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1 Introduction

Nonlinear panel data models have posed a long-standing and challenging problem for identifica-

tion and estimation. This difficulty is especially pronounced when the number of cross-sectional

observations (denoted by N) is large, but the number of time-series observations (denoted by

T ) is small. The central challenge in this setting is to identify the coefficients of the observed

regressors in the presence of fixed effects that have an unrestricted joint distribution with the

regressors. Over the years, a considerable amount of work has been devoted to this problem,

including classical results on binary choice models by Manski (1987), Honoré and Kyriazidou

(2000), Honoré and Lewbel (2002), and Chamberlain (2010), as well as more recent develop-

ments by Davezies, D’Haultfoeuille, and Mugnier (2020), Honoré and Weidner (2020), Khan,

Ponomareva, and Tamer (2020) and Zhu (2022).

In long panels, where the number of time-series observations is comparable to the number

of cross-sectional observations, the identification problem can be resolved by treating the fixed

effects as parameters that are jointly estimated with the coefficients of the regressors, and the

primary focus of this literature is to correct the asymptotic biases caused by the estimation

errors of the fixed effects, also known as the incidental parameter biases — see Neyman and

Scott (1948). This line of research was pioneered by Hahn and Newey (2004), and further

developed by Dhaene and Jochmans (2015).

Recent research on long panels has focused on models with interactive fixed effects that

use a factor model structure to characterize the unobserved errors. These models nest the

conventional two-way fixed effects models as special cases, providing a more general way to

capture cross-sectional dependence in panels (see Chudik and Pesaran (2015)). For linear models

with interactive fixed effects, fundamental contributions have been made by Pesaran (2006), Bai

(2009) and Moon and Weidner (2015). In recent years, Chen (2016), Boneva and Linton (2017),

Chen, Fernández-Val, and Weidner (2021), Ando, Bai, and Li (2022) and Gao, Liu, Peng, and

Yan (2023) have investigated the estimation of nonlinear models with interactive fixed effects.1

Panel data models with interactive fixed effects involve three sets of parameters: a finite-

dimensional vector of coefficients (denoted by β) for the observed regressors, a T × r matrix of

latent factors (denoted by F ) representing the global shocks to all individuals, and an N × r

matrix of factors loadings (denoted by Λ) measuring the individual-specific responses to the

factors.2 While the main object of interest is β, the latter two sets of parameters are introduced

to account for individual heterogeneity and cross-sectional dependence. To estimate these pa-

rameters in nonlinear models, the papers mentioned above usually take two different approaches.

1Wang (2022) studied the estimation of nonlinear factor models, which can be viewed as a special case of
nonlinear panel data models with interactive fixed effects. However, in that paper, the main focus is the estimation
of the factors and factor loadings.

2Throughout the paper, r is used to denote the number of factors.
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The first approach, utilized by Chen (2016), Chen et al. (2021), Ando et al. (2022) and Gao

et al. (2023), involves estimating (β,F ,Λ) jointly using some iterative algorithms. The second

approach, introduced by Boneva and Linton (2017), extends the CCE estimation method of

Pesaran (2006) to nonlinear models. This paper fills a gap in the literature by studying the esti-

mation of nonlinear panel data models with interactive fixed effects using the CCE framework,

where the observed regressors are assumed to be driven by the same latent factors F and the

coefficients of the regressors are homogeneous across individuals (see Table 1 below).

As the main contribution of this paper, a two-step estimator for this type of models is

proposed. In the first step, an estimator for the latent factors is constructed using the observed

regressors; in the second step, given the estimated factors, β and Λ are estimated jointly to

maximize the objective function (e.g., the log likelihood function). Notably, the proposed method

for estimating the factors in the first step is different from the standard CCE approach, which can

suffer from the problem of degenerated regressors (see Karabiyik, Reese, and Westerlund (2017)).

Asymptotic properties, particularly asymptotic biases, of the proposed estimators are derived

under the framework of long panels and other general conditions, with a Bahadur representation

established for the estimator of β where the leading biases are shown to be of order 1/T +1/N .

To the best of our knowledge, this is the first result of this kind for CCE estimators of nonlinear

panels. In addition, both analytical and split-panel jackknife (SPJ, hereafter) methods are

introduced to correct the asymptotic biases, providing the basis for valid inference in large

samples. Through Monte Carlo simulations, we find that the proposed bias-correction procedures

significantly reduce the biases of the estimators and improve the empirical coverage rates of the

confidence intervals in finite samples.

Table 1: Estimation of Nonlinear Panels with Interactive Fixed Effects

Joint Estimation CCE Estimation

Homogeneous Coeff. Chen (2016), Chen et al. (2021) This Paper

Heterogeneous Coeff. Ando et al. (2022), Gao et al. (2023) Boneva and Linton (2017)

Compared with the approach that estimate (β,F ,Λ) jointly, the main advantage of the

CCE estimation method is its much lower computational cost, because the estimation problem

is decomposed into a simpler first step and a second step that can be easily implemented in

standard software such as Stata and R. Additionally, for the leading examples of binary choice

models, the log likelihood function is convex in (β,Λ) given F , simplifying the search for the

global maximum of the objective function. In contrast, joint estimation of these parameters

can be computationally challenging even for linear models, as the objective functions are gen-

erally not convex in (β,F ,Λ) (see Bai (2009)). However, the success of the CCE approach

relies on the assumption that it is possible to consistently estimate the (space of) latent factors
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using the observed regressors, which contradicts the usual assumption of cross-sectional inde-

pendence. Nonetheless, as pointed out in Andrews (2005): “...it seems apparent that common

shocks (macroeconomic, technological, legal/institutional, political, environmental, health, and

sociological shocks) are a likely feature of cross-section economic data. This is true whether the

population units in the cross-section regression are individuals, households, firms, industries,

plants, cities, states, countries, or products.” Thus, the seemly stronger CCE assumption that

the cross-sectional dependence of observations are driven by the same latent factors could be

potentially advantageous in certain applications.

Finally, in a closely related paper, Boneva and Linton (2017) also considered the CCE esti-

mation of nonlinear panels, but their approach assumes that the coefficients of the regressors are

heterogeneous across individuals. Consequently, the estimators of these coefficients converge at

the rate of
√
T , and their asymptotic distributions are free of asymptotic biases.3 In this paper,

the CCE estimator of the homogeneous coefficients converges at the rate of
√
NT , making it far

more challenging to establish its asymptotic distribution, because many higher order terms in

the stochastic expansion of the estimator now become asymptotic biases whose analytical forms

need to be carefully derived.4

The rest of the paper is structured as follows: Section 2 introduces the model along with the

CCE estimators for the coefficients and the average partial effects of the regressors. Moving on

to Section 3, we establish the asymptotic properties of the estimators and demonstrate how to

correct their asymptotic biases and consistently estimate their asymptotic variances. Simulation

results are presented in Section 4 to evaluate the performance of the estimators in finite samples.

Section 5 describes an empirical application where we use the proposed method to study the

arbitrage behavior of U.S. nonfinancial firms across different security markets. Finally, Section

6 concludes. The appendix provides the proof of Theorem 1, whereas the proofs of the other

theorems are available in an online appendix to save space.

2 The Model and the CCE Estimator

2.1 The Model

Let yit ∈ R and xit ∈ Rk be the observed outcome and covariates respectively for individual

i at period t, and let λi,ft ∈ Rr be the unobserved factor loadings (or individual effects) and

factors (or time effects) respectively. Suppose that we have a random sample {yit,xit} for

i = 1, . . . , N, t = 1, . . . , T . Following the literature on nonlinear panels with large T , the realized

3Since these authors use the cross-sectional averages of all the regressors to approximate the latent factors,
their asymptotic analysis is likely to suffer from the degenerated regressors problem as well.

4Gao et al. (2023) also considered a mean group type estimator of the heterogeneous coefficients that converges
at the rate of

√
NT , but they couldn’t derive the asymptotic biases of that estimator.
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values of λi and ft, denoted as λ0i and f0t, will be treated as fixed parameters in the rest of the

paper. Alternatively, as in Chen et al. (2021), all the assumptions and asymptotic results to be

presented in the next section can be understood as being conditional on (Λ,F ) = (Λ0,F0) —

see Remark 6 of Chen (2022).

For some β0 ∈ Rk, assume that the likelihood function of yit given xit can be written as

L(yit,β
′
0xit + λ′

0if0t).

Throughout the paper, the following examples are used to illustrate the applicability of our

general theoretical results.

Example 1 (Binary Choice Model). Define y∗it = β′
0xit + λ′

0if0t − ϵit and assume that the

cumulative distribution function (CDF) of ϵit is G. We only observe a binary outcome: yit =

1{y∗it ≥ 0}. In this case, we have

L(yit,β
′
0xit + λ′

0if0t) = G(zit)
yit [1−G(zit)]

1−yit ,

where zit = β′
0xit + λ′

0if0t. Two popular choices that are widely used in practice are logit and

probit models, corresponding to G(z) = exp(z)
1+exp(z) and G(z) = Φ(z) respectively, where Φ(z) is the

CDF of the standard normal distribution.

Example 2 (Poisson Model). Suppose that yit only take non-negative integer values and that

L(yit,β
′
0xit + λ′

0if0t) =
hyitit

yit!
· exp(−hit),

where hit = exp(zit) = exp(β′
0xit+λ′

0if0t). This model is useful when yit only takes non-negative

integer values.

For any β ∈ Rk and λi,ft ∈ Rr, write lit(β,λ
′
ift) = log [L(yit,β

′xit + λ′
ift)], then the

objective function can be written as

LNT (β,Λ,F ) =
1

NT

N∑
i=1

T∑
t=1

lit(β,λ
′
ift),

where Λ = (λ1, . . . ,λN )′ and F = (f1, . . . ,fT )
′. In the spirit of Bai (2009), Chen et al. (2021)

proposed to estimate (β0,Λ0,F0) jointly to maximize the above objective function. This esti-

mation procedure leaves the relationship between the regressors, the factors and factor loadings

unspecified, thus it is usually termed as the fixed-effects estimator. The practical implementa-

tion of this estimation method usually involves iterations between (β,Λ) and F . In particular,

Chen (2016) proposed an EM-type iterative algorithm that converges to local maximums of the

objective function. Moreover, it is usually assumed that the number of factors r is known in the
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asymptotic theory and in the practical implementation of the fixed-effects estimator.5 The effect

of overestimating r in linear panel data models was analyzed by Moon and Weidner (2015), but

extending their analysis to nonlinear models is much more challenging.

Remark 1. Even though the function LNT is interpreted as the log likelihood function above, our

results below also apply to other extremum estimators where LNT represents a smooth objective

function. For example, when LNT (β,Λ,F ) = (NT )−1
∑N

i=1

∑T
t=1−(yit − β′xit − λ′

ift)
2, the

underlying model is a linear panel data model where the errors have a factor structure (see Bai

(2009) and Moon and Weidner (2015)). However, it should be noted that our results do not

apply to the cases where the objective functions are not smooth, such as the quantile panel data

models considered by Chen (2022).

2.2 The CCE Estimator

In this paper, we try to overcome the problems of the fixed-effects estimator mentioned above

by taking a CCE approach pioneered by Pesaran (2006). The CCE approach starts by assuming

a linear relationship between the regressors and the common factors as follows:

xit = Γif0t + eit (1)

for i = 1, . . . , N, t = 1 . . . , T , where Γi is a k × r matrix of non-random constants, and eit ∈ Rk

is a vector of idiosyncratic components. The key of the CCE estimator is to approximate the

common factors by the cross-sectional averages of the regressors: x̄t = N−1
∑N

i=1 xit.
6 To ensure

that the space of the common factors can be spanned by x̄t, the following assumption is usually

imposed:

Assumption 1. Let Γ̄ = N−1
∑N

i=1 Γi, then Γ̄ → Γ0 as N → ∞ with rank(Γ0) = r.

The above assumption implicitly requires that the number of regressors is not smaller than

the number of factors (i.e., k ≥ r). Under Assumption 1 and some other restrictions on the

cross-sectional dependence of eit, it is easy to show that

x̄t = Γ0f0t + oP (1) for all t = 1, . . . , T.

When k = r, the above equation implies that x̄t can be used as approximations of f0t since

they span the same space asymptotically. However, when k > r, using x̄t as estimators of f0t

5Chen et al. (2021) proposed an method adapted from the eigen-ratio estimator of Ahn and Horenstein (2013)
to estimate r, but the consistency of their method was not established.

6In linear panel data models, (1) implies that the dependent variables have a factor structure, thus the cross-
sectional averages of the dependent variables are also used to approximate the common factors. However, in
nonlinear models, the dependent variables generally do not have a factor structure. Thus, only the cross-sectional
averages of the regressors are used.
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amounts to overestimating the number of factors. In particular, the fact that T−1
∑T

t=1 x̄tx̄
′
t

converges in probability to a singular matrix when k > r implies asymptotic multicolinearity

of the estimated factors, leading to the problem of degenerated regressors as pointed out in

Karabiyik et al. (2017). For linear models, Karabiyik et al. (2017) showed that the standard

CCE estimator for β0 is still consistent but it suffers from extra asymptotic biases due to this

problem.

To overcome the problem of degenerated regressors in the standard CCE method, in this

paper we use an alternative approach to estimate the common factors. Let Σ̂x̄ = T−1
∑T

t=1 x̄tx̄
′
t

and Ψ̂ be the k× r matrix of eigenvectors associated with the first r eigenvalues of Σ̂x̄, then the

estimated factors are defined as f̂t = Ψ̂′x̄t. To establish the properties of f̂t, we need to impose

the following assumptions:

Assumption 2. Define Σ̂f0 = T−1
∑T

t=1 f0tf
′
0t. Let M > 0 be a generic bounded constant and

Σf0 be a r × r matrix with full rank.

(i) ∥f0t∥ ≤ M for all t.

(ii) ∥Σ̂f0 −Σf0∥ = O(T−1/2), and ∥Γ̄− Γ0∥ = O(N−1/2);

(iii) E[eit] = 0 for all i, t and E∥
√
N ēt∥2 ≤ M for all t, where ēt = N−1

∑N
i=1 eit.

Assumption 3. The non-zero eigenvalues of Γ0Σf0Γ
′
0 are distinct.

