 � r

b), 0) = V
b

1

Thus x1 buyers strictly prefer queue a, which implies that queue b does not contain x1 buyers.

Note that V a

2 � Q1(�a)(x2�r
a) > Q1(�b)(x2�r

b) = V
b

2 , where the first inequality is because

queue a may contain x1 buyers and an x2 buyer may enjoy a positive payo↵ even when he is

not the only buyer showing up, the second inequality follows the same logic as above, and the

last equality is because queue b only contains x2 buyers. Therefore, x2 buyers also strictly

prefer queue a and we reach a contradiction again. The other direction is proved similarly.

Thus ra < r
b , �

a
> �

b.
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For ii), suppose otherwise that there are two di↵erent queues a and b with the same length

� that are compatible with the auction with reserve price r. Without loss of generality, set

0  µ
a
< µ

b  �. Note that V a

1 = V
b

1 = Q1(�)(x � r) ⌘ V1 and the expected payo↵ of an

x2 buyer from queue i is V
i

2 = V1 + �µ(µi
,�)(x2 � x1) (see the proof of Proposition 6 for

the derivation of this equation). If P0(�) + P1(�) < 1, then �(µ,�) is strictly concave in µ,

which implies that V a

2 > V
b

2 which gives the desired contradiction. If P0(�)+P1(�) = 1, then

�µ(µ,�) = Q1(�), independent of µ, and V
a

2 = V
b

2 . Note that sinceQ1(�)(x2�x1) = (U2�U1),

and r = x1 � U1/Q1(�), both � and r are uniquely determined for given market utilities U1

and U2. Thus it is a knife-edge case, and our statement is true for all r expect one special

value. But note i) this knife-edge phenomenon only occurs because buyer types are discrete,

and ii) even in our discrete buyer type framework, this knife-edge reserve price r will never

be adopted by sellers because by either increasing or decreasing the reserve price, sellers can

obtain a strictly higher profit.

A.9 Proof of Proposition 9

The proof is similar to that of Proposition 8 and consists of two parts: i) ta < t
b , �

a
> �

b,

and ii) the queue length � determines the whole queue uniquely. Note that part ii) is exactly

the same as that of Proposition 8 so we only need to consider part i).

For i), we first prove t
a
< t

b ) �
a
> �

b. Suppose otherwise that �a  �
b. We distinguish

two cases, ta < 0 and t
a � 0. First, consider the case t

a
< 0 (entry subsidy). As before,

denote by V
i

k
the expected payo↵ of xk buyers from a queue i where k = 1, 2 and i = a, b.

Then, we have

V
a

1 = Q1(�
a)x1 � (1�Q0(�

a))ta > Q1(�
b)x1 � (1�Q0(�

a))ta

> Q1(�
b)x1 � (1�Q0(�

b))ta

� Q1(�
b)x1 � (1�Q0(�

b))tb = V
b

1

where the first inequality is because Q1(�) is strictly decreasing, the second inequality is

because 1�Q0(�) is strictly decreasing and t
a
< 0, and the final inequality follows from the

assumption that ta < t
b
. Thus x1 buyers strictly prefer queue a and queue b does not contain

x2 buyers. However, V a

2 � Q1(�a)x1 � (1 � Q0(�a))ta > Q1(�b)x2 � (1 � Q0(�b))tb = V
b

2 ,

where the first inequality is because queue a may contain x1 buyers and an x2 buyer may

enjoy a positive payo↵ even when he is not the only buyer showing up, the second inequality

follows the same logic as above, and the last equality is because queue b only contains x2

buyers. Thus, x2 buyers also strictly prefer queue a, and we have a contradiction, which

implies that �a
> �

b. The other direction is proved similarly.
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Next, we consider the case t
a � 0. Again suppose otherwise that �a  �

b. As above, we

have

V
a

1 = Q1(�
a)x1 � (1�Q0(�

a))ta = Q1(�
a)

✓
x1 �

1�Q0(�a)

Q1(�a)
t
a

◆
> Q1(�

b)

✓
x1 �

1�Q0(�a)

Q1(�a)
t
a

◆

� Q1(�
b)

✓
x1 �

1�Q0(�b)

Q1(�b)
t
a

◆
> Q1(�

b)

✓
x1 �

1�Q0(�b)

Q1(�b)
t
b

◆
= V

b

1

where the inequality in the first line is because Q1(�) is strictly decreasing, the first inequality

in the second line is because of Assumption 4, and the second inequality in the second line

follows from the assumption that ta < t
b
. The remaining arguments then follow exactly the

same as for the case t
a
< 0.
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B Proofs

B.1 Proof of Lemma 3

For later use, we prove a slightly more general version of equation (22) with a general, possibly
continuous, buyer value distribution.

Lemma 11. Consider a submarket with a measure 1 of sellers and a measure � of buyers whose values
are distributed according to F (x) with support [0, x]. Total surplus then equals

S(�, F ) =

Z
x

0
�(�(1� F (x)),�)dx. (29)

Proof. A direct proof. When a seller meets n � 1 buyers, the surplus x from the meeting is
distributed according to F

n (x). Thus the expected surplus per seller in the submarket is

S =
1X

n=1

Pn (�)

Z
x

0
x dF

n (x) =
1X

n=1

Pn (�)

✓
x�

Z
x

0
F

n (x) dx

◆
=

1X

n=1

Pn (�)

✓Z
x

0
1� F

n (x) dx

◆
,

where for the second equality we used integration by parts. Notice that Fn(x) = 0 when n = 0. We can

add a zero term P0 (�) (
R
x

0 1� F
0 (x) dx) to the RHS of the above equation and start the summation

from n = 0. Therefore,

S =
1X

n=0

Pn (�)

✓Z
x

0
1� F

n (x) dx

◆
=

Z
x

0
1�

1X

n=0

Pn (�)F
n (x) dx

=

Z
x

0
�(�(1� F (x)),�)dx

where for the second equality in the first line we use the Dominated Convergence Theorem to interchange
integration with summation and for the last equality we used the definition of � from equation (4).

An alternative approach. First recall the following fact from probability theory. Suppose z is
any random variable with cdf G(z) and z 2 [0, x]. Then the expected value of z can be written as
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Ez =
R
x

0 zdG(z) =
R
x

0 1 � G(z)dz. This equation is well-known and can be proved by integration by
parts. We can use it to directly derive our surplus equation.

(Back to our surplus equation.) Let z be the highest valuation among all buyers that a seller meets.
The event z � x happens if and only if the seller meets at least one buyer with valuation higher than
x, the probability of which is simply �(�(1 � F (x)),�) by the construction of �. Therefore, by the

above equation we have S = Ez =
R
x

0 �(�(1� F (x)),�)dx

In our discrete case, F (xj) = µj/µ1 for j = 1, . . . , N . The above equation reduces to (22).
Next, we calculate Tk(µ). Note that a marginal entrant of xk buyers increases µj , j = 1, . . . , k, by

the same amount. Therefore,

Tk(µ) =
kX

j=1

@S(µ)

@µj

=
kX

j=1

(xj � xj�1)�µ(µj , µ1) +
NX

j=1

(xj � xj�1)��(µj , µ1)

Because total surplus function is constant-returns-to-scale, if we add one more seller and � more
buyers to the submarket while keeping the buyer value distribution unchanged, the added surplus is
simply S(�, F ) in equation (29). Thus the e↵ect of adding one more seller only is

R = S � �
@S(�, F )

@�
=

Z
x

0
�(�(1� F (x)),�)� �

@�(�(1� F (x)),�)

@�
dx

=

Z
x

0
�(�(1� F (x)),�)� �(1� F (x))�µ(�(1� F (x)),�)� ���(�(1� F (x)),�)dx

which is simply equation (24) in the discrete-value case.
Finally, we consider the Hessian matrix. We denote it by H and its negative is then �H. Also to

save space, define �
k
µµ ⌘ �µµ(µk, µ1), �k

µ�
⌘ �µ�(µk, µ1), and �

k

��
⌘ ���(µk, µ1) for k = 1, . . . , N . We

compute the Hessian matrix by directly calculating ⇡ij ⌘ @⇡(µ)/@µiµj . Thus we have

�H =

0

BBB@

P
00
0 (µ1)x1 �

P
N

2 ���(µk, µ1)(xk � xk�1), ��
2
µ�
(x2 � x1), · · · ,��

N

µ�
(xN � xN�1)

��
2
µ�
(x2 � x1), ��

2
µµ(x2 � x1), · · · , 0

...
..., · · · ,

...
��

N

µ�
(xN � xN�1), 0, · · · , ��

N
µµ(xN � xN�1))

1

CCCA

By Sylvester’s criterion, �H is positive semidefinite if and only if the determinants of the following
N matrices are positive: the bottom right 1 ⇥ 1 corner, the bottom right 2 ⇥ 2 corner, . . . , and �H

itself. It is easy to see that the bottom right n ⇥ n corner with n < N is always diagonal and the
diagonal elements are always positive since �(µ,�) is always concave in µ. Therefore, �H is positive
semidefinite if and only if its determinant is positive.

