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Abstract 

We present a rational expectations model of credit-driven crises. In our model economy, banks 

can operate in two types of business à la Minsky’s narratives. They are sequentially aware of the 

deterioration of fundamentals of the speculative business and decide whether to continue credit 

extension in that business or liquidate capital and move into the traditional business. However, 

because individual banks face uncertainty about how many of their peers have been aware, they 

rationally choose to extend credit in the speculative business for a longer time than is socially 

optimal, leading to an over-delayed crisis and consequently more banks being caught by the crisis. 

This in turn renders the financial crisis more severe and the subsequent economic recovery slower. 

Within a standard textbook macroeconomic growth setting, our model generates rich dynamics of 

economic booms, slowdowns, crashes, and recoveries. 
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Abstract

We present a rational expectations model of credit-driven crises. In our model econ-
omy, banks can operate in two types of business à la Minsky’s narratives. They are se-
quentially aware of the deterioration of fundamentals of the speculative business and de-
cide whether to continue credit extension in that business or liquidate capital and move
into the traditional business. However, because individual banks face uncertainty about
how many of their peers have been aware, they rationally choose to extend credit in the
speculative business for a longer time than is socially optimal, leading to an over-delayed
crisis and consequently more banks being caught by the crisis. This in turn renders the
financial crisis more severe and the subsequent economic recovery slower. Within a stan-
dard textbook macroeconomic growth setting, our model generates rich dynamics of eco-
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“When the music stops, in terms of liquidity, things will be complicated. But as long as the music is playing,

you’ve got to get up and dance. We’re still dancing.”

Charles Prince, the former chairman and CEO of Citigroup

“Those who leave the dance too early leave money on the table and initially look incompetent. However, a

fully committed player like Mr. Prince finds that he can’t escape when the building’s on fire and everyone wants

out at the same time...As we’ve seen, hardly anybody knows how to call that timing very well.”

Quoted from Wagner and Rieves (2009)

1 Introduction
The 2008-2009 global financial crisis has sparked revived interest in Minsky’s financial instability

hypothesis. Nowadays it has become commonplace for the financial media and practitioners to refer

to the start of a financial crisis as a Minsky moment. According to Minsky, the financial system is

intrinsically fragile. In prosperous times, increased profits encourage the tendency toward excessive

indebtedness, and sooner or later debt will accumulate to a level that borrowers can no longer pay it

off with their incoming revenues and then a financial crisis follows naturally. There is now substantial

supporting evidence of Minsky’s hypothesis in academic research.1 The general pattern revealed by

the evidence is that credit booms presage financial crises and the magnitude of booms can predict

the severity and length of recessions in the aftermath of the financial crises. However, some natural

questions remain: why would agents, whether firms, households, or intermediaries, take on so much

debt in the first place if they are aware of the inevitable large risk? Why does a credit boom often last a

very long time before busting if the financial system is intrinsically fragile? For instance, the subprime

mortgage boom, one of the major causes of the recent financial crisis, experienced a prolonged period

of rapid acceleration from 2000 to 2006, surging from $100 billion to $ 600 billion in the process. The

market then suddenly collapsed during the 2008-2009 financial crisis to less than $ 20 billion.

One possible explanation is that not all agents are aware of the ultimate crisis. Minsky himself

attributes this unawareness to the important role of over-optimism, which leads both borrowers and

lenders to neglect crash risk, resulting in a gradual build-up of indebtedness and a slow moving

but accelerating financial crisis. Indeed, the recent academic literature has found evidence of over-

optimism in bond markets (Greenwood and Hanson, 2013), equity markets (Baron and Xiong, 2017),

and housing markets (Cheng, Raina, and Xiong, 2014). Over-optimism or speculative euphoria (in

Minsky’s own terminology) undoubtedly plays an important role in exacerbating excessive indebt-

edness prior to a crisis. However, it is unlikely the only cause of a crisis with the kind of magnitude

observed. As a matter of fact, amid ferocious competition, the stake or gain to have accurate unbi-

ased beliefs in the financial market is simply very high. Thus, how over-optimism alone can generate

the apparently repeated credit expansions and crises in financial history (Reinhart and Rogoff, 2009,

1See, e.g., the recent papers of Schularick and Taylor (2012), Baron and Xiong (2017), Hu (2017), Krishnamurthy and
Muir (2017), López-Salido, Stein, and Zakrajšek (2017), and Li and Krishnamurthy (2021).
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2011) remains an open question.2

On the other hand, the widespread outrage toward the Wall Street after the recent crisis manifests

the common sentiment of the public that the financial institutions were well aware the excessive

credit expansion would eventually turn into a crisis, yet they ignored the warning signs, failed to

control evolving risks within the financial system, and sunk the entire economy together with them

when the day of reckoning came. For instance, the Financial Crisis Inquiry Commission wrote in its

report that “In the decade preceding the collapse, there were many signs that lending practices had

spun out of control, that too many homeowners were taking on mortgages and debt they could ill

afford, and that risks to the financial system were growing unchecked.”

Building on the seminal work of Abreu and Brunnermeier (2002, 2003) on asynchronous aware-

ness, this paper models credit expansions and financial crises as a Keynes’ game of musical chairs.

Credit expansion persists as individual players have incentive to exit right before the crash, neither

too early nor too late, though all the players know that for sure some of the players will find them-

selves caught by the crisis in the end. Unlike the endowment economy of Abreu and Brunnermeier

(2002, 2003), our model economy features real production, which provides a novel macroeconomic

perspective on the dynamic interaction between credit expansions, crises, and recoveries.

One key insight of our paper is that individual banks rationally choose to delay responding to bad

news about the economy by continuing credit extension, but the delay in timing generates negative

externality across banks. Specifically, banks are sequentially aware of the start of the deterioration in

the fundamentals of the economy. The status of the economy depends in part on the fundamentals

and in part on the collective actions of banks. Given a fundamental value, if a sufficient number of

banks pull out of the lending market, the crisis will occur. Due to asynchronous awareness, an in-

dividual bank is uncertain about when the crisis will come after its own awareness. In equilibrium,

each individual bank optimally chooses to continue to extend credit for a while rather than cease

lending immediately after learning the bad news. In particular, the delay in response for individual

banks is an over-delay, which is socially inefficient. The inefficiency arises because negative external-

ity exists across banks in their timing. Namely, when individual banks choose to extend credit for a

longer time, the crisis is delayed for longer and, as a result, more banks get caught by the crisis in

equilibrium, which depresses the fire-sale liquidation value for every caught bank and exacerbates

capital misallocation, forming a negative externality.

We first present a baseline model — an investment game in a production economy. In our model

economy, there are two types of business à la Minsky’s narratives: speculative business and tradi-

tional business. The speculative business has higher profitability but is more fragile by nature. All

banks initially operate in the speculative business sector. The status of the speculative sector depends

on its fundamentals and the number of banks operating in it. The fundamentals are good enough ini-

2The recent paper of Li and Krishnamurthy (2021) finds the evidence that both the frictional intermediation mechanism
and fluctuations in beliefs are needed to match the crisis cycle patterns.
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tially but deteriorate gradually after a negative shock. Banks learn of the negative shock sequentially,

and decide when to exit the speculative sector. For a given fundamental value, if more than a critical

proportion of banks have exited, the speculative sector will collapse — the crisis occurs. Once the

crisis occurs, the speculative sector will no longer generate profits. Moreover, banks exiting before

the crisis (survival banks) can retrieve their full loan principal and thus are able to reallocate and

reinvest in the traditional sector for sure, while banks exiting later and thus getting caught by the cri-

sis (failure banks) can only recover an endogenous fire-sale liquidation value for their loans. Failure

banks thus can reinvest in the traditional sector only with a probability, being an increasing function

of the liquidation value. The equilibrium of the baseline model is characterized by the optimal wait-

ing strategy for a bank — the length of delay between the awareness of the shock and the action of

exiting. We study two equilibria: the social planner’s second-best constrained equilibrium and the

decentralized competitive equilibrium.

For the second-best constrained equilibrium, it is supposed that the social planner cannot observe

the time of the shock either but can coordinate all banks to choose the same waiting length. The so-

cial planner faces the following tradeoff. On the one hand, an increase in the waiting time delays the

crisis, which means all banks can receive the higher profit flow from the speculative sector (than that

from the traditional sector) for a longer time. On the other hand, if banks stay longer in the specula-

tive sector, the fundamentals will deteriorate more when the crisis strikes and thus more banks will

get caught by the crisis, lowering the liquidation value for every caught bank. With the above trade-

off, the social planner has a unique optimal delay. For the decentralized competitive equilibrium,

an individual bank faces a similar tradeoff. However, unlike the social planner who recognizes that

the timing strategy of banks endogenously impacts the crisis arrival time and thus the fire-sale price,

individual banks take the fire-sale price or the loan recovery value as given. The tradeoff also gives

a unique optimal waiting time for individual banks. In comparing the two equilibria, we show that

individual banks exit too late in the decentralized equilibrium relative to the second-best optimum.

The fact that individual banks do not internalize the impact of their timing strategy on the fire-sale

price results in their over-waiting in exiting.

We then study a full model with both entry and exit, the aim of which is to characterize the cycle

of credit booms and crises. Specifically, we model the cycle of how banks start from the traditional

business, enter the speculative business, and then exit it and re-enter the traditional business. Initially,

all banks are operating in the traditional sector. The speculative sector begins to generate a high profit

flow after a positive shock hits to its fundamentals. The information of the shock arrives to banks

sequentially (like in the baseline model). All banks know that the good economic fundamentals of

the speculative sector can last only for a certain period. Therefore, banks need to decide when best to

enter and when best to exit the speculative sector. The equilibrium of the full model is characterized

by the optimal length of time a bank stays in the speculative sector. As in the baseline model, there

exists a unique equilibrium for both the second-best and the decentralized case. In particular, we
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show that individual banks stay in the speculative sector too long in the decentralized competitive

equilibrium compared with the second-best optimum.

Finally, we extend our model to a macroeconomic growth setting with both entry and exit. The

macroeconomic model explicitly examines the capital accumulation and consumption decision. The

model highlights the dynamics. When the fundamentals of the speculative sector are initially dete-

riorating, the credit boom continues but the growth of the aggregate economy slows down. After

a sufficient number of banks pull out, the speculative sector starts to decline and the growth of the

aggregate economy slows down even further. Once it commences, the contraction of the speculative

sector occurs at an increasing speed. The economy heads toward the financial crisis at an acceler-

ated pace after a long period of slowly deteriorating fundamentals.3 The rich dynamics of booms,

slowdowns, crashes, and recoveries of our macroeconomic model demonstrates that asynchronous

awareness could potentially be a powerful transmission and propagation mechanism in the standard

DSGE models, which are well known for lacking a strong internal propagation mechanism in the

absence of other frictions. Similar to the baseline model, we show that the credit boom lasts longer

and the crisis is more delayed in the decentralized competitive equilibrium than in the second best.

Once the crisis strikes, however, there is a bigger drop in capital and aggregate output than in the

second best. It then takes a longer time for the capital to accumulate and for the aggregate output to

recover to the pre-crisis level. This opens room for policy interventions.

We analyze two policy measures that can potentially mitigate or eliminate the inefficiency of the

decentralized equilibrium. One is the tax policy and the other is the credit policy. For the tax policy,

government can levy a tax on the asset fire-sale liquidation values of failure banks and distribute

the tax revenue to all banks as a lump-sum subsidy. We show that there exists a unique tax rate

that implements the second-best optimum. For the credit policy, failure banks can borrow from

the government for restructuring or refinancing, but the government charges an interest rate that is

higher than its funding cost. The extra interest rate charged forms the government’s profit, which will

be distributed to all banks as a lump-sum subsidy. We show that there exists a unique interest rate

that implements the second-best optimum. The intuition for the two polices is similar. Both involve

a penalty on failure banks, which makes individual banks have incentives to reduce the chance of

being caught by the crisis by choosing to stay shorter in the speculative sector.

Related literature. Closely related to our paper is the work of Abreu and Brunnermeier (2002,

2003), who show that asynchronous awareness results in not only asynchronous responses to the

shock but also a delay in the responses. In a general-equilibrium economy with production, our pa-

per further shows that such a delay in the responses can be an over-delay, which is inefficient from

the perspective of the social planner. In other words, the work of Abreu and Brunnermeier (2002,

3In the recent crisis, the subprime mortgage defaults had started to increase since the first quarter of 2007 when the
S&P/Case-Shiller house price index recorded the first year-on-year decline since 1991. Yet, a full bloom crisis did not strike
until the second half of 2008.
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2003) explains why a bubble (boom) can persist, while our paper explains why an inefficient boom

can persist. More importantly, building on their work, we apply the timing game to a business cycle

model, which offers insights on why an inefficient credit boom can persist, causing an over-delayed

crisis with the consequence of resource misallocations and slow economic recoveries. On the method-

ology front, our paper is the first to embed the microeconomic friction à la Abreu and Brunnermeier

(2002, 2003) in a standard macroeconomic model. With capital accumulation and risk-aversion pref-

erence, modeling the timing game becomes much harder. Yet we are able to make the model highly

tractable and extendable. Since asynchronous awareness is common in many important economic

events such as bubbles, currency attacks, and bank runs, the macroeconomic model developed in

this paper provides a first step to study the macroeconomic impact of asynchronous awareness in

these events.

The macroeconomic model in our paper is a continuous-time model (see, e.g., Brunnermeier and

Sannikov, 2014; Liu, Mian and Sufi, 2020; Bigio and Sannikov, 2021). A few papers in the literature

follow the approach of Abreu and Brunnermeier (2003) and study asynchronous awareness in differ-

ent directions and contexts. Doblas-Madrid (2012) aims to endogenize the asset prices in Abreu and

Brunnermeier (2003). In his model, all agents are rational and prices reflect supply and demand at all

times. He and Manela (2016) examine information acquisition in rumor-based bank runs, by adding

uncertainty about the capacity of the bubble, decoupling the spreading rate from the length of the

awareness window, and allowing agents to acquire additional noisy information upon awareness.

Unlike these contributions where the model economy is still an endowment (exchange) economy,

ours is a general-equilibrium production economy with the emphasis of the welfare implications, i.e.,

the decentralized equilibrium versus the constrained equilibrium under asynchronous awareness.

Our paper belongs to a broader literature that studies the causes of financial crises. As discussed

earlier, some behavioral theories suggest that credit booms might lead to recessions or financial crises

(see, e.g., Minsky, 1977, 1986; Kindleberger, 1978, and the recent contributions of Bordalo, Gennaioli,

and Shleifer, 2018 and Bordalo et al., 2020). Two branches of rational expectations models are related

to our paper. One branch is the theory based on financial frictions pioneered by Bernanke and Gertler

(1989) and Kiyotaki and Moore (1997), which emphasizes the amplification and propagation mech-

anisms of an exogenous fundamental shock. The other branch of theory emphasizes that macroeco-

nomic fluctuations and crises in particular can be self-fulfilling even in the absence of fundamental

shocks to preferences, technologies, or economic endowments (e.g., Cass and Shell, 1983; Cooper and

John, 1988; Benhabib and Farmer, 1994, Cole and Kehoe, 2000; Gertler and Kiyotaki, 2015; Martin and

Ventura, 2012; Miao and Wang, 2018; and Benhabib, Liu, and Wang, 2019). The coordination game of

timing in our paper is closely related to the particular literature on self-fulfilling beliefs in coordina-

tion games under frictions of imperfect information or imperfect communication; a leading example

of this particular literature is models of sentiment-driven fluctuations (e.g., Angeletos and La’O, 2013;

Benhabib, Wang, and Wen, 2015; Benhabib, Liu, and Wang, 2016). The financial crisis in our model
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is driven by both fundamentals and coordination and our model features a unique equilibrium. In

other words, the financial crisis is triggered by a bad shock to fundamentals but amplified by the

coordination problem. In particular, the coordination problem in our model concerns timing, which

causes a more delayed and therefore more severe crisis. The insight of amplification through timing

has not been shown in the extant literature.

A branch of literature characterizes slow recoveries after crises. Veldkamp (2005) studies a model

where information flow is endogenous and varies with the level of economic activity. When times are

bad, a low level of economic activity implies scarce information, which slows agents’ reactions and

leads to a slow recovery (or boom). Van Nieuwerburgh and Veldkamp (2006) characterize slow recov-

eries in a real business cycle model where information flow about aggregate productivity is endoge-

nously generated by production actions. Low production after a crisis yields noisy estimates of re-

covery, which impedes learning and slows recovery. Fajgelbaum, Schaal and Taschereau-Dumouchel

(2017) show uncertainty traps: high uncertainty deters investment, and agents learn from the actions

of others. As a result, a temporary shock can generate a long-lasing recession. In Kozlowski, Veld-

kamp and Venkateswaran (2020), the true distribution of shocks is unknown and agents estimate it

with real-time data. Thus extreme events generate persistent changes in agents’ beliefs and macro

outcomes. The mechanism of slow recovery in our paper is different. When the crisis strikes, capital

stock and aggregate output experience a big drop. It takes a long time for the capital to accumulate

and for the aggregate output to recover to the pre-crisis level.

Our paper is also related to a growing literature that highlights the role of pecuniary externality

in generating excessive financial fragility (see, e.g., Geanakoplos and Polemarchakis, 1986; Caballero

and Krishnamurthy, 2003; Lorenzoni, 2008, Farhi, Golosov, and Tsyvinski, 2009; Jeanne and Korinek,

2010; Stein, 2012; He and Kondor, 2016). Dávila and Korinek (2018) build a general model to char-

acterize pecuniary externalities in economies with financial frictions. The common insight from this

literature is that individual borrowers over-borrow as they do not internalize the effect of their bor-

rowing on the fire-sale price of assets during financial distress (see, e.g., Lorenzoni, 2008). The exter-

nality in our model concerns lenders’ timing choice of credit extension and operates through affecting

the number of borrowers that are under fire sales at the crisis time (“extensive margin”); in con-

trast, the externality in the extant literature concerns borrowers’ level choice of leverage and operates

through affecting the quantity of asset (debt) under fire sales per borrower at the crisis time (“inten-

sive margin”). The different channels of operation may imply different policy interventions. More

importantly, the timing dimension of externality in our paper has various forces with different signs.

One key contribution of our paper is to analytically decompose the externality and characterize the

sign and magnitude of each force, connected to the work of Dávila and Korinek (2018).

Our paper embeds a dynamic coordination game in a macroeconomic model. In this respect, our

paper is connected to some of the papers in the microeconomic literature on dynamic coordination

games. Frankel and Pauzner (2000) and He and Xiong (2012) study a dynamic game by adding a
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friction as in Calvo (1983). These papers assume that agents must make asynchronous choices, a

Calvo-like friction. The friction in our paper is instead asynchronous awareness like in Abreu and

Brunnermeier (2002, 2003); asynchronous choice is merely a byproduct of asynchronous awareness.

