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a b s t r a c t

The mixed Poisson process has been widely used in financial engineering for modeling arrival of events
that cluster in time, as it has strictly stationary and positively correlated increments. However, we show
that, surprisingly, the sample autocovariance and autocorrelation of the increments of a mixed Poisson
process converge to zero almost surely as the sample size goes to infinity. Consequently, the sample
autocovariance or autocorrelation cannot be used in the method of moments for parameter estimation of
mixed Poisson processes.
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1. Introduction

The mixed Poisson process is a generalization of the homoge-
neous Poisson process for modeling the occurrence of events. In
contrast to the homogeneous Poisson process that has indepen-
dent increments, the mixed Poisson process has the distinctive
feature that the correlation between its increments is positive.
Roughly speaking, if the number of events occurring in the current
period is large, then the number of events that will occur in the
next period will also tend to be large. Hence, the arrival of events
under the mixed Poisson process has the feature of clustering in
time, which has been empirically observed in various fields such as
finance and insurance.

The mixed Poisson process has been widely used in the lit-
erature of financial engineering and insurance. The CreditRisk+
system [19] uses a mixed Poisson process with the Gamma dis-
tribution as the mixing distribution for the modeling of arrival
of default events. [6,7] develop an importance sampling method
for evaluating the loss distribution under a mixed Poisson model
of portfolio credit risk. [4] provides a review of jump processes
such as mixed Poisson processes and doubly stochastic Poisson
processes and their applications in credit risk modeling. [12] pro-
poses a model for pricing portfolio credit derivatives in which a
mixed Poisson process is used as amarket factor that can introduce
clustering shocks to affect the default probabilities of firms. [10]
proposes a mixed Poisson credit risk model in which loss-given-
default is dependent onprobability of default. [2] provides compre-
hensive discussion on credit risk models including the CreditRisk+

* Corresponding author.
E-mail addresses:miaof2fmq@gmail.com (M. Fu), maxhpeng@ust.hk (X. Peng).

and its extensions. Themixed Poisson process has also beenwidely
used for modeling the arrival of accidents, sickness, and insurance
claims in the actuarial science literature (see, e.g., [13,20]).

In this paper, we study the asymptotics of the sample au-
tocovariance and autocorrelation of the increments of a mixed
Poisson process. Contrasting the homogeneous Poisson process,
the increments of a mixed Poisson process are strictly stationary
but have positive autocorrelation. Hence, one may expect that the
asymptotic distribution of sample autocorrelation of the incre-
ments of a mixed Poisson process has a mean equal to the true
positive autocorrelation (as the sample size goes to infinity), which
may hold for a weakly stationary time series under some general
conditions. For example, [3, Chap. 7] shows that the asymptotic
mean of sample autocorrelation is equal to the population auto-
correlation for weakly stationary ARMA(p, q) time series and for
weakly stationary time series Xt = µ +

∑
∞

j=−∞
ψjZt−j, where {Zt}

is a sequence of i.i.d. random variables with mean zero and finite
variance. See also [5, Chap. 6].

The main result of this paper is that, surprisingly, the sample
autocovariance and autocorrelation of the increments of a mixed
Poisson process converge to zero almost surely. This provides an
interesting counterexample showing that even for a strictly sta-
tionary time series, the sample autocorrelation may not have an
asymptotic mean that is equal to the population autocorrelation.

The main result of the paper also implies that the sample
autocovariance or autocorrelation cannot be used in the method
of moments for parameter estimation of a mixed Poisson process.
The method of moments based on autocovariance is a commonly
used method for parameter estimation for weakly stationary time
series partly due to the simplicity of the method. For example,
the parameters of AR(p) model can be consistently estimated by
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the Yule–Walker equation, which is based on equating population
autocorrelation with sample autocorrelation (see, e.g., [3, Chap.
8.1]). Althoughwe have not noticed any existing literature that use
themethod ofmoments for the estimation of parameters formixed
Poisson processes, our result provides a precaution against the use
of such a method for mixed Poisson processes.