To calculate the determinant of �H, for each n � 2 we multiply column n by ��
n

µ�
/�

n
µµ and add

it to column 1. The resulting matrix is

0

BBBB@

�⇡11 +
P

N

2
(�k

µ�)
2

�k
µµ

(xk � xk�1), ��
2
µ�
(x2 � x1), · · · ,��

N

µ�
(xN � xN�1)

0, ��
2
µµ(x2 � x1), · · · , 0

...
..., · · · ,

...
0, 0, · · · , ��

N
µµ(xN � xN�1))

1

CCCCA

In this way, the matrix �H becomes upper triangular and its determinant can be easily calculated.
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The determinant is

det(�H) =

 
P

00
0 (µ1)x1 +

NX

2

 
(�k

µ�
)2

�k
µµ

� �
k

��

!
(xk � xk�1)

!
⇧N

2 (��
k

µµ(xk � xk�1))).

Again since �(µ,�) is always concave in µ, det(�H) > 0 is equivalent to that the first term in the
parenthesis at the right hand side is positive. Thus we have derived equation (25).

B.2 Proof of Proposition 10

Again suppose that at the optimum, there are L active submarkets, and the lowest buyer type is x
`

and the highest buyer type is x`. Suppose that the marginal contribution to surplus of xk buyers is T ⇤
k

for k = 1, 2, . . . , N . Thus T ⇤
k
= max(max`=1,...,L Tk(µ`), 0), where Tk(µ`) is the marginal contribution

to surplus of xk buyers in submarket ` and is given by equation (23). In the following we write it as
T
`

k
to simplify notations. Of course, if submarket ` contains xk buyers at the optimum, we must have

T
⇤
k
= T

`

k
.

Step 1: Since �(µ,�) is always concave in µ, by equation (23) T `

k
is convex in xk for each ` in the

following sense:
T

`
2�T

`
1

x2�x1


T
`
3�T

`
2

x3�x2
 · · · 

T
`
N�T

`
N�1

xN�xN�1
(if buyer types are continuous, then we would have

the usual notion of convexity). Since T
⇤
k
is the maximum of a collection of convex functions, it is also

convex.
Next, define k0 as the largest index k such that T

⇤
k
= 0, or set k0 = 1 if T ⇤

1 > 0. Then we show
that T ⇤

k
is strictly convex in the following sense: For k > k0 we have

T
⇤
k+1 � T

⇤
k

xk+1 � xk
>

T
⇤
k
� T

⇤
k�1

xk � xk�1
.

To see this, note that since T
⇤
k
> 0 for any i > i0, buyers of value xk must visit some submarket `

in which µ
`

k
> µ

`

k+1, i.e., the queue length of buyers with value xk must be strictly positive in the

submarket. In this case, �µ(µ`

k
, µ

`

1) < �µ(µ`

k+1, µ
`

1), T
`

k
= T

⇤
k
and T

⇤
k+1 � T

`

k+1 and T
⇤
k�1 � T

`

k�1, which
implies that

T
⇤
k+1 � T

⇤
k

xk+1 � xk
�

T
`

k+1 � T
`

k

xk+1 � xk
= �µ(µ

`

k+1, µ
`

1) > �µ(µ
`

k
, µ1) =

T
`

k
� T

`

k�1

xk � xk�1
�

T
⇤
k
� T

⇤
k�1

xk � xk�1
.

Hence we have showed that T ⇤
k
is strictly convex when i � i0.

Step 2: Claim: If µa

1 > µ
b

1, then x
a
 x

b and x
a
 x

b. To see this, recall that Q1(µ1) = �µ(µ1, µ1)
by equation (6). By Assumption 2, µa

1 > µ
b

1 implies Q1(µb

1) > Q1(µa

1). Note that by equation (23),
that Q1(µ`

1) is the slope of a supporting line (subgradient) for the function T
`

k
and hence the function

T
⇤
k

at point x
` for ` 2 {a, b}. Because of the strict convexity of T ⇤

k
(see Step 1 of the proof), the

subgradient determines point x` uniquely, and Q1(µb

1) > Q1(µa

1) implies xb � x
a.

Similarly, recall that 1 � Q0(µ1) = �µ(0, µ1) by equation (6). By Assumption 2, µa

1 > µ
b

1 implies
1 � Q0(µa

1) > 1 � Q0(µb

1). Note that 1 � Q0(µ`

1) is a subgradient for the function T
`

k
and hence the

function T
⇤
k
at point x

` for ` 2 {a, b}. As before, the subgradient determines point x
` uniquely, and

1�Q0(µa

1) < 1�Q0(µb

1) implies xa  x
b.

Step 3: Claim: Suppose a submarket ` contains buyers of xk1 and xk2 with k2 > k1 + 1, then it
must also contain buyers in between, i.e., buyers of value xk with k1 < k < k2. To see this, suppose
otherwise (without loss of generality) that submarket ` contains no buyers with values between xk1

and xk2 . Then µk1+1 = · · · = µk2 , which implies that T `

k
is a linear function between xk1 and xk2 . We

also know i) T `

k
= T

⇤
k
for k = k1 and k2, and ii) from Step 1 that T ⇤

k
is a strictly convex function. The

above two observations imply that T `

k
> T

⇤
k
for k1 < k < k2, which then leads to a contradiction.
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Step 4: If xa  x
b, then the proposition is true automatically. In the following, we will thus assume

x
b
< x

a. Therefore, we have x
a
 x

b
< x

a
 x

b. We consider some xk with x
b
< xk  x

a. By
equation (23), T `

k
= T

`

k�1 + �µ(µ`

k
, µ

`

1)(xk � xk�1) for ` 2 {a, b}. Note that xk and xk�1 buyers visit

both submarket a and b by Step 3, then T
`

k
= T

⇤
k
and T

`

k�1 = T
⇤
k�1 for ` = a or b. Therefore, we have

�µ (µ
a

k
, µ

a

1) = �µ

⇣
µ
b

k
, µ

b

1

⌘
. (30)

We then prove the claim by contradiction. Suppose that µ
b

k
/µ

b

1 < µ
a

k
/µ

a

1 for x
b
< xk  x

a. This
implies

�µ (µ
a

k
, µ

a

1) < �µ

✓
µ
a

1
µ
b

k

µ
b

1

, µ
a

1

◆
< �µ

✓
µ
b

1
µ
b

k

µ
b

1

, µ
b

1

◆
= �µ

⇣
µ
b

k
, µ

b

1

⌘
,

where the first inequality is because � (µ, µa

1) is strictly concave in µ and the second is because
of assumption 2. The above inequality is at odds with equation (30). Hence, we have reached a
contradiction.

B.3 Boundary.

Submarket with Only Low-Type Buyers. Consider a submarket that has a queue � with only
low-type buyers. Then, the marginal contribution of these buyers is T1(0,�) = m

0(�), while sellers’
marginal contribution is R(0,�) = m(�) � �m

0(�). For future reference, we can therefore define a
function g which maps the marginal contribution to surplus of sellers to that of low-type buyers. That
is, for any � > 0, we have

T1(0,�) = g(R(0,�)). (31)

Alternatively, we can define g explicitly as

g(R) =

(
m

0
⇣
(m� �m

0)�1 (R)
⌘

for R 2 [0, 1)

0 for R � 1,

where (m� �m
0)�1 is the inverse function of m� �m

0. Since d

d�
R(0,�) = ��m

00(�) and d

d�
T1(0,�) =

�m
00(�), we have

g
0(R) = �

1

�
if R = m(�)� �m

0(�). (32)

When R � 1, we have g
0(R) = 0. For the geometrically-truncated-geometric meeting technology with

m(�) = �/(1 + �), one can verify that g(R) = (1�
p
R)2 when R 2 [0, 1) and g(R) = 0 for R � 1.