Some other papers such as Angeletos, Hellwig, and Pavan (2007) and Liu (2019) study a repeated

version of static global games pioneered by Carlsson and Van Damme (1993) and Morris and Shin

(1998). The information structure of asynchronous awareness in our paper is different from that of

dispersed noisy signals on a fundamental value in those papers. Our model framework has elements

of both coordination and competition unlike in global games (see also Abreu and Brunnermeier,

2003). On the applied side, the aforementioned models do not allow capital accumulation and hence

are not designed to explain the booms, crashes, and slow recoveries as our model is.

The paper is organized as follows. In Section 2, we present the baseline model. In Section 3, we

study a full model with both entry and exit. In Section 4, we extend the model to a macroeconomic

growth framework. In Section 5, we analyze policy implications. Section 6 concludes.

2 The baseline model
Our model economy consists of two types of business (sectors) in which banks can operate: spec-

ulative business and traditional business. The former, corresponding to “speculative investment” in

Minsky’s narratives, includes business such as subprime mortgage lending, CDS trading, and other

shadow banking activities, while the latter can be normal commercial lending. We will model the

cycle of how banks start from the traditional business, enter the speculative business, and then exit it

and re-enter the traditional business. For clarity of exposition, in this section, we focus on the second

half of the cycle — banks’ decisions of exiting the speculative business and (re)entering the traditional

business. In the next section, we will study the first half of the cycle.

Figure 1 illustrates the framework of the baseline model, where the notations will be explained in

due course.

2.1 Setting
Time is continuous starting from t = 0. The risk-free net interest rate is r. There is a continuum of

banks with unit mass. These banks are currently investing in the speculative business sector. There

is a continuum of firms with unit mass in the speculative business sector. Without loss of generality,

for our macroeconomic setting, we assume that one firm is matched with one bank (so we can call a

pair as a “firm-bank”).4

Following the static setting in Cooper and John (1988), Morris and Shin (2004), and Bebchuk and

Goldstein (2011), the loan performance of a bank depends on the macroeconomic state as well as

the number of other banks extending loans. In our dynamic context, the payoff of a bank in the

speculative sector at time t depends on the fundamentals of the sector, θ (t), and the number of active
4For simplicity of our macroeconomic model, we can assume that one firm has one main creditor/investor — its bank.

A firm has to close its business and liquidate assets to repay loans if its bank decides not to roll over.
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Figure 1: The framework of the baseline model

banks in the sector. Specifically, a bank’s payoff (i.e., loan interests) is a continuous cash flow process,

and at time t the flow is given by

c (t) =

{
cH

0
if θ (t) + β · ω (t) ≥ α (no crisis)
otherwise

, (1)

where cH > r, and ω (t) is the total measure of active banks at time t in the sector, β > 0 is a

parameter representing the degree of (production) complementarity among firms in the sector, and

α is a constant satisfying α > β.5 As we will show, the condition θ (t) + β · ω (t) ≥ α is not binding at

the beginning but becomes binding after a certain time at which point we say a “crisis” occurs.

The fundamentals (the macroeconomic state) of the sector, θ (t), follow an exogenous process.

θ (t) is initially high enough, but at t = t0 > 0 a shock hits the sector. After the shock, θ (t) gradually

declines, that is, θ
′
(·) < 0 for t ≥ t0. The arrival of the shock, the time t0, follows an exponential

distribution, with probability density function (pdf) φ(t0) = λe−λ(t0−m) in the support t0 ∈ [m,+∞),

where the parameter m ≥ 0 will be explained in detail in Section 3; in the baseline model we can

simply set m = 0. Crucially, like in Abreu and Brunnermeier (2002, 2003), t0 is not observable by

banks. Nevertheless, after t0, banks are sequentially informed (aware) of the event that the sector has

been hit by the shock. The information spreads among banks over [t0, t0 + η], following a uniform

distribution. Ex ante, any bank is equally likely to become aware at any t ∈ [t0, t0 + η]. Since t0 is

random, an individual bank does not know its position in the queue (i.e., how many other banks are

informed before or after it is informed). Sequential awareness can also be interpreted as a dispersion

of beliefs or opinions as in Abreu and Brunnermeier (2002, 2003).
5Product market complementarity and search friction may generate this kind of payoff function (see, e.g., Hu and Varas,

2019).
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All banks initially invest in the speculative business sector. After receiving private information

about the shock time t0, banks may decide to exit. Concretely, if a bank decides to exit (i.e., not to roll

over its loan any longer) at time t, its firm liquidates assets and repays the principal of the bank loan.

As long as crisis has not yet struck at time t, the assets can be sold orderly to investors in a related

sector possessing a constant-returns-to-scale technology with productivity as 1.6 In other words, if

a bank exits before the crisis hits, it is able to get its full loan principal, 1, paid back. However,

once the crisis hits, banks that are still active in the sector are “caught” by the crisis and their firms

have to liquidate assets under fire sales. The fire-sale price function is a downward-sloping curve.

Specifically, the liquidation value for a firm is given by

L =

{
1
` = g

(
ωC
) if no crisis

if in the crisis
,

where g (·) is the fire-sale price function with g′ ≤ 0, and ωC , an endogenous variable, denotes the to-

tal measure of firms under fire sales at the crisis time.7 The micro-foundation of g (·) is the following.

When the crisis occurs, the assets have to be sold to outside investors in a less-related sector, which

has a less efficient technology to use the assets. The technology is with (weakly) decreasing returns

to scale. Specifically, the production function of the outside investor sector is G (ω) with the marginal

productivity being G′ (ω) = g (ω).

After exiting and obtaining their liquidation value, those banks that successfully exit before the

crisis (called “survival banks”) as well as those banks that are caught by the crisis (called “failure

banks”) can enter the traditional business sector by reinvesting their liquidation value in an invest-

ment opportunity — a project of a fixed size. The payoff of the project is a continuous constant

cash flow process cL in perpetuity, where cL ∈
(
r, cH

)
; that is, the project’s present value (PV) is

cL

r > 1. The cost of this investment is 1.8 A survival bank can certainly afford the investment cost

and will thus reinvest. For a failure bank, if it is short of capital to finance the investment cost 1 (i.e.,

if L = ` < 1), it can try to refinance the deficit. The probability of successful refinancing (to reach the

required capital 1), which is independent across banks, is p (L) ∈ [0, 1) for L < 1, where p′ (·) > 0.

The probability p (L) can also be interpreted as the success probability of restructuring a failure bank.

In short, the expected payoff (PV) for a bank after obtaining its liquidation value with taking into

account the reinvestment opportunity is summarized as

Π =

{
cL

r[
cL

r − (1− L)
]
· p (L) + L (1− p (L)) = L+

(
cL

r − 1
)
· p (L)

if L = 1
if L < 1

, (2)

6As will become clear, at any time point t before the crisis, the measure of assets under sales is zero.
7In reality, banks themselves face the risk of being run by their short-term debtholders if their asset performance is in

question. If such runs occur or are expected to occur, banks would be forced to fire sell (Liu, 2016, 2019). The fragile capital
structure of banks plays a disciplining role (Calomiris and Kahn, 1991; Diamond and Rajan, 2001).

8Without changing the model results qualitatively, we assume that the interest incomes received by banks have been
consumed or distributed to bank investors. Alternatively, we can assume that the interest incomes are non-storable. The
consumption decision is endogenous in the macroeconomic growth model in Section 4, where the assumption of a fixed-
size project is also not needed.
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where the second line is the payoff for a failure bank when its L is lower than 1, i.e., it will not be

able to reinvest with probability 1 − p (L), in which case its payoff is the liquidation value L, and it

will be able to reinvest with probability p (L), in which case its payoff is cL

r net of the refinancing cost

1 − L.9 The second line is intuitively rewritten in terms of the new investment’s net present value

(NPV), c
L

r − 1.

To have closed-form solutions of the model, we use linear specifications throughout the paper.

1) The fundamental process is θ (t; t0) =

{
α0 for t ≤ t0
α0 − κ (t− t0) for t > t0

, where κ > 0 and α0 ≤ α;

without loss of generality we set α0 = α. This means that the coordination problem of the macroe-

conomy arises only after t = t0 (i.e., the period in which the fundamental θ is sufficiently weak in

the spirit of Morris and Shin (1998) on currency attacks). 2) The fire-sale price function is g (ω) ={
1
1− γ · (ω − ω0)

when ω ≤ ω0

when ω > ω0
, where γ > 0 and 0 < ω0 < 1 − ζ

η with parameter ζ to be given

later in Lemma 1.10,11 3) p (L) = σL, where 0 ≤ σ ≤ 1; without loss of generality we set σ = 1.

We make two parameter assumptions.

Assumption 1 Payoff (cash flow) parameters satisfy r < cL < cH .

Assumption 2 Assume that v
(
cL

r − 1
)
> cH , where v ≡ γ κβ .

Assumption 2 says that the full reinvestment value in the traditional business sector, c
L

r , is suf-

ficiently high relative to the interest flow cH in the speculative business sector. The role of this as-

sumption will be clear in Proposition 1.

Before proceeding to solve the equilibrium, we consider a special case of Assumption 1.

Assumption 1’ Assume r < cL < cH , where r → 0, cL → 0, and cL

r ≡ Σ is a constant.

The only purpose of considering this special case of Assumption 1 is to make r → 0 (so the

discount factor term e−rt in the analysis can be neglected) and at the same time to guarantee that cL

r

is a finite number. This way, the presentation of the model equilibrium in the next subsection will

become much clearer and cleaner. In the next subsection, we conduct the analysis under Assumption

1’. In Appendix B, we conduct the analysis under the general Assumption 1 and show all the results

carry over. Moreover, in the full model of Section 3, we use Assumption 1 and again confirm that all

results derived under Assumption 1’ apply to the model under Assumption 1.

9A failure bank is short of 1− L, which is refinanced by paying the continuous flow interest rate r.
10The corresponding production function is G (ω) =

{
ω

ω − 1
2
γ · (ω − ω0)2

when ω ≤ ω0

when ω > ω0
for the outside investor

sector, where ω0 is the maximum absorbing capacity for the technology to maintain constant returns to scale.
11The only purpose of introducing the intercept ω0 is to help characterize the condition for the non-corner solution of the

competitive equilibrium (see Proposition 2 later).
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2.2 Equilibrium

Suppose all banks use the same (symmetric) strategy of choosing a waiting period τ after being

informed. That is, every bank decides to wait a time interval τ after being informed before existing.

Denote the arrival time of the crisis by t0 + ζ.

We proceed to find ζ as a function of τ . Given τ , the measure of banks that have exited by time t

is t−(t0+τ)
η for t ≥ t0 + τ . The measure of active banks, ω (t), is thus given by

ω (t) = 1− t− (t0 + τ)

η
for t ≥ t0 + τ , (3)

which is decreasing in t. Recall that the fundamental process is given by θ (t) = α − κ (t− t0) for

t > t0, which is also decreasing in t. The crisis condition θ (t) + β · ω (t) ≥ α is binding at t = t0 + ζ.12

Substituting θ (t) and ω (t) in (3) into the crisis condition yields

ζ =
τ + η

1 + κ
βη

. (4)

Lemma 1 follows.

Lemma 1. The function ζ (τ) is given by (4), which has the property that dζ
dτ = 1

1+κ
β
η ∈ (0, 1). Moreover, τ

has the domain τ ∈
[
0, ζ̄
]

and ζ is bounded by ζ ∈
[
ζ, ζ̄
]
, where ζ = η

1+κ
β
η and ζ̄ = β

κ .

Next, we derive the liquidation value ` . When the crisis occurs, the total measure of firms under

fire sales is given by

ωC = 1− ζ − τ
η

, (5)

which is an increasing function of τ or ζ by (4). Hence, we obtain ` = g
(
ωC
)

= 1 − γ ·
(
ωC − ω0

)
,

which, by plugging (4) and (5), yields

` ≡ ` (ζ) = 1− v · (ζ − ζ0) , (6)

where v ≡ γ κβ defined earlier in Assumption 2 and ζ0 ≡ ω0
β
κ . Because we assume the parameter

value ω0 satisfying ω0 < 1 − ζ

η , it follows that ζ0 <
(

1− ζ

η

)
β
κ = ζ and hence ` (ζ) is strictly less than

1 on the domain ζ ∈
[
ζ, ζ̄
]
. Lemma 2 follows.

Lemma 2. The liquidation value or the loan recovery value for a bank caught by the crisis is given by (6),

which has the properties that ` (ζ) < 1 and d`
dζ = −v < 0 on the domain ζ ∈

[
ζ, ζ̄
]
.

The loan recovery value depends on how soon the crisis will occur. The sooner it occurs, the

higher the loan recovery value. The parameter v measures the decline speed of the recovery value

over time. Intuitively, if the crisis is delayed for longer, more banks will be caught by the crisis in

equilibrium, in which case the fire-sale price for every caught bank becomes lower.

12Rigorously, the crisis occurs at t = t0 + ζ+.
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2.2.1 Benchmark: the social planner’s second-best constrained problem

Suppose that the social planner cannot observe the shock time t0 either. But the social planner

can “coordinate” all individual banks to choose the same waiting length τ after being informed. Note

that studying the social planner’s choice is to have a benchmark, and we will study how to indirectly

implement the social planner’s τ in Section 5. Denote the arrival time of the crisis by t = t0 + ζ. The

second-best constrained problem for the social planner is given by

max
τ

Ψ (τ, ζ) ≡
∫ t0+ζ−τ

t0

[
(ti + τ − t0) cH + Σ

] 1

η
dti +

∫ t0+η

t0+ζ−τ

[
ζcH + Π (`)

] 1

η
dti +

(
G
(
ωC
)
− ωC`

)
s.t. ζ =

τ + η

1 + κ
βη

given by (4)

ωC ≡ ω (t = t0 + ζ) = 1− ζ − τ
η

` = ` (ζ) given by (6), and Π (`) = `Σ. (7)

The social planner recognizes that τ endogenously impacts ζ, which is the first constraint. In the

objective function, we count the payoffs starting from t0 without loss of generality.13 Banks fall into

two categories: early banks receiving information at ti ∈ [t0, t0 + ζ − τ ] and late banks receiving

information at ti ∈ (t0 + ζ − τ, t0 + η]. Early banks exit before the crisis and survive, while late banks

are caught by the crisis and fail. The first term in the objective function is the payoff for the survival

banks. A typical survival bank ti gets the continuous payoff flow cH in the period [t0, ti + τ ] for time

length ti + τ − t0 until its exit time ti + τ , and gets the payoff Σ at its exit time by reinvesting its full

liquidation value L = 1. The second term in the objective function is the payoff for the failure banks.

A typical failure bank ti gets the continuous payoff flow cH in the period [t0, t0 + ζ] for time length

ζ until the crisis arrival time point t = t0 + ζ, and gets the expected payoff Π (`) at the crisis arrival

time by reinvesting its partial liquidation value L = ` = ` (ζ) < 1. The third term is the payoff for the

outside investor sector. Figure 2 gives an illustration.

Figure 2: Illustration of the payoffs for banks
13If instead we count all the payoffs starting from time t = 0, the objective function of (7) is simply altered by adding a

constant cHt0.
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It is worth noting that because the social planner cannot observe t0 either, the maximization prob-

lem can instead be written by adding the expectation operator over t0. However, as we can see in the

first line of (7) (define s = ti − t0 and replace ti by s in the integral part), t0 in the objective function

can actually be cancelled out. So the expectation over t0 is irrelevant.14

The first-order condition of Program (7) implies z (τ) = 0, where

z (τ) ≡ dΨ (τ, ζ (τ))

dτ
= (1− ω) cH +

(
cH +

dΠ (`)

d`

d`

dζ

)
dζ

dτ
ω + (Π (`)− Σ)

dω

dτ
+

(
− d`
dζ

)
dζ

dτ
ω, (8)

in which dζ
dτ = 1

1+κ
β
η , d`dζ = −v, dΠ(`)

d` = Σ, and dω
dτ =

d
(

1− ζ−τ
η

)
dτ = − 1

η

(
dζ
dτ − 1

)
.

The first-order derivative (8) highlights the benefit-cost tradeoff for the social planner in choosing

the optimal waiting length τ . An increase in τ has four effects on the payoffs in the objective function

of (7). First, survival banks with 1 − ω mass obtain the interest flow cH for a longer period because

the crisis is delayed for longer, so the total incremental payoffs are given by the first term on the

left-hand side (LHS) of (8). Second, failure banks with ω mass also obtain the interest flow cH for a

longer period; however, their expected reinvestment payoff Π (`) is decreased due to a more delayed

crisis. Third, a more delayed crisis results in some banks switching from survival banks to failure

banks and each of such banks loses Σ−Π (`), which is the third term. The fourth term represents the

change in payoff for the outside investor sector. Note that combining the second term and the fourth

term in (8) (i.e., the change in payoff for failure banks and for outside investors as a whole) yields(
cH + d(Π(`)−`)

d`
d`
dζ

)
dζ
dτ ω < 0 by Assumption 2.

Proposition 1. The social planner has a unique optimal τ , denoted by τSB , which lies in τSB ∈
[
0, ζ̄
)
.

Moreover, under the sufficient condition that v(Σ−1)
cH

≥ β
κη + 2, it follows that τSB = 0.

The intuition for the sufficient condition to ensure τSB = 0 in Proposition 1 is the following.

One dollar of cash has different social values in the hand of failure banks (sellers) and in the hand

of outside investors (buyers), because they have different marginal utilities/productivities, recalling

that failure banks have valuable new investment opportunities while outside investors do not. (This

is equivalent to buyers and sellers having different MRS, causing “distributive externality”, in Dávila

and Korinek (2018)). Hence, the wealth redistribution caused by the price change matters. The value

(PV) from reinvesting the fire-sale price ` for failure banks is Π (`) = ` + ` (Σ− 1), while the value

for outside investors is ` itself. Hence, a decrease in price ` causes wealth redistribution, reducing

the social surplus, and the effect can be captured by d(Π(`)−`)
d` = Σ− 1. A delayed crisis decreases the

fire-sale price ` and thus reduces the surplus, captured by d(Π(`)−`)
dζ = d`

dζ
d(Π(`)−`)

d` = −v (Σ− 1), while

the gain from a delayed crisis is captured by a function of cash flow cH . Therefore, when v(Σ−1)
cH

is

high enough, the social planner would choose no delay, that is, τSB = 0.

14If we instead count the payoffs starting from time t = 0 and consider the expectation over t0, the objective function is
simply altered to have an additional constant term regarding cHE (t0), so the optimum does not change.
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First best Before closing this subsection, we discuss the first best, where the social planner can

perfectly observe the shock time t0 and coordinate all banks to choose the same waiting length τ .