Moreover, define Ĥ = Ψ̂′Γ̄. Let D be a r×r diagonal matrix with the non-zeros eigenvalues

of Γ0Σf0Γ
′
0 in decreasing order, and let Ψ0 be the matrix of corresponding eigenvectors such

that Γ0Σf0Γ
′
0Ψ0 = Ψ0D. Then it can be shown that:

Proposition 1. Under Assumptions 1 to 3, as N,T → ∞, (i) f̂t = Ĥf0t + Ψ̂′ēt ; (ii) Ĥ is

invertible with probability approaching 1; (iii) Ψ̂
p→ Ψ0 and Ĥ

p→ H0 = Ψ′
0Γ0.

The above results imply that f̂t is a consistent estimator of f0t up to a non-singular normal-

ization matrix. Given f̂t, the CCE estimator is defined as

(β̂, λ̂1, . . . , λ̂N ) = argmax
β∈B,λi∈A

1

NT

N∑
i=1

T∑
t=1

lit(β,λ
′
if̂t), (2)

where lit(β,λ
′
if̂t) = logL(yit,β

′xit + λ′
if̂t), and B ⊂ Rk,A ⊂ Rr. Note that in practice, the

CCE estimator can be obtained using standard packages in Matlab or R by treating yit as the

dependent variable and (xit,1{i = 1}f̂t, . . . ,1{i = N}f̂t) as the regressors. It should also be

mentioned that the computational cost of the CCE estimator is much lower than the fixed-

effects estimator, because in the maximization problem (2) there are k +Nr parameters while

for the fixed-effects estimator there are k + (N + T )r parameters. More importantly, since the

objective function LNT (β,Λ,F ) is generally not convex in (β,Λ,F ), the joint estimation of

these estimators normally involves iterative procedures that do not necessary find the global
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maximum of the objective function. In contrast, it is well known that given F , the objective

function becomes convex in (β,Λ) in our leading examples (e.g., probit and logit models). Thus,

the estimator defined in (2) can be easily obtained using standard optimization methods such

as the gradient descent algorithm, without the need for a good initial estimator.

Finally, the analysis above assumes that r is known. In practice, r needs to be estimated

before implementing the CCE method. Observe that if Σ̂f0 converges to a positive definite

matrix, it is easy to show that Σ̂x̄ converges in probability to a matrix with rank r. Thus, to

estimate r, we can just estimate the asymptotic rank of Σ̂x̄. In particular, let ρ̂1, . . . , ρ̂k be the

eigenvalues of Σ̂x̄ in decreasing order, and let PNT be a sequence of constants converging to 0

as N,T → ∞, the estimator of r can be simply defined as:

r̂ =
k∑

j=1

1{ρ̂j ≥ PNT }.

The following result was established in Chen (2022).7

Proposition 2. Under Assumptions 1 and 2, we have P [r̂ = r] → 1 as N,T → ∞ if PNT → 0

and PNT ·min{
√
N,

√
T} → ∞.

Given the above result, the true number of factors r can be treated as known in the rest of

the paper.8

Remark 2. An alternative method to estimate the number of factors, inspired by Ahn and

Horenstein (2013), is to consider the following estimator based on the ratios of the eigenvalues:

r̃ = argmax
1≤j≤k−1

ρ̂j/ρ̂j+1.

The advantage of this estimator is that it does not require choosing any tuning parameters.

However, the main problem of this estimator is that it relies on the separation of nonzero and

zero eigenvalues, so it does not work when k = r, because in this case all eigenvalues of Σ̂x̄

converge to positive constants. Please see Chen (2022) for simulation results on the finite sample

performances of r̂ and r̃.

2.3 The Estimator of Average Partial Effects

For models with limited dependent variables, the coefficient β0 usually cannot capture the partial

effects of the regressors, which are the main object of interests for most practitioners. Consider

7The proofs of Proposition 1 and Proposition 2 are identical to the proofs of Proposition 1 and Lemma 1 in
Chen (2022). Thus, they are omitted to save space.

8See footnote 5 of Bai (2003).
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the binary choice models, and let x(0),x(1) ∈ Rk be some fixed values of the regressors before

and after some policy intervention, the effect of the policy on the probability of success is given

by

δ(x(0),x(1);β0,λ
′
0if0t) = G(β′

0x
(1) + λ′

0if0t)−G(β′
0x

(0) + λ′
0if0t).

A typical example is that the first element of x is a binary indicator for some treatment or policy

change, then x(0) = (0, x2, . . . , xk) and x(1) = (1, x2, . . . , xk). In this case, δ(x(0),x(1);β0,λ
′
0if0t)

denotes the partial effect of the treatment for individual i at time t, while his/her other char-

acteristics are fixed at (x2, . . . , xk). Similar partial effects can be defined for other nonlinear

models, depending on the applications at hand. However, it should be noted that in nonlinear

models such partial effects generally depends on x(0),x(1),λ0i,f0t.

To summarize the partial effects for all the individuals in the dataset, we consider the fol-

lowing average partial effect (APE):

δ̄0(x
(0),x(1)) =

1

NT

N∑
i=1

T∑
t=1

δ(x(0),x(1);β0,λ
′
0if0t),

which is different from the definitions of Chen et al. (2021) and Boneva and Linton (2017), who

take expectations of the partial effects with respect to the distribution of the regressors. Note

that our definition of APE is closer in spirit to the definition of Hahn and Newey (2004), in

the sense that it only averages out the individual and time effects while fixing the values of the

regressors. Given (β̂, Λ̂, F̂ ), the estimator of APE is simply given by

δ̂(x(0),x(1)) =
1

NT

N∑
i=1

T∑
t=1

δ(x(0),x(1); β̂, λ̂′
if̂t).

3 Asymptotic Results

This section presents the main theoretical results of this paper. Sections 3.1 and 3.2 provide

the asymptotic distributions of the CCE estimators for β0 and the APE. Section 3.3 discusses

how to correct the asymptotic biases of the estimators. Finally, estimators for the asymptotic

variances are proposed in Section 3.4.

3.1 Asymptotic Distribution of the CCE Estimator

Let c0,it = λ′
0if0t. Write f̃0t = H0f0t and λ̃0i = (H−1

0 )′λ0i. Note that λ̃′
0if̃0t = λ′

0if0t = c0,it.

Let F be a compact subset of Rr such that f̃0t ∈ F for all t. Let C be a compact subset of R

9



such that λ′f ∈ C for all λ ∈ A and all f ∈ F . Moreover, define

l
(j)
it (β,λ′

ift) =
∂j log[L(y, z)]

∂zj
|y=yit,z=β′xit+λ′

ift
for j = 1, . . . , 4,

and

Ai︸︷︷︸
r×r

=
1

T

T∑
t=1

E[l(2)it ]f0tf
′
0t, Bi︸︷︷︸

k×r

=
1

T

T∑
t=1

E[l(2)it xit]f
′
0t, ẋit = xit −BiA

−1
i f0t,

where we suppress the arguments of l
(j)
it when they are evaluated at (β0, c0,it) to simplify the

notations. Assume the following conditions hold:

Assumption 4. Let p > 1 and γ > 0 be some constants, and let M(·) : Rk 7→ R be a function

such that max1≤i≤N,1≤t≤T E[M(xit)]
2p+γ < ∞ uniformly for all N,T . Define yT

i = (yi1, . . . , yiT )

and XT
i = (xi1, . . . ,xiT ).

(i) For each i, the sequence {(yit,xit) : 1 ≤ t ≤ T} is α-mixing with mixing coefficient αi(j), and

max1≤i≤N αi(j) ≤ Cαj for all j and some C > 0, 0 < α < 1. Moreover, {(yT
i ,X

T
i ) : 1 ≤ i ≤ N}

are independent across i.

(ii) B and A are compact sets. β0 is an interior point of B, and λ̃01, . . . , λ̃0N are all interior

points of A.

(iii) Define l̄it(β, c) = E[lit(β, c)]. Then for any ϵ > 0, there exists a δ(ϵ) > 0 such that

l̄it(β0, c0,it)− sup
∥(β,λ)−(β0,λ̃0i)∥≥ϵ

l̄it(β,λ
′f̃0t) ≥ δ(ϵ) for all i, t.

(iv) |lit(β, c)| ≤ M(xit), |l(j)it (β, c)| · ∥xit∥d ≤ M(xit) for all β ∈ B and c ∈ C, for j = 1, 2, 3, 4

and d = 0, 1, 2, 3. Moreover, max1≤i≤N,1≤t≤T E∥xit∥2p+γ < ∞ uniformly for all N,T .

(v) N/T → κ2 for some κ > 0 as N,T → ∞.

(vi) There exists a k × k positive definite matrix ∆ such that:

1

NT

N∑
i=1

T∑
t=1

E
[
l
(2)
it ẋitẋ

′
it

]
→ ∆ as N,T → ∞.

(vii) A1, . . . ,AN are all invertible for large T .

Most of the conditions in Assumption 4 are standard in the literature, with a few exceptions.

First, Assumption 4(i) excludes cross-sectional dependence in the data,9 but it allows for general

time-series dependence for each i that is excluded by Assumption 1(i) of Chen et al. (2021).

Second, unlike Assumption 1(v) of Chen et al. (2021), Assumption B of Ando et al. (2022) and

9As stressed in the beginning of Section 2.1, these assumptions are made conditional on the factors and factor
loadings. Thus, cross-sectional dependence due to the common factors are still allowed.
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Assumption 2.2.C of Gao et al. (2023), we don’t need N−1Λ′
0Λ0 to converge to some positive

definite matrix. Thus, our assumption allows some columns of Λ0 to be 0, meaning that some

factors may affect the dependent variables yit only indirectly through the regressors xit. Third,

our moment restrictions on xit are generally much weaker than those imposed in existing studies.

For example, both Chen et al. (2021) and Ando et al. (2022) require xit to have bounded support,

while Gao et al. (2023) assumes that maxi≤N,t≤T ∥xit∥ = Op(logNT ), which essentially require

all the moments of xit to exist.

In order to establish the asymptotic distribution of the CCE estimator, the following defini-

tions are needed:

Ct︸︷︷︸
k×r

=
1

N

N∑
i=1

E[l(2)it ẋit]λ
′
0i, Dt,j︸︷︷︸

r×r

=
1

N

N∑
i=1

λ0iBi,jA
−1
i l̄

(2)
it ,

Gt,j︸︷︷︸
r×r

=
1

N

N∑
i=1

E
[
l
(3)
it ẋit,j

]
λ0iλ

′
0i, Qi︸︷︷︸

r×r

=
1

T

T∑
t=1

T∑
s=1

E
[
l
(1)
it l

(1)
is

]
f0tf

′
0s,

where Bi,j is the jth row of Bi.

Assumption 5. Let Υ0 = H−1
0 Ψ′

0 and wit = l
(1)
it ẋit+CtΥ0eit. Then the following limits exist:

Ω = lim
N,T→∞

1

NT

N∑
i=1

T∑
t=1

T∑
s=1

E
[
witw

′
is

]
,

b1 = −0.5 lim
N,T→∞

1

NT

N∑
i=1

T∑
t=1

E[l(3)it ẋit] · f ′
0tA

−1
i QiA

−1
i f0t,

b2 = lim
N,T→∞

1

NT

N∑
i=1

T∑
t=1

T∑
s=1

E
[
l
(2)
it l

(1)
is ẋit

]
· f ′

0tA
−1
i f0s,

d1 = − lim
N,T→∞

1

NT

N∑
i=1

T∑
t=1

E
[
l
(2)
it ẋite

′
it

]
Υ′

0λ0i,

d2j = lim
N,T→∞

1

NT

N∑
i=1

T∑
t=1

Tr
(
E[eite′it] ·Υ′

0(Dt,j − 0.5Gt,j)Υ0

)
for j = 1, . . . , k,

and d2 = (d21, . . . , d
2
k)

′.

Then we can show that:

Theorem 1. Under Assumptions 1 to 5,

√
NT (β̂ − β0)

d→ N
(
κ∆−1b+ κ−1∆−1d,∆−1Ω∆−1

)
11



as N,T → ∞, where b = b1 + b2 and d = d1 + d2.

The proof of Theorem 1 is based on the following Bahadur representation for β̂:

∆(β̂ − β0) + oP (∥β̂ − β0∥) = − 1

NT

N∑
i=1

T∑
t=1

wit +
b

T
+

d

N
+ oP (T

−1),

where the bias term b/T is due to the estimation error of Λ̂, and the bias term d/N is caused

by the estimation error of F̂ . Similar Bahadur representations were established by Fernández-

Val and Weidner (2016) and Chen et al. (2021) for nonlinear panel data models, and by Chen

(2022) for quantile panel data models. This representation provides the theoretical basis for the

analytical and SPJ bias corrections that will be discussed in Section 3.3 below.

In the next two remarks, Theorem 1 above is compared with the main results of Hahn and

Newey (2004) and Chen et al. (2021). Following these two papers, we assume that there is no

time-series dependence to facilitate the comparison. Note that in this case, the expressions of

Qi, Ω and b2 reduce to

Qi =
1

T

T∑
t=1

E
[
l
(1)
it

]2
f0tf

′
0t, Ω = lim

N,T→∞

1

NT

N∑
i=1

T∑
t=1

E
[
witw

′
it

]
,

b2 = lim
N,T→∞

1

NT

N∑
i=1

T∑
t=1

E
[
l
(2)
it l

(1)
it ẋit

]
· f ′

0tA
−1
i f0t.

Remark 3. As mentioned in Remark 1, Theorem 1 also holds for extremum estimators where

lit(β, c) is some smooth objective function such that (β0, c0,it) uniquely maximizes E[lit(β, c)].
When lit is the log likelihood function as we have assumed, the expressions for the biases can be

further simplified. Note that Bartlett identity gives E[l(1)it ]2 = −E[l(2)it ], therefore Qi = −Ai and

b = − lim
N,T→∞

1

NT

N∑
i=1

T∑
t=1

E
[(

l
(2)
it l

(1)
it + 0.5l

(3)
it

)
ẋit

]
· f ′

0tQ
−1
i f0t.

The above expression for b looks similar to the term B̄∞ in Theorem 1 of Chen et al. (2021).