Proposition 3 tells us that pooling is optimal if S
0
(B1) � 0, i.e. the marginal contribution of low-

type buyers is greater in the segment with the high-type buyers than in a separate segment with an "

amount of low-type buyers and where sellers are optimally allocated. In the following, we are especially
interested in the cutting-edge case where S

0
(B1) in equation (17) is exactly zero. That is, (B2, B1+B2)

is a solution to the following equation

T1(µ,�) = g(R(µ,�)). (33)

In this case, the planner’s solution is pooling, but (B2, B1 + B2) lies on the boundary of the pooling
area.
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Among the solutions to equation (33), we distinguish between two cases: i) R(µ,�) < 1, and ii)
R(µ,�) � 1, which implies T1(µ,�) = g(R(µ,�)) = 0. In the first case, by the definition of g, there
exists a �0 such that R(µ,�) = R(0,�0) and T1(µ,�) = T1(0,�0), which, by equations (8) and (10),
implies that

m(�0)�m(�)� (�0 � �)m0(�0)

m0(�)�m0(�0)
=

�(µ,�)� µ�µ(µ,�)

���(µ,�)
(34)

By taking the derivative with respect to �0, one can see that the right-hand side above is strictly
increasing in � with its infimum being 0 as �0 ! � and its supremum being (1 � m(�))/m0(�), the
Mills ratio of function m(�), as �0 ! 1. For future use, we introduce a new function to denote the
solution of �0 to the above equation. Specifically, we define

⇤(µ,�) =

8
<

:
�0 the solution in equation (34), if �(µ,�)�µ�µ(µ,�)

���(µ,�)
2

⇣
0, 1�m(�)

m0(�)

⌘

1, if �(µ,�)�µ�µ(µ,�)
���(µ,�)

�
1�m(�)
m0(�)

(35)

Note that ⇤(µ,�) is not well-defined at points (µ,�) where ��(µ,�) > 0, i.e. the meeting externalities
are positive. To simplify exposition and to focus on the more realistic case where buyers crowd each
other out, we will therefore sometimes impose the following assumption.

Assumption 5. ��(µ,�) < 0 for 0 < µ  �.

Note that the inequality in this assumption is strict, which means that it is satisfied by the
geometrically truncated geometric technology as long as � < 1. Cases in which ��(µ,�) = 0 can
be analyzed separately, as then Assumptions 1, 2, and 3 are satisfied automatically. Therefore,
S
0
(B1) = T1(B2, B2 + B1) � g(R(B2, B2 + B1)) � m

0(B2 + B1) � g(R(0, B2 + B1)) = 0, where
the inequality is because (i) R(B2, B2 + B1) � R(0, B2 + B1) and (ii) g is decreasing. Therefore,

Proposition 3 implies that the planner’s solution is always pooling because S
0
(B1) � 0. Since this

special case is easy and to avoid the issue of division by zero, we adopt Assumption 5 for the following
analysis of comparative statics. Finally, note that for any meeting technology, �(0,�) = 0, which
implies that ��(0,�) = 0 for any �. Hence in the above assumption we require µ > 0.

B.4 Special Cases

B.4.1 Geometric Technology Truncated at 2

Consider the deterministically truncated geometric meeting technology with a capacity of 2. In this
case, the function � is given by

�(µ,�) =
µ(1 + 2�� µ)

(1 + �)2
(36)

This is arguably the simplest meeting technology that is neither bilateral nor invariant. By equations (10)
and (8), we have

R(µ,�) =
2(x2 � 1)�2

µ� (x2 � 1)(�� 1)µ2 + (�+ 1)�2

(�+ 1)3
(37)

T1(µ,�) =
1

(1 + �)2
� (x2 � 1)

2µ(�� µ)

(1 + �)3
(38)

To solve the planner’s problem, we first calculate the function H(µ,�) defined by equation (12),
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Figure 1: GC2 with (x2 � 1) = 1

which is given by

H(µ,�) =
(�� µ)2 � µ

1 + �

This is a quadratic equation in µ. Note that H(0,�) > 0 and H(�,�) < 0, which implies that the
equation H(µ,�) = 1/(x2 � 1) has a unique root of µ, which is given by,

µ = h(�) ⌘
1 + 2�

2
�

1

2

s

1 + 4�+ 4
1 + �

(x2 � 1)
with � � �A (39)

where �A is the root of h(�) = 0 and is given by

�A =
1 +

p
1 + 4(x2 � 1)

2(x2 � 1)
. (40)

The curve h(�) is represented by the red curve in Figure 1 where we set (x2 � 1) = 1. The Hessian
matrix is negative definitive in the area to left of the red curve; the surplus function S(µ,�) is locally
concave at any point in this area.

Next, we proceed to solve equation (33). First, consider the equation T1(µ,�) = 0. By equation (38),
for any given µ there exists a unique � such that T1(µ,�) = 0 (the converse is false), and the solution
is simply

� = µ+
1 + µ

2(x2 � 1)µ� 1
, where µ >

1

2(x2 � 1)
(41)

The above function is represented by the green curve in Figure 1. Note that the upper branch
approaches asymptotically to the diagonal line, and the lower branch approaches asymptotically to
the horizontal line µ = 1/(2(x2 � 1)). When µ < 1/(2(x2 � 1)), T1(µ,�) is always positive. A point
(µ0,�0) satisfies T1(µ0,�0) � 0 if and only if it lies to the left of the green curve.
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Next, note that

R(0,�) = m(�)� �m
0(�) =

✓
�

1 + �

◆2

, and T1(0,�) = m
0(�) =

✓
1

1 + �

◆2

which implies that

g(R) = (1�
p

R)2 (42)

We plug equations (37), (38), and (42) into equation (33). After some rearrangements, we can find the
solution, which is given by the following.

� =
1 + (x2 � 1)µ+

p
1 + 4(x2 � 1) + 2(x2 � 1)µ

2(x2 � 1)
, where 0  µ  µB (43)

and

µB =
3 +

p
9 + 16(x2 � 1)

4(x2 � 1)

The above function, (43), is represented by the solid blue curve AB in Figure 1. It intersects with the
curve T1(µ,�) = 0, equation (41), at point (�B, µB), which is represented by Point B in Figure 1. At
Point B, T1(µB,�B) = 0 and R(µB,�B) = 1.

Setting µ = 0 in equation (43) gives � =
1+
p

1+4(x2�1)
2(x2�1) , which is exactly point A from equation (40),

the same point where h(�) crosses the x-axis. This is no coincidence; it holds for general meeting
technologies. To see why, consider point S1 that lies on the curve AB in Figure 1. It has a corresponding
point S3 on the x-axis. The marginal contributions to surplus of sellers and of x1 buyers are the same
between the two points. Therefore, by Lemma 7, S1 must lie to the left of the red curve where the
determinant of the Hessian matrix is 0. Since S1 is an arbitrary point on the curve AB, this implies
that the entire curve AB must lie to the left of the red curve. As point S3 moves towards point A, S2

and hence S1 also move towards point A. In the end, all three points coincide at point A, which then
implies that the blue and the red curve intersect at the same point on the x-axis.

The above analysis has pinned down the boundaries of the relevant regions. The planner’s solution
is summarized by the following. Note that they satisfy the first-order conditions and are hence optimal
by Proposition 3.

Suppose that (B1 + B2, B2) belongs to the blue area. Assume pooling initially, then the marginal
contribution of x1 buyers is negative. Therefore, the planner will move x1 buyers to a second submarket
and the queue in the first submarket will move horizontally to the left till it reaches the green curve
BD. At that point, there is one active submarket where the marginal contribution of x1 buyers is 0
and the marginal contribution of sellers is larger than 1, and one idle submarket with only x1 buyers.

Suppose (B1+B2, B2) belongs to the brown area. As we mentioned before, for each point (�, µ) on
the curve AB, there is a corresponding point on the x-axis such that R and T1 are the same between
the two. Formally, the point is given by (⇤(µ,�), 0), where ⇤(µ,�) is defined by equation (35). As we
move from point A to point B, the corresponding point on the x-axis moves from point A to infinity.
The convex combinations between points on AB and their corresponding point on x-axis cover the
whole brown area. For each point in the brown area, after representing it as a convex combination
between a point on AB and its corresponding point on the x-axis, the first-order condition of the
planner’s problem is satisfied by construction, and we have the optimum: two active submarkets where
the queue in the first submarket must lie on the AB curve (for example point S1) and the second
submarket contains some sellers and x1 buyers (for example point S3).
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If (B1 + B2, B2) belongs to the white area, then the optimum is pooling. Note that curve AB

divides the area where T1(µ,�) � 0 into two disconnected areas: T1(µ,�) > g(R(µ,�)) and T1(µ,�) <
g(R(µ,�)), with curve AB being the boundary. The white area is the former, and it is not socially
beneficial to even move an " amount of x1 buyers to a second submarket. Thus the optimum is pooling.