The paper also complements the study of the properties of
mixed Poisson process in the literature of point processes and ap-
plied probability. [1] discusses the goodness-of-fit test of whether
a point process can be adequately modeled as a mixed Poisson
process and in particular a homogeneous Poisson process based on
the characterization of a mixed Poisson process. [11] shows that
the property that normalized event occurrence times are the order
statistics of independent uniform random variables on (0, 1) char-
acterizes the mixed Poisson processes within the class of general
point processes. The characterization of mixed Poisson processes
within the class of birth processes, stationary point processes, and
general point processes are also studied in [1,9,13,14,17], among
others; see Chapter 6 of [8] for comprehensive discussion and
summary. When the mixing distribution of the mixed Poisson
process has a gamma distribution, the mixed Poisson process is
called a Pólya–Lundberg process (or Pólya process); see [16] for
a comprehensive discussion. [15] provides a martingale charac-
terization of Pólya–Lundberg processes within the class of mixed
Poisson processes.

The remainder of the paper is organized as follows. In Section
2, we briefly review the properties of the increments of mixed
Poisson processes. In Section 3, we prove the main result of this
paper. Section 4 concludes.

2. The increments of mixed Poisson processes

We recall the definition of the mixed Poisson process (see,
e.g., [18, Section 8.5.1]). A counting process {N(t), t ≥ 0} is called a
mixed Poisson process if there exists a positive random variableΛ
with distribution function FΛ(·) such that for any n, any sequence
{ki | i = 1, 2, . . . , n} of nonnegative integers, and any sequence
0 ≤ a1 ≤ b1 ≤ a2 ≤ b2 ≤ · · · ≤ an ≤ bn,

P(N(bi) − N(ai) = ki; i = 1, 2, . . . , n)

=

∫
∞

0

n∏
i=1

(λ(bi − ai))ki

ki!
e−λ(bi−ai) dFΛ(λ). (1)

If {N(t), t ≥ 0} is a mixed Poisson process, then for any fixed t ,
the marginal distribution of N(t) is a mixed Poisson distribution.
Comparing with Poisson distribution, mixed Poisson distribution
is overspersed in the sense that the variance of N(t) is larger than
E[N(t)]. Amixed Poisson process is a non-homogeneous pure birth
process whose birth rate function is determined by the mixing
distribution (see, e.g., [18, Theorem 8.5.1]). The interoccurrence
times of amixed Poisson process are identically distributed but not
independent.

The easiest way to construct amixed Poisson process is through
stochastic time change of a Poisson process. More precisely, let Λ
be a randomvariablewith distribution function FΛ(·), {M(t), t ≥ 0}
be a Poisson process with intensity 1, and let Λ and {M(t), t ≥ 0}
be independent. Define the process {N(t), t ≥ 0} as follows:

N(t) := M(Λ · t), t ≥ 0. (2)

Then, the process {N(t), t ≥ 0} defined in Eq. (2) is amixed Poisson
process (see, e.g., Definition 4.3 in [8, p. 66]).

Let δ > 0 be a constant and consider the increments of the
mixed Poisson processes:

mt := N(tδ) − N((t − 1)δ), t = 1, 2, . . . . (3)

It is clear from (1) that the time series mt is strictly stationary but
not independent. In fact, the autocovariance (ACV) and autocorre-
lation (ACR) functions of mt at any lag are positive, as is shown in
the following proposition.

Proposition 2.1. {mt | t = 1, 2, . . .} defined in (3) is a strictly
stationary time series with the following autocovariance (ACV) and
autocorrelation (ACR) functions:

ck = Cov(mt ,mt−k) = δ2Var(Λ) > 0,∀k > 0, (4)

ρk =
Cov(mt ,mt−k)

Var(mt )
=

δ2Var(Λ)
δE[Λ] + δ2Var(Λ)

> 0,∀k > 0. (5)

Proof. By direct computation. □

In particular, if N(t) is a Pólya–Lundberg process with the
Gamma distribution with shape parameter α and scale parameter
β as the mixing distribution, then the ACV and ACR of {mt} are
given by

ck = Cov(mt ,mt−k) = δ2αβ2, ρk =
Cov(mt ,mt−k)

Var(mt )
=

δβ

1 + δβ
,

∀k > 0.