However, since our definition of ẋit is quite different from their definition of X̃it, the asymptotic

biases derived in these two papers are not identical.

For binary choice models, it can be shown that

E
[
l
(2)
it l

(1)
it + 0.5l

(3)
it |xit

]
= −0.5

g(zit)g
(1)(zit)

G(zit)(1−G(zit))
,

where g(z) = ∂G(z)/∂z and g(j)(z) = ∂jg(z)/∂zj. In particular, for logit models, it can be

12



shown that g(z) = G(z)(1−G(z)), thus

b = 0.5 lim
N,T→∞

1

NT

N∑
i=1

T∑
t=1

E
[
g(1)(zit)ẋit

]
· f ′

0tQ
−1
i f0t.

For probit models, g(1)(z) = −zg(z),

E
[
l
(2)
it l

(1)
it + 0.5l

(3)
it |xit

]
= 0.5zit

(g(zit))
2

G(zit)(1−G(zit))
= −0.5zit · E

[
l
(2)
it |xit

]
,

and

b = 0.5 lim
N,T→∞

1

NT

N∑
i=1

T∑
t=1

E
[
E
[
l
(2)
it |xit

]
zitẋit

]
· f ′

0tQ
−1
i f0t.

For poisson models, we have l
(1)
it = yit− exp(zit), l

(2)
it = l

(3)
it = − exp(zit). It then follows that

E[l(1)it l
(2)
it |xit] = 0 and

b = −0.5 lim
N,T→∞

1

NT

N∑
i=1

T∑
t=1

E [exp(zit)ẋit] · f ′
0tQ

−1
i f0t.

Remark 4. The bias terms d1,d2 and the term CtΥ0eit in the definition of wit come from the

estimation errors of f̂t. Thus, if f0t is observed, these terms will disappear. In this case,

Ω = lim
N,T→∞

1

NT

N∑
i=1

T∑
t=1

E
[
(l
(1)
it )2 · ẋitẋ

′
it

]
= −∆,

and thus √
NT (β̂ − β0)

d→ N
(
κ∆−1b,−∆−1

)
.

Moreover, if r = 1 and f0t = 1 for all t, the model reduces to the standard nonlinear panel

models with only individual effects, and

Ai =
1

T

T∑
t=1

E[l(2)it ], Bi =
1

T

T∑
t=1

E[l(2)it xit], Qi = −Ai, ẋit = xit −Bi/Ai,

and

b = lim
N,T→∞

1

NT

N∑
i=1

T∑
t=1

E
[(

l
(2)
it l

(1)
it + 0.5l

(3)
it

)
ẋit

]
/Ai.

Under stationarity assumptions, the above expression coincides with the asymptotic biases of the

fixed-effects estimator derived in Hahn and Newey (2004).
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3.2 Asymptotic Distribution of the APE Estimator

To derive the asymptotic distribution of the APE estimator, we first define the partial derivatives

of δ: δβ(β, c) = ∂δ(x(0),x(1);β, c)/∂β, δc(β, c) = ∂δ(x(0),x(1);β, c)/∂c. Moreover, δβc(β, c),

δββ(β, c), δcc(β, c) and δccc(β, c) can be defined in a similar fasion. For simplicity, write δβ0,it =

δβ(β0, c0,it), δ
c
0,it = δc(β0, c0,it) and δcc0,it = δcc(β0, c0,it). In addition, define

γ = lim
N,T→∞

(
1

NT

N∑
i=1

T∑
t=1

δβ0,it −
1

N

N∑
i=1

BiA
−1
i γi

)
, γi =

1

T

T∑
t=1

δc0,itf0t, γt =
1

N

N∑
i=1

δc0,itλ0i,

Rt =
1

N

N∑
i=1

λ0iγ
′
iA

−1
i l̄

(2)
it , Wt = 0.5

1

N

N∑
i=1

(
δcc0,it − l̄

(3)
it · γ ′

iA
−1
i f0t

)
λ0iλ

′
0i,

and assume that:

Assumption 6. There exists a M < ∞ such that ∥δβc(β, c)∥ ≤ M , ∥δββ(β, c)∥ ≤ M ,

∥δccβ(β, c)∥ ≤ M and ∥δccc(β, c)∥ ≤ M for all β ∈ B and c ∈ C.

Assumption 7. There following limits exist:

b3 = 0.5 lim
N,T→∞

1

NT

N∑
i=1

T∑
t=1

(
δcc0,it − l̄

(3)
it · γ ′

iA
−1
i f0t

)
· f ′

0tA
−1
i QiA

−1
i f0t,

b4 = lim
N,T→∞

1

NT

N∑
i=1

T∑
t=1

T∑
s=1

E
[
l
(2)
it l

(1)
is

]
· γ ′

iA
−1
i f0t · f ′

0tA
−1
i f0s,

d3 = − lim
N,T→∞

1

NT

N∑
i=1

T∑
t=1

γ ′
iA

−1
i f0t · λ′

0iΥ0 · E
[
l
(2)
it eit

]
,

d4 = lim
N,T→∞

1

NT

N∑
i=1

T∑
t=1

Tr
[
Υ′

0(Wt −Rt)Υ0 · E
[
eite

′
it

]]
.

Then, it can be shown that:

Theorem 2. Under Assumptions 1 to 7,

√
NT

[
δ̂(x(0),x(1))− δ̄0(x

(0),x(1))
]

d→ N (κ · bAPE + κ−1 · dAPE , σ
2)

as N,T → ∞, where

σ2 = lim
N,T→∞

1

NT

N∑
i=1

T∑
t=1

T∑
s=1

E[vitvis], vit = γ ′∆−1wit + (Rtf0t − γt)
′Υ0eit + l

(1)
it γ ′

iA
−1
i f0t,

bAPE = γ ′∆−1(b1 + b2) + b3 + b4, dAPE = γ ′∆−1(d1 + d2) + d3 + d4.
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3.3 Bias Correction

In order to make valid inference, we need to eliminate the asymptotic biases of the CCE estimator

and the APE estimator. This can be done by either analytical bias correction or by SPJ method.

3.3.1 Analytical Bias Correction

For analytical bias correction, consistent estimators of ∆, b1, b2,d1,d2 and γ, b3, b4, d3, d4 are

needed. First, consider the bias correction of β̂ and define:

l̂
(j)
it = l

(j)
it (β̂, ĉit), Âi =

1

T

T∑
t=1

l̂
(2)
it f̂tf̂

′
t , B̂i =

1

T

T∑
t=1

l̂
(2)
it xitf̂

′
t , ˆ̇xit = xit − B̂iÂ

−1
i f̂t,

∆̂ =
1

NT

N∑
i=1

T∑
t=1

l̂
(2)
it

ˆ̇xit
ˆ̇x′
it, D̂t,j =

1

N

N∑
i=1

λ̂iB̂i,jÂ
−1
i l̂

(2)
it , Ĝt,j =

1

N

N∑
i=1

l̂
(3)
it

ˆ̇xit,jλ̂iλ̂
′
i, Υ̂ = Ψ̂′,

Q̂i =
1

T

T∑
t=1

T∑
s=1

l̂
(1)
it l̂

(1)
is f̂tf̂

′
sk

(
t− s

L

)
, êit = xit − Γ̂if̂t, Γ̂′

i =

(
T∑
t=1

f̂tf̂
′
t

)−1( T∑
t=1

f̂tx
′
it

)
,

where L → ∞ as N,T → ∞ and k(x) = (1 − |x|)1{|x| ≤ 1} is the Bartlett kernel function,

corresponding to the HAC estimator of Newey and West (1987). Then the estimators of the

biases of β̂ can be constructed as follows:

b̂1 = −0.5
1

NT

N∑
i=1

T∑
t=1

l̂
(3)
it

ˆ̇xitf̂
′
tÂ

−1
i Q̂iÂ

−1
i f̂t, b̂2 =

1

NT

N∑
i=1

T∑
t=1

T∑
s=1

l̂
(2)
it l̂

(1)
is

ˆ̇xitf̂
′
tÂ

−1
i f̂sk

(
t− s

L

)
,

d̂1 = − 1

NT

N∑
i=1

T∑
t=1

l̂
(2)
it

ˆ̇xitê
′
itΥ̂

′λ̂i, d̂2j =
1

NT

N∑
i=1

T∑
t=1

Tr
(
êitê

′
it · Υ̂′(D̂t,j − 0.5Ĝt,j)Υ̂

)
,

and d̂2 = (d21, . . . , d
2
k)

′, b̂ = b̂1 + b̂2, d̂ = d̂1 + d̂2. The bias-corrected CCE estimator is then

defined as

β̂ABC = β̂ − ∆̂−1

(
b̂

T
+

d̂

N

)
.

Next, consider the bias correction of the APE estimator and define δ̂cit = δc(β̂, ĉit), δ̂
β
it =

δβ(β̂, ĉit), δ̂
cc
it = δcc(β̂, ĉit),

γ̂i =
1

T

T∑
t=1

δ̂citf̂t, γ̂t =
1

N

N∑
i=1

δ̂citλ̂i, γ̂ =
1

NT

N∑
i=1

T∑
t=1

δ̂βit −
1

N

N∑
i=1

B̂iÂ
−1
i γ̂i,
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R̂t =
1

N

N∑
i=1

λ̂iγ̂
′
iÂ

−1
i l̂

(2)
it , Ŵt = 0.5

1

N

N∑
i=1

(
δ̂ccit − l̂

(3)
it · γ̂ ′

iÂ
−1
i f̂t

)
λ̂iλ̂

′
i,

b̂3 = 0.5
1

NT

N∑
i=1

T∑
t=1

(
δ̂ccit − l̂

(3)
it · γ̂ ′

iÂ
−1
i f̂t

)
· f̂ ′

tÂ
−1
i Q̂iÂ

−1
i f̂t,

b̂4 =
1

NT

N∑
i=1

T∑
t=1

T∑
s=1

l̂
(2)
it l̂

(1)
is · γ̂ ′

iÂ
−1
i f̂t · f̂ ′

tÂ
−1
i f̂sk

(
t− s

L

)
,

d̂3 = − 1

NT

N∑
i=1

T∑
t=1

γ̂ ′
iÂ

−1
i f̂t · λ̂′

iΥ̂ · l̂(2)it êit, d̂4 =
1

NT

N∑
i=1

T∑
t=1

Tr
[
Υ̂′(Ŵt − R̂t)Υ̂ · êitê′it

]
.

The bias-corrected APE estimator is then defined as

δ̂ABC(x
(0),x(1)) = δ̂(x(0),x(1))− γ̂ ′∆̂−1b̂+ b̂3 + b̂4

T
− γ̂ ′∆̂−1d̂+ d̂3 + d̂4

N
.

It can be shown that the above bias-corrected estimators are free of asymptotic biases.

Theorem 3. If L → ∞ and LT 1/(2p)−1/2 → 0 as N,T → ∞, then under Assumptions 1 to 5 it

holds that ∆̂ = ∆+ oP (1), b̂ = b+ oP (1), d̂ = d+ oP (1) and therefore

√
NT (β̂ABC − β0)

d→ N
(
0,∆−1Ω∆−1

)
as N,T → ∞.

Moreover, under Assumptions 1 to 7, it holds that γ̂ = γ+oP (1), b̂
3 = b3+oP (1), b̂

4 = b4+oP (1),

d̂3 = d3 + oP (1), d̂
4 = d4 + oP (1) and therefore

√
NT

[
δ̂ABC(x

(0),x(1))− δ̄0(x
(0),x(1))

]
d→ N (0, σ2) as N,T → ∞.

3.3.2 SPJ Bias Correction

Following Dhaene and Jochmans (2015), Fernández-Val and Weidner (2016) and Chen et al.

(2021), bias correction can also be achieved by SPJ. Let β̂1
N/2,T and β̂2

N/2,T be the CCE estimators

using subsamples {(i, t) : i = 1, . . . , N/2; t = 1, . . . , T} and {(i, t) : i = N/2 + 1, . . . , N ; t =

1, . . . , T} respectively. Similarly, let β̂1
N,T/2 and β̂2

N,T/2 be the CCE estimators using subsamples

{(i, t) : i = 1, . . . , N ; t = 1, . . . , T/2} and {(i, t) : i = 1, . . . , N ; t = T/2 + 1, . . . , T} respectively.

Define

β̂SPJ = 3β̂ − 1

2

(
β̂1
N/2,T + β̂2

N/2,T

)
− 1

2

(
β̂1
N,T/2 + β̂2

N,T/2

)
.

Then under some homogeneity and stationarity conditions to guarantee that the asymptotic

biases of β̂1
N/2,T , β̂

2
N/2,T , β̂

1
N,T/2, β̂

2
N,T/2 and β̂ all converge to the same limit, it can be shown

that √
NT (β̂SPJ − β0)

d→ N
(
0,∆−1Ω∆−1

)
as N,T → ∞.

16



A bias-corrected estimator using the SPJ for the APE can be defined in a similar fashion.

3.4 Estimating the Variances

For the CCE estimator, define

Ĉt =
1

N

N∑
i=1

l̂
(2)
it

ˆ̇xitλ̂
′
i, ŵit = l̂

(1)
it

ˆ̇xit + ĈtΥ̂êit, Ω̂ =
1

NT

N∑
i=1

T∑
t=1

T∑
s=1

ŵitŵ
′
isk

(
t− s

L

)
.

For the APE estimator, define

v̂it = γ̂ ′∆̂−1ŵit + (R̂tf̂t − γ̂t)
′Υ̂êit + l̂

(1)
it γ̂ ′

iÂ
−1
i f̂t, σ̂2 =

1

NT

N∑
i=1

T∑
t=1

T∑
s=1

v̂itv̂isk

(
t− s

L

)
.

It can be show that:

Theorem 4. Under Assumptions 1 to 7, ∥∆̂−1Ω̂∆̂−1 − ∆−1Ω∆−1∥ = oP (1) and σ̂2 − σ2 =

oP (1) if L → ∞ and LT 1/(2p)−1/2 → 0 as N,T → ∞.

The above result ensures that asymptotically valid inference can be made based on the

estimated variances and bias-corrected estimators.