B.4.2 Example: Geometrically Truncated Geometric Technology

Before solving the planner’s problem, we first calculate �(µ,�), the result of which is given by the
following lemma.

Lemma 12. For the geometrically truncated geometric technology, we have

�(µ,�) =
µ

1 + �µ+ (1� �)�
. (44)

Proof. The seller’s meeting capacity nC follows a geometric distribution with support N1 and mean
(1� �)�1. That is, P(nC = n) = (1 � �)�n�1 for n = 1, 2, . . . . Meanwhile, the number of buyers
who visit the seller, nA, also follows a geometric distribution but with support N0 and mean �, i.e.,
P(nA = n) = 1

1+�
( �

1+�
)n for n = 0, 1, 2, . . . . The actual number of buyers that the seller meets, n, is

then min{nC , nA} 2 N0. Hence Pn(�) ⌘ P [min{nC , nA} = n |�]. Since the capacity constraint nC is
at least one, P0(�) =

1
1+�

. For n � 1, we have

Pn(�) = (1� �)�n�1
1X

j=n

1

1 + �

✓
�

1 + �

◆
j

+
1

1 + �

✓
�

1 + �

◆
n 1X

j=n+1

(1� �)�j�1
.

The first term on the right-hand side denotes the case where the number of buyers is (weakly) larger
than n while the meeting capacity equals n. The second term denotes the case where the number of
buyers equals n while the meeting capacity is strictly larger than n. Simplifying the summations yields

Pn(�) =

(
1

1+�
for n = 0,

�
n�1 1

1+�

⇣
�

1+�

⌘
n

(1 + (1� �)�) for n 2 N1.
(45)

Substituting (45) into equation (4) and simplifying the result yields equation (44).

We now solve the planner’s problem analytically. We show that the outcome depends on the extent
to which sellers can meet multiple buyers, as determined by the value of �. We distinguish between
three regions by specifying two cuto↵ values for �, i.e. �0(x2) and �1(x2), defined as

�0(x2) ⌘

p
x2 � 1

p
x2 + 1

<

p
x2

p
x2 + 1

⌘ �1(x2) (46)

Low Sigma. We first consider the case in which �  �0(x2). Using the functional form for �(µ,�)
given in (44), a straightforward calculation yields

H(µ,�) =
(1� �)2

4�

(1 + �)3

(1 + (1� �)�)(1 + �µ+ (1� �)�)
>

(1� �)2

4�
�

1

x2 � 1
, (47)

where the first inequality follows because the second factor in H(µ,�) is strictly larger than 1, and
the second inequality is implied by �  �0(x2). Consequently, the second-order condition (12) can
never be satisfied in this case, i.e. a submarket (µ,�) where 0 < µ < � cannot be part of the planner’s
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solution. Instead, perfect separation is obtained: one submarket contains all high-type buyers and
another submarket contains all low-type buyers.

The allocation of sellers depends on their marginal contribution to surplus, which equals

R(µ,�) =
(x2 � 1)µ(�µ+ (1� �)�)

(1 + �µ+ (1� �)�)2
+

�
2

(1 + �)2
. (48)

If R(B2, B2) � 1, then the planner will allocate all sellers to the submarket with high-type buyers;
otherwise both submarkets will be active.1

Intermediate Sigma. We now consider the case � 2 (�0(x2),�1(x2)], which is illustrated in Figure 2a.
The key object for determining the planner’s solution is the marginal contribution to surplus of low-type
buyers, i.e.

T1(µ,�) =
1

(1 + �)2
�

(x2 � 1)(1� �)µ

(1 + �µ+ (1� �)�)2
. (49)

First, we are interested in combinations of µ and � for which T1(µ,�) = 0, as this is the minimum
requirement for a submarket with high-type buyers to also contains low-type buyers. Straightforward
algebra shows that, for any (x2 � 1)�1(1� �)  µ  (x2 � 1)�1(1� �)�1, there exists a unique � such
that T1(µ,�) = 0. The locus of these points is represented by the green curves in Figure 2a and 2b.
Low-type buyers’ contribution to surplus is negative in points above this curve, which therefore cannot
be part of the planner’s solution.

Next, we are interested in the combinations of µ and � for which T1(µ,�) = g(R(µ,�)), as this is
where the planner is indi↵erent between keeping low-type buyers in the submarket and sending them
(with an optimal number of sellers) to a separate submarket. Using (31), (47) and (49) we can solve
for µ as a function of �, i.e.

µ =

p
(x2 � 1)(1 + �)p

(x2 � 1)(1 + �)� 2
p
�
�

1 + (1� �)�

�
. (50)

This solution is represented by the solid blue curve AB in Figure 2a; sending some low-type buyers
and sellers to form a new submarket is beneficial right but not left of this curve. The end points of
the curve, i.e. point A = (�A, 0) on the horizontal axis and point B = (�B,�B) on the diagonal, can

be obtained by solving (50) for µ = 0 and µ = �, respectively. The latter yields �B = �
(1+

p
x2)p

x2�1 � 1.

For every point on the segment AB, there exists—by the definition of g—a corresponding point
(�0, 0) on the horizontal axis with the same marginal contributions of sellers and low-type buyers,
i.e. R(µ,�) = R(0,�0) and T1(µ,�) = T1(0,�0) where �0 is given explicitly by the function ⇤(µ,�)
defined in (35) in Appendix B.3. As we move from A to B, this corresponding point moves from A to
C = (�C , 0), where �C = ⇤(�B,�B). The thresholds �0(x2) and �1(x2) are determined by the location
of point C: as � & �0(x2), point C approaches (0, 0); in contrast, when � % �1(x2), then �C % 1.

We can now characterize the planner’s solution. If (B2, B1 + B2) belongs to the brown area in
Figure 2a, then the optimum is two active submarkets, where the queue in the first submarket lies on
the curve AB, and the queue in the second submarket is the corresponding point (⇤(µ,�), 0) on the
horizontal axis between point A and C. If (B2, B1 + B2) belongs to the blue area, then the optimum
is full separation where one submarket contains all x2 buyers and the other contains all x1 buyers.
Whether the submarket with x1 buyers contains sellers depends on B2: if R(B2, B2) � 1, then the first

1
We thus prove analytically that for any given x2, there exists a meeting technology such that full separation is always

optimal for any endowment of buyers. This proves the conjecture in section 5.3 of Eeckhout and Kircher (2010b) who

only showed the existence of such a meeting technology numerically.
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submarket contains all sellers, otherwise both submarkets contain sellers. Finally, when (B2, B1 +B2)
belongs to the white area, then the optimum is pooling where one market contains all sellers and
buyers.

Full separation

Pooling

Mixing with two active submarkets

A

B

C

�

�

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

(a) � = 0.45 < �1(x2)

A

B

D

Pooling

Full separation
no sellers for x1 buyers

Mixing with two active submarkets

Mixing with one active submarket

�

�

0 2 4 6 8
0

2

4

6

8

(b) � = 0.65 > �1(x2)

Figure 2: The planner’s solution with x2 = 2

High Sigma. Finally, we consider the case � > �1(x2), which is illustrated in Figure 2b. The analysis
is quite similar to the case with intermediate sigma. One key di↵erence, however, is that point B no
longer lies on the diagonal but on the green curve where T1(µ,�) = 0. As a result, another point
plays an important role: the intersection between the green curve T1(µ,�) = 0 and the diagonal. This
intersection is point D in Figure 2b. Note that at any point on the segment BD of the green curve,
we have T1(µ,�) = 0 and R(µ,�) � 1.

After establishing the relevant boundaries, we can then summarize the planner’s solution. If
(B2, B1+B2) belongs to the brown area in Figure 2b, then it is optimal to open two active submarkets,
where the queue in the first submarket lies on the curve AB, and the second submarket is the
corresponding point on the horizontal axis characterized by the same marginal contribution to surplus
of sellers and low-type buyers. If (B2, B1 + B2) belongs to the yellow area, then it is optimal to have
one active submarket and one inactive submarket. The queue in the first submarket lies on the curve
BD and the second contains only low-type buyers and no sellers. If (B2, B1 +B2) belongs to the blue
area, then the optimum is full separation where one submarket contains all sellers and x2 buyers and
the other contains all x1 buyers and no sellers. When (B2, B1 + B2) belongs to the white area, then
the optimum is pooling where one market contains all sellers and buyers.

B.5 Comparative Statics

B.5.1 Changes in the Dispersion of Buyer Values

To highlight the dependence of S
0
(B1), R and T1 on x2, we append it to the arguments of these

functions and write S
0
(B1, x2), etc.