3. Main result

Themain result of this paper is that the sample ACV and sample
ACR at any lag of {mt} converge to zero almost surely, although the
population ACV and population ACR of {mt} are strictly positive.
As a result, the sample ACV or sample ACR cannot be used in the
method of moments for parameter estimation of mixed Poisson
processes. The sample ACV and sample ACR at lag k of {mt} are
defined as follows:

m̄T :=
1
T

T∑
t=1

mt =
1
T
N(Tδ) (6)

ĉk,T :=

∑T
t=k+1(mt − m̄T )(mt−k − m̄T )

T
. (7)

ρ̂k,T :=

∑T
t=k+1(mt − m̄T )(mt−k − m̄T )∑T

t=1(mt − m̄T )2
. (8)

First, we show that the sample ACV at any lag of the increments
of a homogeneous Poisson process converge to zero almost surely.

Lemma 3.1. Let M(t) be a homogeneous Poisson process with inten-
sity 1. Let λ > 0 be a constant and k > 0 be a constant integer. Define

mt,λ :=M(tδλ) − M((t − 1)δλ), (9)

m̄T ,λ :=
1
T

T∑
t=1

mt,λ, (10)

ĉk,T (λ) :=

∑T
t=k+1[mt,λ − m̄T ,λ][mt−k,λ − m̄T ,λ]

T
. (11)

Then, it holds that

lim
T→∞

ĉk,T (λ) = 0, a.s. (12)

Proof. Omitted due to limited space. Details can be provided upon
request. □

Second, we consider the mixed Poisson process N(t) defined in
(2). For this process N(t), an intuitive but unrigorous argument to
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show P(limT→∞ĉk,T (λ) = 0) = 1 is as follows: for any constant
λ > 0, we have

P( lim
T→∞

ĉk,T = 0 | Λ = λ)

=P( lim
T→∞

ĉk,T (λ) = 0), (ĉk,T (λ) is defined in (11))

=0. (by Lemma 3.1). (13)

The argument is unrigorous because the event {Λ = λ} may have
zero probability for continuous random variable Λ. The rigorous
proof actually takes much more efforts. In the following, we will
state the main result of the paper and provide a rigorous proof.

Theorem 3.1. (i) Let N(t) be a mixed Poisson process defined in (2).
Let k > 0 be a constant integer. Let mt , ĉk,T , and ρ̂k,T be defined in
(3), (7), and (8) respectively. Then, it holds that

lim
T→∞

ĉk,T = 0, a.s. (14)

lim
T→∞

1
T

T∑
t=1

m2
t = δΛ+ δ2Λ2, a.s. (15)

lim
T→∞

1
T

T∑
t=1

(mt − m̄T )2 = δ2Λ, a.s. (16)

lim
T→∞

ρ̂k,T = 0, a.s. (17)

(ii) The statements (14) and (17) hold for any mixed Poisson
process which may not have the representation of (2).

Proof. We use I{A} to denote the indicator random variable on the
event A.

(i) LetN(t) be defined in (2). In the following, wewill prove that
the four statements (14)–(17) hold for N(t).

(ii) We first prove (14). For each integer n > 0, define the
discrete random variableΛn as

Λn(ω) :=

{ s
2n , Λ(ω) ∈ (

s − 1
2n ,

s
2n ], 1 ≤ s ≤ 2n

· n, and s ∈ Z+,

n, Λ(ω) > n.

By definition, for n ≥ Λ(ω),Λn(ω) ≥ Λ(ω).
First, we will show that for any fixed λ ∈ (0,∞),△λ ∈ (0,∞),

and ω ∈ Ω , there exists 0 < G(ω) < ∞, such that the following
three statements hold:

I{Λn(ω) < λ} = I{Λ(ω) < λ}, ∀n > G(ω), (18)
0 ≤ Λn(ω)I{λ ≤ Λn(ω) < λ+ △λ}

− Λ(ω)I{λ ≤ Λ(ω) < λ+ △λ} <
1
2n , ∀n > G(ω), (19)

I{Λn(ω) ≥ λ+ △λ} = I{Λ(ω) ≥ λ+ △λ}, ∀n > G(ω). (20)

Indeed, consider the following three cases:

1. If Λ(ω) ≥ λ + △λ, then define G(ω) := Λ(ω). Then, for
∀n > G(ω), Λn(ω) ≥ Λ(ω) ≥ λ + △λ, which implies (18),
(19), and (20) hold.