Remark 5. As pointed out in Chen et al. (2021), the optimal choice of the bandwidth parameter

L in nonlinear panel data models remains a challenging open question, and there is no consensus

in the literature regarding this choice in practice. For example, Hahn and Kuersteiner (2011)

and Galvao and Kato (2016) recommended L = 1, whereas Fernández-Val and Weidner (2016)

suggested a sensitivity analysis starting from L = 0. In the next section, the choice of L is

examined by means of Monte Carlo simulations. We find that setting L = 1 works really well

in finite samples when the time-series dependence is moderate, and therefore recommend this

choice for empirical applications.

4 Simulations

In this section, the finite sample performance of the proposed estimation method is evaluated

using Monte Carlo simulations. The data generating process (DGP) of yit is given by:

yit = 1{xit,1 + xit,2 + xit,3 + xit,4 + λi,1ft,1 + λi,2ft,2 − ϵit ≥ 0},

where ϵit are i.i.d with the standard logistic distributions, ft,1 = 0.3 + 0.7ft−1,1 + u1t, ft,2 =

0.6 + 0.4ft−1,2 + u2t, u1t, u2t ∼ i.i.d N (0, 1) and λi,1, λi,2 ∼ i.i.d N (1, 1). In addition, the
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covariates are generated by

xit,1 = θ1ift,1 + ft,2 + eit,1, xit,2 = θ2ift,2 + eit,2, xit,3 = 1.5eit,3, xit,4 = eit,4,

where θ1i, θ2i ∼ i.i.d N (1, 1). As for eit,j , j = 1, 2, 3, 4, two cases are considered : (i) eit,j ∼
i.i.d N (0, 1); (ii) eit,j = 0.6ei,t−1,j + hit,j where hit,j ∼ i.i.d N (0, 1). For the first case, there is

no serial dependence in (yit,xit) conditional on {λi} and {ft}. For the second case, we need to

take into account the time-series dependence when constructing the bias-corrected estimators

and estimating the asymptotic variances.

Our focus is whether the bias correction methods proposed in Section 3.3 can effectively

reduce the bias of the CCE estimator, and therefore improve the empirical coverage rate of the

confidence interval. To this end, we compare three estimators: the CCE estimator without bias

correction β̂, the CCE estimator with analytical bias correction β̂ABC , and the CCE estimator

with SPJ bias correction β̂SPJ . Table 2 below reports the biases and standard errors of these

three estimators for the above model, along with the empirical coverage rates of their confidence

intervals from 500 replications forN,T ∈ {50, 100, 200}. For the DGP without serial dependence,

we use the formula for logistic models given in Remark 3 and the results are reported in the

upper panel. For the DGP with serial dependence, the results with L = 1, 2, 3 are reported

in the lower three panels. Moreover, to save space, we only show results for the coefficient of

xit,1, and the results for the other three coefficients (which are very similar) are available upon

request.

Based on the results presented in Table 2, several key observations can be made. Firstly, both

bias correction methods are found to be effective in significantly reducing the biases associated

with CCE estimators. The analytical bias correction method is observed to perform better in

models without serial dependence, whilst the SPJ method is more effective in models with serial

dependence. Secondly, the standard errors of the CCE estimators are found to not be inflated in

most cases, and in some instances the standard errors of the bias-corrected estimators are even

lower. This suggests that bias correction does not come at the expense of increased uncertainty.

Thirdly, the smaller biases of the bias-corrected estimators result in empirical coverage rates

of their confidence intervals that are closer to their nominal rates of 95%. Lastly, it is found

that increasing L from 1 to 3 does not result in improved performance of the bias-corrected

estimators in models with serial dependence, thus supporting the recommendation of Hahn and

Kuersteiner (2011) and Galvao and Kato (2016) that using L = 1 in practice is a reasonably

good choice.
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5 Application

In a recent study, Ma (2019) documented that a sizable fraction of financial activities comes

from firms that simultaneously issue in one financial market and repurchase in another.10 For

example, using the U.S. data from 1985 to 2015, the author found that about 45% of equity

repurchases in value come from firms that concurrently net issue debt, and about 35% of net debt

issuance comes from the firms that net repurchase equity. The central question of that paper

is how such cross-market arbitrage of the nonfinancial firms is affected by relative valuations

across debt and equity markets. In this section, we revisit this important question by employing

the proposed estimation method in this paper. Our main objective is to compare the estimation

results of panel logistic models with only individual effects, as assumed in Ma (2019), with

models featuring interactive effects while also demonstrating the efficacy of the bias correction

methods in both type of models.

Following Ma (2019), let the dependent variable yit be an indicator that identifies instances in

which a firm i both issues debt and repurchases equity at time period t: yit = 1{sit > 0, dit > 0},
where sit is the net equity repurchases, defined as the net purchase of Common and Preferred

Stock (i.e., PRSTKC-SSTK) of firm i in quarter t, and dit is the net debt issuance, defined as

long-term debt issuance (DLTIS) minus long-term debt reduction (DLTR).

The explanatory variables in this study consist of three measures of valuations in both

the debt and equity markets. To measure the debt market valuation, firm-level spreads are

constructed since most firms have more than one outstanding bond. A bond’s credit spread is

defined as the yield difference between its yield and the contemporaneous yield on the nearest-

maturity Treasury, while the term spread is defined as the yield difference between the nearest-

maturity Treasury and the three-month Treasury bill. The firm-level credit and term spreads are

then calculated as the equal-weighted averages of its outstanding bonds’ spreads. Meanwhile,

the book-to-market ratio (B/P) is used as a measure of a firm’s valuation condition in the equity

market.11 Other firm-level variables that may impact financing decisions, such as net income,

cash holding, financing flows driven by investment plans (CAPX), deviations from target capital

structure (measured by ex ante distance to target leverage), asset growth (which captures a firm’s

expansion tendency), and firm size, will also be controlled for in the analysis.12

Our analysis draws on three primary data sources: Compustat for firm-level balance sheet

and cash flow variables, CRSP for equity market valuation data, and the Trade Reporting and

Compliance Engine (TRACE) database for bond pricing data. As per established literature, all

10Most studies discussed the capital market-driven firm financing activities in a single market, see Baker and
Wurgler (2000), Baker et al. (2003), Hong et al. (2008) and Dong et al. (2012), among others.

11As discussed in Ma (2019) and Dong et al. (2012), the value-to-price ratio is more appropriate if we want
to study the effect of equity market valuation on yit. The B/P ratio is used here mainly because we don’t have
access to some of the datasets needed to construct the value-to-price ratio.

12See Ma (2019) for detailed construction of these variables.
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flow variables, such as net issuance, in a given quarter are normalized by lagged assets at the

end of the previous quarter, while all stock variables, such as cash holdings, are normalized by

assets in the same quarter. Our final sample consists of quarterly data for 145 nonfinancial firms

over the period 2013 to 2022, corresponding to a balanced panel with T = 40 and 5800 total

observations.

We consider the following models and estimators.

Model A: (only individual effects) E[yit|xit, αi] = 1/(1 + e−β′
0xit−αi)

(A1) Conditional MLE (same as Ma (2019));

(A2) fixed-effects estimator, analytical bias correction with L = 1 (Hahn and Newey (2004));

(A3) fixed-effects estimator, SPJ bias correction (Dhaene and Jochmans (2015)).

Model B: (interactive effects) E[yit|xit,λi,ft] = 1/(1 + e−β′
0xit−λ′

ift)

(B1) CCE estimator, no bias correction;

(B2) CCE estimator, analytical bias correction with L = 1;

(B3) CCE estimator, SPJ bias correction.

Model A is the traditional panel logistic model with only individual effects, used as the

benchmark model for comparison. For this model, we consider three estimation methods: (A1)

the classical conditional maximum likelihood estimator of Andersen (1970), which is also the

estimator used by Ma (2019); (A2) the fixed-effects estimator proposed by Hahn and Newey

(2004), where the asymptotic bias is corrected using analytical bias correction; (A3) the same

fixed-effects estimator with SPJ bias correction proposed by Dhaene and Jochmans (2015).

Compared with Model A, Model B introduces interactive fixed effects and the CCE frame-

work. As in the simulations, three different estimators proposed in this paper are considered:

(B1) the CCE estimator without bias correction; (B2) the CCE estimator with analytical bias

correction where the bandwidth parameter is chosen as L = 1; (B3) the CCE estimator with

SPJ bias correction. Using the method proposed in Section 2.2 with PNT = min{N,T}−1/3, the

estimated number of factors is equal to 4.

Table 3 below displays our estimation results. Overall, the results are consistent with those

of Ma (2019), despite our use of a different sample period. Specifically, coefficients for the credit

spread and term spread are negative, while the coefficient for B/P ratio is positive. These

findings suggest that concurrently issuing debt and repurchasing equity is more likely when the

cost of debt is low and the cost of equity is high.

However, in Model B, the coefficients of the credit spread and B/P ratio are significantly

larger in absolute value, while the coefficient for the term spread is less robust across different

estimation methods. Notably, in most coefficients of Model B, significant differences are evident

between the CCE estimators and their bias-corrected counterparts. Overall, our empirical ap-

plication underscores the importance of interactive fixed effects in nonlinear panel data models
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and highlights the efficacy of the proposed bias correction methods.

6 Conclusion

In this paper, we introduced a novel CCE estimator for nonlinear panel data models with in-

teractive fixed effects and homogeneous coefficients, filling an important gap in the literature.

We established the theoretical properties of the estimator and demonstrated the effectiveness

of both analytical and split-panel jackknife methods for eliminating its asymptotic bias. Monte

Carlo simulations confirmed that the proposed estimators provide reliable results in finite sam-

ples. We also presented an empirical application that shows the applicability of our method

for analyzing the cross-market arbitrage behavior of nonfinancial firms. Although our proposed

method shows promising results, further research is needed to investigate the optimal choice of

bandwidth parameter for the HAC estimators in the presence of serial dependence. Overall, our

findings suggest that our proposed estimator is a useful tool for empirical researchers interested

in analyzing nonlinear panel data models with interactive fixed effects.
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Table 2: Bias Corrections of the CCE Estimators

Bias Std Error Coverage Rate (95%)

(N,T ) β̂ β̂ABC β̂SPJ β̂ β̂ABC β̂SPJ β̂ β̂ABC β̂SPJ

i.i.d (50, 50) 0.132 0.018 -0.055 0.134 0.216 0.151 0.842 0.910 0.870

(50, 100) 0.055 0.005 -0.022 0.081 0.089 0.080 0.886 0.934 0.922

(50, 200) 0.011 0.003 -0.005 0.054 0.055 0.057 0.946 0.940 0.924

(100, 50) 0.148 -0.027 -0.036 0.092 0.156 0.096 0.646 0.906 0.904

(100, 100) 0.062 0.000 -0.020 0.056 0.053 0.056 0.788 0.974 0.932

(100, 200) 0.026 0.004 -0.002 0.039 0.038 0.039 0.906 0.944 0.932

(200, 50) 0.164 -0.027 -0.030 0.074 0.071 0.075 0.326 0.918 0.894

(200, 100) 0.067 0.001 -0.017 0.040 0.037 0.039 0.580 0.966 0.912

(200, 200) 0.026 -0.001 -0.006 0.026 0.025 0.026 0.848 0.958 0.946

L = 1 (50, 50) 0.136 0.071 -0.059 0.123 0.454 0.147 0.792 0.806 0.826

(50, 100) 0.049 0.017 -0.024 0.068 0.068 0.072 0.892 0.942 0.920

(50, 200) 0.009 0.008 -0.003 0.046 0.048 0.050 0.934 0.926 0.916

(100, 50) 0.153 0.065 -0.037 0.085 0.124 0.092 0.530 0.884 0.870

(100, 100) 0.065 0.016 -0.017 0.048 0.047 0.048 0.722 0.938 0.940

(100, 200) 0.020 0.003 -0.007 0.034 0.034 0.034 0.900 0.930 0.932

(200, 50) 0.167 0.054 -0.034 0.061 0.063 0.066 0.176 0.860 0.868

(200, 100) 0.067 0.014 -0.017 0.036 0.034 0.035 0.496 0.936 0.912

(200, 200) 0.028 0.004 -0.004 0.024 0.023 0.023 0.768 0.952 0.944

L = 2 (50, 50) 0.116 0.057 -0.073 0.117 0.290 0.138 0.824 0.852 0.814

(50, 100) 0.056 0.025 -0.016 0.071 0.072 0.075 0.848 0.940 0.918

(50, 200) 0.006 0.007 -0.006 0.048 0.049 0.052 0.934 0.928 0.912

(100, 50) 0.157 0.057 -0.037 0.090 0.205 0.096 0.512 0.856 0.848

(100, 100) 0.064 0.016 -0.019 0.051 0.049 0.053 0.736 0.942 0.886

(100, 200) 0.020 0.003 -0.007 0.034 0.034 0.034 0.898 0.930 0.934

(200, 50) 0.166 0.057 -0.033 0.064 0.070 0.062 0.180 0.828 0.894

(200, 100) 0.068 0.016 -0.015 0.035 0.034 0.035 0.488 0.926 0.926

(200, 200) 0.028 0.004 -0.004 0.024 0.023 0.023 0.770 0.952 0.944

L = 3 (50, 50) 0.134 0.085 -0.062 0.121 0.494 0.147 0.792 0.802 0.824

(50, 100) 0.055 0.023 -0.020 0.073 0.078 0.078 0.858 0.922 0.904

(50, 200) 0.006 0.007 -0.008 0.047 0.049 0.052 0.942 0.932 0.912

(100, 50) 0.152 0.058 -0.046 0.082 0.100 0.092 0.512 0.882 0.860

(100, 100) 0.065 0.019 -0.014 0.048 0.046 0.048 0.746 0.946 0.928

(100, 200) 0.019 0.003 -0.007 0.034 0.034 0.034 0.902 0.928 0.936

(200, 50) 0.161 0.057 -0.036 0.065 0.068 0.071 0.236 0.826 0.836

(200, 100) 0.065 0.014 -0.018 0.036 0.034 0.035 0.514 0.928 0.910

(200, 200) 0.025 0.002 -0.006 0.024 0.023 0.023 0.808 0.950 0.938

Note: The DGP is given by: yit = 1{xit,1 + xit,2 + xit,3 + xit,4 + λi,1ft,1 + λi,2ft,2 − ϵit ≥ 0},
where ϵit are i.i.d with the standard logistic distributions, ft,1 = 0.3 + 0.7ft−1,1 + u1t, ft,2 = 0.6 +