Consider complete pooling first. As established in equation (18), complete pooling is socially

optimal if and only if S
0
(B1, x2) � 0. Pooling continues to be optimal for x02 with x

0
2 < x2 if and only

if S
0
(B1, x

0
2) � 0. Thus, for the pooling area to shrink as x2 increases, we need that S

0
(B1, x2), as a

function of x2, crosses the x-axis at most once and from above. As is well-known in the literature, a
su�cient condition for this is that @

@x2
S
0
(B1, x2) < 0 if S

0
(B1, x2) = 0; a necessary condition is that

@

@x2
S
0
(B1, x2)  0 if S

0
(B1, x2) = 0 (note the di↵erence between the strict and weak inequality). By
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equation (17),

@

@x2
S
0
(B1, x2) =

@

@x2
T1(B2, B2 +B1, x2)� g

0(R(B2, B2 +B1, x2))
@

@x2
R(B2, B2 +B1, x2)

= �� +
1

⇤(B2, B1 +B2)
(��B2�µ � (B1 +B2)��) , (51)

where we have suppressed argument (B2, B1 + B2) from function �, and function ⇤ is defined by
equation (35). It turns out that equation (35) implies that the above equation is always strictly
negative, and we have the following result.

Proposition 9. Under Assumption 1, 2, 3, and 5, the area in which complete pooling is optimal is
shrinking in x2.

Note that Assumption 5 holds for the geometrically truncated geometric technology, so the result
applies.

Proof. If R(B2, B2 + B1, x2) � 1, then g(R(B2, B2 + B1, x2)) = 0. S
0
(B1, x2) = 0 then implies

T1(B2, B2+B1, x2) = g(R(B2, B2+B1, x2)) = 0 and ⇤(B2, B1+B2) = 1. Since T1(B2, B2+B1, x2) =
m

0(B2 +B1) + (x2 � 1)��(B2, B1 +B2), we have ��(B2, B1 +B2) < 0. Thus (51) is strictly negative.

Next, if R(B2, B2 + B1, x2) 2 (0, 1), then g(R(B2, B2 + B1, x2)) 2 (0, 1). Thus S
0
(B1, x2) = 0

implies that ⇤(B2, B1 +B2) is defined by first row of equation (35) and we have ��(B2, B1 +B2) < 0.
It is easy to see that (51) is strictly negative if and only if the following holds

���

⇤

✓
⇤� (B1 +B2)�

��B2�µ

���

◆

=
���

⇤

✓
⇤� (B1 +B2)�

m(⇤)�m(B1 +B2)� (⇤� (B1 +B2))m0(⇤)

m0(B1 +B2)�m0(⇤)

◆

=
���

⇤

✓
(⇤� (B1 +B2))m0(B1 +B2)� (m(⇤)�m(B1 +B2))

m0(B1 +B2)�m0(⇤)

◆
< 0.

where we have suppressed the arguments of ⇤ and �. For the equality in the second line we used
equation (34), and the last inequality is because m is strictly concave and ⇤ > B1 +B2.

Next consider full separation. The logic is similar to the case for pooling. By equation (18), full

separation is socially optimal if and only if S
0
(0, x2)  0. For the area of full separation to expand

with x2, we need that S
0
(0, x2), as a function of x2, crosses the x-axis at most once and from above.

Assume S
0
(0, x2) = 0. Let �H (resp. �L) be the queue length in the submarket of high-type (resp.

low-type) buyers at the optimum. These queue lengths are determined by two equations. First, sellers’
marginal contribution to surplus must be the same between the two submarkets, i.e.

x2
�
m(�H)� �Hm

0(�H)
�
= m(�L)� �Lm

0(�L), (52)

Second, summing the number of sellers across the two submarkets must yield the total measure of
sellers, i.e.

B2

�H

+
B1

�L

= 1. (53)

Next, consider the marginal contribution to surplus of low-type buyers in the two submarkets.
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Since S
0
(0, x2) = 0, we have

m
0(�H) + (x2 � 1)��(�H ,�H) = m

0(�L) (54)

where the left- and the right-hand denotes the marginal contribution of a low-type buyer in the
submarket with high-type and low-type buyers, respectively.2

Now suppose that x2 increases to x02. We want to rule out the possibility that S
0
(0, x02) = 0. Suppose

otherwise. Then at x
0
2, the new queue lengths �

0
H

and �
0
L
also satisfy equations (52), (53), and (54).

Note that equations (53) and (54) are special cases of equation (10) and (8), respectively. As before, we
can combine equations (53) and (54) to eliminate x2 and the resulting equation is simply (34), where
the correspondence is µ = � = �H and �0 = �L. Thus we have �L = ⇤(�H ,�H) and �

0
L
= ⇤(�0

H
,�

0
H
),

where ⇤(µ,�) is defined by equation (35) and is independent of x2.
Conditional on full separation, the allocation of sellers is completely determined by equation (52).

When x2 increases to x
0
2, more sellers will vist the submarket with high-type buyers, which then

implies that �0
H

< �H < �L < �
0
L
. To rule out that �0

H
and �

0
L
are also a solution to equation (54), a

su�cient and necessary condition is simply that ⇤(µ, µ) is weakly increasing in µ, which then implies
that if �0

H
< �H , then �

0
L
= ⇤(�0

H
,�

0
H
)  ⇤(�H ,�H) = �L, which contradicts the above assertion that

�
0
L
> �L. This leads to the following assumption.

Assumption 6. ⇤(µ, µ), which is defined by equation (35), is (weakly) increasing in µ.

In equation (57), we give an explicit expression for ⇤(µ,�) for the geometrically truncated geometric
meeting technology, which verifies that the above assumption is satisfied.

We then have the following result.

Proposition 10. Under Assumption 1, 2, 3, 5, and 6, the area in which full separation is optimal is
expanding with x2.

Proof. As we explained before Proposition 9, Assumption 6 ensures that S
0
(0, x2) crosses the x-axis at

most once. We now prove that if that is the case, S
0
(0, x2) must cross the x-axis from above. Suppose

otherwise. Then S
0
(0, x2) = 0 for some x2, and S

0
(0, x02) > 0 for all x02 > x2. As we mentioned before,

more sellers will flow into the submarket of x2 buyers as we increase x2, and there exists some x2⇤

such that the solution to equations (52) and (53) is �H = B2 and �L = 1. If we increase x2 further,

then �H will stay constant and the right-hand side of (54) will start decreasing linearly. So S
0
(0, x2)

can not stay positive for su�ciently large x2, and we have a contradiction.

B.5.2 Changes in Screening Capacity

Analogous to the geometrically truncated geometric case, we assume that the meeting technology is
indexed by a parameter �. To highlight the dependence of �, R, T1 and S

0
(B1) on �, we append it to

the arguments of these functions and write �(µ,�,�), etc. We make the following assumption about
how � varies with �.

Assumption 7. For any µ and �, @

@�
�(µ,�,�) � 0, and @

@�
�(�,�,�) = 0.

Note that the above assumption holds trivially for the geometrically truncated geometric meeting
technology. The first part of this assumption states that a higher � leads to a higher probability of
meeting at least one high-type buyer. The second part states that the probability that a seller meets
at least one buyer is independent of �. In other words, a higher � makes it easier to identify certain

2
Note that although the submarket with high-type buyers does not contain low-type buyers, we can still calculate the

e↵ect on surplus of a marginal increase in the number of low-type buyers.
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buyers while holding the overall matching rate constant. Because of the second part of the above
assumption, we can continue to write m(�) ⌘ �(�,�,�).

We first consider the optimality of complete separation. As the following proposition establishes,
assumption 7 implies that if—for a given endowment of buyers B1 and B2 and a given buyer value
dispersion x2—complete separation is optimal for some �

b, then it is also optimal for all �a with
�
a
< �

b. That is, the parameter range for which complete separation is optimal is shrinking with �.

Proposition 11. Under Assumption 7, the area in which complete separation is optimal is shrinking
in �.

Proof. Becausem(�) is independent of � (Assumption 7), total surplus generated by complete separation
is independent of �. To see this, suppose that the planner allocates ↵ sellers to the submarket of x2
buyers and the remaining sellers to the submarket of x1 buyers, then total surplus is ↵m(B2

↵
)(1+(x2�

1)) + (1 � ↵)m( B1
1�↵

), which is certainly independent of �. Thus conditional on complete separation,
the optimal ↵, ↵⇤, is also independent of �.

