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1 Introduction

This paper considers panel data models with interactive fixed e↵ects, where the unobserved

errors has a latent factor model structure. The assumption of interactive fixed e↵ects has been

adopted in a lot of recent studies — see Pesaran (2006), Bai (2009), Moon and Weidner (2015),

and Lu and Su (2016) among many others. This assumption is general enough to nest the

standard panel data models with only individual fixed e↵ects and models with additive indi-

vidual and time e↵ects. It also allows the unobserved factors (or common shocks) to a↵ect

the dependent variables with di↵erent intensities that are measured by the individual-specific

factor loadings. Moreover, the latent factor structure has become an important tool to char-

acterize cross-sectional dependence in panel data models — see Chudik and Pesaran (2015) for

an excellent review. Yet, most of the existing studies focus on linear models where the idiosyn-

cratic errors are subject to conditional mean restrictions, and the main object of interest is the

coe�cient that represents the partial e↵ect of the regressors on the conditional mean of the de-

pendent variable. In this paper, I consider panel data models with interactive e↵ects where the

conditional mean restrictions are replaced by conditional quantile restrictions. In such models,

the coe�cient of the regresors measures the partial quantile e↵ect, providing a more complete

picture of how the regressors a↵ect the distributions of the dependent variables.

In this paper I adopt the popular common correlated e↵ects (CCE, hereafter) framework

pioneered by Pesaran (2006). In this framework, the regressors are assumed to be driven by the

same latent factors that a↵ect the dependent variables, allowing the the space of the common

factors to be approximated by the cross-sectional averages of the observed variables. Compared

with the approach that estimates the coe�cient and fixed e↵ects jointly, the CCE approach

has two main advantages that are particular valuable for the quantile panel models: first, the

computation of the CCE estimator is easy, because given the estimated factors, the coe�cient of

the regressors and the factor loadings can be simply estimated by treating the estimated factors

as known. Second, the asymptotic properties of the estimators are much easier to derive since

the estimated factors have a relatively simple expansion.

Like the CCE estimator, the proposed estimation method in this paper contains two steps.

However, both of the steps di↵er from the standard CCE method that is widely used the for linear

and quantile panel data models in existing studies. In the first step, to avoid the degenerated-

regressors problem of the standard CCE method (see Karabiyik et al. 2017 and Remark 1 below),

I apply the principal component analysis (PCA, hereafter) to the cross-sectional averages of the

regressors to estimate the common factors. In the second step, inspired by Galvao and Kato

(2016), the smoothed quantile regression (SQR, hereafter) instead of the standard quantile

regression is used to estimate the coe�cient of the regressors and the factor loadings jointly,

treating the estimated factors from the first step as given. The main motivation of making
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such modifications in both steps of the standard CCE estimator is to facilitate the asymptotic

analysis of the proposed estimator.

In the “large N , small T” framework1, the identification and estimation of quantile panel

data models are very challenging even when there are only individual e↵ects (see Arellano and

Bonhomme 2016 and Graham et al. 2018 for example). When there are interactive e↵ects in

quantile panel models, there remains the open question of whether the parameter of interest

can be point identified (see Chen 2015 for a result of set identification). Thus, in this paper,

I follow Fernández-Val and Weidner (2016) and Chen et al. (2020) and consider the “large

N , large T” framework where the realizations of the factors and factor loadings are treated

as non-random fixed parameters, and the main contribution of this paper is that I establish

the asymptotic properties of the proposed estimator in this context. In particular, under some

regularity conditions, I show that the proposed two-step estimator for the coe�cient of the

regressors is
p
NT -consistent, asymptotically normally distributed, and it has a leading bias of

order T�1+N�1. More importantly, I derive the analytical expression of the leading bias term,

providing the basis of analytical bias-correction and a heuristic justification for the use of the

split-panel jackknife (SPJ, hereafter) bias correction in practice. The Bahadur representation

of my two-step estimator extends the similar representations of the estimators for linear panel

data models (see Bai 2009) and nonlinear panel data models with smooth object functions (see

Chen et al. 2020) to quantile panel models. To the best of my knowledge, this is the first result

of this kind in the literature.

Related Literature

This paper paper is related to the large and growing literature on quantile regressions for

panel models. Abrevaya and Dahl (2008), Rosen (2012), Arellano and Bonhomme (2016), Gra-

ham et al. (2018), and Cai et al. (2018) considered identification and estimation of quantile ef-

fects with fixed T . In the large T framework, Canay (2011) and Chen and Huo (2020) proposed

two-step estimation methods, Koenker (2004), Lamarche (2010) and Galvao and Montes-Rojas

(2010) proposed penalized quantile regressions for panel models, Galvao (2011) considered quan-

tile regressions of dynamic panels, Kato et al. (2012), Galvao and Kato (2016) and Galvao et al.