0.4ft−1,2 + u2t, u1t, u2t ∼ i.i.d N (0, 1) and λi,1, λi,2 ∼ i.i.d N (1, 1) .The covariates are generated

by xit,1 = θ1ift,1 + ft,2 + eit,1, xit,2 = θ2ift,2 + eit,2, xit,3 = 1.5eit,3, xit,4 = eit,4, where θ1i, θ2i ∼
i.i.d N (1, 1). As for eit,j , j = 1, 2, 3, 4, two cases are considered : (i) eit,j ∼ i.i.d N (0, 1); (ii)

eit,j = 0.6ei,t−1,j+hit,j where hit,j ∼ i.i.d N (0, 1). The above table reports the biases and standard

errors of three estimators, along with the empirical coverage rates of their confidence intervals from

500 replications.
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Table 3: Estimation Results of the Empirical Application

Model A: Individual Effects Model B: Interactive Effects

Methods (A1) (A2) (A3) (B1) (B2) (B3)

L.Credit spread -0.3316 -0.3281 -0.4235 -0.4259 -0.5056 -0.5741

[-4.32] [-4.22] [-5.44] [-4.56] [-5.41] [-6.15]

L.Term spread -0.0998 -0.0971 -0.1586 0.0963 0.2296 -0.0216

[-1.79] [-1.72] [-2.81] [0.80] [1.90] [-0.18]

L.B/P 0.3893 0.3918 1.2477 0.2412 0.6255 0.5330

[1.81] [1.80] [5.73] [0.76] [1.98] [1.69]

Net income -0.0612 -0.0608 -0.0457 -0.0689 -0.0647 -0.0321

[-2.74] [-2.69] [-2.02] [-2.36] [-2.21] [-1.10]

L.Cash holding -0.0250 -0.0245 0.0002 -0.0362 -0.0393 0.0514

[-3.44] [-3.32] [0.03] [-2.98] [-3.24] [4.23]

CAPX 0.2780 0.2764 0.2914 0.3284 0.0589 -0.0408

[4.03] [3.91] [4.12] [3.61] [0.65] [-0.45]

L.Leverage dev -0.0257 -0.0244 -0.0059 -0.0396 -0.0377 0.0182

[-4.05] [-3.79] [-0.92] [-4.03] [-3.85] [1.85]

L.Size -0.5672 -0.5638 -0.8717 0.0142 0.2995 1.2508

[-3.59] [-3.52] [-5.45] [0.05] [1.00] [4.16]

L.Asset growth -0.0032 -0.0031 0.0000 -0.0083 -0.0117 -0.0135

[-1.11] [-1.03] [0.00] [-1.95] [-2.74] [-3.15]

Note: This table presents the estimation results of the empirical application (t statis-

tics are shown in brackets). The dependent variable yit is an indicator that identifies

instances in which a firm i both issues debt and repurchases equity at time period t.

For any right-hand-side variable X, L.X means the one-period-lag of X. Model A is

the benchmark model with only individual effects, and three estimators for this model

are considered: (A1) the classical conditional maximum likelihood estimator; (A2) the

fixed-effects estimator where the asymptotic bias is corrected using analytical bias cor-

rection; (A3) the fixed-effects estimator with SPJ bias correction. Model B introduces

interactive fixed effects and the CCE framework. Three different estimators proposed

in this paper are considered: (B1) the CCE estimator without bias correction; (B2)

the CCE estimator with analytical bias correction where the bandwidth parameter is

chosen as L = 1; (B3) the CCE estimator with SPJ bias correction. The estimated

number of factors is equal to 4.
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A Proofs of the Main Results

A.1 Proof of Theorem 1

Lemma 1. Let {Xi}, i = 1, 2, . . . , be a sequence of random variables such that E[Xi] = 0 for all

i. Suppose one of the following conditions holds: (a) {Xi} is independent and sup1≤i≤n E|Xi|2p <
∞ for some p ≥ 1 and all n; (b) {Xi} is α-mixing with coefficients α(k) satisfying α(k) ≤ C ·αk

for all k, some C > 0 and 0 < α < 1, and sup1≤i≤n E|Xi|2p+γ < ∞ for some p ≥ 1, γ > 0 and

all n. Then as n → ∞ we have

(i) E

∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣
2p

= O(np) and (ii) P

[∣∣∣∣∣ 1n
n∑

i=1

Xi

∣∣∣∣∣ > C

]
= O(n−p).

Proof. First note that (ii) follows from Markov’s inequality once (i) holds. Next, when condition

(a) holds, (i) is directly implied by Rosenthal’s inequality (see Rosenthal (1970)).

Now suppose condition (b) is satisfied. For p = 1, Corollary 1.1 and (1.25a) of Rio (2017)

implies that

E

(
n∑

i=1

Xi

)2

≤
n∑

i=1

n∑
j=1

|E(XiXj)| ≤ aγ

(
n∑

i=1

∥Xi∥22+γ

)
·

(
+∞∑
k=0

(k + 1)2/γα(k)

)γ/(2+γ)

,

where aγ is a positive constant only depends on γ, and ∥X∥q = (E|X|q)1/q is the Lq-norm of a

random variable X. Then (i) follows from condition (b).

When p > 1, by Theorem 6.3, equation (6.4), Corollary 1.1, equation (1.25a) and (C.9) of

Rio (2017), for any 0 < ϵ ≤ 2p+ γ − 2 we have

E

∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣
2p

≤ ap,ϵ

(
n∑

i=1

∥Xi∥22+ϵ

)p(+∞∑
k=0

(k + 1)2/ϵα(k)

) ϵp
2+ϵ

+nbp

+∞∑
k=0

(k+1)2p−2

∫ α(k)

0
Q2p

(n)(u)du,

where ap,ϵ, bp are some positive constants only depend on p and ϵ, QX(u) = inf{v : P(|X| > v) ≤
u} and Q(n)(u) = sup1≤i≤nQXi(u). For the second term on the right-hand side of the above

equation, we have QXi(u) ≤ ∥Xi∥2p+γ · u−1/(2p+γ) since

P (|Xi| > v) ≤ E|Xi|2p+γ

v2p+γ
⇒ P

(
|Xi| > ∥Xi∥2p+γ · u−1/(2p+γ)

)
≤ u.

Thus, it holds that Q(n)(u) ≤ sup1≤i≤n ∥Xi∥2p+γ · u−1/(2p+γ) and

∫ α(k)

0
Q2p

(n)(u)du ≤ 2p+ γ

γ
·
(

sup
1≤i≤n

∥Xi∥2p+γ

)2p

· α(k)γ/(2p+γ).
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That is, for the case p > 1,

E

∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣
2p

≤ ap,ϵ

(
n∑

i=1

∥Xi∥22+ϵ

)p(+∞∑
k=0

(k + 1)2/ϵα(k)

) ϵp
2+ϵ

+ n · (2p+ γ)bp
γ

·
(

sup
1≤i≤n

∥Xi∥2p+γ

)2p

·

(
+∞∑
k=0

(k + 1)2p−2α(k)γ/(2p+γ)

)
,

which together with condition (b) lead to E |
∑n

i=1Xi|2p = OP (n
p) + oP (n

p).

Lemma 2. If (Xi, Yi), i = 1, 2, . . . , is a sequence of random vectors in R2 such that E[|Xi|2 log(1+
|Xi|)] < ∞ and E[|Yi|2 log(1 + |Yi|)] < ∞ for all i. Suppose {(Xi, Yi)} is α-mixing with coeffi-

cients α(j) satisfying α(j) ≤ C · αj for all j, some C > 0 and 0 < α < 1, then:

n∑
i=1

n∑
j=1

|Cov(Xi, Yj)| = O(n).

Proof. By arguments similar to the proof of Corollary 1.1 in Rio (2017), it can be shown that

n∑
i=1

n∑
j=1

|Cov(Xi, Yj)| ≤ 2
n∑

i=1

∫ 1

0
[α−1(u)]Q2

Xi
(u)du+ 2

n∑
j=1

∫ 1

0
[α−1(u)]QYj (u)du,

where for some positive integer q and random variable Z, integral
∫ 1
0 [α

−1(u)]q−1Qq
Z(u)du can be

viewed as some weighted moment of |Z| as in Rio (2017). Then the assumptions of this lemma

and (C.17) of Rio (2017) imply the boundedness of all the integrals involved, which leads to the

desired result.

Lemma 3. Let Xi, i = 1, 2, . . . , be a sequence of random variables such that E[Xi] = 0 and

E[|Xi|2p(log(1+ |Xi|))2p−1] < ∞ for some positive integer p and all i. Suppose {Xi} is α-mixing

with coefficients α(j) satisfying α(j) ≤ C ·αj for all j, some C > 0 and 0 < α < 1, then it holds

that ∑
1≤i1≤···≤i2p≤n

∣∣E [Xi1 . . . Xi2p

]∣∣ = O(np)

Proof. By (2.15), (2.20) and H(q) in the proof of Theorem 2.2 in Rio (2017), we have

∑
1≤i1≤···≤i2p≤n

∣∣E [Xi1 . . . Xi2p

]∣∣ ≤ ap

(
n∑

k=1

∫ 1

0
[α−1(u)]Q2

Xik
(u)du

)p

+bp

n∑
k=1

∫ 1

0
[α−1(u)]2p−1Q2p

Xik
(u)du.

Then, similar to the proof of Lemma 2, the assumptions E[|Xi|2p(log(1 + |Xi|))2p−1] < ∞,

α(j) ≤ C · αj and (C.17) of Rio (2017) imply the boundedness of all the integrals involved,

which leads to the desired result.
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Lemma 4 (Consistency). Under Assumptions 1 to 4, we have

∥β̂ − β0∥ = oP (1) and max
1≤i≤N

∥λ̂i − λ̃0i∥ = oP (1).

Proof. Step 1: consistency of β̂

First, by definition, LNT (β0, Λ̃0, F̂ )−LNT (β̂, Λ̂, F̂ ) ≤ 0. Adding and subtracting terms, we

have

1

NT

N∑
i=1

T∑
t=1

[
l̄it(β0, c0,it)− l̄it(β̂, λ̂

′
if̃0t)

]
≤ I + II + III + IV

where

I = − 1

NT

N∑
i=1

T∑
t=1

[
lit(β0, c0,it)− l̄it(β0, c0,it)

]
, II =

1

NT

N∑
i=1

T∑
t=1

[
lit(β̂, λ̂

′
if̃0t)− l̄it(β̂, λ̂

′
if̃0t)

]
,

III = LNT (β0, Λ̃0, F̃0)− LNT (β0, Λ̃0, F̂ ), IV = LNT (β̂, Λ̂, F̂ )− LNT (β̂, Λ̂, F̃0).

By Assumption 4(iii), for any ϵ > 0, ∥β̂ − β0∥ > ϵ implies that there exists a δ > 0 such that

l̄it(β0, c0,it)− l̄it(β̂, λ̂
′
if̃0t) ≥ δ for all i, t.

It then follows that

P
[
∥β̂ − β0∥ > ϵ

]
≤ P [|I| > δ/4] + P [|II| > δ/4] + P [|III| > δ/4] + P [|IV | > δ/4] .

Note that by Assumption 4(i) and Lemma 1,

E

( 1√
NT

N∑
i=1

T∑
t=1

[lit(β0, c0,it)− l̄it(β0, c0,it)]

)2


=
1

NT

N∑
i=1

E

(
T∑
t=1

[lit(β0, c0,it)− l̄it(β0, c0,it)]

)2

= O(1).

It then follows that I = OP (1/
√
NT ) and P [|I| > δ/4] → 0.

Second, by Assumption 4 we have

|III| =

∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

lit(β0, λ̃
′
0if̂t)− lit(β0, λ̃

′
0if̃0t)

∣∣∣∣∣ ≤ 1

NT

N∑
i=1

T∑
t=1

M(xit) · ∥λ̃0i∥ · ∥f̂t − f̃0t∥

≲ max
1≤t≤T

∥f̂t − f̃0t∥ ·
1

NT

N∑
i=1

T∑
t=1

M(xit).
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Since f̂t − f̃0t = Ψ̂′ēt + (Ĥ −H0)f0t, we have

max
1≤t≤T

∥f̂t − f̃0t∥ ≤ N−1/2 · ∥Ψ̂∥ · max
1≤t≤T

∥
√
N ēt∥+ oP (1) = OP (T

1/2pN−1/2) + oP (1) = oP (1),

because max1≤t≤T ∥
√
N ēt∥ = OP (T

1/2p) by Assumption 4(iv) and Lemma 1. It then follows that

III = oP (1) and thus P [|III| > δ/4] → 0. Similarly, it can be shown that P [|IV | > δ/4] → 0.

Third,

P [|II| > δ/4] ≤
N∑
i=1

P

[
sup

β∈B,λ∈A

∣∣∣∣∣ 1T
T∑
t=1

(
lit(β,λ

′f̃0t)− l̄it(β,λ
′f̃0t)

)∣∣∣∣∣ > δ/4

]
.

Write θ = (β,λ) and Θ = B ×A. Let

0 < ω < δ/

(
24 ·max

i,t
E[M(xit)] · CF

)
,

where CF = 1 + maxf∈F ∥f∥, and let Θ1, . . . ,ΘJ be a partition of Θ such that ∥θk − θl∥ ≤ ω

for any θk,θl ∈ Θj and any 1 ≤ j ≤ J . For any θ = (β,λ) ∈ Θ, there exists 1 ≤ j ≤ J and

θ∗ = (β∗,λ∗) ∈ Θj such that ∥θ − θ∗∥ ≤ ω, implying that∣∣∣lit(β,λ′f̃0t)− lit(β
∗, (λ∗)′f̃0t)

∣∣∣ ≤ ∣∣∣l(1)it (β̇, λ̇′f̃0t)
∣∣∣ · (∥xit∥+ ∥f̃0t∥) · ∥θ − θ∗∥ ≤ ω ·M(xit)CF

where (β̇, λ̇) lies between θ and θ∗. It follows that

∣∣∣∣∣ 1T
T∑
t=1

(
lit(β,λ

′f̃0t)− l̄it(β,λ
′f̃0t)

)∣∣∣∣∣ ≤
∣∣∣∣∣ 1T

T∑
t=1

(
lit(β

∗, (λ∗)′f̃0t)− l̄it(β
∗, (λ∗)′f̃0t)

)∣∣∣∣∣
+ ω · CF

∣∣∣∣∣ 1T
T∑
t=1

(M(xit)− EM(xit))

∣∣∣∣∣+ 2ω · CF
1

T

T∑
t=1

EM(xit).