Next, consider a general allocation with L submarkets. When � = �
b, by assumption we have

↵
⇤
m(B2

↵⇤ )(1 + (x2 � 1)) + (1 � ↵
⇤)m( B1

1�↵⇤ ) �
P

L

`=1 ↵
`
S(µ`

,�
`
,�

b), where S(µ`
,�

`
,�

b) is given by

equation (7) and now depends also on �. Since for any µ and �, �(µ,�,�b) � �(µ,�,�a), we have
S(µ,�,�b) � S(µ,�,�a). Therefore, ↵⇤

m(B2
↵⇤ )(1+(x2�1))+(1�↵

⇤)m( B1
1�↵⇤ ) �

P
L

`=1 ↵
`
S(µ`

,�
`
,�

b) �
P

L

`=1 ↵
`
S(µ`

,�
`
,�

a). Thus complete separation is also optimal for � = �
a
.

Next, we consider the case of complete pooling. We are interested in the following question: if—for
a given endowment of buyers B1 and B2 and a given buyer value dispersion x2—pooling is optimal for
some �, then under what conditions will pooling continue to be optimal for � +��?

By Proposition 3, pooling is optimal at a given � if and only if S
0
(B1,�) � 0. If this inequality is

strict, then by continuity with respect to �, it continues to hold for �+�. Hence, the more complicated
case is the one in which S

0
(B1,�) = 0; pooling then continues to be optimal for � +�� if and only if

S
0
(B1,� +��) � 0, which is equivalent to3

@T1(µ,�,�)

@�
� g

0(R(B2, B1 +B2,�))
@R(µ,�,�)

@�
. (55)

By equations (8) and (10), we have

@T1(µ,�,�)

@�
= (x2 � 1)��� and

@R(µ,�,�)

@�
= (x2 � 1) (�� � µ�µ� � ����) .

Moreover, by equation (32), we have g
0(R(B2, B1 +B2,�)) = �1/⇤(µ,�,�), where ⇤ is defined in 35,

and 1/1 = 0 by convention. As a result, we can rewrite (55) as

1

⇤(µ,�,�)� �
(�� � µ�µ�) � ����, (56)

which leads to the following result regarding the parameter range in which complete pooling is optimal.

Proposition 12. Under Assumption 1, 2, 3, 5, and 7, the area in which complete pooling is optimal
is expanding with � if and only if (56) holds for all (µ,�).

Proof. See above.

Next we show that (56) holds for the geometrically truncated geometric meeting technology, so the
result applies.

3
Note that the function g is independent of � because m(�) is independent of �.
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Since �(µ,�) is given by equation (44), equation (34) which determines ⇤(�z,�,�) can be rewritten
as

(1 + �)(�0 � �)

2 + �+ �0
=

�z�

1� �

As a function of �0, the supremum of the left-hand side is 1 + �. Thus if �z�

1��
< 1 + �, the solution to

the above equation is given by

⇤(�z,�,�) =
� ((1 + �)(1� �) + �z(1 + �))

(1 + �)(1� �)� �z�
. (57)

Otherwise ⇤(�z,�,�) = 1. To verify(56), we rewrite the above equation as

1

⇤(�z,�,�)� �
=

(1 + �)(1� �)� �z�

2�z�(1 + �)
. (58)

Note that when �z�

1��
> 1 + �, the right-hand side of the above equation is still well-defined, and it is

negative (an underestimate of the true value, which is zero in this case).
Next, by equation (44) direct computation gives

��(�z,�,�)� �z�µ�(�z,�,�) = z
2
�
2 1 + (1 + � � z�)�

(1 + (1� �(1� z))�)3
> 0

���(�z,�,�) = z�
1 + ((2� �)z � (1� �))�

(1 + (1� �(1� z))�)3
.

From the above equations we can see that �� � �z�µ� is always strictly positive, but the sign of ���

is indeterminate. A su�cient condition for (56) is thus we plug the right-hand side of equation (58)
into (56) irrespective of whether �z�

1��
> 1 + �, which then gives

(�� � µ�µ�)

⇤(�z,�,�)� �
+ ��� = �z

1 + � + (�+ ��(z � 1))2 + �((2� �)(1 + z�) + �
2)

2(�+ 1)�(1 + (1� �(1� z))�)3

The right-hand side is always positive. We have thus proved (56) for this particular meeting technology.

C Market Equilibrium with N Buyer Types

In this section, we show that in the general model with N buyer types, no seller can do better in
equilibrium than posting a second-price auction combined with either a reserve price or a meeting fee.
The reserve price can be positive or negative, where the latter just means that the seller is willing
to sell the good at a price below his valuation, which we normalized to 0. Similarly, the meeting fee
can be positive, in which case it is paid by each buyer meeting the seller, or negative, in which case
payments take place in the opposite direction. Finally, we establish that equilibrium is constrained
e�cient.

C.1 Incentive Compatibility and Payo↵s

When a monopolistic seller o↵ers a selling mechanism, incentive compatibility requires that buyers’
expected utility is intimately connected with their trading probabilities (see Myerson, 1981; Riley and
Samuelson, 1981). This logic can be extended to an environment with competing sellers.4 In such

4
See Peters (2013) for a similar treatment for an invariant meeting technology.
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an environment, the expected payo↵ that a buyer receives from visiting a submarket is equal to what
he would get at a monopolistic seller with a random number of buyers as in Levin and Smith (1994).
However, buyers must also choose which submarket to visit and this depends on the posted mechanisms
which in turn depends on the meeting technology.

In our analysis, it will sometimes be useful to consider buyers with a value x that is not in the
set {x1, . . . , xN}, who thus have measure zero. To do so, we define an extended version of the market
utility function U(x), which represents the highest expected payo↵ that a buyer with value x can
achieve, such that Uk ⌘ U(xk) for each k. Given any set of mechanisms posted by sellers, denote the
set of mechanisms that buyers of type x visit by ⌦b(x), pick an arbitrary !

b(x) 2 ⌦b(x) and denote by
p(x,!b(x)) the probability that a buyer of type x who visits a mechanism !

b(x) trades. Of course, if
buyers of type x choose to be inactive, then we set !b(x) = ; and p(x, ;) = 0. The following Lemma
then establishes the properties of the market utility function. Its proof is closely related to the one in
Myerson (1981).

Lemma 13. Given any set of mechanisms posted by sellers, p(x,!b(x)) is non-decreasing and the
market utility function U(x) is convex, satisfying

U(x) = U(0) +

Z
x

0
p(z,!b(z))dz.

Proof. The strategy of a buyer with value x is: (i) a probability distribution over the mechanisms
to visit and inactivity and (ii) a value to report when the mechanism is not inactivity. Given the
mechanisms posted by sellers, suppose that the set of mechanisms that a buyer with valuation x visits
is ⌦b(x), and the probability that the buyer receives the object when visiting seller ! 2 ⌦b(x) and
reporting x by p(x,!), with a corresponding expected payment t(x,!).

First, we select one element !
b(z) 2 ⌦b(z) for each z. Then, by the incentive compatibility

constraint (ICC), for any x, z,

U(x) � xp(z,!b(z))� t(z,!b(z)), (59)

i.e., buyers with valuation x are always better of following their equilibrium strategies than mimicking
any other type z. Therefore,U(x) = maxz2[x1,xN ] xp(z,!

b(z))� t(z,!b(z)). Hence, U(x) is the supreme
of a collection of a�ne functions and must therefore be convex.

Furthermore, we can rewrite equation (59) in the following way.

U(x) = xp(x,!b(x))� t(x,!b(x)) � xp(z,!b(z))� t(z,!b(z))

= U(z) + p(z,!b(z))(x� z).

So, p(x,!b(x)) is the slope of a supporting line for the convex function U(x). Therefore, p(x,!b(x))
is a non-decreasing function, and it equals the derivative of U(x) almost everywhere. The latter then
implies the integral representation of U(x) in Lemma 13.

As the supremum of a collection of convex functions (expected payo↵s from individual submarkets),
the market utility function U(x) is always convex. Because of incentive compatibility, a higher winning
probability is associated with a higher expected payo↵.

Buyers only visit sellers who o↵er them their market utility and the sellers are residual claimants
of the output. Competition forces sellers to post an e�cient mechanism, i.e. a mechanism in which
the buyer with the highest value trades if and only if his valuation exceeds that of the seller. In other
words, e�cient mechanisms are the cheapest way to o↵er buyers their market utility.