In this case, there is no asynchronous awareness and banks are essentially homogeneous. The crisis

arrival time then is t = t0 + ζ with ζ = τ ; that is, all banks exit from the speculative sector simultane-

ously at time t = t0 + ζ, in contrast with the second best case where (survival) banks exit sequentially

over [t0 + τ, t0 + ζ). Denote by τFB the social planner’s optimal τ in the first best, and by ζFB and

ζSB the equilibrium ζ in the first best and in the second best, respectively. It is easy to show that if

v is sufficiently high, ceteris paribus, the first best is such that banks stay in the speculative sector as

long as possible and, at the same time, the liquidation price is ensured to be ` = 1. So t = t0 + τFB

solves θ (t) + β · ω (t) = α, where θ (t) = α − κ (t− t0) and ω (t) = ω0 (recalling that ω0 is the

maximum absorbing capacity of the outside investors to have no fire-sale discount).15 This implies

τFB = ζFB = ω0
β
κ < ζSB by noting ζ0 ≡ ω0

β
κ < ζ and ζSB ∈

[
ζ, ζ̄
]
.

2.2.2 The decentralized competitive equilibrium

Banks receive information regarding time t0 in an asynchronous manner.16 Suppose every bank

uses the strategy of waiting for time length τ∗ after receiving its information, and the crisis occurs at

t = t0 + ζ. The decentralized equilibrium is characterized by the pair (τ∗, ζ). We find the equilibrium

in three steps.

First, given τ∗, find ζ. Lemma 1 gives the result; that is,

ζ =
τ∗ + η

1 + κ
βη

. (9)

Second, given ζ, find the optimal strategy τ∗i for an individual bank ti. Because bank ti can

infer that t0 must occur within t0 ∈ [ti − η, ti], the posterior pdf of t0 conditional on the information

t0 ∈ [ti − η, ti] from the perspective of bank ti is given by

φ (t0|ti) =
φ (t0) 1

η∫ ti
ti−η φ (s) 1

ηds
=
λeλ(ti−t0)

eλη − 1
, (10)

by recalling that the prior pdf of t0 is φ(t0) = λe−λ(t0−m). Similarly, the conditional cumulative

distribution function (cdf) of t0 from the perspective of bank ti is given by

Φ (t0|ti) =

∫ t0

ti−η
φ (s|ti) ds =

eλη − eλ(ti−t0)

eλη − 1
. (11)

The individual bank ti’s optimization problem is given by

τ∗i = arg max
τi


Pr (t0 + ζ ∈ (ti + τi, ti + ζ])︸ ︷︷ ︸

probability of survival

(
τic

H + Σ
)︸ ︷︷ ︸

payoff in the case of survival

+
∫ x=τi
x=0 f (t0 + ζ = ti + x)︸ ︷︷ ︸

density of failure

(
xcH + Π (`)

)︸ ︷︷ ︸
payoff in the case of failure

dx

 , (12)

15In the first best, a proportion ω0 of banks exit at t0 + τFB while other banks exit an instant before t0 + τFB .
16As in Abreu and Brunnermeier (2002, 2003) and He and Manela (2016), in the main text we only consider the case

where t0 ≥ η +m. We show robustness for the case where t0 < η +m in the proof of Proposition 2.
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where ` = ` (ζ) given in (6) and an individual bank takes ` as given, and Π (`) = `Σ by (2). The terms f

and Pr in (12) are given by f (t0 + ζ = ti + x) = φ (t0 = ti + x− ζ|ti) = λeλ(ζ−x)

eλη−1
and Pr (t0 + ζ ∈ (ti + τi, ti + ζ]) =

Φ (t0 = ti|ti)−Φ (t0 = ti + τi − ζ|ti) = eλ(ζ−τi)−1
eλη−1

, by considering that the conditional pdf φ (t0|ti) and

cdf Φ (t0|ti) are given in (10) and (11).

We explain (12). The individual bank which receives information at ti knows that the crisis will

occur at the earliest at t = t+i and at the latest at t = ti + ζ and hence that the crisis arrival time must

fall into the interval t0 + ζ ∈ (ti, ti + ζ].17 Thus, when the individual bank chooses its exiting time as

ti+τi, it knows that there are two possibilities: t0 +ζ ∈ (ti, ti + τi]∪ (ti + τi, ti + ζ]. For the possibility

t0 + ζ ∈ (ti + τi, ti + ζ], the crisis arrival time t0 + ζ is after its exiting time ti + τi, in which case the

bank survives and its payoff (starting from ti) is given by the first term on the right-hand side (RHS)

of (12). For the possibility t0 + ζ ∈ (ti, ti + τi], the crisis arrival time t0 + ζ is before its exiting time

ti+ τi, in which case the bank fails at the crisis arrival time ti+x, where x ∈ (0, τi]. For each x, we can

find the probability density for t0 + ζ = ti + x and the corresponding expected payoff, which gives

the second term on the RHS of (12).

The first-order condition with respect to τi for (12) implies ẑ (τi = τ∗i ; ζ) = 0, where

ẑ (τi; ζ) ≡ cH · Pr (t0 + ζ ∈ (ti + τi, ti + ζ])− (Σ−Π (`)) · f (t0 + ζ = ti + τi) , (13)

which highlights the benefit-cost tradeoff for an individual bank: the first term corresponds to the

expected benefit of delay and the second term corresponds to the expected cost. Hence, the first-order

condition ẑ (τi = τ∗i , ζ) = 0 implies

f (t0 + ζ = ti + τ∗i )

Pr (t0 + ζ ∈ (ti + τ∗i , ti + ζ])
=

cH

Σ−Π (`)
, (14)

that is,
λ

1− exp [−λ (ζ − τ∗i )]
=

cH

Σ−Π (`)
. (15)

The intuition behind (15) can be explained as in Abreu and Brunnermeier (2002). That is, the con-

ditional density that the crisis occurs at the next instant is given by the hazard rate h ( t0 + ζ = ti + τi| ti, τi) =

λ
1−exp[−λ(ζ−τi)] . Hence, τ∗i is given by the indifference condition

Σ︸︷︷︸
exit at t=ti+τ∗i

= (1−∆h)
(
∆cH + Σ

)
+ (∆h) Π (`)︸ ︷︷ ︸

postpone for an instant ∆

,

which implies (15) under ∆ → 0. We can see that the tradeoff is between flow payoff
(
cH − cL

)
· dt

(where cL → 0) and stock payoff (1− `)Σ.

It is interesting to note that the first-order derivative (13) for an individual bank and its counter-

part, the first-order derivative (8) for the social planner, look similar but are different. Indeed, the

17In the proof of Proposition 2 in the appendix, we will distinguish the two cases of ζ < η and ζ ≥ η, which nevertheless
give the same first-order condition.
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two first-order derivatives are linked economically. When we consider the limiting case λ → 0, we

can formally characterize their relation. Lemma 3 follows.

Lemma 3. When λ → 0 (and r → 0), it follows that ẑ (τi = τ, ζ) = ∂Ψ(τ,ζ)
∂τ ; that is, an individual bank’s

first-order derivative coincides with the social planner’s if she took ζ as given.

In fact, when λ → 0 (meaning that t0 has an improper uniform prior distribution), the posterior

probability and density become Pr (t0 + ζ ∈ (ti + τ, ti + ζ])→ ζ−τ
η = 1− ω and f (t0 + ζ = ti + τ)→

1
η . That is, under the limit λ → 0, even with Bayesian updating, posteriorly an individual bank

ti perceives that it can be located at any point in the queue [t0, t0 + η] with equal probability. This

coincides with the equal weight that the social planner assigns to individual banks when calculating

the aggregate payoff for all banks together.

Third, by symmetric equilibrium, we have

τ∗i = τ∗. (16)

With the above three steps, the competitive equilibrium is given by the system of equations (9),

(15) and (16). Combining the three equations, we have the following equation:

Γ (τ) ≡ h (τ, ζ)− cH

[1− ` (ζ)] Σ
, (17)

where h (τ, ζ) = λ
1−exp[−λ(ζ−τ)] and ζ = ζ (τ) given by (4). The competitive equilibrium solves equa-

tion Γ (τ∗) = 0 with taking into account the possible corner solution. Because h (τ, ζ (τ)) is increasing

in τ and cH

[1−`(ζ)]Σ is decreasing in τ , Γ (τ) is increasing in τ . Moreover, when τ = ζ̄, it follows that

h (τ, ζ) = ∞ and thus Γ
(
τ = ζ̄

)
> 0. Therefore, if Γ (τ = 0) < 0, there is a unique equilibrium with

non-corner solution τ∗ > 0; otherwise, there is a unique equilibrium with corner solution τ∗ = 0.

Proposition 2. The decentralized competitive equilibrium, characterized by the pair (τ∗, ζ), is given by (9),

(15) and (16). There exists a unique equilibrium. Moreover, if parameter ζ0 is close to ζ enough such that

Γ (τ = 0) < 0, the unique equilibrium satisfies τ∗ > 0 (non-corner solution).

Proposition 2 shows banks’ delay (i.e., τ∗ > 0) in response to information in an investment game.

The delay in response is due to asynchronous awareness which introduces an individual bank’s un-

certainty about when the crisis will come after its own awareness. As long as the cost in the case of

being caught by the crisis is not particularly high (i.e., the condition for the non-corner solution), an

individual bank has incentives to wait. We can immediately verify that τ∗ = 0 is not an equilibrium

when ζ0 → ζ.18 Intuitively, if other banks set τ∗ = 0, then Σ − Π (`) → 0 under ζ0 → ζ; that is, there

is no cost of waiting for a particular individual bank ti and thus it has incentives to wait (i.e., τ∗i > 0).

That is, τ∗ = 0 is not incentive compatible for the decentralized competitive equilibrium.
18To guarantee the non-corner solution τ∗ > 0, the paper of Abreu and Brunnermeier (2002) also implicitly assumes a

parameter restriction, in a similar spirit to ours. Concretely, it requires λ
1−exp[−λ(ϕ(τ∗)−τ∗)]

∣∣∣
τ∗=0

≤ c
β

in their paper (Figure

2 and Proposition 1 in their paper).
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2.2.3 Comparison of the second best and the competitive equilibrium

We have the following result.

Proposition 3. Under the sufficient condition that v(Σ−1)
cH

is high enough, it follows that τSB ≤ τ∗ with strict

inequality holding whenever τ∗ > 0 (non-corner solution).19 That is, the banks exit too late compared with the

second-best optimum.

The key intuition behind the result of the over-waiting for banks in the competitive equilibrium is

externality. To better understand the mechanism behind Proposition 3, we compare the benefit-cost

tradeoff in the two equilibria, given by the two first-order conditions of (8) and (13). We reiterate

them here:

z (τ) = cH (1− ω)︸ ︷︷ ︸
survival probability

− (Σ−Π (`))
dω

dτ︸︷︷︸
failure density

+

(
cH +

d (Π (`)− `)
d`

d`

dζ

)
dζ

dτ
ω︸ ︷︷ ︸

for failure banks and outsiders as a whole (−)

ẑ (τi, ζ) = cH Pr︸︷︷︸
survival probability

− (Σ−Π (`))
∂ (1− Pr)

∂τi︸ ︷︷ ︸
failure density

,

where dω
dτ = − 1

η

(
dζ
dτ − 1

)
given in (8) and Pr = eλ(ζ−τi)−1

eλη−1
given in (13). When the first-order condition

for the social planner is evaluated at the competitive equilibrium solution pair (τ∗, ζ (τ∗)), it follows

that ẑ (τ∗i = τ∗, ζ (τ∗)) = 0 and

z (τ∗) = z (τ∗)− ẑ (τ∗i = τ∗, ζ (τ∗)) =


cH + (−v) (Σ− 1)︸ ︷︷ ︸

not internalized (−)

 dζ
dτ
ω + κ


∣∣∣∣∣∣∣
(τ,ζ)=(τ∗,ζ(τ∗))

, (18)

where κ is a residual term independent of v, provided in the proof in the appendix. In particular, indi-

vidual banks do not internalize the “price impact” of a more delayed crisis, i.e., the term (−v) (Σ− 1)

in (18), by noting d`
dζ
d(Π(`)−`)

d` = (−v) (Σ− 1). Overall, from (18), under the sufficient condition that
v(Σ−1)
cH

is high enough, z (τ∗; ζ (τ∗)) < 0. That is, the equilibrium solution pair (τ∗; ζ (τ∗)) is not the

optimal choice for the social planner, who can achieve a higher value of the second-best objective

function by choosing a lower τ , which implies that τSB < τ∗ whenever τ∗ > 0.

To provide clearer economic insight, we consider the limiting case of λ→ 0. Lemma 4 follows.

Lemma 4. Under the limiting case of λ → 0 (and r → 0), it follows that dΨ(τ,ζ(τ))
dτ = ∂Ψ(τ,ζ)

∂τ + dζ
dτ

∂Ψ(τ,ζ)
∂ζ

implies

z (τ)− ẑ (τi = τ, ζ (τ)) =
dζ

dτ

∂Ψ (τ, ζ)

∂ζ︸ ︷︷ ︸
not internalized

(19)

19Clearly, a sufficient condition for the strict inequality τSB < τ∗ is the condition in Proposition 1 to guarantee τSB = 0
jointly with the condition in Proposition 2 to guarantee τ∗ > 0.
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at any pair (τ, ζ (τ)), where dζ
dτ = 1

1+κ
β
η and

∂Ψ (τ, ζ)

∂ζ
= (Σ−Π (`))

1

η︸ ︷︷ ︸
part 1 externality (+)

+ cHω︸︷︷︸
part 2 (+)

+ (Σ− 1)ω (−v)︸ ︷︷ ︸
part 3 (−)

. (20)

The magnitude of the part-1 externality, called “quantity effect”, is determined by the product of two

variables:

(Q1) The incremental value for a bank switching to survival from failure, Σ−Π (`),

(Q2) The sensitivity of the mass of survival banks to a change in the crisis time, ∂(1−ω)
∂ζ = 1

η ;

The magnitude of the part-3 externality, called “price effect”, is determined by the product of three variables:

(P1) The difference in marginal utility/productivity between failure banks and outside investors, d(Π(`)−`)
d` =

Σ− 1,

(P2) The aggregate quantity of fire sales (the mass of failure banks), ω,

(P3) The sensitivity of the fire-sale price to a change in the crisis time, d`dζ = −v.

The expression (19) analytically characterizes the wedge between the two first-order conditions

and shows that the wedge maps one-to-one to the externality. Recall that Ψ (τ, ζ) is the social plan-

ner’s objective function. From Lemma 4, we can see that while the social planner considers both the

direct and the indirect effects of increasing τ (i.e., z (τ) = dΨ(τ,ζ(τ))
dτ ), individual banks only consider

the direct effect (i.e., ẑ (τi = τ, ζ) = ∂Ψ(τ,ζ)
∂τ ; see also Lemma 3). The externality is fully captured by

the indirect effect, namely the term dζ
dτ

∂Ψ(τ,ζ)
∂ζ .

Equation (20) further decomposes the externality into three parts. When individual banks in-

creases τ∗, the crisis is delayed for longer (i.e., ζ is increased). An increase in ζ has three effects

(externality) on other banks which keep τ∗. First, a more delayed crisis causes some among the other

banks, which would otherwise fail, to be able to successfully escape from being caught by the crisis

and each of such banks gains Σ − Π (`) (part 1), by noting ∂(1−ω)
∂ζ = 1

η and 1 − ω is the mass of sur-

vival banks. Second, a more delayed crisis also causes those eventually failed banks among the other

banks, with a total mass ω, to obtain the higher interest flow cH for a longer period (part 2). Third,

a more delayed crisis results in a lower liquidation price ` (ζ) for those eventually failed banks and

thereby a lower social surplus Π (`) − ` (part 3), by noting d`
dζ
d(Π(`)−`)

d` = (−v) (Σ− 1). Under a suffi-

cient condition that v(Σ−1)
cH

is high enough, the negative externality outweighs the positive externality

(so the net externality is negative), which is the root cause of the result τSB < τ∗.

It is worth noting that when some banks (say, group A) decide to increase their τ for some rea-

son, their action will make the other banks (group B) survive more likely, but the total number of

banks caught by the crisis in the system (including those among group B and those among group A)

increases, decreasing the fire-sale price.

Our paper studies the timing dimension of externality, which is different from prior researches.

Our decomposition of externality can be connected to the decomposition in Dávila and Korinek
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(2018). The part 3 of externality in our model corresponds to “distributive externality” in their paper

(see also Caballero and Krishnamurthy, 2003; Lorenzoni, 2008; He and Kondor, 2016). The three vari-

ables that determine the magnitude are also similar. The “collateral externality” in their decomposi-

tion is the effect of the price-change triggered tightness of collateral constraints and consequent asset

reallocation between buyers and sellers with different valuations/productivities on assets. The part

1 of externality in our model resembles the “collateral externality” in their paper. But the tightness

of the constraint in our model is not triggered by the change of the asset price. More importantly, the

sign of “collateral externality” is often negative, i.e., individual agents engage in overborrowing and

overinvestment. In our model, the sign of the part 1 of externality is positive, i.e., some individual

banks’ longer delay benefits other banks by making other banks survive more likely.

Two remarks regarding the externality in our model are in order. First, our paper emphasizes

the possibility of the outcome of negative net externality in the timing strategy, not the necessity. In-

deed, our model shows that there exist both positive and negative forces of externality in the timing

strategy, and the net effect can be either positive or negative. However, received wisdom and direct

intuition would suggest that the externality should only be positive as implied by the classic static

coordination game such as Morris and Shin (2004), Cooper and John (1988), and Angeletos and Pa-

van (2007), where banks benefit each other by extending credit. Our paper identifies a new source of

externality in the timing strategy that is negative and showing that the net externality in the timing

strategy can be negative. Second, the externality we identify in the dynamic context depends on the

interaction of two ingredients of the model characterized by two parameters β > 0 and γ > 0. In

fact, based on Lemma 4, the negative externality in the timing strategy is due to d`
dζ = −v where

v ≡ γ κβ , while we can decompose d`
dζ = dωC

dζ
d`
dωC

(recalling that ωC denotes the mass of banks caught

by the crisis) with dωC

dζ = κ
β and d`

dωC
= −γ. Hence, the production complementarity parameter β > 0

guarantees that, after the fundamental deterioration starts, a more delayed crisis leads to more banks

being caught by the crisis (i.e., dω
C

dζ > 0), while the downward-slope parameter γ > 0, which is em-

phasized by the existing literature, guarantees that more banks being caught leads to a lower fire-sale

price for every caught bank (i.e., d`
dωC

< 0).

Corollary 1 follows directly from Proposition 3.

Corollary 1. The measure of banks that reallocate resources to invest in the traditional business sector is given

by ζ−τ
η +

(
1− ζ−τ

η

)
p (`), which is lower in the decentralized competitive equilibrium than in the second-best

optimum.

In fact, a more delayed crisis results in fewer survival banks and a lower liquidation value for

failure banks, and both forces contribute to the decrease in the number of banks in the end investing

in the traditional business sector.

Proposition 3 and Corollary 1 show that in the general-equilibrium production economy, indi-

vidual banks’ delay in response to information in the decentralized competitive equilibrium (given
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in Proposition 2) is an over-delay from the social welfare point of view. The welfare consequence of

the over-delay is resource misallocation in the sense that the resource in the speculative business sec-

tor cannot be timely and thus efficiently reallocated to capture the investment opportunities in the

traditional business sector.