2. If λ ≤ Λ(ω) < λ + △λ, then define G(ω) := max{λ +

△λ, log2
1

λ+△λ−Λ(ω) }. Then, for ∀n > G(ω), Λn(ω) ≥ Λ(ω) ≥

λ. In addition, since Λ(ω) < λ + △λ < n, it follows
that Λn(ω) < Λ(ω) +

1
2n , which in combination with n >

log2
1

λ+△λ−Λ(ω) implies that Λn(ω) < Λ(ω) +
1
2n < λ + △λ.

Therefore, λ ≤ Λn(ω) < λ + △λ, for ∀n > G(ω), which
implies that (18), (19), and (20) hold.

3. If Λ(ω) < λ, then define G(ω) := max{Λ(ω), log2
1

λ−Λ(ω) }.
Then, for ∀n > G(ω),Λn(ω) < Λ(ω)+ 1

2n < λ, which implies
that (18), (19), and (20) hold.

And then, by (19),

lim
n→∞

Λn(ω)I{λ ≤ Λn(ω) < λ+ △λ}

= Λ(ω)I{λ ≤ Λ(ω) < λ+ △λ}, for any ω. (21)

For any fixed ω and t > 0, since the sample paths of the Poisson
processM(t, ω) are right-continuous step functions and (18), (19),
and (20) hold, there exists Gt (ω) ∈ (0,∞) such that

M(tδΛn(ω), ω)I{λ ≤ Λn(ω) < λ+ △λ}

=M(tδΛ(ω), ω)I{λ ≤ Λ(ω) < λ+ △λ}, ∀n > Gt (ω).

Therefore, for any fixed ω, it holds that

M(tδΛn(ω), ω)I{λ ≤ Λn(ω) < λ+ △λ}

=M(tδΛ(ω), ω)I{λ ≤ Λ(ω) < λ+ △λ},

t = 1, . . . , T ,∀n > HT (ω), (22)

where HT (ω) := max{G1(ω),G2(ω), . . .,GT (ω)}.
Let ĉk,T (λ) be defined in (11).Wewill show that for any integers

L < U ,

P(
U⋂

T=L

{ĉk,T (Λ) ∈ (a, b]} | Λ) = sL,U (Λ), (23)

where

sL,U (λ) := P(
U⋂

T=L

{ĉk,T (λ) ∈ (a, b]}).

Indeed, for any fixedω and any sequence {λn} ⊂ R such thatλn ↓ λ

as n → ∞, it follows from the right continuity of {M(t, ω)} that
there exists KT (ω) < ∞ such that for ∀n > KT (ω), ĉk,T (λn) =

ĉk,T (λ). Therefore,

lim
n→∞

I{
U⋂

T=L

{ĉk,T (λn) ∈ (a, b]}} = I{
U⋂

T=L

{ĉk,T (λ) ∈ (a, b]}}, a.s.

And then, it follows from dominated convergence theorem that

lim
n→∞

P(
U⋂

T=L

{ĉk,T (λn) ∈ (a, b]}) = P(
U⋂

T=L

{ĉk,T (λ) ∈ (a, b]}),

or, equivalently,

lim
n→∞

sL,U (λn) = sL,U (λ), if λn ↓ λ as n → ∞. (24)

Define

mt,n(ω) :=M(tδΛn(ω), ω) − M((t − 1)δΛn(ω), ω),

m̄T ,n(ω) :=
1
T

T∑
t=1

mt,n(ω),

ĉk,T (Λn(ω), ω) :=

∑T
t=k+1[mt,n(ω) − m̄T ,n(ω)][mt−k,n(ω) − m̄T ,n(ω)]

T
.