Thus,

P

[
sup

β∈B,λ∈A

∣∣∣∣∣ 1T
T∑
t=1

(
lit(β,λ

′f̃0t)− l̄it(β,λ
′f̃0t)

)∣∣∣∣∣ > δ/4

]

≤
J∑

j=1

P

[∣∣∣∣∣ 1T
T∑
t=1

(
lit(β

∗
j , (λ

∗
j )

′f̃0t)− l̄it(β
∗
j , (λ

∗
j )

′f̃0t)
)∣∣∣∣∣ > δ/12

]

+ P

[∣∣∣∣∣ 1T
T∑
t=1

M(xit)− EM(xit)

∣∣∣∣∣ > δ/(12ω · CF )

]
+ P

[
1

T

T∑
t=1

EM(xit) > δ/(24ω · CF )

]
,

(A.1)
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where (β∗
j ,λ

∗
j ) ∈ Θj . The last term on the right-hand side of (A.1) is 0 by the definition of ω. It

follows Assumption 4(iv) and Lemma 1 that the first two terms on the right-hand side of (A.1)

are O(T−p). Thus, we have P [|II| > δ/4] = O(N/T p) = o(1). Therefore, it can be concluded

that P [∥β̂ − β0∥ > ϵ] → 0.

Step 2: uniform consistency of λ̂i

Define Li,T (β,λ,F ) = T−1
∑T

t=1 lit(β,λ
′ft), then we have Li,T (β̂, λ̂i, F̂ ) ≥ Li,T (β̂, λ̃0i, F̂ )

for all i. Adding and subtracting terms gives:

1

T

T∑
t=1

[
l̄it(β0, λ̃

′
0if̃0t)− l̄it(β̂, λ̂

′
if̃0t)

]
≤ 1

T

T∑
t=1

[
lit(β̂, λ̂

′
if̃0t)− l̄it(β̂, λ̂

′
if̃0t)

]
− 1

T

T∑
t=1

[
lit(β̂, c0,it)− l̄it(β̂, c0,it)

]
− 1

T

T∑
t=1

[
l̄it(β̂, c0,it)− l̄it(β0, c0,it)

]
+
[
Li,T (β̂, λ̂i, F̂ )− Li,T (β̂, λ̂i, F̃0)

]
−
[
Li,T (β̂, λ̃0i, F̂ )− Li,T (β̂, λ̃0i, F̃0)

]
.

By Assumption 4(iii), for any ϵ > 0, max1≤i≤N ∥λ̂i − λ̃0i∥ ≥ ϵ implies that there exists a δ > 0

such that

1

T

T∑
t=1

[
l̄it(β0, λ̃

′
0if̃0t)− l̄it(β̂, λ̂

′
if̃0t)

]
≥ δ for some i ≤ N.

Thus,

P

[
max
1≤i≤N

∥λ̂i − λ̃0i∥ ≥ ϵ

]
≤ P

[
max
1≤i≤N

∣∣∣∣∣ 1T
T∑
t=1

[
lit(β̂, λ̂

′
if̃0t)− l̄it(β̂, λ̂

′
if̃0t)

]∣∣∣∣∣ ≥ δ/5

]

+ P

[
max
1≤i≤N

∣∣∣∣∣ 1T
T∑
t=1

[
lit(β̂, c0,it)− l̄it(β̂, c0,it)

]∣∣∣∣∣ ≥ δ/5

]

+ P

[
max
1≤i≤N

∣∣∣∣∣ 1T
T∑
t=1

[
l̄it(β0, c0,it)− l̄it(β̂, c0,it)

]∣∣∣∣∣ ≥ δ/5

]

+ P

[
max
1≤i≤N

∣∣∣Li,T (β̂, λ̂i, F̂ )− Li,T (β̂, λ̂i, F̃0)
∣∣∣ ≥ δ/5

]
+ P

[
max
1≤i≤N

∣∣∣Li,T (β̂, λ̃0i, F̂ )− Li,T (β̂, λ̃0i, F̃0)
∣∣∣ ≥ δ/5

]
. (A.2)

Similar to the proof of step 1, we can show that the first two terms on the right-hand side of
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(A.2) are both O(N/T p) = o(1). Note that

max
1≤i≤N

∣∣∣Li,T (β̂, λ̂i, F̂ )− Li,T (β̂, λ̂i, F̃0)
∣∣∣ ≲ max

1≤t≤T
∥f̂t − f̃0t∥ · max

1≤i≤N

1

T

T∑
t=1

M(xit).

We have shown that max1≤t≤T ∥f̂t − f̃0t∥ = oP (1). Moreover,

max
1≤i≤N

1

T

T∑
t=1

M(xit) ≤ max
1≤i≤N

∣∣∣∣∣ 1T
T∑
t=1

[M(xit)− EM(xit)]

∣∣∣∣∣+max
i,t

EM(xit) = OP (N
1/2pT−1/2)+O(1).

Thus, the fourth term on the right-hand side of (A.2) is o(1). It can be shown in a similar way

that the last term on the right-hand side of (A.2) is also o(1). Finally, by the consistency of β̂,

max
1≤i≤N

∣∣∣∣∣ 1T
T∑
t=1

[
l̄it(β0, c0,it)− l̄it(β̂, c0,it)

]∣∣∣∣∣ ≤ ∥β̂ − β0∥ ·max
i,t

EM(xit) = oP (1),

it follows that the third term on the right-hand side of (A.2) is o(1). Then the desired result

follows.

Now define f̌0t = Ĥf0t and λ̌0i = (Ĥ−1)′λ0i. Note that λ̌′
0if̌0t = λ′

0if0t = c0,it. Write

ĉit = λ̂′
if̂t. Note that Lemma 4 also implies that

max
1≤i≤N

∥λ̂i − λ̌0i∥ = oP (1).

Lemma 5. Under Assumptions 1 to 4, we have

∥β̂ − β0∥ = OP ((NT )−1/2) +OP (N
−1) +OP (T

−1) + oP

(
1

N

N∑
i=1

∥λ̂i − λ̌0i∥

)
.

Proof. Expanding the first order conditions around (β0, c0,it) gives:

0 =
1

NT

N∑
i=1

T∑
t=1

xit · l(1)it (β̂, ĉit) =
1

NT

N∑
i=1

T∑
t=1

l
(1)
it xit +

(
1

NT

N∑
i=1

T∑
t=1

l
(2)
it xitx

′
it

)
(β̂ − β0)

+0.5(β̂−β0)
′

(
1

NT

N∑
i=1

T∑
t=1

l
(3)
it (∗) · xitxitx

′
it

)
(β̂−β0)+

(
1

NT

N∑
i=1

T∑
t=1

l
(3)
it (∗) · xitx

′
it(ĉit − c0,it)

)
(β̂−β0)

+
1

NT

N∑
i=1

T∑
t=1

l
(2)
it xit · (ĉit − c0,it) + 0.5

1

NT

N∑
i=1

T∑
t=1

l
(3)
it (∗) · xit · (ĉit − c0,it)

2, (A.3)
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0 =
1

T

T∑
t=1

f̂t · l(1)it (β̂, ĉit) =
1

T

T∑
t=1

l
(1)
it f̂t +

(
1

T

T∑
t=1

l
(2)
it f̂tx

′
it

)
(β̂ − β0)

+ 0.5(β̂ − β0)
′

(
1

T

T∑
t=1

l
(3)
it (∗) · xitf̂tx

′
it

)
(β̂ − β0) +

(
1

T

T∑
t=1

l
(3)
it (∗) · f̂tx′

it(ĉit − c0,it)

)
(β̂ − β0)

+
1

T

T∑
t=1

l
(2)
it f̂t · (ĉit − c0,it) + 0.5

1

T

T∑
t=1

l
(3)
it (∗) · f̂t · (ĉit − c0,it)

2, (A.4)

where l
(3)
it (∗) = l

(3)
it (β∗, c∗it), and (β∗, c∗it) is between (β0, c0,it) and (β̂, ĉit). Given Assumption 4

and Lemma 4, it is easy to show that 13

(β̂ − β0)
′ 1

NT

N∑
i=1

T∑
t=1

l
(3)
it (∗) · xitxitx

′
it = oP (1),

1

NT

N∑
i=1

T∑
t=1

l
(3)
it (∗) · xitx

′
it(ĉit − c0,it) = oP (1),

(β̂ − β0)
′ 1

T

T∑
t=1

l
(3)
it (∗) · xitf̂tx

′
it = ōP (1),

1

T

T∑
t=1

l
(3)
it (∗) · f̂tx′

it(ĉit − c0,it) = ōP (1).

Moreover, since ĉit−c0,it = (λ̂i−λ̌0i)
′f̂t+λ̌′

0i(f̂t−f̌0t), equations (A.3) and (A.4) can be written

as(
1

NT

N∑
i=1

T∑
t=1

l
(2)
it xitx

′
it

)
(β̂−β0) = oP (∥β̂−β0∥)−

1

NT

N∑
i=1

T∑
t=1

l
(1)
it xit−

1

N

N∑
i=1

(
1

T

T∑
t=1

l
(2)
it xitf̂

′
t

)
(λ̂i−λ̌0i)

− 1

T

T∑
t=1

(
1

N

N∑
i=1

l
(2)
it xitλ̌

′
0i

)
(f̂t − f̌0t)− 0.5

1

NT

N∑
i=1

T∑
t=1

l
(3)
it (∗) · xit · f̂ ′

t(λ̂i − λ̌0i)(λ̂i − λ̌0i)
′f̂t

− 1

NT

N∑
i=1

T∑
t=1

l
(3)
it (∗)·xit·λ̌′

0i(f̂t−f̌0t)(λ̂i−λ̌0i)
′f̂t−0.5

1

NT

N∑
i=1

T∑
t=1

l
(3)
it (∗)·xit·λ̌′

0i(f̂t−f̌0t)(f̂t−f̌0t)
′λ̌0i,

(A.5)

(
1

T

T∑
t=1

l
(2)
it f̂tf̂

′
t

)
(λ̂i − λ̌0i) = ōP (∥β̂ − β0∥)−

1

T

T∑
t=1

l
(1)
it f̂t −

(
1

T

T∑
t=1

l
(2)
it f̂tx

′
it

)
(β̂ − β0)

−

(
1

T

T∑
t=1

l
(2)
it f̂t(f̂t − f̌0t)

′

)
λ̌0i − 0.5

1

T

T∑
t=1

l
(3)
it (∗) · f̂t · f̂ ′

t(λ̂i − λ̌0i)(λ̂i − λ̌0i)
′f̂t

− 1

T

T∑
t=1

l
(3)
it (∗)f̂t · λ̌′

0i(f̂t − f̌0t)(λ̂i − λ̌0i)
′f̂t − 0.5

1

T

T∑
t=1

l
(3)
it (∗)f̂t · λ̌′

0i(f̂t − f̌0t)(f̂t − f̌0t)
′λ̌0i.

(A.6)

13For a sequence of random variables z1, . . . , zN , max1≤i≤N ∥zi∥ = OP (1) is written as zi = ŌP (1). The
notation ōP (1) is defined similarly.
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Define

Ǎi = ĤAiĤ
′.

It is easy to show that T−1
∑T

t=1 l
(2)
it f̂tf̂

′
t − Ǎi = ōP (1) and T−1

∑T
t=1 l

(2)
it f̂tx

′
it − ĤB′

i = ōP (1).

Thus, from (A.6) we can show that

λ̂i − λ̌0i = ōP (∥β̂ − β0∥)− Ǎ−1
i

(
1

T

T∑
t=1

l
(2)
it f̂tf̂

′
t − Ǎi

)
(λ̂i − λ̌0i)− (Ĥ ′)−1A−1

i · 1
T

T∑
t=1

l
(1)
it f0t

− Ǎ−1
i · 1

T

T∑
t=1

l
(1)
it (f̂t − f̌0t)− (Ĥ ′)−1A−1

i B′
i(β̂ − β0)− Ǎ−1

i ·

(
1

T

T∑
t=1

l
(2)
it f̂t(f̂t − f̌0t)

′

)
λ̌0i

−0.5
1

T

T∑
t=1

l
(3)
it (∗) ·Ǎ−1

i f̂t · f̂ ′
t(λ̂i−λ̌0i)(λ̂i−λ̌0i)

′f̂t−
1

T

T∑
t=1

l
(3)
it (∗)Ǎ−1

i f̂t ·λ̌′
0i(f̂t− f̌0t)(λ̂i−λ̌0i)

′f̂t

− 0.5
1

T

T∑
t=1

l
(3)
it (∗)Ǎ−1

i f̂t · λ̌′
0i(f̂t − f̌0t)(f̂t − f̌0t)

′λ̌0i. (A.7)

Plugging (A.7) into (A.5) gives

(
1

NT

N∑
i=1

T∑
t=1

l
(2)
it xitx

′
it −

1

N

N∑
i=1

BiA
−1
i B′

i

)
(β̂ − β0) + oP (∥β̂ − β0∥) = − 1

NT

N∑
i=1

T∑
t=1

l
(1)
it ẋit

+
1

T

T∑
t=1

(
1

N

N∑
i=1

l
(1)
it BiA

−1
i

)
Ĥ−1(f̂t − f̌0t)

+
1

NT

N∑
i=1

T∑
t=1

(f̂t − f̌0t)
′λ̌0iBiA

−1
i Ĥ−1l

(2)
it f̂t −

1

T

T∑
t=1

(
1

N

N∑
i=1

l
(2)
it xitλ̌

′
0i

)
(f̂t − f̌0t)

− 0.5
1

NT

N∑
i=1

T∑
t=1

l
(3)
it (∗) · (xit −BiA

−1
i Ĥ−1f̂t) · λ̌′

0i(f̂t − f̌0t)(f̂t − f̌0t)
′λ̌0i.