Discussions of the assumptions 1) We assume that a bank cannot observe other banks’ exit or

entry decisions, so the information regarding t0 is not revealed. In fact, some earlier works in the

literature address the issue why the information regarding t0 in the model framework of Abreu and

Brunnermeier (2003) is not revealed through some devices. For example, by introducing multidimen-

sional uncertainty into the model of Abreu and Brunnermeier (2003), Doblas-Madrid (2012) shows

that the economy can have a sufficient amount of noise which makes it difficult for agents to infer in-

formation from endogenous asset prices. Along this line, a more complicated model could explicitly

formalize that banks’ exit or entry decisions involve many different motives, so agents face multidi-

mensional uncertainty and it is difficult for them to infer the information regarding t0 through banks’

exit or entry actions. 2) As long as the fire-sale price at the crisis time has a discount (i.e., ` < 1, so

there is a gap between Σ and Π (`)) plus cH > cL, there is a tradeoff in timing for individual banks.

3) When β > 0 plus γ > 0, the timing dimension of externality arises.

A numerical exercise We provide a simple numerical exercise to compare the second best and the

decentralized equilibrium. The numerical exercise is based on the baseline model under the general

Assumption 1, rather than under Assumption 1’ (see the details in Appendix B). Whenever possible,

we choose parameter values according to the standard literature on quantitative research. As it is

hard to find the standard literature to refer to for some of other parameters, we will try to provide

reasonable values for them. Table 1 summarizes the parameter values.

Parameter Description Value
r Risk-free interest rate 0.02

cL Cash flow of the traditional sector 0.07

cH Cash flow of the speculative sector 0.4

α ≡ α0 The economic fundamentals prior to the negative shock 2

β The parameter of (production) complementarity among banks 1

κ The decline rate of economic fundamentals after the negative shock 0.4

λ The parameter of the prior distribution of t0 0.01

η Banks’ sequential awareness window [t0, t0 + η] 3

γ The downward slope of the fire-sale price function 2.5

ω0 The intercept of the fire-sale price function 0.54

ζ0 ≡ ω0
β
κ In equilibrium no fire sale discount if the crisis occurs before t0 + ζ0 1.35

v ≡ γ κβ The decline rate of the equilibrium fire-sale price over time after t0 + ζ 1

Table 1: List of parameter values for calibration

Given these parameter values, for the second-best equilibrium, the social planner chooses τSB =

0, under which ζ = 1.36 the equilibrium fire-sale price is ` = 0.99. For the decentralized equilib-

rium, individual banks choose τ∗ = 0.23 (namely, delaying for 0.23 years), under which ζ = 1.47 the
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equilibrium fire-sale price is ` = 0.88. The social welfare function Ψ (τ, ζ (τ)) evaluated at τSB = 0

is Ψ (τ, ζ (τ))|τ=0 = 3.83, while the social welfare function evaluated at τ∗ = 0.23 is Ψ (τ, ζ (τ))|τ=0.23

= 3.73. That is, the welfare loses by 2.61% for the decentralized equilibrium relative to the second

best efficiency. In the literature quantifying the effect of financial frictions, the welfare cost due to the

externalities (for the decentralized equilibrium allocation relative to the constrained efficient alloca-

tion) ranges from 0.05% to 0.135% in Bianchi and Mendoza (2010) and Bianchi (2011) and is 0.15% in

Boissay, Collard, and Smets (2016).

3 The full model with both entry and exit decisions
In this section, we extend the baseline model by allowing banks to enter the speculative business

sector from the traditional business sector. The purpose of studying the entry decisions is to shed

light on the build-up of credit booms.

Figure 3: The setup of the full model

3.1 Setting
We add some minimum elements to the baseline model. There is a continuum of banks with

unit mass. These banks are currently investing in the traditional business sector. But all banks know

that there is an alternative investment opportunity in the speculative business sector and that the

fundamentals of the alternative investment opportunity follow the process:

θ (t) =

{
α for t ∈ [ts, t0 ≡ ts +m]
α− κ (t− t0) for t > t0

, (21)

that is, the alternative investment opportunity starts to have the good fundamentals, α, from t = ts,

and maintains the good fundamentals for time length m > 0, and then declines after t = t0 as in

the baseline model. Banks know the evolution of the process, but do not know when it starts. More

specifically, the arrival of ts is not observable by banks, and follows a prior exponential distribution

with pdf φ(ts) = λe−λts in the support ts ∈ [0,+∞). (This implies that t0 has pdf φ(t0) = λe−λ(t0−m)

in the support t0 ∈ [m,+∞), in line with the baseline model.) After ts, banks sequentially become

informed of the arrival of ts, and the information spreads among banks over [ts, ts + η], following a

uniform distribution. We assume that η < m. Figure 3 gives an illustration.
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As in the baseline model, a bank’s payoff at time t by investing in the speculative sector is still

given by (1) while the return on the investment in the traditional business sector is cL; payoff param-

eters now satisfy the general Assumption 1 instead of Assumption 1’. The fire-sale price function

is still g (ω) =

{
1
1− γ · (ω − ω0)

when ω ≤ ω0

when ω > ω0
, where γ > 0 and parameter ω0 is a small positive

number. Other setups are the same as those in the baseline model.

3.2 Equilibrium

Banks make the entry and exit decisions, that is, they decide when to enter the speculative sector

and when to exit. We focus on the equilibrium in which banks immediately enter the speculative

sector upon receiving their private information. Given the entry strategy, we find the exit strategy of

banks. Specifically, a bank sets the strategy of staying in the speculative sector for time length m+ τ

after its entry at t = ti,20 where τ is to be solved.

As in the baseline model, we study the social planner’s second-best constrained problem and the

decentralized competitive equilibrium. To save the space, the details are relegated to the appendix.

Proposition 4 summarizes the results.

Proposition 4. 1) Under certain conditions (given in the proof), banks immediately enter the speculative sector

upon receiving their private information about the arrival of ts; 2) There exists a unique optimum τSB for the

social planner; 3) There exists a unique τ∗ for individual banks in the decentralized competitive equilibrium; 4)

Under the sufficient condition that v
(
cL

r − 1
)
/cH is high enough, where v ≡ γ κβ , it follows that τSB < τ∗.

That is, individual banks stay in the speculative sector too long in the decentralized equilibrium in comparison

with the second-best optimum.

The full model is highly similar to the baseline model mathematically, but the full model gives

the process of the rise and fall of the speculative sector. Banks gradually enter the speculative sector,

forming the rise. Individual banks stay in the speculative sector until they expect that the speculative

sector will collapse shortly. Individual banks gradually exit the speculative sector until the bust with

a crash at the crisis time. Some banks are caught by the crisis. The boom period before the crash lasts

longer and the crisis comes later for the decentralized equilibrium than for the second best, and the

magnitude of the crash is also larger (see also Figure 4 later).

4 The macroeconomic model
We now consider a standard macroeconomic growth model with both entry and exit. This model

explicitly shows the capital accumulation and consumption process and thus demonstrates the busi-

ness cycle dynamics under the microeconomic friction à la Abreu and Brunnermeier (2002, 2003).

20The reason we characterize the strategy by waiting length m + τ is to make the presentation of the equilibrium sym-
metric to that of the baseline model. Concretely, given the strategy of waiting length m + τ , the first bank exits from the
speculative sector at time t = ts + (m+ τ) = t0 + τ , which is exactly the same as in the baseline model.
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4.1 Setting

We use a simple textbook macroeconomic growth setting, by embedding two modified elements

of the baseline model. First, the production that generates a constant dividend process (cH or cL) in

the baseline model is modified as an A-K technology (see, e.g., Jones, 1995). Second, when a bank is

caught by a crisis, it loses a proportion of its capital in fire sales. The tradeoff in the baseline model

— a higher cash flow vs. losing capital — becomes a higher growth rate vs. losing capital in the

macroeconomic model.

One investor is matched with one bank, and one bank is matched with one firm (so we can call a

team as a “investor-bank-firm”). This simplified setup is to capture the following realism: if investors

withdraw funding from banks, banks suffer a creditor run and must liquidate their loan portfolios,

which would in turn affect or interrupt the business operation of firms on the real side of the economy.

Each agent (“investor-bank-firm”) j has the following utility function∫ ∞
0

e−ρt logCjt dt. (22)

The production takes the form of an A-K technology. If bank j operates in the traditional business

sector, its production technology (production function) is

yjt = ZKj
t , (23)

where Z represents productivity. If it operates in the speculative business sector, its production tech-

nology is

yjt =

{
AKj

t

0 ·Kj
t

if θ (t) + β · ω (t) ≥ α (no crisis)
otherwise

, (24)

whereA > Z, and ω (t) is the total measure of active banks at time t in the speculative business sector.

The setup (24) is a modified version of (1) in the baseline model. The fundamentals of the speculative

business sector, θ (t), follow the process given in (21). The setup of the information structure is the

same as in the model in Section 3.

A bank faces the budget constraint

Cjt + Ijt = ZKj
t

if it operates in the traditional business sector and

Cjt + Ijt = AKj
t

if it operates in the speculative business sector, where Ijt is the investment (saving). Crucially, if a

bank is caught by the crisis, its capital is under fire sales, in which case a proportion of its capital is

lost; that is, {
Kt → Kt · 1
Kt → Kt · ` ≤ Kt

if not caught by crisis
if caught

, (25)
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where ` is the recovery rate in fire sales (equivalently, 1− ` can be interpreted as the fire-sale discount

rate). Formally, if a bank is not caught by the crisis, its capital evolves according to

dKj
t = −δKj

t dt+ Ijt dt,

where δ is the depreciation rate; if a bank is caught by the crisis at time t, its capital evolves according

to

dKj
t = −δKj

t dt+ Ijt dt− (1− `)Kj
t .

By changing the “simple discount” to the “compound discount”, we redefine the downward-

sloping fire-sale price function:

` = g̃ (ω) =

{
1
exp [−γ · (ω − ω0)]

when ω ≤ ω0

when ω > ω0
, (26)

where ω is the measure of banks under fire sales. The fire-sale price function (26) can be equivalently

written as

` = g̃ (q; t) =

{
1

exp
[
−γ ·

(
q

K̄(t)
− ω0

)] when q
K̄(t)
≤ ω0

when q
K̄(t)

> ω0
,

where q = ωK̄ (t) is the aggregate quantity of capital under fire sales and K̄ (t) is the average quantity

of capital per bank under fire sales.21

The outside investors also have utility function (22) and production function (23). The capital

conversion technology of the outside investors is the following. When the outside investors buy q

units of capital from the banking sector, the outside investors can convert them to G (q) units of new

capital, where ` = G
′
(q) > 0 and G

′′
(q) < 0. The outside investors pay the banking sector q` and

retain G (q) − q` as profit. We assume that the outside investors are less efficient in using capital in

the spirit of Kiyotaki and Moore (1997), and only µ (G (q)− q`) units of capital are finally put into

production, where µ < 1. In addition, we assume the outside investors have initial endowment

W0 > 0 in terms of capital at t = 0.

4.2 Equilibrium

As in the model in Section 3, banks make the entry and exit decisions. Again, we focus on the

equilibrium in which banks immediately enter the speculative sector upon receiving their private

information. Given the entry strategy, we find the exit strategy of banks. Specifically, a bank sets the

strategy of staying in the speculative sector for time length m + τ after its entry at t = ti, where τ is

to be solved. Denote the arrival time of the crisis by t = t0 + ζ.

Based on the modified fire-sale price function (26), we have Lemma 5.

21The corresponding production function isG (q) =

{
q

K̄ (t)ω0 + K̄(t)
γ

[
1−

(
exp

[
−γ ·

(
q

K̄(t)
− ω0

)])] when q
K̄(t)

≤ ω0

when q
K̄(t)

> ω0

for the outside investor sector.
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Lemma 5. The liquidation value or the loan recovery value for a bank caught by the crisis in the macroeconomic

model is given by

` ≡ ` (ζ) =

{
1
exp [−v (ζ − ζ0)]

when ζ ≤ ζ0

when ζ > ζ0
, (27)

where v ≡ γ κβ and ζ0 ≡ ω0
β
κ , which has the property that d`

dζ = −`v < 0 for ζ > ζ0.

The utility maximization of (22) subject to the budget constraint gives the decision rule:

Cjt = ρKj
t .

Hence, if a bank operates in the speculative business sector and is not caught by the crisis, its capital

evolves according to

dKj
t = −δKj

t dt+ (A− ρ)Kj
t dt,

which implies

kt+x = kt + ax for any x > 0, (28)

where we define kt ≡ logKt and a ≡ A− ρ− δ > 0. The value function for such a bank is then given

by

V (kt) =

∫ ∞
0

e−ρx (log ρ+ kt+x) dx =
log ρ+ kt

ρ
+

a

ρ2
.

Similarly, we can find the value function for a bank that stays in the speculative sector in the period

[t, t+ x] and then safely moves to the traditional sector from t+ x, that is,

V (kt) =
log ρ+ kt

ρ
+

a

ρ2
− e−ρxa− z

ρ2
,

where we define z ≡ Z − ρ− δ > 0. Finally, the value function for a bank that stays in the speculative

business sector in the period [t, t+ x] and is caught by the crisis at time t + x and then moves to the

traditional business sector by using its recovery capital from fire sales is given by

V (kt) =
log ρ+ kt

ρ
+

a

ρ2
− e−ρxa− z

ρ2
+ e−ρx

log `

ρ
.

4.2.1 The social planner’s second-best constrained problem

Suppose the social planner can coordinate all banks to choose the same length of stay, m + τ , in

the speculative sector conditional on banks’ entry. Given the exit strategy, banks are individually

rational in the entry decision ex ante. Conditional on entry, the social planner chooses the optimum
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τSB as follows:

τSB = arg max
τ



log ρ+k(ts)
ρ + z

ρ2 +
∫ ts+ζ−τ
ts

[
e−ρ(ti−ts) a−z

ρ2

(
1− e−ρ(m+τ)

)]
1
ηdti

+
∫ ts+η
ts+ζ−τ

[
e−ρ(ti−ts) a−z

ρ2

(
1− e−ρ[(m+ζ)−(ti−ts)]

)
+ e−ρ(m+ζ) log `

ρ

]
1
ηdti

+

[
log ρ+(logW0+tsz)

ρ + z 1
ρ2 + e−ρ(m+ζ)

log
[
1+

µ(G(q)−q`)
exp[logW0+(t0+ζ)z]

]
ρ

]


s.t. ζ =
τ + η

1 + κ
βη

given by (4)

ωC ≡ ω (t = t0 + ζ) = 1− ζ − τ
η

and q = ωCK̄ (t)

` = ` (ζ) given by (27). (29)

In the objective function, all the utility terms are discounted back to time ts without loss of generality.

On top of the growth rate z in the traditional sector, banks obtain the additional growth rate a − z if

they operate in the speculative sector. A typical early bank receiving information at ti ∈ [ts, ts + ζ − τ ]

operates in the speculative sector during the period [ti, ti +m+ τ ] for time length m + τ . A typical

late bank receiving information at ti ∈ (ts + ζ − τ, ts + η] operates in the speculative sector during

the period [ti, t0 + ζ = ts +m+ ζ] for time length (m+ ζ)− (ti − ts); in particular, it is caught by the

crisis at time at t = ts +m+ ζ. For the outside investors, they have saved up exp [logW0 + (t0 + ζ) z]

units of capital at t = t0 + ζ, so the profit gained from banks’ fire sales increases that capital by a

proportion of µ(G(q)−q`)
exp[logW0+(t0+ζ)z] .

Proposition 5. The second-best equilibrium of the macroeconomic model, characterized by the pair
(
τSB, ζ

)
,

is given by (4) and (29) and satisfies two entry conditions (given in the proof).

1) When λ is small enough and m is high enough, banks immediately enter the speculative sector upon

receiving their private information about the arrival of ts.

2) Suppose a − z < v. Under the sufficient condition that ρ is small enough and µ is small enough, the

social planner has a unique optimum τSB in choosing stay length m+ τ .

4.2.2 The decentralized competitive equilibrium

Conditional on entry, the decentralized equilibrium is characterized by the pair (τ∗, ζ). Given ζ,

find the optimal strategy τ∗i for an individual bank ti. The individual bank ti’s optimization problem

in choosing its length of stay, m+ τi, is given by

τ∗i = arg max
τi


Pr (t0 + ζ ∈ (ti +m+ τi, ti +m+ ζ])︸ ︷︷ ︸

probability of survival

U(ti +m+ τi)︸ ︷︷ ︸
value in the case of survival

+
∫ x=τi
x=0 f (t0 + ζ = ti +m+ x)︸ ︷︷ ︸

density of failure

Û(ti +m+ x)︸ ︷︷ ︸
value in the case of failure

dx

 , (30)

where
U(ti +m+ τi) = log ρ+k(ti)

ρ + a
ρ2 − e−(m+τi)ρ a−z

ρ2

Û(ti +m+ x) = log ρ+k(ti)
ρ + a

ρ2 − e−(m+x)ρ a−z
ρ2 + e−(m+x)ρ log `

ρ ,
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with ` = ` (ζ) given in (27) and an individual bank taking ` as given.

The first-order condition of the optimization problem (30) implies

λ

1− exp [−λ (ζ − τ∗i )]
=

a− z
− log `

. (31)

The result of (31) is intuitive. A bank faces the following tradeoff in choosing its optimal τi. On

the one hand, an increase in τi, meaning that the bank stays in the speculative sector longer, makes

its capital grow at a higher rate (i.e., from z to a). In other words, if the bank experiences such an

increase in capital growth rate over the period [t, t+ dt], the gain is (a− z) dt in terms of log-capital

(i.e., kt+dt = kt + (a− z) dt by recalling (28)). On the other hand, an increase in τi raises the chance to

be caught by the crisis; if that happens, the loss is log ` in terms of log-capital (i.e., kt+dt = kt + log `).

In terms of the impact on the log utility given by the value function, the tradeoff is then between the

effect (a−z)dt
ρ and the effect − log `

ρ . This exactly maps onto the tradeoff in (15) for the baseline model:

flow payoff
(
cH − cL

)
dt (where cL → 0) versus stock payoff (1− `) Σ.

Proposition 6. The decentralized competitive equilibrium of the macroeconomic model, characterized by the

pair (τ∗, ζ), is given by (9), (31) and (16), and satisfies two entry conditions (given in the proof).

1) When λ is small enough and m is high enough, banks immediately enter the speculative sector upon

receiving their private information about the arrival of ts.

2) There exists a unique equilibrium.

Proposition 7 compares the second best and the competitive equilibrium.

Proposition 7. Under the sufficient condition that ρ is small enough, µ is small enough, and v is high enough,

ceteris paribus, it follows that τSB < τ∗. That is, individual banks stay in the speculative sector too long in

the decentralized equilibrium in comparison with the second-best optimum.

4.3 Aggregate Output
In this subsection, we work out the aggregate output. For simplicity, we assume that m − η is

sufficiently high such that ts + m + τ > ts + η is true, which means that only after all banks have

already entered the speculative sector do they start to gradually exit the speculative sector. Denote

by K0 ≡ exp k0 the capital each bank possesses at time t = 0 and by Y (t) the aggregate output of the

two sectors together at time t.