Since ĉk,T (Λn(ω), ω) is a function ofM(δΛn(ω), ω),M(2δΛn(ω), ω),
. . . ,M(TδΛn(ω), ω), it follows from (22) that for any fixed integers
L < U and for any (a, b] ⊂ R,

I{
U⋂

T=L

{ĉk,T (Λn) ∈ (a, b]}}I{λ ≤ Λn < λ+ △λ}

=I{
U⋂

T=L

{ĉk,T (Λ) ∈ (a, b]}}I{λ ≤ Λ < λ+ △λ}, ∀n > HU (ω),
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which implies that

lim
n→∞

I{
U⋂

T=L

{ĉk,T (Λn) ∈ (a, b]}}I{λ ≤ Λn < λ+ △λ}

=I{
U⋂

T=L

{ĉk,T (Λ) ∈ (a, b]}}I{λ ≤ Λ < λ+ △λ}, a.s.

Then, by dominated convergence theorem,

lim
n→∞

E[I{
U⋂

T=L

{ĉk,T (Λn) ∈ (a, b]}}I{λ ≤ Λn < λ+ △λ}]

=E[I{
U⋂

T=L

{ĉk,T (Λ) ∈ (a, b]}}I{λ ≤ Λ < λ+ △λ}],

or, equivalently,

lim
n→∞

P(
U⋂

T=L

{ĉk,T (Λn) ∈ (a, b]}, λ ≤ Λn < λ+ △λ)

=P(
U⋂

T=L

{ĉk,T (Λ) ∈ (a, b]}, λ ≤ Λ < λ+ △λ). (25)

Since Λn only depends on Λ and Λ is independent of the Poisson
process {M(t)},Λn is also independent of {M(t)} and ĉk,T (r), for any
constant r > 0. Therefore,

P(
U⋂

T=L

{ĉk,T (Λn) ∈ (a, b]}, λ ≤ Λn < λ+ △λ)

=

∑
λ≤r<λ+△λ

P(
U⋂

T=L

{ĉk,T (Λn) ∈ (a, b]},Λn = r)

=

∑
λ≤r<λ+△λ

P(
U⋂

T=L

{ĉk,T (r) ∈ (a, b]},Λn = r)

=

∑
λ≤r<λ+△λ

P(
U⋂

T=L

{ĉk,T (r) ∈ (a, b]})P(Λn = r)

=

∑
λ≤r<λ+△λ

sL,U (r)P(Λn = r)

=E[sL,U (Λn)I{λ ≤ Λn < λ+ △λ}]. (26)

It follows from (24) and (21) that

lim
n→∞

sL,U (Λn)I{λ ≤ Λn < λ+ △λ}

= sL,U (Λ)I{λ ≤ Λ < λ+ △λ}, a.s.,

and then by dominated convergence theorem, since |sL,U (Λn)| ≤ 1,

lim
n→∞

E[sL,U (Λn)I{λ ≤ Λn < λ+ △λ}]

= E[sL,U (Λ)I{λ ≤ Λ < λ+ △λ}]. (27)

Thus, by (25), (26), and (27),

P(
U⋂

T=L

{ĉk,T (Λ) ∈ (a, b]}, λ ≤ Λ < λ+ △λ)

= E[sL,U (Λ)I{λ ≤ Λ < λ+ △λ}].

Since the Borel algebra B(R++) can be generated by {[c, d) : 0 <
c < d}, it follows that

E[I{
U⋂

T=L

{ĉk,T (Λ) ∈ (a, b]}}I{Λ ∈ A}] = E[sL,U (Λ)I{Λ ∈ A}],

∀A ∈ B(R++),

so according to the definition of conditional expectation, (23)
holds.

For constant λ > 0 and integers L < U , define

hL,U,n(λ) :=P(
U⋂

T=L

{|ĉk,T (λ)| <
1
n
}),

hL,n(λ) :=P(
∞⋂
T=L

{|ĉk,T (λ)| <
1
n
}).