− 0.5
1

NT

N∑
i=1

T∑
t=1

l
(3)
it (∗) · (xit −BiA

−1
i Ĥ−1f̂t) · f̂ ′

t(λ̂i − λ̌0i)(λ̂i − λ̌0i)
′f̂t

− 1

NT

N∑
i=1

T∑
t=1

l
(3)
it (∗) · (xit −BiA

−1
i Ĥ−1f̂t) · λ̌′

0i(f̂t − f̌0t)(λ̂i − λ̌0i)
′f̂t

+
1

N

N∑
i=1

BiA
−1
i Ĥ−1

(
1

T

T∑
t=1

l
(2)
it f̂tf̂

′
t − Ǎi

)
(λ̂i − λ̌0i)

− 1

N

N∑
i=1

(
1

T

T∑
t=1

l
(2)
it xitf̂

′
t −BiĤ

′

)
(λ̂i − λ̌0i). (A.8)
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Step 1: It can be shown that under Assumption 4,

1

NT

N∑
i=1

T∑
t=1

l
(2)
it xitx

′
it −

1

N

N∑
i=1

BiA
−1
i B′

i
p→ 1

NT

N∑
i=1

T∑
t=1

E
[
l
(2)
it xitx

′
it −BiA

−1
i B′

i

]
=

1

NT

N∑
i=1

T∑
t=1

E
[
l
(2)
it ẋitẋ

′
it

]
→ ∆. (A.9)

Step 2: By Assumption 4 and Lemma 1 it is easy to show that

1

NT

N∑
i=1

T∑
t=1

l
(1)
it ẋit = OP

(
1√
NT

)
. (A.10)

Step 3: The jth element of the second term on the right-hand side of (A.8) is

Tr

[
1

T

T∑
t=1

(f̂t − f̌0t)

(
1

N

N∑
i=1

l
(1)
it Bi,jA

−1
i

)
· Ĥ−1

]

where Bi,j is the jth row of Bi. Since f̂t − f̌0t = Ψ̂′N−1
∑N

i=1 eit, it follows that

1

T

T∑
t=1

(f̂t − f̌0t)

(
1

N

N∑
i=1

l
(1)
it Bi,jA

−1
i

)
= Ψ̂′ · 1

N
· 1
T

T∑
t=1

(
1√
N

N∑
i=1

eit

)(
1√
N

N∑
i=1

l
(1)
it Bi,jA

−1
i

)
.

Note that

E

[(
1√
N

N∑
i=1

eit

)(
1√
N

N∑
i=1

l
(1)
it Bi,jA

−1
i

)]
=

1

N

N∑
i=1

E
[
l
(1)
it eit

]
Bi,jA

−1
i = 0,

and for mth element of eit (denoted by eit,m) and pth column of A−1
i (denoted by A−1

i,p ), we
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have

Var

[
1

T

T∑
t=1

(
1√
N

N∑
i=1

eit,m

)(
1√
N

N∑
i=1

l
(1)
it Bi,jA

−1
i,p

)]

=
1

N2T 2
E

 T∑
t=1

N∑
i=1

N∑
q=1

l
(1)
it eqt,mBi,jA

−1
i,p

2
=

1

N2T 2

T∑
t1=1

T∑
t2=1

N∑
i1=1

N∑
i2=1

N∑
q1=1

N∑
q2=1

E
[
l
(1)
i1t1

l
(1)
i2t2

eq1t1,meq2t2,m

]
Bi1,jA

−1
i1,p

Bi2,jA
−1
i2,p

=
1

N2T 2

N∑
i=1

N∑
q=1

E

( T∑
t=1

l
(1)
it eqt,m

)2
(Bi,jA

−1
i,p

)2
+

1

N2T 2

N∑
i=1

N∑
q ̸=i

T∑
t1=1

T∑
t2=1

Cov
(
l
(1)
it1

eqt1,m, l
(1)
qt2

eit2,m

)
Bi,jA

−1
i,pBq,jA

−1
q,p

=O(T−1) = o(1)

by Lemma 1 and Lemma 2. Thus, it can be concluded that

1

T

T∑
t=1

(
1

N

N∑
i=1

l
(1)
it BiA

−1
i

)
Ĥ−1(f̂t − f̌0t) = oP (N

−1). (A.11)

Step 4: Define

C∗
t =

1

N

N∑
i=1

E[l(2)it xit]λ
′
0i,

then the fourth term on the right-hand side of (A.8) can be written as

− 1

T

T∑
t=1

C∗
t Ĥ

−1(f̂t − f̌0t)−
1

T

T∑
t=1

(
1

N

N∑
i=1

l
(2)
it xitλ

′
0i −C∗

t

)
Ĥ−1(f̂t − f̌0t).

First,

1

T

T∑
t=1

C∗
t Ĥ

−1(f̂t− f̌0t) =
1

NT

N∑
i=1

T∑
t=1

C∗
t Ĥ

−1Ψ̂′eit =
1

NT

N∑
i=1

T∑
t=1

C∗
t H

−1
0 Ψ′

0eit+oP (1/
√
NT ).
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Second, similar to the proof of step 3, it can be shown that

1

T

T∑
t=1

(
1

N

N∑
i=1

l
(2)
it xitλ

′
0i −C∗

t

)
Ĥ−1(f̂t − f̌0t)

=
1

N
· 1
T

T∑
t=1

(
1√
N

N∑
i=1

[
l
(2)
it xit − E[l(2)it xit]

]
λ′
0i

)
Ĥ−1Ψ̂′

(
1√
N

N∑
i=1

eit

)

=
1

N
· 1

NT

N∑
i=1

T∑
t=1

E
[
l
(2)
it xite

′
it

]
Ψ0(H

−1
0 )′λ0i + oP (N

−1).

Thus,

− 1

T

T∑
t=1

(
1

N

N∑
i=1

l
(2)
it xitλ̌

′
0i

)
(f̂t − f̌0t) = − 1

NT

N∑
i=1

T∑
t=1

C∗
t H

−1
0 Ψ′

0eit

− 1

N
· 1

NT

N∑
i=1

T∑
t=1

E
[
l
(2)
it xite

′
it

]
Ψ0(H

−1
0 )′λ0i + oP (T

−1) = OP ((NT )−1/2) +OP (N
−1).

(A.12)

Step 5: For the third term on the right-hand side of (A.8), its jth element can be written as

Tr

[
Ĥ−1 · 1

T

T∑
t=1

f̂t(f̂t − f̌0t)
′(Ĥ−1)′

(
1

N

N∑
i=1

λ0iBi,jA
−1
i l

(2)
it

)]

Note that

Ĥ−1 · 1
T

T∑
t=1

f̂t(f̂t − f̌0t)
′(Ĥ−1)′

(
1

N

N∑
i=1

λ0iBi,jA
−1
i l

(2)
it

)

=
1

T

T∑
t=1

f0t(f̂t − f̌0t)
′(Ĥ−1)′

(
1

N

N∑
i=1

λ0iBi,jA
−1
i l

(2)
it

)

+ Ĥ−1 · 1
T

T∑
t=1

(f̂t − f̌0t)(f̂t − f̌0t)
′(Ĥ−1)′

(
1

N

N∑
i=1

λ0iBi,jA
−1
i l

(2)
it

)
.
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First, it can be shown that

1

T

T∑
t=1

f0t(f̂t − f̌0t)
′(Ĥ−1)′

(
1

N

N∑
i=1

λ0iBi,jA
−1
i l

(2)
it

)

=
1

NT

N∑
i=1

T∑
t=1

f0te
′
it(Ĥ

−1Ψ̂′)′Dt,j +
1

N
· 1
T

T∑
t=1

f0t

(
1√
N

N∑
i=1

e′it

)
(Ĥ−1Ψ̂′)′

(
1√
N

N∑
i=1

λ0iBi,jA
−1
i

(
l
(2)
it − l̄

(2)
it

))

=
1

NT

N∑
i=1

T∑
t=1

f0te
′
it(H

−1
0 Ψ′

0)
′Dt,j +

1

N
· 1

NT

N∑
i=1

T∑
t=1

f0t · E
[
l
(2)
it e′it

]
(H−1

0 Ψ′
0)

′λ0iBi,jA
−1
i + oP (N

−1).

Second,

Ĥ−1 · 1
T

T∑
t=1

(f̂t − f̌0t)(f̂t − f̌0t)
′(Ĥ−1)′

(
1

N

N∑
i=1

λ0iBi,jA
−1
i l

(2)
it

)

=(Ĥ−1Ψ̂′) · 1

N
· 1
T

T∑
t=1

(
1√
N

N∑
i=1

eit

)(
1√
N

N∑
i=1

e′it

)
(Ĥ−1Ψ̂′)′Dt,j

+OP (T
1/2pN−1/2) ·OP

(
1

T

T∑
t=1

∥f̂t − f̌0t∥2
)

=(H−1
0 Ψ′

0) ·
1

N
· 1

NT

N∑
i=1

T∑
t=1

E[eite′it](H−1
0 Ψ′

0)
′Dt,j + oP (N

−1)

since

1

T

T∑
t=1

∥f̂t − f̌0t∥2 = OP (1) ·
1

N
· 1
T

T∑
t=1

∥∥∥∥∥ 1√
N

N∑
i=1

eit

∥∥∥∥∥
2

= OP (N
−1).

Thus, the jth element of

1

NT

N∑
i=1

T∑
t=1

(f̂t − f̌0t)
′λ̌0iBiA

−1
i Ĥ−1l

(2)
it f̂t

is given by

1

NT

N∑
i=1

T∑
t=1

f ′
0tD

′
t,j(H

−1
0 Ψ′

0)eit +
1

N
· 1

NT

N∑
i=1

T∑
t=1

Bi,jA
−1
i f0t · λ′

0i(H
−1
0 Ψ′

0) · E
[
l
(2)
it eit

]
+Tr

[
1

N
· 1

NT

N∑
i=1

T∑
t=1

E[eite′it] · (H−1
0 Ψ′

0)
′ ·Dt,j · (H−1

0 Ψ′
0)

]
+ oP (N

−1). (A.13)
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Therefore, we have

1

NT

N∑
i=1

T∑
t=1

(f̂t − f̌0t)
′λ̌0iBiA

−1
i Ĥ−1l

(2)
it f̂t = OP ((NT )−1/2) +OP (N

−1).

Step 6: The fifth term on the right-hand side of (A.8) is equal to

− 0.5
1

NT

N∑
i=1

T∑
t=1

l
(3)
it ẋit · λ̌′

0i(f̂t − f̌0t)(f̂t − f̌0t)
′λ̌0i + oP (∥β̂ − β0∥)

+OP (1) ·
(

max
1≤i≤N

∥λ̂i − λ̌0i∥+ max
1≤t≤T

∥f̂t − f̌0t∥
)
·

(
1

NT

N∑
i=1

T∑
t=1

M(xit)∥f̂t − f̌0t∥2
)
.

First, similar to the proof of step 3, it can be shown that:

1

NT

N∑
i=1

T∑
t=1

l
(3)
it ẋit,j · λ̌′

0i(f̂t − f̌0t)(f̂t − f̌0t)
′λ̌0i

=
1

N
· 1
T

T∑
t=1

(
1√
N

N∑
i=1

eit

)′

(Ĥ−1Ψ̂′)′

(
1

N

N∑
i=1

l
(3)
it ẋit,jλ0iλ

′
0i

)
(Ĥ−1Ψ̂′)

(
1√
N

N∑
i=1

eit

)

=
1

N
· 1
T

T∑
t=1

(
1√
N

N∑
i=1

eit

)′

(H−1
0 Ψ′

0)
′Gt,j(H

−1
0 Ψ′

0)

(
1√
N

N∑
i=1

eit

)
+ oP (N

−1)

=
1

N
· 1

NT

N∑
i=1

T∑
t=1

Tr
[
(H−1

0 Ψ′
0)

′ ·Gt,j · (H−1
0 Ψ′

0) · E
[
eite

′
it

]]
+ oP (N

−1).

Second, we have

1

NT

N∑
i=1

T∑
t=1

M(xit)∥f̂t − f̌0t∥2 ≤

(
max
1≤t≤T

1

N

N∑
i=1

M(xit)

)
·

(
1

T

T∑
t=1

∥f̂t − f̌0t∥2
)

= OP (N
−1),

where the equality follows from max1≤t≤T N−1
∑N

i=1M(xit) = OP (1) (similar to the proof of

Lemma 4) and T−1
∑T

t=1 ∥f̂t − f̌0t∥2 = OP (N
−1) (see the proof of step 5). That is,

(
max
1≤i≤N

∥λ̂i − λ̌0i∥+ max
1≤t≤T

∥f̂t − f̌0t∥
)
·

(
1

NT

N∑
i=1

T∑
t=1

M(xit)∥f̂t − f̌0t∥2
)

= oP (N
−1).
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Therefore, the jth element of the fifth term on the right-hand side of (A.8) is

−0.5
1

N
· 1

NT

N∑
i=1

T∑
t=1

Tr
[
(H−1

0 Ψ′
0)

′ ·Gt,j · (H−1
0 Ψ′

0) · E
[
eite

′
it

]]
+oP (N

−1)+oP (∥β̂−β0∥).

(A.14)

Step 7: It is easy to show that the last four terms on the right-hand side of (A.8) are all

oP

(
N−1

∑N
i=1 ∥λ̂i − λ̌0i∥

)
. Combining all the above results, we have

∆(β̂−β0)+ oP (∥β̂−β0∥) = OP ((NT )−1/2)+OP (T
−1)+OP (N

−1)+ oP

(
1

N

N∑
i=1

∥λ̂i − λ̌0i∥

)
,

which gives the desired result since ∆ > 0.

Lemma 6. Under Assumptions 1 to 4, we have

1

N

N∑
i=1

∥λ̂i − λ̌0i∥ = OP (T
− 1

2 ).