We divide time into five stages: t ∈ [0, ts), [ts, ts + η), [ts + η, ts +m+ τ = t0 + τ), [t0 + τ, t0 + ζ),

and [t0 + ζ,+∞). The expression of the aggregate Y (t) in the five stages is provided in Appendix B.

We also calculate the aggregate output of the speculative sector only, denoted by Ys (t), the expression

of which is provided in Appendix B.

Figure 4 depicts the process of the aggregate output of Y (t) and Ys (t) under the second-best

equilibrium and the decentralized equilibrium. Note that the second-best equilibrium and the de-

centralized equilibrium have the same entry decision (i.e., banks immediately enter the speculative
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Figure 4: Aggregate output (Y (t) for the two sectors together and Ys (t) for the speculative sector)

sector upon receiving their private information) and the two equilibria differ only in the exit decision

(i.e., length of stay, m + τ ). Hence, the aggregate output, Y (t) or Ys (t), coincides for the first three

stages but diverges for the fourth and fifth stages under the two different equilibria. Figure 4 depicts

only the process for the last three stages.22

From Figure 4, we can see that under the decentralized equilibrium (relative to the second best)

the more delayed crisis causes a bigger drop in the aggregate capital and a bigger crash of the ag-

gregate output Y (t) when the crisis hits at t = t0 + ζ. As a result, it takes longer for the aggregate

output Y (t) to recover to the pre-crisis level. In short, the decentralized equilibrium features a more

delayed crisis and a slower recovery.

The aggregate output Ys (t) of the speculative sector exhibits a “∩” shape over the fourth stage

before the crash. At the beginning of the fourth stage, because only a few banks have started to exit

22We assume that no precise and timely information, signal or index about the aggregate output is available, so the
shock time ts is not revealed. This is similar to Abreu and Brunnermeier (2002, 2003) where the asset price cannot reveal
the information of the shock time.
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the speculative sector and thus the growth in capital of staying banks in that sector can sufficiently

offset the loss of capital from exiting banks, the aggregate output Ys (t) continues to increase for a

while before declining.23 In other words, in the fourth stage, Ys (t) continues the boom of the third

stage but with a slowdown in the growth rate before experiencing a decline, and finally collapses.

5 Policy implications
In this section, we discuss policy measures that can potentially mitigate or eliminate the ineffi-

ciency of the decentralized equilibrium relative to the second best, that is, we find policies that might

implement the second-best efficiency. To illustrate the idea, we use our baseline model to study policy

implications.24 We analyze two policy measures: tax policy and credit policy.

Tax policy Recall that in the baseline model, a failure bank’s payoff is Π (`) = `+ ` (Σ− 1) = Σ · `
while a survival bank’s payoff is Σ · 1. Hence, we can alternatively interpret the setup of the baseline

model in the way that the investment project in the traditional sector is scalable when banks re-invest

their asset liquidation value from the speculative sector. This alternative interpretation is also in line

with the setup of our macroeconomic growth model.

We consider the following policy: the government imposes capital tax on failure banks while

distributing the tax revenue among all banks as a lump-sum subsidy. Specifically, the government

sets the tax rate χ on the asset liquidation value of failure banks, that is, a failure bank retains (1− χ) `

amount of capital and the government collects χ` as tax. The total tax revenue for the government

thus is χ`ω, where ω is the proportion of failure banks in the system. The government then distributes

the tax revenue at time t = t0 + ζ such that all banks receive a lump-sum capital subsidy, Λ. The tax

policy is characterized by {χ,Λ}, where Λ is a function of χ determined by the break-even condition

of the government, that is, Λ = χ`ω. Under this policy, the decentralized equilibrium condition (15)

is replaced by
λ

1− exp [−λ (ζ − τ∗)]
=

cH

[Σ (1 + Λ)]− [Σ [(1− χ) `+ Λ]]
(32)

or λ
1−exp[−λ(ζ−τ∗)] = cH

Σ−Σ`(1−χ) , where Σ [(1− χ) `+ Λ] is the payoff in the case of failure and Σ (1 + Λ)

is the payoff in the case of survival, and an individual bank understands that there is a tax penalty in

the case of failure and takes subsidy Λ as a given constant. Then, we can find a unique χ such that τ∗

given by (32) together with (9) satisfies τ∗ = τSB .

Moreover, under the policy, the second-best efficiency (i.e., the value of the objective function of

(7) evaluated at τ = τSB) is implemented as long as τSB is implemented. Intuitively, as failure banks

and survival banks have the same productivity in using capital, the capital transfer from the failure

23For the fourth stage of Ys (t), if the capital of staying banks does not grow fast enough to offset the loss of capital caused
by some banks that exit, the aggregate output Ys (t) will start to decline from the very beginning at t = t0 + τ .

24The macroeconomic model involves the concave utility function (i.e., the log utility), which complicates the analysis
of the policy implementing the second best in terms of utility. However, if we focus on implementing the second best in
terms of aggregate output, our analysis in this section based on the baseline model setting applies to the macroeconomic
model setting.
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banks to the survival banks at t = t0 + ζ under the tax policy will not affect the aggregate output.

Corollary 2 follows.

Corollary 2. There exists a unique tax rate χ that can implement the second best in the baseline model.

The intuition behind the tax policy is easy to understand. Since failure banks must pay a tax

(which essentially is a penalty) on their fire-sale value, then the cost of being caught by the crisis be-

comes higher under the tax policy. Consequently, individual banks will optimally choose to lower the

chance of being caught by choosing to exit the speculative sector sooner, which implements second

best optimum.

Credit policy In our baseline model, we assume that a failure bank which is short of capital

for financing the investment cost 1 can refinance the deficit part through borrowing from external

investors. Here we assume that a part or all of the external finance for a failure bank comes from

the government (perhaps because the crisis is a systemic crisis, the private sector as a whole is short

of funding). The government’s funding is costly, e.g., the government has to forgo other projects

(opportunity cost) or it may have to borrow from foreign governments. For simplicity and without

loss of generality, we assume that the cost of the government’s funding is the risk-free interest rate r.

As r → 0 under Assumption 1’, we can regard the government’s funding cost as approaching zero.

When the government lends to failure banks, it can charge a higher net interest %, with % > 0. The gain

from the interest rate gap % will form the government’s interest income, which will be distributed to

all banks in the system as a lump-sum subsidy.

For simplicity, we also assume that the government can provide the deficit 1 − ` for sure as long

as a failure bank is willing to pay the interest rate %; that is, we set p (`) = 1 for simplicity. It is easy

to show that the total amount of interest income for the government is % (1− `)ω at time t = t0 + ζ,25

where ω is the proportion of failure banks in the system.

Recalling (2), the payoff for a failure bank which borrows 1− ` at interest rate 1 + % becomes

Σ− (1− `) (1 + %) = `+ (Σ− 1)︸ ︷︷ ︸
NPV of project

− % (1− `)︸ ︷︷ ︸
PV of extra interest paid

.

Similar to the earlier analysis, the government will distribute monetary subsidy Λ to every bank at

t0 + ζ. Under the credit policy, the decentralized equilibrium condition (15) is replaced by

λ

1− exp [−λ (ζ − τ∗)]
=

cH

(Σ + Λ)− [Σ− (1− `) (1 + %) + Λ]
(33)

or λ
1−exp[−λ(ζ−τ∗)] = cH

(1−`)(1+%) , where Σ − (1− `) (1 + %) + Λ is the payoff in the case of failure and

Σ + Λ is the payoff in the case of survival, and an individual bank understands that the refinancing is

costly in the case of failure and takes subsidy Λ as a given constant. It is easy to show that there is a

25The interest rate % is effectively a one-short interest rate (in terms of PV) at the borrowing time t = t0+ζ. It is equivalent
to the flow interest rate %r in terms of perpetuity on the time interval [t0 + ζ,+∞).
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unique % that implements τ∗ = τSB . Also, as long as τSB is implemented, the second best efficiency

is implemented. Corollary 3 follows.

Corollary 3. There exists a unique interest rate % that can implement the second best in the baseline model.

The credit policy is essentially a tax policy. We can regard the extra interest paid, the term % (1− `)
in the denominator on the RHS of (33), as an income tax on a failure bank, and the tax revenue is

then distributed among all banks. The difference here is that the tax is imposed on the output of

the investment (i.e., income tax), whereas the tax discussed earlier is imposed on the input of the

investment (i.e., capital tax).

6 Conclusion
We present a rational-expectations model of credit-driven crises, providing a new perspective to

explain why credit booms are often followed by a financial crisis. In particular, our model provides

a novel macroeconomic perspective on the dynamic interaction between credit expansions, crises,

and recoveries. Our model has both positive and normative implications. On the positive side, we

show that asynchronous awareness in the macroeconomic environment, which naturally requires

coordination, results in a delay in the responses of banks to their information, which in turn leads

to a delayed financial crisis. On the normative side, we show that such a delay in the responses is

an over-delay, which is socially inefficient. This is because of the existence of a negative externality:

when individual banks choose to extend credit for a longer time, the crisis is delayed for longer and

consequently more banks are caught by the crisis, which depresses the fire-sale liquidation values

for all caught banks. At the macroeconomic level, fewer survival banks and lower liquidation values

for failure banks both contribute to severer capital misallocations, so that it takes a longer time for

the capital to accumulate and for the aggregate output to recover to the pre-crisis level. We analyze

policy implications of the model.
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A Proofs
Proof of Lemmas 1 and 2: The proof is straightforward based on the main text.

Proof of Propositions 1 to 3: We provide the proof for the general case under Assumption 1 in
Appendix B.

Proof of Lemmas 3 and 4: We prove Lemma 3 and Lemma 4 together. Recalling Proposition 1, un-
der r → 0, the total derivative is z (τ) ≡ dΨ(τ,ζ(τ))

dτ = (1− ω) cH+(Π (`)− Σ) dωdτ +
[
cH + (−v) (Σ− 1)

] dζ
dτ ω,

where dζ
dτ = 1

1+κ
β
η , ω = 1− ζ−τ

η , and dω
dτ = − 1

η

(
dζ
dτ − 1

)
. Also, we can calculate that under r → 0, the

two partial derivatives are ∂Ψ(τ,ζ)
∂ζ = (Σ−Π (`)) 1

η + ω
[
cH + (−v) (Σ− 1)

]
and ∂Ψ(τ,ζ)

∂τ = (1− ω) cH −
1
η (Σ−Π (`)). Clearly, z (τ) ≡ dΨ(τ,ζ(τ))

dτ = ∂Ψ(τ,ζ)
∂τ + dζ

dτ
∂Ψ(τ,ζ)
∂ζ .

Recalling (13), ẑ (τi, ζ) = Pr (t0 + ζ ∈ (ti + τi, ti + ζ]) cH − f (t0 + ζ = ti + τi) (Σ−Π (`)). Hence,
lim
λ→0

ẑ (τi = τ, ζ) = (1− ω) cH− 1
η (Σ−Π (`)), by considering lim

λ→0
Pr (t0 + ζ ∈ (ti + τ, ti + ζ]) = lim

λ→0

eλ(ζ−τ)−1
eλη−1

=

ζ−τ
η = 1 − ω and lim

λ→0
f (t0 + ζ = ti + τ) = lim

λ→0

λeλ(ζ−τ)

eλη−1
= 1

η . Therefore, under λ → 0, it follows that

ẑ (τi = τ, ζ) = ∂Ψ(τ,ζ)
∂τ and z (τ)− ẑ (τi = τ, ζ) = dζ

dτ
∂Ψ(τ,ζ)
∂ζ .

Proof of Corollary 1: The measure of banks that reallocate resource to invest in the traditional busi-
ness sector is given by ζ−τ

η [1− p (`)] + p (`). The first-order derivative with respect to τ is

d
{
ζ−τ
η [1− p (`)] + p (`)

}
dτ

=
d
(
ζ−τ
η

)
dτ

[1− p (`)] +
dp (` (ζ))

dτ

[
1−

(
ζ − τ
η

)]
< 0

because
d
(
ζ−τ
η

)
dτ < 0, dp(`(ζ))dτ < 0, and ζ−τ

η < 1. By Proposition 3, τ is higher in the competitive case
than in the second best case and, therefore, fewer banks will grab the new investment opportunity in
the competitive case.

Proof of Proposition 4: i) Given that all banks use the same (symmetric) strategy by choosing a
length of stay m+ τ , find the arrival time of the crisis, denoted by t0 + ζ. Given the strategy, the first
bank exits from the speculative sector at t = ts + (m+ τ) = t0 + τ . Similar to the procedure to derive
Lemma 1, we can find that ζ is given by (4), i.e., ζ = τ+η

1+κ
β
η . Clearly, dζ

dτ = 1
1+κ

β
η ∈ (0, 1). Because

the crisis must occur after t = t0, we have ζ ≥ 0, which implies τ ≥ −η. That is, we have the lower
bound of τ . We revise Lemma 1 by expanding the support of τ with allowing τ to take a negative
value. Hence, ζ is bounded by ζ ∈

[
0, ζ̄
]
, where ζ = 0 at τ = −η and ζ = ζ̄ = β

κ at τ = ζ̄.
ii) The liquidation value is still given by (6) (see Lemma 2). That is, the liquidation value or the

loan recovery value for a bank caught by the crisis is given by

` ≡ ` (ζ) =

{
1
1− v · (ζ − ζ0)

when ζ ≤ ζ0

when ζ > ζ0
, (A.1)

where v ≡ γ κβ and ζ0 ≡ ω0
β
κ , which has the property that d`

dζ = −v < 0 for ζ > ζ0.
The liquidation value in (A.1) can be ` = 1 (i.e., if ζ ≤ ζ0), while the liquidation value in Lemma 2

always satisfies ` < 1. For future reference, we define τ0 such that ζ (τ = τ0) = ζ0 based on (4), which
gives τ0 ≡

[
1 + κ

βη
]
ζ0 − η > −η. As ω0 is a small positive constant, τ0 is slightly above −η. The
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economic meaning of τ0 is the threshold of τ above which the equilibrium fire-sale price ` < 1 (i.e.,
having a discount).

iii) The social planner’s second-best constrained problem Conditional on the entry strategy of
individual banks, the social planner chooses the optimum τSB as follows:

max
τ


∫ ts+ζ−τ
ts

[∫ ti
ts
e−r(s−ts)cLds+

∫ ti+m+τ
ti

e−r(s−ts)cHds+ e−r(ti+m+τ−ts) · cLr
]

1
ηdti

+
∫ ts+η
ts+ζ−τ

[∫ ti
ts
e−r(s−ts)cLds+

∫ ts+m+ζ
ti

e−r(s−ts)cHds+ e−r(ts+m+ζ−ts) · Π (`)
]

1
ηdti

+e−r(m+ζ)
(
G
(
ωC
)
− ωC`

)


s.t. ζ =
τ + η

1 + κ
βη

given by (4), ωC ≡ ω (t = t0 + ζ) = 1− ζ − τ
η

` = ` (ζ) given by (A.1), and Π (`) = `+ `

(
cL

r
− 1

)
. (A.2)

In the objective function, all the payoffs are discounted back to time ts without loss of generality.
Banks fall into two categories: early banks receiving information at ti ∈ [ts, ts + ζ − τ ] and late banks
receiving information at ti ∈ (ts + ζ − τ, ts + η]. The first term in the objective function is the payoff
for the first category of banks which exit before the crisis. A typical bank ti stays in the traditional
sector in the period [ts, ti] with cash flow cL, and then enters and stays in the speculative sector in the
period [ti, ti +m+ τ ] for time lengthm+τ with cash flow cH , and finally exits safely at t = ti+m+τ

with the reinvestment value cL

r . The second term is the payoff for the second category of banks which
are caught by the crisis. A typical bank ti stays in the traditional sector in the period [ts, ti] with cash
flow cL, and then enters and stays in the speculative sector until the crisis arrival time t = ts +m+ ζ
with cash flow cH , and finally exits at the crisis arrival time with the expected reinvestment value
Π (`). The third term is the payoff for the asset buyers (outside investors).

The first-order condition of Program (A.2) implies

z (τ) =


(
cH − cL

)
1
η
er(ζ−τ)−1

r +
[
cH − rΠ (`) + dΠ(`)

d`
d`
dζ

]
dζ
dτ ω +

(
Π (`)− cL

r

)
dω
dτ

+
[
(−r) dζdτ (G (ω)− ω`)− d`

dζ
dζ
dτ ω

]  = 0, (A.3)

which is in the exact same form as the first-order condition (B.9).
We discuss two ranges of τ , namely, τ ∈ [−η, τ0) and τ ∈

[
τ0, ζ̄

]
. Over the first range τ ∈ [−η, τ0),

we have z (τ) > 0, by considering that in this case ` (ζ) = 1 and Π (`) = cL

r . Intuitively, there
is no cost by setting a higher τ in this first range for the social planner. So the optimum must be
τSB ≥ τ0. Over the second range τ ∈ [−η, τ0), it follows that d`

dζ = −v, so the signs of all terms
of z (τ) in (A.3) are the same as in (B.9). Consequently, the condition for z′ (τ) < 0 is the same as

that in Proposition 8; namely, under a sufficient condition that r relative to
v
(
cL

r
−1
)

cH
is small enough

(e.g., r < κ
β

2−
v

cH
+1

v

cH
+
v

(
cL
r −1

)
cH

), we have dz(τ)
dτ < 0, which implies that Program (A.2) has a unique

optimal τ . We also show in the proof of Proposition 8 that z
(
τ = ζ̄

)
< 0. Overall, there exists a

unique optimum τSB ∈ [τ0, ζ̄) for Proposition 4.
Similar to the proof of Proposition 8, we find a sufficient condition to guarantee τSB = τ0. Given
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the sufficient condition for a unique equilibrium, we only need to ensure z (τ = τ0) ≤ 0, i.e.,

(
cH − cL

) er(ζ−τ) − 1

r

1

η︸ ︷︷ ︸
+

+

cH − v
(
cL

r
− 1

)
︸ ︷︷ ︸

−

− rΠ (`)

 dζdτ ω +

(
Π (`)− cL

r

)
dω

dτ︸ ︷︷ ︸
−

+ (−r) dζ
dτ

(G (ω)− ω`)︸ ︷︷ ︸
−

≤ 0, (A.4)

where ζ = ζ0, ` = 1, Π (`) = cL

r , ω = 1− ζ0−τ0
η = κ

β ζ0, and dζ
dτ = 1

1+κ
β
η . A sufficient condition for (A.4)

to be true is cH er(ζ0−τ0)−1
r

1
η +

[
cH − v

(
cL

r − 1
)]

1
1+κ

β
η
κ
β ζ0 ≤ 0, that is,

v
(
cL

r − 1
)

cH
≥ er(ζ0−τ0) − 1

rη

(
1 +

κ

β
η

)
1
κ
β ζ0

+ 1, (A.5)

which becomes
v
(
cL

r
−1
)

cH
≥ ζ0−τ0

η

(
1 + κ

βη
)

1
κ
β
ζ0

+ 1 as r → 0.

iv) The decentralized competitive equilibrium Conditional on the entry strategy of individual
banks, the decentralized equilibrium is characterized by the pair (τ∗, ζ). Given ζ, find the optimal
strategy τ∗i for an individual bank ti. The individual bank ti’s optimization problem in choosing its
length of stay, m+ τi, is given by

τ∗i = arg max
τi



Pr (t0 + ζ ∈ (ti +m+ τi, ti +m+ ζ])︸ ︷︷ ︸
probability of survival

[∫ ti+m+τi

ti

e−r(t−ti)cHdt+
cL

r
e−r(m+τi)

]
︸ ︷︷ ︸

payoff in the case of survival

+
∫ x=τi
x=0 f (t0 + ζ = ti +m+ x)︸ ︷︷ ︸

density of failure

[∫ ti+m+x

ti

e−r(t−ti)cHdt+ Π (`) e−r(m+x)

]
︸ ︷︷ ︸

payoff in the case of failure

dx


,

(A.6)
where ` = ` (ζ) given in (A.1) and an individual bank takes ` as given, and Π (`) = ` + `

(
cL

r − 1
)

.
The first-order condition of (A.6) implies

λ

1− exp [−λ (ζ − τ∗i )]
=

cH − cL
cL

r −Π (`)
. (A.7)

In (A.7), ` can be ` = 1 (e.g., if τ∗ = −η and thus ζ = 0), in which case Π (`) = cL

r . Also, Π (`) is a
continuous function at ` = 1 (recalling (2)).