Consider a submarket with an e�cient mechanism and a queue µ ⌘ (µ1, . . . , µN ) where the lowest
type of buyers visiting the submarket is ◆. Consider a buyer with value x strictly between xk�1 and xk
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with k � ◆ + 1. Since the posted mechanism is e�cient, his winning probability is �µ(µk, µ1), which,
by equation (6), is the probability that the buyer meets a seller and has the highest value among all
buyers who arrived at the seller. As in a monopolistic auction, buyers’ expected value is a summation
(or with continuous types, an integral) over their winning probabilities. The expected value for the
buyer is V (x) = Vk�1 + (x� xk�1)�µ(µk, µ1). Since V (x) must be continuous, the expected payo↵ for
a buyer with valuation xk visiting this submarket is Vk = Vk�1 + (xk � xk�1)�µ(µk, µ1), which then
implies

Vk = V◆ +
kX

j=◆+1

(xj � xj�1)�µ(µj , µ1). (60)

The expected payo↵ for buyers in equation (60) is similar to the corresponding payo↵ in a monopolistic
auction. Equation (60) also shows that �µ(µk, µ1) and �µ(µk+1, µ1) are subgradients at point xk for
the market utility function U(x), since V (x) lies below U(x) and the slope for V (x) with x 2 (xk�1, xk)
is �µ(µk, µ1), and the slope for V (x) with x 2 (xk, xk+1) is �µ(µk+1, µ1). Two special cases are worth
mentioning. Suppose that the lowest and the highest value of buyers who visit the submarket are x

and x, respectively. Then Q1(µ1) = �µ(µ1, µ1) and 1 � Q0(µ1) = �µ(0, µ1) are subgradients at point
x and x, respectively. A buyer with value x > x will always trade as long as he successfully meets a
seller, which happens with probability 1�Q0(µ1) = �µ(0, µ1).

Since the mechanism is assumed to be e�cient, the expected seller value is given by

⇡ = S(µ)�
NX

k=◆

(µk � µk+1)Vk

=
NX

k=◆

(xk � xk�1)�(µk, µ1)�
NX

k=◆

(µk � µk+1)

0

@V◆ +
kX

j=◆+1

(xj � xj�1)�µ(µj , µ1)

1

A

= �µ1V◆ +
NX

k=◆

xk(�(µk, µ1)� �(µk+1, µ1))�
NX

j=◆+1

µj(xj � xj�1)�µ(µj , µ1).

where in deriving the last equality we changed the order of summation. Rewriting the above equation
yields

⇡ = �µ1V◆ +
N+1X

j=◆+1

✓
xj�1 �

µj�µ(µj , µ1)(xj � xj�1)

�(µj�1, µ1)� �(µj , µ1)

◆�
�(µj�1, µ1)� �(µj , µ1)

�
. (61)

To make the comparison with the classic auction literature more clear, we take the limit of the
discrete buyer value distribution so that it converges to a continuous distribution F with density f .
Then let � ⌘ µ1 and we have µj = �(1� F (xj)). Let xj = x and xj�1 = x��x, then the summand
in equation (61) becomes

✓
x��x�

�(1� F (x))�µ(�(1� F (x)),�)�x

�(�(1� F (x��x)),�)� �(�(1� F (x)),�)

◆�
�(�(1� F (x��x)),�)� �(�(1� F (x)),�)

�
.

Letting �x ! 0, the first term becomes

x��x�
�(1� F (x))�µ(�(1� F (x)),�)�x

�µ(�(1� F (x)),�)�f(x)�x
! x�

1� F (x)

f(x)
,
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Figure 3: Supporting lines

and the second term is the measure of the distribution function 1� �(�(1� F (x)),�) between x and
x+�x. Therefore, we can rewrite equation (61) in the more familiar integral form

⇡ = ��V◆ +

Z
xN

x◆

(x�
1� F (x)

f(x)
)d (1� �(�(1� F (x)),�)) , (62)

where � = µ1.
In a standard auction with n bidders, a seller’s expected payo↵ equals the virtual valuation function

integrated against the distribution of the highest valuation, see Myerson (1981). Our setting is di↵erent
in two ways: (i) because the buyer value distribution is discrete, the virtual value function takes a
slightly more complicated form, and (ii) the distribution of the highest valuation of bidders depends
on the meeting technology and is given by 1� �(µj , µ1), i.e., the probability that there are no buyers
with valuations above xj .

One may have expected that allowing for general meeting technologies would severely complicate the
payo↵ functions in (competing) auction theory. We have shown here that our alternative representation
� avoids such complications. In particular, agents’ expected payo↵s retain the same structure but
simply depend on transformations of �.

C.2 E�ciency

Equivalence. To prove constrained e�ciency of equilibrium, we show that even if sellers can buy
queues directly in a hypothetical competitive market, they cannot do better than in the decentralized
environment. In other words, the following two problems are equivalent for sellers.
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1. Sellers’ Relaxed Problem, in which there exists a hypothetical competitive market for queues,
with the price for each buyer given by the market utility function. That is, sellers choose a queue
µ ⌘ (µ1, . . . , µN ) to maximize

⇡(µ) =
NX

j=1

(xj � xj�1)�(µj , µ1)�
NX

j=1

(µj � µj+1)Uj , (63)

where the first term is total surplus (22) and the second term is the price of the queue.

2. Sellers’ Constrained Problem, in which sellers must post mechanisms to attract queues of buyers,
as described in detail in Section 2. For any mechanism, the corresponding queue must be
compatible with the market utility function, which means that it needs to satisfy equation (2).
In this case, a seller’s profit is again given by equation (63), but now queue length and queue
composition depend on the posted mechanism.

In the relaxed problem, a seller will “buy” buyers with valuation xk until their marginal contribution
Tk to surplus is equal to their marginal cost Uk. Hence, if sellers can post a mechanism which delivers
buyers their marginal contribution to surplus, then buyers’ payo↵s are equal to their market utility and
the queue is compatible with the mechanism and the market utility function, as defined by equation (2).
The following proposition establishes that auctions with an entry fee or a reserve price can achieve
this.

Proposition 13. Given that the market utility function is convex, any solution µ to the sellers’ relaxed
problem is compatible with an auction with an entry fee in the sellers’ constrained problem, where the
fee is given by

t = �

P
N

j=1(xj � xj�1)��(µj , µ1)

1�Q0(µ1)
. (64)

It is also compatible with an auction with a reserve price in the sellers’ constrained problem, where the
reserve price is given by

r = �

P
N

j=1(xj � xj�1)��(µj , µ1)

Q1(µ1)
. (65)

Proof. In their relaxed problem, sellers select a queue µ directly in a hypothetical competitive market.
The expected payo↵ for a seller in this market is the di↵erence between the surplus that he creates and
the price of the queue. Suppose that a queue µ solves sellers’ relaxed problem. If queue µ contains
buyers of value xk, then Tk(µ) = Uk, where Tk(µ) is given by equation (23); if queue µ does not
contain buyers of value xk (µk = µk+1), then Tk(µ)  Uk.

Note that when a seller posts a second-price auction with entry fee and t is given by equation (64),
note that V◆ = T◆(µ), where ◆ is the lowest buyer value in queue µ. The important observation is that
by equation (23) and (60), for all k � 1 we have Vk = Tk(µ), where Vk is the expected payo↵ of buyers
with value xk from the submarket and is given by equation (60). Thus µ is also compatible with a
second-price auction with entry fee t in the sellers’ constrained problem.

The case with the reserve price is similar except for one di↵erence. When a seller posts a second-
price auction with entry fee t given by equation (64), Vk = Tk(µ) for k � 1. But when a seller posts a
second-price auction with reserve price r given by equation (65), V◆ = T◆(µ) where ◆ is the lowest buyer
value in queue µ. For k > ◆, Vk is again given by equation (60) and we have Vk = Tk(µ). For k < ◆,
things are slightly more complicated: For r < xk < x◆, Vk = Q1(µ1)(xk� r) = V◆��µ(µ1, µ1)(x◆�xk),
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which implies Vk = Tk(µ). For xk < r, Vk = 0 and Tk(µ) < 0. In this case buyers with value xk will
not visit the submarket. Thus queue µ is compatible with a second-price auction with reserve price r

in the sellers’ constrained problem.