Since
⋂U

T=L{|ĉk,T (λ)| <
1
n } is a decreasing sequence of events when

U → ∞, it follows that

lim
U→∞

hL,U,n(λ) = hL,n(λ) for any λ > 0,

and therefore,

lim
U→∞

hL,U,n(Λ) = hL,n(Λ), a.s. (28)

Since |hL,U,n(Λ)| ≤ 1, it follows from (23), (28), and the dominated
convergence theorem that

P(
∞⋂
T=L

{|ĉk,T (Λ)| <
1
n
}) = lim

U→∞

P(
U⋂

T=L

{|ĉk,T (Λ)| <
1
n
})

= lim
U→∞

E[P(
U⋂

T=L

{|ĉk,T (Λ)| <
1
n
} | Λ)] = lim

U→∞

E[hL,U,n(Λ)] (by (23))

=E[hL,n(Λ)] (by (28) and dominated convergence theorem). (29)

By Lemma 3.1, for any λ > 0, limT→∞ĉk,T (λ) = 0, a.s. Hence, for
any λ > 0, and any n > 0,

1 = P(
∞⋃
L=1

∞⋂
T=L

{|ĉk,T (λ)| <
1
n
}) = lim

L→∞

P(
∞⋂
T=L

{|ĉk,T (λ)| <
1
n
})

= lim
L→∞

hL,n(λ).

Therefore, for any n > 0,

lim
L→∞

hL,n(Λ) = 1, a.s.

Since |hL,n(Λ)| ≤ 1, it follows from the dominated convergence
theorem that

lim
L→∞

E[hL,n(Λ)] = 1. (30)

It follows from (29) and (30) that

lim
L→∞

P(
∞⋂
T=L

{|ĉk,T (Λ)| <
1
n
}) = 1, for ∀n > 0,

or, equivalently,

P(
∞⋃
L=1

∞⋂
T=L

{|ĉk,T (Λ)| <
1
n
}) = 1, for ∀n > 0. (31)

Finally, by (31),

P( lim
T→∞

ĉk,T (Λ) = 0) = P(
∞⋂
n=1

{∃L,∀T ≥ L, |ĉk,T (Λ)| <
1
n
})

=P(
∞⋂
n=1

∞⋃
L=1

∞⋂
T=L

{|ĉk,T (Λ)| <
1
n
}) = lim

n→∞
P(

∞⋃
L=1

∞⋂
T=L

{|ĉk,T (Λ)| <
1
n
})

=1,

which completes the proof for (14).
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(i.ii) Second, we prove (15) and (16). For any λ > 0, letmt (λ) be

defined in (9). Define

gL,U,n(λ) := P(
U⋂

T=L

{|
1
T

T∑
t=1

mt (λ)2 − δλ− δ2λ2| <
1
n
}), (32)

gL,n(λ) := P(
∞⋂
T=L

{|
1
T

T∑
t=1

mt (λ)2 − δλ− δ2λ2| <
1
n
}). (33)

Then, since
⋂U

T=L{|
1
T

∑T
t=1mt (λ)2 −δλ−δ2λ2| < 1

n } is a decreasing

sequence of events as U → ∞, it follows that

lim
U→∞

gL,U,n(λ) = gL,n(λ), ∀λ > 0,

and hence

lim
U→∞

gL,U,n(Λ) = gL,n(Λ), a.s.,

which, in combination with dominated convergence theorem and

the fact that |gL,U,n(Λ)| ≤ 1, implies that

lim
U→∞

E[gL,U,n(Λ)] = E[gL,n(Λ)]. (34)

By similar argument for proving (23), we can show that

P(
U⋂

T=L

{|
1
T

T∑
t=1

m2
t − δΛ− δ2Λ2

| <
1
n
} | Λ) = gL,U,n(Λ). (35)

Since mt (λ), t = 1, 2, . . . , are i.i.d., it follows from law of large

numbers that

lim
T→∞

1
T

T∑
t=1

mt (λ)2 = E[mt (λ)2] = δλ+ δ2λ2, a.s. (36)

Hence, for any n > 0,

1 = P(
∞⋃
L=1

∞⋂
T=L

{|
1
T

T∑
t=1

mt (λ)2 − δλ− δ2λ2| <
1
n
})

= lim
L→∞

P(
∞⋂
T=L

{|
1
T

T∑
t=1

mt (λ)2 − δλ− δ2λ2| <
1
n
})

= lim
L→∞

gL,n(λ).