Define Γ (τ) ≡ h (τ, ζ) − cH−cL
cL

r
−Π(`)

. The equilibrium solution is given by Γ (τ∗) = 0. As in Propo-

sition 2, Γ (τ) is increasing in τ which implies no multiple equilibria. Notice that Γ
(
τ = ζ̄

)
> 0 by

considering that h (τ, ζ) =∞when τ = ζ̄. In addition, Γ (τ = τ0) < 0 since Π (`)|τ=τ0
= cL

r . Therefore,
there exists a unique equilibrium τ∗ ∈

(
τ0, ζ̄

)
. In equilibrium, ζ > ζ0 and ` < 1.

v) Entry conditions We have two entry conditions to ensure that banks immediately enter the
speculative sector upon receiving their private information about the arrival of ts. The two entry
conditions apply to both the second-best constrained problem and the decentralized competitive
equilibrium. First, denote by EV (tj) the expectation of the sum of the discounted values in the
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period t ∈ [tj ,+∞) for a bank that has not received information by time tj but decides to enter
the speculative sector at time tj . To ensure that an uninformed bank has no incentive to enter the
speculative sector, a sufficient condition is

EV (tj) <
cL

r
for any tj , (A.8)

where cL

r is the value a bank can get if it keeps operating in the traditional sector. Second, a bank has
incentives to enter the speculative sector immediately after receiving its private information, which
requires∫ ζ−τ

0

λeλt

eλη − 1

[
cH

r

(
1− e−(m+τ)r

)
+ cL

r e
−(m+τ)r

]
dt+

∫ η

ζ−τ

λeλt

eλη − 1

[
cH

r

(
1− e−(m+ζ−t)r)

+Π (`) e−(m+ζ−t)r

]
dt >

cL

r
. (A.9)

In (A.9), the bank expects that it will fall into one of two categories: an early bank receiving informa-
tion at t ∈ [ts, ts + ζ − τ ] and a late bank receiving information at t ∈ [ts + ζ − τ, ts + η].

(1) We examine the first entry condition — the condition where an uninformed bank has no in-
centive to enter the speculative sector. A sufficient condition is that λ is small enough. Intuitively,
when λ is small, with high probability the arrival of the shock time ts is far away from now, so it is
not optimal to enter the speculative sector now as long as there is no private signal yet.

Here we make a simplified assumption that if an uninformed bank entering the speculative sector
finds the good fundamentals (α) have not come yet, the bank will stay put and wait until the specu-
lative sector becomes profitable; that is, there are unmodeled frictions such that it is too costly for a
bank to exit immediately after entry when the speculative sector is in the infancy stage.

Concretely, we find a sufficient condition to guarantee EV (tj) <
cL

r for any tj . We analyze two
cases: tj > η and tj ≤ η. For the first case of tj > η, the bank knows ts ≥ tj − η > 0, that is,
ts ∈ [tj − η, tj) ∪ [tj ,+∞). The conditional density of ts is then given by

φ(ts|tj) =


ts−(tj−η)

η
λe−λ[ts−(tj−η)]

1
λη

(1−e−λη)

λe−λ[ts−(tj−η)]

1
λη

(1−e−λη)

for ts ∈ [tj − η, tj)
for ts ∈ [tj ,+∞)

.

Thus,

EV (tj) =

∫ tj

tj−η
φ(ts|tj)V (tj |ts) dts +

∫ +∞

tj

φ(ts|tj)e−r(ts−tj)V (tj |ts) dts, (A.10)

where V (tj |ts) is the bank value (discounted back to the start point to have positive profits) by enter-
ing the speculative sector at time tj , conditional on the profitable shock occurring at ts. To evaluate
(A.10), we define V (m+ ζ) =

∫m+ζ
0 e−rtcHdt +

∫ +∞
m+ζ e

−rtcLdt, which is the value for a bank that en-
ters the speculative sector at time tj , stays there for time length m + ζ, and exits safely. It is easy to
show that

EV (tj) < EV (m+ ζ) ≡
∫ tj

tj−η
φ(ts|tj)V (m+ ζ) dts +

∫ +∞

tj

φ(ts|tj)e−r(ts−tj)V (m+ ζ) dts.

Clearly, lim
λ→0

EV (m+ ζ) = 0. Since EV (m+ ζ) is continuous in λ, it follows that EV (tj) <
cL

r for

any tj > η under a sufficient condition that λ is small enough.
Similarly, we can examine the second case of tj ≤ η, and find that under a sufficient condition

that λ is small enough, EV (tj) <
cL

r for any tj ≤ η .
(2) We examine the second entry condition — the condition where an informed bank has incen-

tives to enter the speculative sector immediately. For a bank that receives information at time ti and
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enters the speculative sector immediately, there are two possibilities: (a) If ts ∈ [ti − ζ + τ, ti], then
bank ti can exit the speculative sector safely, after a period of m + τ . (b) If ts ∈ [ti − η, ti − ζ + τ),
then bank ti will get caught by the crisis. The expected value for bank ti over ts ∈ [ti − ζ + τ, ti]

is
∫ ζ−τ

0
λeλt

eλη−1

[
cH

r

(
1− e−(m+τ)r

)
+ cL

r e
−(m+τ)r

]
dt, and the expected value for bank ti over ts ∈ [ti −

η, ti − ζ + τ) is
∫ η
ζ−τ

λeλt

eλη−1

[
cH

r

(
1− e−r(m+ζ−t))+ Π (`) e−r(m+ζ−t)

]
dt. So we have (A.9). Denote by

EU (ti) the LHS of (A.9). It follows that lim
m→+∞

EU (ti) = cH

r > cL

r . Therefore, whenm is high enough,

an informed bank enters the speculative sector immediately.
vi) Same as Proposition 3, under a sufficient condition of (A.5), it follows that τSB < τ∗.

Proof of Lemma 5: As in the model in Section 3, we have the following result. The crisis oc-
curs at t = t0 + ζ, where ζ as a function of τ is given by (4), which has the property that dζ

dτ =
1

1+κ
β
η ∈ (0, 1). Moreover, ζ is bounded by ζ ∈

[
0, ζ̄
]
, where ζ = 0 at τ = −η and ζ = ζ̄ = β

κ at

τ = ζ̄. By the crisis condition, θ (t0 + ζ) + β · ω (t0 + ζ) = α, where θ (t0 + ζ) = α − κζ. We have
ωC = ω (t0 + ζ) = κ

β ζ. Based on the fire-sale price function in (26), it follows that ` = `
(
ωC
)

={
1

exp
[
−γ ·

(
κ
β ζ − ω0

)] when κ
β ζ ≤ ω0

when κ
β ζ > ω0

; that is, ` =

{
1
exp [−v (ζ − ζ0)]

when ζ ≤ ζ0

when ζ > ζ0
, where v ≡

γ κβ and ζ0 ≡ ω0
β
κ . It is obvious that d`

dζ = −`v < 0 for ζ > ζ0.

Proof of Proposition 5: i) Define τ0 ≡
[
1 + κ

βη
]
ζ0−η > −η given by ζ (τ = τ0) = ζ0. As in the proof

of Proposition 4, the optimum must be τSB ≥ τ0. So we only need to focus on τ ≥ τ0, which means
d`
dζ = −`v. The first order condition of Program (29) implies

z (τ) =



a− z
ρ

e(ζ−τ)ρ − 1

ρ

1

η︸ ︷︷ ︸
survival banks’ gain (+)

+
dω

dτ

(
log `

ρ

)
︸ ︷︷ ︸

more failure banks (−)

+ ω
dζ

dτ


(
a− z
ρ
− log `

)
︸ ︷︷ ︸

higher productivity (+)

+
1

ρ

1

`

d`

dζ︸ ︷︷ ︸
lower price (−)


︸ ︷︷ ︸

failure banks’payoff change

+ (−1)
dζ

dτ
log

[
1 +

µ (G (q)− q`)
exp [logW0 + (t0 + ζ) z]

]
+ µ

d
(

(G(q)−q`)
exp[logW0+(t0+ζ)z]

)
/dτ[

1 + µ(G(q)−q`)
exp[logW0+(t0+ζ)z]

]
ρ︸ ︷︷ ︸

outside sector’s payoff change (+)

= 0



= 0,

(A.11)
where d`

dζ = −`v < 0. Under v > a − z and if ρ is small enough and µ is small enough, we have
z
(
τ = ζ̄

)
< 0 because ζ = τ and thus the first term of z (τ) is 0 and also the third term is negative

and the fourth term is close to 0. Consequently, τSB ∈ [τ0, ζ̄).
We find the second order condition:

z′ (τ) =
a− z
ρ

eρ(ζ−τ)

η

(
dζ

dτ
− 1

)
+
dω

dτ

dζ

dτ

[
1

ρ
(a− z) + vζ − 1

ρ
v

]
+ ω

dζ

dτ

[
v
dζ

dτ

]
+
dω

dτ

[
1

ρ
(−v)

dζ

dτ

]

+ (−1)µ
dζ

dτ

d
(

(G(q)−q`)
exp[logW0+(t0+ζ)z]

)
/dτ

1 + µ(G(q)−q`)
exp[logW0+(t0+ζ)z]

+ µd

d
(

(G(q)−q`)
exp[logW0+(t0+ζ)z]

)
/dτ[

1 + µ(G(q)−q`)
exp[logW0+(t0+ζ)z]

]
ρ

 /dτ .
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Consider an extreme case where µ = 0 (so the last line in z′ (τ) is zero). Since (a−z)
ρ eρ(ζ−τ)

[
dζ
dτ − 1

]
<

0, a sufficient condition for z′ (τ) < 0 can be written as

dω

dτ

dζ

dτ
(vζ) + ω

dζ

dτ

[
v
dζ

dτ

]
<
dω

dτ

dζ

dτ

[
1

ρ
(2v − (a− z))

]
.

Under v > a − z, the right-hand side goes to +∞ when ρ → 0. Meanwhile, it is obvious that the
left-hand side is a bounded function on τ ∈ [−η, ζ̄]. Therefore, there exists ρ̂ such that z′ (τ) < 0
holds for ρ < ρ̂. Since z′ (τ) is continuous in µ, there exists µ̂ such that z′ (τ) < 0 holds for µ < µ̂.
Overall, under a sufficient condition that ρ is small enough and µ is small enough, z′ (τ) < 0, which
implies that there exists a unique equilibrium for the second best problem.

Similar to the proof of Proposition 4, we also find a sufficient condition for τSB = τ0. This requires
z (τ = τ0) ≤ 0. Choosing µ = 0, since ζ = ζ0, ` = 1, dζdτ = 1

1+κ
β
η , and ω = 1 − ζ0−τ0

η = κ
β ζ0, we have

z (τ = τ0) ≤ 0 which means that a−zρ
e(ζ0−τ0)ρ−1

ρ
1
η + κ

β ζ0
1

1+κ
β
η

[
a−z
ρ −

v
ρ

]
≤ 0, which becomes

v

a− z
≥

e(ζ0−τ0)ρ−1
ρ

1
η

κ
β ζ0

1
1+κ

β
η

+ 1. (A.12)

Since z (τ = τ0) is continuous in µ, there exists µ̃ such that when µ < µ̃, z (τ = τ0) ≤ 0 under (A.12).
In sum, under a sufficient condition that ρ is small enough, µ is small enough, and v

a−z is high enough,
the second best optimum is τSB = τ0.

ii) Similar to the model in Section 3, we have two entry conditions. First, denote by EV (tj) the
expectation of the sum of the discounted utility over t ∈ [tj ,+∞) for a bank that has not received
information by time tj but decides to enter the speculative sector at time tj . To ensure that an unin-
formed bank has no incentive to enter the speculative sector, a sufficient condition is

EV (tj) < V for any tj , (A.13)

where V ≡ log ρ+k(tj)
ρ + z

ρ2 is the sum of the discounted utility a bank can get if it keeps operating in
the traditional sector. Second, a bank has incentives to enter the speculative sector immediately after
receiving its private information, which requires∫ ζ−τ

0

λeλt

eλη − 1

[
a 1
ρ2

− (a−z)
ρ2 e−(m+τ)ρ

]
dt+

∫ η

ζ−τ

λeλt

eλη − 1

[
a 1
ρ2 − (a−z)

ρ2 e−(m+ζ−t)ρ

+e−(m+ζ−t)ρ log `
ρ

]
dt > z

1

ρ2
. (A.14)

(1) We examine the first entry condition — the condition where an uninformed bank has no in-
centive to enter the speculative sector. A sufficient condition is that λ is small enough. Intuitively,
when λ is small, with high probability the arrival of the shock time ts is far away from now, so it is
not optimal to enter the speculative sector now as long as there is no private signal yet. Again, here
we make a simplified assumption that if an uninformed bank entering the speculative sector finds
the good fundamentals (α) have not come yet, the bank will stay put and wait until the speculative
sector becomes profitable; that is, there are unmodeled frictions such that it is too costly for a bank to
exit immediately after entry when the speculative sector is in the infancy stage.

The proof is almost the same as the counterpart in the proof of Proposition 4. We only need to
redefine V (m+ ζ) as

V (m+ ζ) =
log ρ+ k (tj)

ρ
+ a

1

ρ2
− e−ρ(m+ζ)a− z

ρ2
.

(2) We examine the second entry condition — the condition where an informed bank has incen-
tives to enter the speculative sector immediately. For a bank that receives information at time ti and
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enters the speculative sector immediately, there are two possibilities: (a) If ts ∈ [ti − ζ + τ, ti], then
bank ti can exit the speculative sector safely, after a period of m+ τ . (b) If ts ∈ [ti− η, ti− ζ + τ), then
bank ti will get caught by the crisis. The expected value for bank ti over ts ∈ [ti − ζ + τ, ti] is∫ ζ−τ

0

λeλt

eλη − 1

[
log ρ+ k (ti)

ρ
+ a

1

ρ2
− (a− z)

ρ2
e−(m+τ)ρ

]
dt,

and the expected value for bank ti over ts ∈ [ti − η, ti − ζ + τ) is∫ η

ζ−τ

λeλt

eλη − 1

[
log ρ+ k (ti)

ρ
+ a

1

ρ2
− (a− z)

ρ2
e−(m+ζ−t)ρ + e−(m+ζ−t)ρ log `

ρ

]
dt.

The total expected value needs be higher than V = log ρ+k(ti)
ρ + z 1

ρ2 , so we have (A.14). Denote by
EU (ti) the LHS of (A.14), and it follows that lim

m→+∞
EU (ti) = a 1

ρ2 > z 1
ρ2 . Therefore, when m is high

enough, an informed bank enters the speculative sector immediately.

Proof of Proposition 6: The proof of part 1) on entry conditions is the same as that in the proof of
Proposition 5. We proceed to prove part 2). The first order condition of Program (30) implies

f (t0 + ζ = ti +m+ x)

Pr (t0 + ζ ∈ (ti +m+ τi, ti +m+ ζ])
=

∂U(ti+m+τi)
∂τi

U(ti +m+ τi)− Û(ti +m+ τi)
,

that is, λ
1−exp[−λ(ζ−τ∗i )]

= a−z
− log ` . Because τ∗i = τ∗, we consider the fixed-point problem

λ

1− exp [−λ (ζ (τ)− τ)]
=

a− z
− log `

, (A.15)

where function ζ (τ) is given by (9) and ` = ` (ζ) is given in (27). Clearly, the solution τ to equation
(A.15) must satisfy τ > τ0, by noting that when τ ≤ τ0, we have ζ ≤ ζ0 and ` = 1.

We consider the possible solution τ to equation (A.15) in the range of τ ∈
(
τ0, ζ̄

]
, under which `

in (A.15) is ` = exp [−v (ζ − ζ0)]. Define LF (τ) ≡ λ
1−exp[−λ(ζ−τ)] ; since ζ − τ is decreasing in τ , LF (τ)

is increasing in τ , and lim
τ→ζ̄

LF (τ) = +∞. Define RF (τ) ≡ a−z
v[ζ(τ)−ζ0] ; it is obvious that RF (τ) is

decreasing in τ , and lim
τ→τ0

RF (τ) = lim
ζ→ζ0

a−z
v[ζ−ζ0] → +∞. Combining these results, there exists a unique

solution τ∗ ∈
(
τ0, ζ̄

)
.

Proof of Proposition 7: Based on the proof of Proposition 5, under a sufficient condition that ρ is
small enough, µ is small enough, and v

a−z is high enough, the second best optimum is τSB = τ0.
In the proof of Proposition 6, we also show that the competitive equilibrium satisfies τ∗ ∈

(
τ0, ζ̄

)
.

Therefore, under a sufficient condition that ρ is small enough, µ is small enough, and v
a−z is high

enough, we have τSB < τ∗. In Appendix B, we also provide a general proof of Proposition 7, similar
to the proof of Proposition 3.