Proof. Plugging the result of Lemma 5 into (A.7) we have

1

N

N∑
i=1

∥λ̂i − λ̌0i∥ ≤ OP (T
−1) + oP

(
1

N

N∑
i=1

∥λ̂i − λ̌0i∥

)
+OP (1) ·

1

N

N∑
i=1

∥∥∥∥∥ 1T
T∑
t=1

l
(1)
it f0t

∥∥∥∥∥
+OP (1) ·

1

N

N∑
i=1

∥∥∥∥∥ 1T
T∑
t=1

l
(1)
it (f̂t − f̌0t)

∥∥∥∥∥+OP (1) ·
1

N

N∑
i=1

∥∥∥∥∥ 1T
T∑
t=1

l
(2)
it f̂t(f̂t − f̌0t)

′

∥∥∥∥∥
+OP (1) ·

1

N

N∑
i=1

∥∥∥∥∥ 1T
T∑
t=1

l
(3)
it (∗)Ǎ−1

i f̂t · λ̌′
0i(f̂t − f̌0t)(f̂t − f̌0t)

′λ̌0i

∥∥∥∥∥ . (A.15)

First, by Lemma 1

E

∥∥∥∥∥ 1T
T∑
t=1

l
(1)
it f0t

∥∥∥∥∥
2p

= O(T−p),

for all i, thus it holds that

1

N

N∑
i=1

E

∥∥∥∥∥ 1T
T∑
t=1

l
(1)
it f0t

∥∥∥∥∥ ≤ 1

N

N∑
i=1

E

∥∥∥∥∥ 1T
T∑
t=1

l
(1)
it f0t

∥∥∥∥∥
2p
1/2p

= O(T−1/2),
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and therefore

1

N

N∑
i=1

∥∥∥∥∥ 1T
T∑
t=1

l
(1)
it f0t

∥∥∥∥∥ = OP (T
−1/2).

Second, note that

1

T

T∑
t=1

l
(1)
it (f̂t − f̌0t) = Ψ̂ · 1

NT

T∑
t=1

N∑
j=1

l
(1)
it ejt

and ∥∥∥∥∥∥ 1

NT

T∑
t=1

N∑
j=1

l
(1)
it ejt

∥∥∥∥∥∥
2p

≤ 22p−1 ·

∥∥∥∥∥∥ 1T
T∑
t=1

l
(1)
it

1

N

N∑
j ̸=i

ejt

∥∥∥∥∥∥
2p

+

∥∥∥∥∥ 1

NT

T∑
t=1

l
(1)
it eit

∥∥∥∥∥
2p


since (a + b)k ≤ 2k−1(ak + bk) for any k ≥ 1 and a, b ≥ 0. By the uniform boundedness of

E∥ejt∥2p+γ and Rosenthal inequality it can be shown that max1≤t≤T E
∥∥∥N−1/2

∑N
j ̸=i ejt

∥∥∥2p+γ
<

∞, which further implies that

max
1≤t≤T

E

∥∥∥∥∥∥l(1)it

1√
N

N∑
j ̸=i

ejt

∥∥∥∥∥∥
2p+γ

≤ max
1≤t≤T

E
∣∣∣l(1)it

∣∣∣2p+γ
· max
1≤t≤T

E

∥∥∥∥∥∥ 1√
N

N∑
j ̸=i

ejt

∥∥∥∥∥∥
2p+γ

< ∞.

Let α∗
i (j) be the strong mixing coefficients of {l(1)it ·N−1/2

∑N
j ̸=i ejt}, then Theorem 5.2 of Bradley

(2005) and Assumption 4 imply that α∗
i (j) ≤ N · Cαj . Similar to the proof of Lemma 1, by

Rosenthal type inequality for dependent sequence we have

E

∥∥∥∥∥∥
T∑
t=1

l
(1)
it

1√
N

N∑
j ̸=i

ejt

∥∥∥∥∥∥
2p

≲ T pN
p− 2p

2p+γ ·

 1

T

T∑
t=1

∥∥∥∥∥∥l(1)it

1√
N

N∑
j ̸=i

ejt

∥∥∥∥∥∥
2

2p+γ

p(
+∞∑
k=0

(k + 1)
2

2p+γ−2αk

)p− 2p
2p+γ

+ TN
γ

2p+γ ·

 max
1≤t≤T

∥∥∥∥∥∥l(1)it

1√
N

N∑
j ̸=i

ejt

∥∥∥∥∥∥
2p+γ

2p

·

(
+∞∑
k=0

(k + 1)2p−2α
k· γ

2p+γ

)

= O
(
T pN

p− 2p
2p+γ

)
+O

(
TN

γ
2p+γ

)
= O

(
T pN

p− 2p
2p+γ

)
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Besides, it is easy to show that E
∥∥∥∑T

t=1 l
(1)
it eit

∥∥∥2p = O(T p). Thus it follows that

E

∥∥∥∥∥∥ 1

NT

N∑
j=1

T∑
t=1

l
(1)
it ejt

∥∥∥∥∥∥
2p

= O(T−pN−2p/(2p+γ))

and

1

N

N∑
i=1

∥∥∥∥∥ 1T
T∑
t=1

l
(1)
it (f̂t − f̌0t)

∥∥∥∥∥ = OP (T
−1/2N−1/(2p+γ)) = oP (T

−1/2).

Third,

1

T

T∑
t=1

l
(2)
it f̂t(f̂t − f̌0t)

′ = Ĥ · 1
T

T∑
t=1

l
(2)
it f0t(f̂t − f̌0t)

′ +
1

T

T∑
t=1

l
(2)
it (f̂t − f̌0t)(f̂t − f̌0t)

′

= Ĥ · 1

NT

T∑
t=1

N∑
j=1

l
(2)
it f0te

′
jt · Ψ̂+

1

T

T∑
t=1

l
(2)
it (f̂t − f̌0t)(f̂t − f̌0t)

′. (A.16)

Similar to the previous step, we can show that

E

∥∥∥∥∥∥ 1

NT

N∑
j=1

T∑
t=1

l
(2)
it f0te

′
jt

∥∥∥∥∥∥
2p

= O(T−pN−2p/(2p+γ))

and

1

N

N∑
i=1

∥∥∥∥∥∥ 1

NT

N∑
j=1

T∑
t=1

l
(2)
it f0te

′
jt

∥∥∥∥∥∥ = OP (T
−1/2N−1/(2p+γ)) = oP (T

−1/2).

Moreover,

1

N

N∑
i=1

∥∥∥∥∥ 1T
T∑
t=1

l
(2)
it (f̂t − f̌0t)(f̂t − f̌0t)

′

∥∥∥∥∥ ≤

(
max
1≤t≤T

1

N

N∑
i=1

M(xit)

)
·

(
1

T

T∑
t=1

∥f̂t − f̌0t∥2
)

= OP (N
−1) = oP (T

−1/2).

Therefore,

1

N

N∑
i=1

∥∥∥∥∥ 1T
T∑
t=1

l
(2)
it f̂t(f̂t − f̌0t)

′

∥∥∥∥∥ = oP (T
−1/2).
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Finally,

1

N

N∑
i=1

∥∥∥∥∥ 1T
T∑
t=1

l
(3)
it (∗)Ǎ−1

i f̂t · λ̌′
0i(f̂t − f̌0t)(f̂t − f̌0t)

′λ̌0i

∥∥∥∥∥ ≲
1

NT

N∑
i=1

T∑
t=1

M(xit)∥f̂t − f̌0t∥2

= OP (N
−1) = oP (T

−1/2).

Combining all the above results gives the desired conclusion.

Lemma 7. Under Assumptions 1 to 4,

1

N

N∑
i=1

∥λ̂i − λ̌0i∥2 = OP (T
−1)

and

1

N

N∑
i=1

∥∥∥∥∥λ̂i − λ̌0i + (Ĥ ′)−1A−1
i · 1

T

T∑
t=1

l
(1)
it f0t

∥∥∥∥∥
2

= oP (T
−1).

Proof. By (A.7) it can be shown that

1

N

N∑
i=1

∥λ̂i−λ̌0i∥2 ≤ ŌP (∥β̂−β0∥2)+oP

(
1

N

N∑
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)
+OP (1)·

1

N

N∑
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l
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∥∥∥∥∥
2

+OP (1) ·
1

N

N∑
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∥∥∥∥∥ 1T
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l
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∥∥∥∥∥
2

+OP (1) ·
1

N

N∑
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∥∥∥∥∥ 1T
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l
(2)
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′

∥∥∥∥∥
2

+OP (1) ·
1

N
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∥∥∥∥∥ 1T
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l
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i f̂t · λ̌′
0i(f̂t − f̌0t)(f̂t − f̌0t)

′λ̌0i

∥∥∥∥∥
2

.

Note that Lemma 5 and 6 now imply ∥β̂ − β0∥ = OP (T
−1) + oP

(
N−1

∑N
i=1 ∥λ̂i − λ̌0i∥

)
=

oP (T
−1/2). Besides, similar to the proof of Lemma 6, it holds that

1

N

N∑
i=1

∥∥∥∥∥ 1T
T∑
t=1

l
(1)
it f0t

∥∥∥∥∥
2

= OP (T
−1)

and

1

N

N∑
i=1

∥∥∥∥∥ 1T
T∑
t=1

l
(1)
it (f̂t − f̌0t)

∥∥∥∥∥
2

= oP (T
−1),

1

N

N∑
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∥∥∥∥∥ 1T
T∑
t=1

l
(2)
it f̂t(f̂t − f̌0t)

′

∥∥∥∥∥
2

= oP (T
−1).
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Moreover,

1

N

N∑
i=1

∥∥∥∥∥ 1T
T∑
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∥∥∥∥∥
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)

≲ max
1≤t≤T
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Consequently, the first conclusion of this Lemma holds: N−1
∑N

i=1 ∥λ̂i − λ̌0i∥2 = OP (T
−1). As

for the second conclusion, by (A.7) and previous results we have
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∥∥∥∥∥
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∥∥∥∥∥
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Lemma 8. Under Assumptions 1 to 4,
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Proof. First, by Assumption 4 and Lemma 7,
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∥∥∥∥∥
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∥∥∥∥∥
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T∑
t=1

l
(3)
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where the first equality follows from
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and the second equality can be derived by
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∥∥∥∥∥∥
≲
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i · 1
T

T∑
t=1

l
(1)
it f0t

∥∥∥∥∥
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∥∥∥∥∥
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T
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l
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∥∥∥∥∥
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∥∥∥∥∥λ̂i − λ̌0i + (Ĥ ′)−1A−1
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∥∥∥∥∥
2

.

Next, it can be shown that:
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i

(
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T∑
t=1

l
(1)
it f0t

)(
1√
T

T∑
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0t

)
A−1
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(
1

T
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E
[
l
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′
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=
1
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T∑
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i QiA
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i f0t + oP (1).

Let Rij = T−1
∑T

t=1 l
(3)
it ẋit,j · f0tf ′

0t. To obtain the second equality in the above equation, note
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that

1

N

N∑
i=1

RijA
−1
i

(
1√
T

T∑
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i
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1
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N∑
i=1

E[Rij ] ·A−1
i

(
1
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i (A.17)

First, since

E ∥Rij − E[Rij ]∥2p = E

∥∥∥∥∥ 1T
T∑
t=1

(
l
(3)
it ẋit,j − E

[
l
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])
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0t

∥∥∥∥∥
2p

= O(T−p),

it holds that

max
1≤i≤N

∥Rij − E[Rij ]∥ = OP (T
1/2p−1/2) = oP (1).

Next,

E
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where the last equality follows from Lemma 3. Thus, for the first term on the right-hand side

of (A.17),
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For the second term, we have
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Thus, it remains to show that the variance of each element of the second term of (A.17) is o(1).
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Let wij,ts denote a generic element of E[Rij ]A
−1
i f0tf
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−1
i , then a generic element of

1

N

N∑
i=1

E[Rij ] ·A−1
i

(
1

T

T∑
t=1

T∑
s=1

l
(1)
it l

(1)
is f0tf

′
0s

)
A−1

i

can be written as (NT )−1
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Then the desired result follows.

Lemma 9. Under Assumptions 1 to 4,
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Proof. By Lemma 6, 7 and Assumption 4,
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and we can show that∥∥∥∥∥∥ 1
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for any ϵ > 0, where the inequality follows from Cauchy-Schwarz inequality, and the second
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which can be derived similarly to the proof of Lemma 6 and Lemma 1. Thus, the desired result

follows.

Lemma 10. Under Assumptions 1 to 4,
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Proof. Note that

1

N

N∑
i=1

BiA
−1
i Ĥ−1
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Similar to the proof of Lemma 9, the second term on the right-hand side of the above equation
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is oP (T
−1), while the first term can be written as
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Then the desired result follows.

Lemma 11. Under Assumptions 1 to 4,
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Proof. Note that
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then the desired result follows.

Proof of Theorem 1:
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Proof. From (A.8) to (A.14) and Lemma 8 to Lemma 11, we get

∆(β̂ − β0) + oP (∥β̂ − β0∥) = − 1

NT

N∑
i=1

T∑
t=1

[
l
(1)
it ẋit +CtH

−1
0 Ψ′

0eit

]
+

1

N
(d1 + d2) +

1

T
(b1 + b2) + oP (T

−1).

Let w̄i = T−1/2
∑T

t=1wit where wit is defined in Assumption 5, so that by Assumption 4(v)

implies

√
NT∆(β̂ − β0) + oP (

√
NT∥β̂ − β0∥) = − 1√

N

N∑
i=1

w̄i + κ−1d+ κb+ oP (1).

For any a ∈ Rk, N−1
∑N

i=1Var(a
′w̄i) = a′ ·N−1

∑N
i=1 E[w̄iw̄

′
i] · a → a′Ωa and

1

N1+δ/2

N∑
i=1

E
∣∣a′w̄i

∣∣2+δ ≤ ∥a∥2+δ · 1

N1+δ/2

N∑
i=1

E

∥∥∥∥∥ 1√
T

T∑
t=1

wit

∥∥∥∥∥
2+δ

= O(N−δ/2) = o(1)

for any 0 < δ ≤ 2p− 2. Thus, Lyapunov’s central limit theorem implies that:

1√
N

N∑
i=1

a′w̄i
d→ N

(
0,a′Ωa

)
,

which leads to Theorem 1 by Cramér–Wold theorem. Then Theorem 1 follows.

A.2 Proofs of Other Theorems

The proofs of Theorem 2 to Theorem 4 are relegated to the online appendix to save space.
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