E�ciency. Proposition 13 is an important step towards proving e�ciency of the market equilibrium
for general meeting technologies, but there is one remaining issue: for a given auction with a reserve
price or entry fee, there might be multiple queues compatible with the market utility function.
Therefore, even if a solution to the sellers’ relaxed problem is compatible with an auction with reserve
price or entry fee, it is not clear that sellers will expect that solution to be the realized queue. Most
of the literature resolves this issue by assuming that sellers are optimistic: a (deviating) seller expects
that he can coordinate buyers in such a way that the solution to the sellers’ relaxed problem becomes
the realized queue.5 Since this assumption is somewhat arbitrary, we show in the next subsection
that we can relax it under some mild restrictions on the meeting technology. However, if we—for the
moment—follow the standard approach, then by Proposition 13, a seller’s relaxed and constrained
problem are equivalent in the sense that they achieve the same outcome. That is, the directed search
equilibrium is equivalent to a competitive market equilibrium for queues, which also coincides with the
socially e�cient planner’s allocation.

Proposition 14. If sellers are optimistic, the directed search equilibrium is constrained e�cient for
any meeting technology.

Proof. The sellers’ relaxed problem boils down to a competitive market for buyer types. Therefore,
the first welfare theorem applies and the equilibrium is e�cient. Since the sellers’ constrained problem
is equivalent to the sellers’ relaxed problem, the directed search equilibrium is also e�cient.

Hence, we have shown that despite the potential presence of spillovers in the meeting process,
business stealing externalities and agency costs, the competing mechanisms problem reduces to one
where sellers can buy queues in a competitive market. This result, of course, requires a su�ciently large
contract space. If it is not possible for sellers to either commit to a reserve price above their valuation
or charge fees, the decentralized equilibrium will only be e�cient for invariant meeting technologies
(i.e. �� = 0). If �� < 0 (resp. > 0), buyers impose negative (resp. positive) externalities on other
meetings and will receive more (resp. less) than their marginal social contribution.6

C.3 Uniqueness of Beliefs

Without the optimism assumption, payo↵ equivalence of all equilibria could break down if multiple
queues are compatible with market utility. In this subsection, we show that such a scenario is rather
special in the sense that—under mild restrictions on the meeting technology—the solution to the
market utility condition is in fact unique, rendering the optimism assumption redundant.

Uniqueness. The following proposition then presents our result regarding uniqueness of the beliefs
for a seller posting a second-price auction with a reserve price.

Proposition 15. Under assumptions 1 and 2, for each seller posting a second-price auction with a
reserve price r, there is a unique queue µ compatible with the market utility function. Furthermore,
for two sellers posting reserve prices r

a and r
b, ra < r

b if and only if µa

1 > µ
b

1.
5
See, for example, Eeckhout and Kircher (2010a,b).

6
With free entry of sellers, the buyer-seller ratio would be too high (resp. too low) in this case.
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Proof. Our proof consists of two parts: i) ra < r
b
, µ

a

1 > µ
b

1, and ii) queue length µ1 determines the
whole queue µ uniquely. We first prove the second part.

As we showed in the proof of Proposition 10, a given queue length determines the lowest buyer
type x and the highest buyer type x uniquely. If x < xk  x, µk is uniquely determined by Uk =
Uk�1 + (xk � xk�1)�µ(µk, µ1). Thus queue length determines the whole queue uniquely.

Next we move to the first part. Again as we showed in the proof of Proposition 10, queue length
µ1 determines x uniquely, and µ

a

1 > µ
b

1 implies that x
a
 x

b. Also note that in some submarket `,
U(x`) = Q1(µ`

1)(x
`
�r

`), which implies that the reserve price can be written as r` = x
`
�U(x`)/Q1(µ`

1).
Combining the above two facts shows that queue length µ1 completely determines the reserve price r.
Next we show that ra < r

b.
If xa = x

b, then r
a = x

a
�U(xa)/Q1(µa

1) < x
b
�U(xb)/Q1(µb

1) = r
b because Q1(µa

1) < Q1(µb

1) (see
Assumption 2).

Next consider the case x
a
< x

b. Since �µ(µi

1, µ
i

1) (Q1(µi

1)) is a subgradient at xi, we have

U(xa) > U(xb) +Q1(µ
b

1)(x
a
� x

b), (66)

which implies that

x
b
� x

a
>

U(xb)

Q1(µb

1)
�

U(xa)

Q1(µb

1)
�

U(xb)

Q1(µb

1)
�

U(xa)

Q1(µa

1)
,

where the second inequality follows from Q1(�a) < Q1(�b). Recall that ri = x
i
�U(xi)/Q1(µi

1) for for
i = a or b. We then have r

a
< r

b.

The above result can be easily illustrated graphically. In Figure 4, the intersection between the
supporting line with slope Q1(µ1) at x and the x-axis is simply r. Consider two di↵erent queues a

and b. If queue a is longer (µa

1 > µ
b

1), then we have Q1(µa

1) < Q1(µb

1) and hence x
a
 x

b. Since the
reserve price r is the intersection point of the supporting line at x with slope Q1(�) and the x-axis,
from Figure 4 we can see that xa  x

b implies that ra < r
b.7 Of course, this logic can also be reversed

so that a lower reserve price implies a longer queue.
Things are slightly more complicated when sellers post a second-price auction with an entry fee.

Below, we introduce one weak additional restriction on the meeting technology, which is su�cient to
guarantee that there exists a monotonic relation between meeting fees and queue lengths. This implies
that there exists a unique queue that is compatible with the market utility function when sellers post
an auction with an entry fee.

Assumption 8. (1�Q0(�))/Q1(�) is weakly increasing in �.

If we rewrite (1�Q0(�))/Q1(�) as 1 +
P1

k=2Qk(�)/Q1(�), then this assumption states that with
a higher buyer-seller ratio, it is relatively more likely that a buyer will meet competitors in an auction
rather than being alone.

Proposition 16. Under assumptions 1, 2, and 8, for each seller posting an auction with entry fee
t, there is a unique queue µ compatible with the market utility function. Furthermore, for two sellers
posting entry fees t

a and t
b, ta < t

b if and only if µa

1 > µ
b

1.

Proof. Assume that µa

1 > µ
b

1, which then implies xa  x
b. We distinguish two cases tb < 0 and t

b
� 0.

First consider the case t
b
< 0 (entry subsidy). We prove the claim by contradiction. Suppose that

7
The expected utility of a buyer with valuation ra < x of visiting segment a is U(ra) = (ra � ra)Q1(µ

a
1) = 0, this

implies that the support line intersects the horizontal axis at x = ra. In equilibrium type x = ra would not visit segment

a, since it can obtain a positive expected utility in another submarket.
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Figure 4: Relation between reserve prices and queue length

t
a
� t

b. Then buyers with value x
a will receive a strictly higher payo↵ by switching to queue b. To see

this, the expected payo↵ for buyers with value xa after switching to queue b is Q1(µb

1)x
a
�(1�Q0(µb

1))t
b.

Note that

Q1(µ
b

1)x
a
� (1�Q0(µ

b

1))t
b
> Q1(µ

a

1)x
a
� (1�Q0(µ

b

1))t
b
� Q1(µ

a

1)x
a
� (1�Q0(µ

a

1))t
b

� Q1(µ
a

1)x
a
� (1�Q0(µ

a

1))t
a = U(xa)

where the first inequality is because Q1(�) is strictly decreasing, the second inequality is because
1 �Q0(�) is strictly decreasing and t

b
 0, and the final inequality follows from the assumption that

t
a
� t

b
. Thus we have reached a contradiction, and it must be true that ta < t

b
.

Next we consider the case t
b
> 0. Note that there is a simple relation between the entry fee

and the reserve price for a given queue: Q1(µ1)r = (1 � Q0(µ1))t. By Proposition 15, we then have

µ
a

1 > µ
b

1 ,
1�Q0(µa

1)
Q1(µa

1)
t
a
<

1�Q0(µb
1)

Q1(µb
1)

t
b, which implies that

t
a
<

Q1(µa

1)

1�Q0(µa

1)

1�Q0(µb

1)

Q1(µb

1)
t
b
 t

b
.

where the second inequality is because of assumption 8 and t
b
> 0. Again we have t

a
< t

b.
As in the proof of Proposition 15, a given queue length determines the queue completely. Therefore,

there exists at most one queue compatible with an entry fee t and t
a
< t

b
, µ

a

1 > µ
b

1.

The intuition behind Proposition 16 is similar to that of Proposition 15 and readily follows from the
correspondence between the reserve price and entry fee: t = rQ1/(1�Q0). Again, consider two di↵erent
queues a and b. We have shown in Proposition 15 that µa

1 > µ
b

1 , r
a
< r

b. Under Assumption 8, the
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two inequalities jointly lead to t
a
< t

b.
Hence, we have established that under mild restrictions on the meeting technology, there exists

only one queue which is compatible with market utility when sellers post an auction with a reserve
price or entry fee. Consequently, the assumption that sellers are optimistic is redundant for a large
class of meeting technologies.
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