Therefore, for any n > 0,

lim
L→∞

gL,n(Λ) = 1, a.s.

Since |gL,n(Λ)| ≤ 1, it follows from the dominated convergence

theorem that

lim
L→∞

E[gL,n(Λ)] = 1. (37)

Finally,

P( lim
T→∞

1
T

T∑
t=1

m2
t = δΛ+ δ2Λ2)

=P(
∞⋂
n=1

∞⋃
L=1

∞⋂
T=L

{|
1
T

T∑
t=1

m2
t − δΛ− δ2Λ2

| <
1
n
})

= lim
n→∞

P(
∞⋃
L=1

∞⋂
T=L

{|
1
T

T∑
t=1

m2
t − δΛ− δ2Λ2

| <
1
n
})

= lim
n→∞

lim
L→∞

P(
∞⋂
T=L

{|
1
T

T∑
t=1

m2
t − δΛ− δ2Λ2

| <
1
n
})

= lim
n→∞

lim
L→∞

lim
U→∞

P(
U⋂

T=L

{|
1
T

T∑
t=1

m2
t − δΛ− δ2Λ2

| <
1
n
})

= lim
n→∞

lim
L→∞

lim
U→∞

E[P(
U⋂

T=L

{|
1
T

T∑
t=1

m2
t − δΛ− δ2Λ2

| <
1
n
} | Λ)]

= lim
n→∞

lim
L→∞

lim
U→∞

E[gL,U,n(Λ)] (by (35))

= lim
n→∞

lim
L→∞

E[gL,n(Λ)] (by (34))

=1 (by (37)), (38)

which completes the proof of (15).
Noting that

1
T

T∑
t=1

(mt − m̄T )2 =
1
T

T∑
t=1

m2
t − (m̄T )2.

By Proposition 4.2 in [8, p. 66], limT→∞m̄T = δΛ, a.s., which in
combination with (15) implies that (16) holds.

(i.iii) Third, we prove (17). It follows from (14) and (16) that

lim
T→∞

ρ̂k,T =
limT→∞ ĉk,T

limT→∞
1
T

∑T
t=1(mt − m̄T )2

= 0, a.s.,

which completes the proof.
(ii) LetN(t) be anymixed Poisson process thatmay not have the

representation of (2). We have

P( lim
T→∞

ĉk,T = 0) = P(
∞⋂
n=1

{∃L,∀T ≥ L, |ĉk,T | <
1
n
})

=P(
∞⋂
n=1

∞⋃
L=1

∞⋂
T=L

{|ĉk,T | <
1
n
}) = lim

n→∞
P(

∞⋃
L=1

∞⋂
T=L

{|ĉk,T | <
1
n
})

= lim
n→∞

lim
L→∞

lim
U→∞

P(
U⋂

T=L

{|ĉk,T | <
1
n
}).

Therefore, P(limT→∞ĉk,T = 0) only depends on the finite dimen-
sional distributions of {mt} but not on the specific representation
of N(t). Since (14) holds for the specific mixed Poisson process
defined in (2), (14) also holds for any mixed Poisson process N(t).
Similarly, P(limT→∞ρ̂k,T = 0) only depends on the finite dimen-
sional distributions of {mt} but not on the specific representation
of N(t). Hence, (17) also holds for any mixed Poisson process N(t)
because it holds for the specific mixed Poisson process defined in
(2). This completes the proof. □

4. Conclusion

Compared with a homogeneous Poisson process, a mixed Pois-
son process has a distinctive feature that it has strictly stationary
but positively correlated increments. Although it holds under some
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conditions that the sample autocovariance and autocorrelation of
a weakly stationary time series converge to its population coun-
terparts, the increments of a mixed Poisson process are one of the
interesting exceptions. More precisely, we show that, surprisingly,
the sample autocovariance and autocorrelation at any lag of the
increments of a mixed Poisson process converge to zero almost
surely as the sample size goes to infinity. As a result, the sample
autocovariance or autocorrelation cannot be used in the method
of moments for parameter estimation of mixed Poisson processes.
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