Proof of Corollary 2: To simplify the algebra, we assume that the government distributes the tax
revenue at time t = t0 + ζ in a way that all banks receive a lump-sum capital subsidy Λ. The govern-
ment breaks even, so

Λ = χ`ω. (A.16)
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The individual bank ti’s optimization problem in (12) is replaced by

τ∗i = arg max
τi


Pr (t0 + ζ ∈ (ti + τi, ti + ζ])︸ ︷︷ ︸

probability of survival

[
τic

H + [Σ (1 + Λ)]
]︸ ︷︷ ︸

payoff in the case of survival

+
∫ x=τi
x=0 f (t0 + ζ = ti + x)︸ ︷︷ ︸

density of failure

[
xcH + Π (`)

]︸ ︷︷ ︸
payoff in the case of failure

dx

 ,

where the term Σ (1 + Λ) on the first line is the payoff in the case of survival, and the redefined
Π (`) ≡ Σ · [(1− χ) `+ Λ] is the payoff in the case of failure, and an individual bank takes Λ as a given
constant. The first-order condition implies

λ

1− exp [−λ (ζ − τ∗)]
=

cH

Σ− Σ` (1− χ)
. (A.17)

We show that there exists a unique pair (χ,Λ) that makes the solution given by (A.17) and (A.16)
satisfy τ∗ = τSB . On the one hand, substituting τ = τSB and ζ = ζ

(
τSB

)
in (A.16), ω is fixed and

(A.16) gives Λ being an increasing function of χ. On the other hand, substituting τ∗ = τSB and
ζ = ζ

(
τSB

)
in (A.17), (A.17) gives Λ being a decreasing function of χ. So there exists a unique pair

(χ,Λ) that implements τ∗ = τSB . Also, under the sufficient condition that Σ is high enough, χ < 1.
The second best efficiency (i.e., the value of the objective function of (7) evaluated at τ = τSB) is

implemented when τSB is implemented. For the outside sector, since τ = τSB , the payoff is the same
as in the second best case. For survival and failure banks, since τ = τSB , their profit flow prior to the
crisis is the same as in the second best case. After the crisis, since survival banks and failure banks
have the same productivity, the capital transfer under tax and subsidy does not affect the aggregate
output. Therefore, the second best efficiency is implemented.

Proof of Corollary 3: The total amount of interest income that the government can use as subsidy
is % (1− `)ω. At time t0 + ζ, all banks receive subsidy Λ. Here Λ denotes the monetary subsidy, while
it represents a capital subsidy in the tax policy case. The government breaks even, that is,

Λ = % (1− `)ω. (A.18)

The individual bank ti’s optimization problem in (12) is replaced by

τ∗i = arg


Pr (t0 + ζ ∈ (ti + τi, ti + ζ])︸ ︷︷ ︸

probability of survival

[
τic

H + [Σ + Λ]
]︸ ︷︷ ︸

payoff in the case of survival

+
∫ x=τi
x=0 f (t0 + ζ = ti + x)︸ ︷︷ ︸

density of failure

[
xcH + Π (`)

]︸ ︷︷ ︸
payoff in the case of failure

dx

 ,

where the term Σ + Λ on the first line is the payoff in the case of survival, and the redefined Π (`) ≡
`+(Σ− 1)−% (1− `)+Λ is the payoff in the case of failure, and an individual bank takes Λ as a given
constant. The first-order condition implies

λ

1− exp [−λ (ζ − τ∗)]
=

cH

(1− `) (1 + %)
. (A.19)

We show that there exists a unique pair (%,Λ) that makes the solution given by (A.19) and (A.18)
satisfy τ∗ = τSB . On the one hand, substituting τ = τSB and ζ = ζ

(
τSB

)
in (A.18), ω is fixed

and (A.18) gives Λ being an increasing function of %. On the other hand, substituting τ∗ = τSB

and ζ = ζ
(
τSB

)
in (A.19), (A.19) gives Λ being a decreasing function of %. So there exists a unique
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pair (%,Λ) that implements τ∗ = τSB . In addition, a failure bank will choose to refinance when
`+ (Σ− 1)− % (1− `) > ` (i.e., the profit under refinancing is higher than `), which is true under the
condition that Σ is high enough.

The second best efficiency (i.e., the value of the objective function of (7) evaluated at τ = τSB) is
implemented when τSB is implemented. For the outside investors, since τ = τSB , the payoff is the
same as in the second-best case. For survival and failure banks, since τ = τSB , their profit flow prior
to the crisis is the same as in the second-best case. After the crisis, the aggregate output does not
change and only the wealth transfer between failure banks and survival banks happens. Therefore,
the second-best efficiency is implemented.

Internet Appendix

B Additional results
Equilibrium of the baseline model under Assumption 1

In this subsection, we study the equilibrium under the general Assumption 1. Here we give all the
differences from the results under Assumption 1’ in Section 2, and we summarize these differences
using a series of propositions.

Clearly, Lemmas 1 and 2 and Corollary 1 are not affected by the general Assumption 1.

The social planner’s second-best constrained problem
Suppose that the social planner cannot observe the shock time t0 either. But the social planner

can coordinate all banks to choose the same waiting length τ after being informed. Denote the arrival
time of the crisis by t = t0 + ζ. The second-best constrained problem for the social planner is given
by

max
τ


∫ t0+ζ−τ
t0

[ (∫ ti+τ
t0

e−r(s−t0)cHds
)

+e−r(ti+τ−t0) · cLr

]
1
ηdti +

∫ t0+η
t0+ζ−τ

[ (∫ t0+ζ
t0

e−r(s−t0)cHds
)

+e−r(t0+ζ−t0) ·Π (`)

]
1
ηdti

+e−rζ (G (ω)− ω`)


s.t. ζ =

τ + η

1 + κ
βη

given by (4)

ω = ω (t0 + ζ) = 1− ζ − τ
η

` = ` (ζ) given by (6), and Π (`) = `+ `

(
cL

r
− 1

)
. (B.1)

In the objective function, all the payoffs are discounted back to time t0 without loss of generality.26

Banks fall into two categories: early banks receiving information at ti ∈ [t0, t0 + ζ − τ ] and late banks
receiving information at ti ∈ (t0 + ζ − τ, t0 + η]. Early banks exit before the crisis and survive, while
late banks are caught by the crisis and fail. The first term in the objective function is the payoff for the
survival banks. A typical survival bank ti gets the continuous payoff flow cH in the period [t0, ti + τ ]

until its exit time ti + τ , and gets the payoff cL

r at its exit time by reinvesting its full liquidation
value L = 1. The second term in the objective function is the payoff for the failure banks. A typical
failure bank ti gets the continuous payoff flow cH in the period [t0, t0 + ζ] until the crisis arrival
time t = t0 + ζ, and gets the expected payoff Π (`) at the crisis arrival time by reinvesting its partial
liquidation value L = ` = ` (ζ) < 1. The third term is the payoff for the asset buyers in the outside
investor sector.

26If the payoffs are discounted back to time t = 0, the objective function of (B.1) is simply altered by multiplying it by a
constant e−rt0 .
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The first-order condition of (B.1) implies

(
cH − cL

) 1

η

er(ζ−τ) − 1

r︸ ︷︷ ︸
=(1−ω)(cH−cL) when r→0︸ ︷︷ ︸

survival banks’ payoff change (+)

+

[
cH − rΠ (`) +

dΠ (`)

d`

d`

dζ

]
dζ

dτ
ω︸ ︷︷ ︸

failure banks’payoff change (−)

+

(
Π (`)− cL

r

)
dω

dτ︸ ︷︷ ︸
more banks caught (−)

+

[
(−r) dζ

dτ
(G (ω)− ω`)− d`

dζ

dζ

dτ
ω

]
︸ ︷︷ ︸

outside sector’s payoff change (+)


= 0, (B.2)

where dζ
dτ = 1

1+κ
β
η , d`dζ = −v, dΠ(`)

d` = cL

r , and dω
dτ =

d
(

1− ζ−τ
η

)
dτ = − 1

η

(
dζ
dτ − 1

)
.

The first-order condition (B.2) highlights the benefit-cost tradeoff for the social planner in choos-
ing the optimal waiting length τ . An increase in τ has four effects on the payoffs in the objective
function of (B.1). First, a survival bank obtains the interest flow cH for a longer period because the
crisis is delayed. These banks’ exit time spreads over [t0 + τ, t0 + ζ], so the total discounted incre-
mental payoffs are given by the first term on the LHS of (B.2). Second, a failure bank also obtains the
interest flow cH for a longer period; however, its expected reinvestment payoff Π (`) is decreased due
to a more delayed crisis. The net incremental payoff for failure banks is given by the second term,
which is negative by considering v

(
cL

r − 1
)
> cH . Third, a delayed crisis results in some banks

switching from survival banks to failure banks and each of such banks loses cL

r − Π (`), which is the
third term. The fourth term represents the payoff change for the outside investor sector.

Denote the LHS of (B.2) by z (τ). First, observe that z
(
τ = ζ̄

)
< 0 under the parameter condition

v
(
cL

r − 1
)
> cH . This is because ζ = τ when τ = ζ̄, meaning the first term of z (τ) is equal to

zero, while the sum of the second term and the fourth term is negative. So the optimum of (B.1)

cannot be τ = ζ̄. Second, under the sufficient condition that r relative to
v
(
cL

r
−1
)

cH
is small enough

(e.g., r < κ
β

2−
v

cH
+1

v

cH
+
v

(
cL
r −1

)
cH

), we have dz(τ)
dτ < 0, which implies that Program (B.1) has a unique

optimal τ .

Proposition 8. Under a sufficient condition that r relative to
v
(
cL

r
−1
)

cH
is small enough, the social planner has

a unique optimal τ , denoted by τSB , which lies in τSB ∈
[
0, ζ̄
)
. Moreover, under a sufficient condition that

v
(
cL

r
−1
)

cH
is high enough,27 it follows that τSB = 0.

27A sufficient condition is
v

(
cL

r
−1

)
cH

≥
[
exp

(
rη

1+κ
β
η

)
− 1
] (

1
rη

)(
1 + κ

β
η
)2 (

1
κ
β
η

)
+ 1 (which implies

v

(
cL

r
−1

)
cH

≥ β
κη

+ 2

when r → 0).
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The decentralized competitive equilibrium
The individual bank ti’s optimization problem is given by

τ∗i = arg max
τi



Pr (t0 + ζ ∈ (ti + τi, ti + ζ])︸ ︷︷ ︸
probability of survival

[∫ ti+τi

ti

e−r(t−ti)cHdt+
cL

r
e−rτi

]
︸ ︷︷ ︸

payoff in the case of survival

+
∫ x=τi
x=0 f (t0 + ζ = ti + x)︸ ︷︷ ︸

density of failure

[∫ ti+x

ti

e−r(t−ti)cHdt+ Π (`) e−rx
]

︸ ︷︷ ︸
payoff in the case of failure

dx


, (B.3)

where ` = ` (ζ) given in (6) and an individual bank takes ` as given, and Π (`) = ` + `
(
cL

r − 1
)

by
(2). The two probability terms in (12) are the same as those in Section 2.

The first-order condition of (B.3) implies

h ( t0 + ζ = ti + τ∗i | ti, τ∗i ) ≡ f (t0 + ζ = ti + τ∗i )

Pr (t0 + ζ ∈ (ti + τ∗i , ti + ζ])
=

cH − cL
cL

r −Π (`)
, (B.4)

that is,
λ

1− exp [−λ (ζ − τ∗i )]
=

cH − cL
cL

r −Π (`)
. (B.5)

As in Section 2, we also define

Γ (τ) ≡ h (τ, ζ)− cH − cL
cL

r −Π (`)
.

We have the following proposition.

Proposition 9. The decentralized competitive equilibrium, characterized by the pair (τ∗, ζ), is given by (9),
(B.5) and (16). There exists a unique equilibrium. Moreover, if parameter ζ0 is close to ζ enough such that
Γ (τ = 0) < 0, the unique equilibrium satisfies τ∗ > 0 (non-corner solution).

Comparison of the second best and the competitive equilibrium

Proposition 10. Under a sufficient condition that
v
(
cL

r
−1
)

cH
is high enough, it follows that τSB ≤ τ∗ with

strict inequality holding whenever τ∗ > 0 (non-corner solution).28 That is, the banks exit too late in compari-
son with the second-best optimum.

When the first-order condition for the social planner is evaluated at the competitive equilibrium
solution pair (τ∗, ζ (τ∗)), it follows that

z (τ∗, ζ (τ∗)) = z (τ∗, ζ (τ∗))− Γ (τ∗i = τ∗, ζ (τ∗))

=


(
cH − cL

)er(ζ−τ) − 1

rη
−

dω
dτ

h︸ ︷︷ ︸
>0

+

cH + (−v)

(
cL

r
− 1

)
︸ ︷︷ ︸

not internalized

− rΠ (`)

 dζ
dτ ω

−r dζdτ (G (ω)− ω`)



∣∣∣∣∣∣∣∣∣∣∣
(τ,ζ)=(τ∗,ζ(τ∗))

. (B.6)

28Clearly, a sufficient condition to have the strict inequality τSB < τ∗ is the condition in Proposition 1 to guarantee
τSB = 0 jointly with the condition in Proposition 2 to guarantee τ∗ > 0.
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To fully characterize the externality, we conduct the following exercise. Suppose that a tiny propor-
tion $ of banks (labelled as type A) increase their τ∗ to τ∗ + ∆ while other banks (type B) keep their
τ∗. (Type-A banks are randomly drawn from the entire population; that is, type-A banks and type-B
banks have the identical information distribution over [t0, t0 + η] and differ only in waiting strategy.)
We examine how the payoff of type-B banks is affected. Denote the objective function of the second
best in (B.1) by Ψ (τ, ζ). When ∆→ 0, the externality to type-B banks (together with outside investors
as a whole) is characterized by

∂Ψ (τ, ζ)

∂ζ
= e−rζ

1

η

(
cL

r
−Π (`)

)
︸ ︷︷ ︸

part 1 externality (+)

+ ω

(−r) Π (`) + cH︸︷︷︸
part 2 (+)

+ (−v)

(
cL

r
− 1

)
︸ ︷︷ ︸

part 3 (−)

 e−rζ
+ (−r) e−rζ (G (ω)− ω`) . (B.7)

In (B.7), when type-A banks increase τ∗, the crisis is delayed for longer (i.e., ζ is increased). An in-
crease in ζ has three effects (externality) on type-B banks which keep τ∗.29 First, there is positive ex-
ternality, including two parts. A more delayed crisis causes some among type-B banks which would
otherwise fail to be able to successfully escape from being caught by the crisis and each of such banks
gains (part 1), by noting ∂(1−ω)

∂ζ = 1
η . A more delayed crisis also causes those eventually failed banks

among type-B banks to obtain the higher interest flow cH for a longer period (part 2). Second, there
is also negative externality on type-B banks (together with outside investors as a whole). A more de-
layed crisis results in a lower liquidation price ` (ζ) for those eventually failed banks among type-B
banks and hence a lower social surplus Π (`)− ` (part 3), by noting that d`

dζ
d(Π(`)−`)

d` = (−v)
(
cL

r − 1
)

.
The part 3 corresponds to the “price impact” of a more delayed crisis that individual banks do not

internalize. Under a sufficient condition that
v
(
cL

r
−1
)

cH
is high enough, the negative externality out-

weighs the positive externality (so the net externality is negative), which is the root cause of the result
τSB < τ∗.

Proof of Propositions 1 and 8: We prove Proposition 8. Proposition 1 is just a special case of Propo-
sition 8. By Lemma 2, ` (ζ) < 1 for any τ ≥ 0. Hence, Π (L) = Π (`) = ` + `

(
cL

r − 1
)

with ` < 1 in
(B.1). We can simplify the objective function in (B.1) as follows:

max
τ

{∫ ζ

τ

[
e−rt

cL

r
+ cH

1− e−rt

r

]
1

η
dt+ ω

[
e−rζΠ (`) + cH

1− e−rζ

r

]
+ e−rζ (G (ω)− ω`)

}
. (B.8)

The first-order condition of (B.8) implies
(
cH − cL

)
1
η
er(ζ−τ)−1

r +
[
cH − rΠ (`) + dΠ(`)

d`
d`
dζ

]
dζ
dτ ω +

(
Π (`)− cL

r

)
dω
dτ

+
[
(−r) dζdτ (G (ω)− ω`)− d`

dζ
dζ
dτ ω

]  = 0, (B.9)

where we use dω
dτ =

d
(

1− ζ−τ
η

)
dτ = − 1

η

(
dζ
dτ − 1

)
. Under the parameter condition v

(
cL

r − 1
)
> cH , the

second term in (B.9) is negative because cH + dΠ(`)
d`

d`
dζ < 0 by using dΠ(`)

d` = 1 +
(
cL

r − 1
)

.

29The externality also includes the interest rate r-related terms in (B.7). But these terms are negative, so the net externality
must be negative if the sum of the other terms is negative.
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Denote the LHS of (B.9) by z (τ). First, observe that z
(
τ = ζ̄

)
< 0, because ζ = τ when τ = ζ̄

and thus the first term of z (τ) is equal to zero and also the sum of the second term and the fourth
term is negative by cH + dΠ(`)

d`
d`
dζ −

d`
dζ = cH −

(
cL

r − 1
)
v < 0. Second, we have

dz(τ)
dτ =

(
cH − cL

) er(ζ−τ)

η

(
dζ

dτ
− 1

)
︸ ︷︷ ︸

−

+
dΠ (`)

d`
(−v)

dζ

dτ

dω

dτ︸ ︷︷ ︸
−

+ (−r) dζ
dτ

(
ωv

dζ

dτ

)
︸ ︷︷ ︸

−

+

rdΠ (`)

d`
v

(
dζ

dτ

)2

ω︸ ︷︷ ︸
+

+

cH +

(
dΠ (`)

d`
− 1

)
d`

dζ︸ ︷︷ ︸
+/−

− rΠ (`)

 dζ
dτ

dω
dτ

 ,

(B.10)

by considering cH > cL, 0 < dζ
dτ < 1, and dω

dτ = − 1
η

(
dζ
dτ − 1

)
. Collecting all positive terms and

r-independent negative terms in (B.10) and considering ω ≤ 1, we find a sufficient condition to

guarantee dz(τ)
dτ < 0, which is r dΠ(`)

d` v
(
dζ
dτ

)2
+
[
cH +

(
dΠ(`)
d` − 1

)
(−v)

]
dζ
dτ

dω
dτ + dΠ(`)

d` (−v) dζdτ
dω
dτ < 0,

rewritten as

r <
κ

β

2− v + cH

v + v
(
cL

r − 1
)
 , (B.11)

by using dζ
dτ = 1

1+κ
β
η . Note that the RHS of (B.11) is decreasing in r, so the inequality (B.11) gives

a unique threshold of r. To summarize, under a sufficient condition of (B.11) (which is guaranteed
under Assumpiton 2 and r < κ

β ), Program (B.1) has a unique optimum τSB ∈
[
0, ζ̄
)
.

Next, we show a sufficient condition to guarantee τSB = 0. Given the sufficient condition for a
unique equilibrium in (B.11), we only need to ensure z (τ = 0) ≤ 0, that is,

(
cH − cL

) er(ζ−τ) − 1

r

1

η︸ ︷︷ ︸
+

+

cH − v
(
cL

r
− 1

)
︸ ︷︷ ︸

−

− rΠ (`)

 dζ
dτ ω +

(
Π (`)− cL

r

)
dω

dτ︸ ︷︷ ︸
−

+ (−r) dζ
dτ

(G (ω)− ω`)︸ ︷︷ ︸
−

≤ 0,

(B.12)

where ` = ` (ζ) < 1, ζ = τ+η
1+κ

β
η and (ζ − τ)|τ=0 = η

1+κ
β
η , and ω = 1 − ζ−τ

η = 1 − 1
1+κ

β
η =

κ
β
η

1+κ
β
η . A

sufficient condition for (B.12) to be true is cH er(ζ−τ)−1
r

1
η +

[
cH − v

(
cL

r − 1
)]

dζ
dτ ω

∣∣∣
τ=0
≤ 0, that is,

v
(
cL

r − 1
)

cH
≥

[
exp

(
rη

1 + κ
βη

)
− 1

](
1

rη

)(
1 +

κ

β
η

)2
(

1
κ
βη

)
+ 1, (B.13)

which becomes
v
(
cL

r
−1
)

cH
≥ β

κη + 2 when r → 0.

Proof of Propositions 2 and 9: We prove Proposition 9. Proposition 2 is just a special case of Propo-
sition 9. We study scenario t0 ≥ η + m. For clarity of the proof, we distinguish between two cases
of ζ < η and ζ ≥ η, which will nevertheless give the same first-order condition. We first consider
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the case of ζ < η, which is guaranteed under a sufficient parameter condition ζ̄ = β
κ < η (recalling

Lemma 1). Under this case, an individual bank’s optimal waiting time must satisfy τi ∈ [0, ζ]. For the
individual bank that receives information at ti, it expects that the crisis will occur at t0+ζ ∈ (ti, ti + ζ].
The first order condition of (B.3) implies

−f (t0 + ζ = ti + τi)
[∫ ti+τi
ti

e−r(t−ti)cHdt+ cL

r e
−rτi

]
+ Pr (t0 + ζ ∈ (ti + τi, ti + ζ])

(
e−rτicH + (−r) cLr e

−rτi
)

+f (t0 + ζ = ti + τi)
[∫ ti+τi
ti

e−r(t−ti)cHdt+ Π (`) e−rτi
]
 = 0, (B.14)

rewritten as Pr (t0 + ζ ∈ (ti + τi, ti + ζ])
(
cH − cL

)
= f (t0 + ζ = ti + τi)

(
cL

r −Π (`)
)

. As shown in
the main text, the two terms are calculated as f (t0 + ζ = ti + τi) = f (t0 = ti + x− ζ) = φ (t0 = ti + x− ζ|ti) =
λeλ(ζ−τi)

eλη−1
and Pr (t0 + ζ ∈ (ti + τi, ti + ζ]) = Pr (t0 ∈ (ti + τi − ζ, ti]) = Φ (t0 = ti|ti)−Φ (t0 = ti + τi − ζ|ti) =

eλ(ζ−τi)−1
eλη−1

. In addition, h ( t0 + ζ = ti + τ∗i | ti, τ∗i ) ≡ f(t0+ζ=ti+τ
∗
i )

Pr(t0+ζ∈(ti+τ∗i ,ti+ζ])
= λ

1−exp[−λ(ζ−τ∗i )]
. Hence, we

have (B.4).
We then consider the case of ζ ≥ η. Under this case, an individual bank’s optimal waiting time

must satisfy τi ∈ [ζ − η, ζ]; that is, even for the last bank in the queue which receives information at
time t0+ η , it still takes time length ζ − η for the crisis to come after the bank receives information,
so an individual bank must choose τi ≥ ζ − η. The individual bank ti’s optimization problem is

τ∗i = arg max
τi∈[ζ−η,ζ]

 Pr (t0 + ζ ∈ (ti + τi, ti + ζ])
[∫ ti+τi
ti

e−r(t−ti)cHdt+ cL

r e
−rτi

]
+
∫ x=τi
x=ζ−η f (t0 + ζ = ti + x)

[∫ ti+x
ti

e−r(t−ti)cHdt+ Π (`) e−rx
]
dx

 . (B.15)

In (B.15), for the individual bank ti, it knows that the crisis will occur at the earliest at t = ti + (ζ − η)
and at the latest at t = ti+ζ. Thus, when the individual bank chooses its exiting time as ti+τi, it knows
that there are two possibilities: t0 +ζ ∈ [ti + ζ − η, ti + τi]∪ (ti + τi, ti + ζ]. If t0 +ζ ∈ (ti + τi, ti + ζ] is
realized, bank ti survives. If t0 + ζ ∈ [ti + ζ − η, ti + τi]) is realized, the bank fails at the crisis arrival
time ti + x, where x ∈ [ζ − η, τi]. The first-order condition of (B.15) also yields (B.14).

Next, we analyze the equilibrium solution given by Γ (τ∗) = 0, where Γ (τ) ≡ h (τ, ζ) − cH−cL
cL

r
−Π(`)

.

From Lemma 1, we have 0 < dζ
dτ < 1, and thus h (τ, ζ (τ)) is increasing in τ . Also, Π (` (ζ)) is de-

creasing in τ . Overall, Γ (τ) is decreasing in τ . Moreover, when τ = ζ̄, it follows h (τ, ζ) = ∞ and
Γ
(
τ = ζ̄

)
> 0. Therefore, if Γ (τ = 0) < 0, there is a unique equilibrium with non-corner solution

τ∗ > 0; otherwise, there is a unique equilibrium with corner solution τ∗ = 0. Also, considering that
cL

r − Π (`) = cL

r −
[
`+ `

(
cL

r − 1
)]

with ` = 1− v · (ζ − ζ0) (so cL

r −Π (`)
∣∣∣
τ=0
→ 0 when ζ0 → ζ), we

have Γ (τ = 0) < 0 if parameter ζ0 is close to ζ enough.
We also consider scenario t0 < η+m. For clarity of presentation of the proof, we simply setm = 0

here. The proof for this scenario closely follows Abreu and Brunnermeier (2002) (see the proof of
Proposition 1 on pages 358-359 in their paper). In the first step, given that the crisis occurs at t0 + ζ,
find an individual bank’s optimal τi. 1) For bank ti > ζ, it does not have additional information. It
chooses τ∗i = τ∗, where τ∗ solves the first order condition

λ

1− exp [−λ (ζ − τ∗)]
=

cH − cL
cL

r −Π (`)
(B.16)

shown in (B.5). 2) For bank ti < ζ, the bank knows that the crisis occurs earliest at time ζ (when
t0 = 0) and it still takes at least time length ζ − ti for the crisis to come after receiving information
before the crisis will hit, so it must choose τi ≥ ζ − ti. Hence, τ∗i = max (τ∗, ζ − ti) for bank ti < ζ,
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where τ∗ solves the first order condition (B.16). In the second step, given banks’ updated strategy
(τ∗i = max (τ∗, ζ − ti) for bank ti < ζ, and τ∗i = τ∗ for other banks), we confirm that the crisis occurs at
time t0+ζ, where ζ is given by ζ = τ∗+η

1+κ
β
η . By the condition τ∗i = max (τ∗, ζ − ti), only those banks with

ti ≤ ζ − τ∗choose τ∗i = ζ − ti and hence they exit the speculative sector no later than time ζ, implying
that those banks exit before the crisis arrival time by considering ζ ≤ t0 +ζ. Therefore, up to the crisis
arrival time t0 + ζ, the accumulated pressure of exiting is still x (t0 + ζ) = (t0+ζ)−(t0+τ∗)

η = ζ−τ∗
η . By

the crisis condition, we have ζ = τ∗+η
1+κ

β
η . Intuitively, the updated strategy of some banks only changes

the density distribution of exiting before the crisis arrival time, but does not change the accumulated
amount of exiting up to the crisis arrival time.

Proof of Propositions 3 and 10: We prove Proposition 10. Propositions 3 is just a special case of
Proposition 10. Since ẑ (τ∗i = τ∗, ζ (τ∗)) ∝ Γ (τ∗i = τ∗, ζ (τ∗)) = 0, we have

z (τ∗, ζ (τ∗)) = z (τ∗, ζ (τ∗))− Γ (τ∗i = τ∗, ζ (τ∗)) = z (τ∗, ζ (τ∗))− Γ (τ∗i = τ∗, ζ (τ∗))
dω
dτ
h

=


(
cH − cL

)er(ζ−τ) − 1

rη
−

dω
dτ

h︸ ︷︷ ︸
>0

+

cH − v
(
cL

r
− 1

)
︸ ︷︷ ︸
not internalized

− rΠ (`)

 dζ
dτ ω

−r dζdτ (G (ω)− ω`)



∣∣∣∣∣∣∣∣∣∣∣
(τ,ζ)=(τ∗,ζ(τ∗))

,
(B.17)

where h = λ
1−exp[−λ(ζ−τ)] ≥ lim

λ→0

λ
1−exp[−λ(ζ−τ)] = 1

ζ−τ and dω
dτ = 1

η

(
1− dζ

dτ

)
, and hence

dω
dτ
h ≤

(
1− dζ

dτ

)
ζ−τ
η <

1− ω. Also because er(ζ−τ)−1
rη ≥ lim

r→0

er(ζ−τ)−1
rη = 1− ω, we have er(ζ−τ)−1

rη −
dω
dτ
h > 0.

A sufficient condition to ensure z (τ∗, ζ (τ∗)) < 0 in (B.17) is

cH
er(ζ−τ) − 1

rη
+

[
cH − v

(
cL

r
− 1

)]
dζ

dτ
ω

∣∣∣∣∣
(τ,ζ)=(τ∗,ζ(τ∗))

≤ 0. (B.18)

As the LHS of (B.18) is decreasing in τ , a sufficient condition for (B.18) to be true is

cH
er(ζ−τ) − 1

r

1

η
+

[
cH − v

(
cL

r
− 1

)]
dζ

dτ
ω

∣∣∣∣∣
(τ,ζ)=(0,ζ)

≤ 0,

which gives the same condition as (B.13).
Considering that parameter ω0 and thereby ζ0 help to pin down the condition for the non-corner

solution of τ∗, there are three cases for the comparison between τSB and τ∗: τSB = τ∗ = 0 if ζ0 ≤ ζ∗0 ,
and τSB = 0 < τ∗ or 0 < τSB < τ∗ if ζ0 > ζ∗0 , where ζ∗0 is a threshold lying in ζ∗0 ∈

[
0, ζ
)
.

Proof of Proposition 7: We give a general proof of Proposition 7, similar to the proof of Proposition
3. Recalling function z in (A.11), we find z (τ∗, ζ (τ∗)), the first-order condition for the social planner
evaluated at the competitive equilibrium solution pair (τ∗, ζ (τ∗)). Based on (A.15), define Γ (τ∗i , ζ) =
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h− a−z
− log ` , where h = λ

1−exp[−λ(ζ−τ∗i )]
. Since Γ (τ∗i = τ∗, ζ (τ∗)) = 0, it follows that

z (τ∗, ζ (τ∗)) = z (τ∗, ζ (τ∗))− Γ (τ∗i = τ∗, ζ (τ∗)) = z (τ∗, ζ (τ∗))− Γ (τ∗i = τ∗, ζ (τ∗))
dω
dτ

hρ

=


a−z
ρ

e(ζ−τ)ρ−1
ρ

1
η +

(
a−z
ρ −

v
ρ − log `

)
ω dζdτ +

(
log `
ρ

)
dω
dτ

+ (−1) dζdτ log
[
1 + µ(G(q)−q`)

exp[logW0+(t0+ζ)z]

]
+ µ

d
(

(G(q)−q`)
exp[logW0+(t0+ζ)z]

)
/dτ[

1+
µ(G(q)−q`)

exp[logW0+(t0+ζ)z]

]
ρ

− [(a− z)− (− log `)h]
dω
dτ
hρ



∣∣∣∣∣∣∣∣∣∣
(τ,ζ)=(τ∗,ζ(τ∗))

=


a−z
ρ

e(ζ−τ)ρ − 1

ρη
−

dω
dτ

h︸ ︷︷ ︸
>0

+

a−z
ρ −

v

ρ︸︷︷︸
not internalized

− log `

 dζ
dτ ω

+ (−1) dζdτ log
[
1 + µ(G(q)−q`)

exp[logW0+(t0+ζ)z]

]
+ µ

d
(

(G(q)−q`)
exp[logW0+(t0+ζ)z]

)
/dτ[

1+
µ(G(q)−q`)

exp[logW0+(t0+ζ)z]

]
ρ



∣∣∣∣∣∣∣∣∣∣∣∣∣
(τ,ζ)=(τ∗,ζ(τ∗))

,

where the result of eρ(ζ−τ)−1
ρη −

dω
dτ
h > 0 is proved in the proof of Proposition 10. Since

dω
dτ
h > 0, a

sufficient condition to ensure z (τ∗, ζ (τ∗)) < 0 is
a−z
ρ

e(ζ−τ)ρ−1
ρη + a−z

ρ
dζ
dτ ω

+ (−1) dζdτ log
[
1 + µ(G(q)−q`)

exp[logW0+(t0+ζ)z]

]
+ µ

d
(

(G(q)−q`)
exp[logW0+(t0+ζ)z]

)
/dτ[

1+
µ(G(q)−q`)

exp[logW0+(t0+ζ)z]

]
ρ


∣∣∣∣∣∣∣
(τ,ζ)=(τ∗,ζ(τ∗))

<

(
v

ρ
+ log `

)
dζ

dτ
ω

∣∣∣∣
(τ,ζ)=(τ∗,ζ(τ∗))

= v

(
1

ρ
− (ζ − ζ0)

)
dζ

dτ
ω

∣∣∣∣
(τ,ζ)=(τ∗,ζ(τ∗))

,

by noticing that τ∗ > τ0, ζ > ζ0, and thus log ` = −v (ζ − ζ0).
If ρ is small enough such that 1

ρ > ζ (τ∗)− ζ0, then the above sufficient condition can be rewritten
as

v >

{
a−z
ρ

e(ζ−τ)ρ−1
ρη + a−z

ρ
dζ
dτ ω −

dζ
dτ log

[
1 + µ(G(q)−q`)

exp[logW0+(t0+ζ)z]

]
+ µ

d
(

(G(q)−q`)
exp[logW0+(t0+ζ)z]

)
/dτ[

1+
µ(G(q)−q`)

exp[logW0+(t0+ζ)z]

]
ρ

}∣∣∣∣∣
(τ,ζ)=(τ∗,ζ(τ∗))[

1
ρ − (ζ − ζ0)

]
dζ
dτ ω

∣∣∣
(τ,ζ)=(τ∗,ζ(τ∗))

.

(B.19)
Since τ∗ ∈

(
τ0, ζ̄

)
, ζ (τ∗) ∈

(
ζ0, ζ̄

)
and ω ∈ (κβ ζ0, 1) are all bounded, the RHS of (B.19) is bounded.

Combining these results, we have z (τ∗, ζ (τ∗)) < 0 and thus τSB < τ∗ under a sufficient condi-
tion that ρ is small enough (such that 1

ρ > ζ (τ∗)− ζ0) and v is high enough (such that (B.19) is true),
ceteris paribus.

Results in Section 4.3: We give the expression of Y (t). We divide time into five stages: t ∈ [0, ts),
[ts, ts + η), [ts + η, ts +m+ τ = t0 + τ), [t0 + τ, t0 + ζ), and [t0 + ζ,+∞). In the first stage t ∈ [0, ts),
all banks are operating in the traditional sector, so the aggregate output is given by

Y (t) = exp (k0 + zt) · Z.
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In the second stage t ∈ [ts, ts + η), some banks have already entered the speculative sector by using
technology A while others are staying in the traditional sector and using technology Z. Hence,

Y (t) = exp (k0 + zts)

[
A

∫ t

ts

exp [(s− ts) z + (t− s) a]
1

η
ds+ Z

ts + η − t
η

exp [(t− ts) z]
]

= exp (k0 + zts)

[
1

η

1

a− z
A
[
ea(t−ts) − ez(t−ts)

]
+
ts + η − t

η
Ze(t−ts)z

]
.

In the third stage t ∈ [ts + η, t0 + τ), all banks have already entered the speculative sector by using
technology A. Thus,

Y (t) = exp (k0 + zts)A

∫ ts+η

ts

exp [(s− ts) z + (t− s) a]
1

η
ds

= exp (k0 + zts)A
1

η

1

a− z
ea(t−ts)

[
1− e−(a−z)η

]
.

In the fourth stage [t0 + τ, t0 + ζ), some banks have already safely exited the speculative sector by
switching to technology Z while others are staying in the speculative sector and using technology A.
It follows that

Y (t) = exp (k0 + zts)

[
Z
t− (t0 + τ)

η
ea(m+τ)+z[t−(t0+τ)] +A

∫ ts+η

t−m−τ
exp [z (s− ts) + a (t− s)] 1

η
ds

]
= exp (k0 + zts)

[
Z
t− (t0 + τ)

η
ea(m+τ)+z[t−(t0+τ)] +

A 1
η

a− z

[
e(a−z)(m+τ)+z(t−ts) − e−(a−z)η+a(t−ts)

]]
.

The fifth stage [t0 + τ, t0 + ζ) is the post-crisis period, in which all banks are operating in the tradi-
tional sector. The banks that are caught by the crisis at t = t0 + ζ lose a portion of their capital at the
crisis arrival time t = t0 + ζ. Hence,

Y (t) = K (t0 + ζ)Zez[t−(t0+ζ)],

whereK (t0 + ζ) = exp (k0 + zts)
[
ζ−τ
η ea(m+τ)+z(ζ−τ) + 1

η
`(ζ)
a−z

[
e(a−z)(m+τ)+z(m+ζ) − e−(a−z)η+a(m+ζ)

]]
.

We give the expression of Ys (t). In the first stage t ∈ [0, ts), all banks are operating in the tradi-
tional sector, so the aggregate output is given by Ys (t) = 0. In the second stage t ∈ [ts, ts + η), some
banks have already entered the speculative sector by using technology A while others are staying in
the traditional sector and using technology Z. Hence,

Ys (t) = exp (k0 + zts)A

∫ t

ts

exp [(s− ts) z + (t− s) a]
1

η
ds = exp (k0 + zts)

1

η

1

a− z
A
[
ea(t−ts) − ez(t−ts)

]
.

In the third stage t ∈ [ts + η, t0 + τ), all banks have already entered the speculative sector by using
technology A. Thus,

Ys (t) = exp (k0 + zts)A

∫ ts+η

ts

exp [(s− ts) z + (t− s) a]
1

η
ds = exp (k0 + zts)

A

a− z
1

η
ea(t−ts)

[
1− e−(a−z)η

]
.

In the fourth stage [t0 + τ, t0 + ζ), some banks have already safely exited the speculative sector by
switching to technology Z while others are staying in the speculative sector and using technology A.
It follows that

Ys (t) = exp (k0 + zts)
[
A
∫ ts+η
t−m−τ exp [z (s− ts) + a (t− s)] 1

ηds
]

= exp (k0 + zts)
A
a−z

1
η

[
e(a−z)(m+τ)+z(t−ts) − e−(a−z)η+a(t−ts)

]
.

In the post-crisis period [t0 + ζ,+∞), all banks operate in the traditional sector. Hence, Ys (t) = 0.
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