(2020) focused on the asymptotic distributions of quantile regressions and smoothed quantile

regressions, Galvao et al. (2013) studied censored quantile regressions for panel data, Yoon and

Galvao (2020) considered the robust estimation of the covariance matrix, Chen (2019) studied

the nonparametric estimation of quantile panel models.

All the studies mentioned above only considered models with individual e↵ects. Quantile

panel models with interactive fixed e↵ects were first studied by Harding and Lamarche (2014),

and more recently by Chen et al. (2019), Belloni et al. (2019), Feng (2019), Harding et al. (2020),

1Throughout this paper, I use N and T to denote the numbers of cross-sectional and time-series observations
respectively.
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Ando and Bai (2020), Ma et al. (2020).

As in this paper, Harding and Lamarche (2014) and Harding et al. (2020) also adopted the

CCE framework. However, unlike my two-step estimator, they proposed to use the standard CCE

estimator where the cross-sectional averages of the regressors and the dependent variables are

used as the proxies of the unobserved factors, and in the second step they use standard quantile

regressions instead of SQR to estimate the coe�cient of the regressors. More importantly, their

asymptotic results are quite di↵erent in nature from the main conclusion of this paper. In

particular, Harding and Lamarche (2014) showed that the CCE estimator has no asymptotic

bias, while Harding et al. (2020) proved that the CCE estimator of the common slope parameter

is
p
NT -consistent, with a leading bias term of approximate order T�3/4, but they didn’t give

the analytical expression of the bias2.

Chen et al. (2019) and Ando and Bai (2020) both proposed iterative procedure to estimate

the quantile factor and factor loadings jointly. Chen et al. (2019)’s model has no observed regres-

sors and they mainly focused on the asymptotic properties of the estimated factors and factor

loadings. The model of Ando and Bai (2020) contains observed regressors but they assumed the

coe�cients to be heterogenous across individuals. As a consequence, their estimators of the het-

erogenous coe�cients converges at the rate of
p
N and are free of asymptotic biases. Moreover,

Ando and Bai (2020)’s asymptotic analysis requires all the finite moments of the idiosyncratic

errors to be bounded, while in this paper I only need the density functions of the idiosyncratic

errors to exist and to be su�ciently smooth (i.e., continuously di↵erentiable). Ma et al. (2020)

considered a model that is similar to the quantile factor models of Chen et al. (2019) except

that they assumed the factor loadings to be smooth functions of observed (and time-invariant)

individual characteristics.

One potential problem of the methods proposed by Chen et al. (2019) and Ando and Bai

(2020) is that their computational algorithm does not necessarily converge to the global minimum

because their object function is not convex. To solve this problem, Belloni et al. (2019) and

Feng (2019) added to the object function a nuclear-norm penalty term that is widely used in the

matrix completion literature, resulting in a new object function that is convex in the parameters.

However, the convergence rates of their estimators are much slower than
p
NT in general due

to the regularization bias, and the asymptotic distributions of their estimators are not derived.

Structure of the Paper

The rest of the paper is organized as follows. Section 2 introduces the model and the new

two-step estimator. Second 3 establishes the consistency and the asymptotic distribution of the

estimator, and discusses how to correct the asymptotic bias, how to estimate the asymptotic

2Harding et al. (2020) also considered heterogenous slopes and showed that the CCE estimators are
p
N -

consistent.
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covariance matrix, and how to choose the tuning parameters in practice. Monte Carlo simu-

lations are used to evaluate the finite sample performance of the proposed estimator and the

e↵ectiveness of the alternative bias-correction methods. Finally, Section 5 concludes. The proofs

of all the theorems are relegated to the online appendix.

Notations

Through out the paper, QY [⌧ |X = x] denotes the conditional ⌧�quantile of Y of given

X = x, kAk denotes the Frobenius norm of matrix A, and Tr(·) denotes the trace of a square

matrix. For two sequences of non-decreasing real numbers {aj} and {bj}, aj ⇣ bj means that

there exists 0 < c1 < c2 < 1 such that c1 < aj/bj < c2 for all large j.

2 The Model and The Estimator

2.1 The Model

For some ⌧ 2 (0, 1), consider the model:

Yit = �0(⌧)
0Xit + �i(⌧)

0ft + uit for i = 1, . . . , N ; t = 1, . . . , T, (1)

where (Yit, Xit) 2 R⇥Rp is the vector of observed variables for individual i at time t, �i(⌧) 2 Rr

and ft 2 Rr are the unobserved factor loadings (or individual e↵ects) and common factors

(or time e↵ects), respectively. The idiosyncratic error uit is assumed to satisfy the following

conditional quantile restriction almost surely:

Quit [⌧ |Xit,�i(⌧), ft] = 0. (2)

Given the above restriction, we have QYit [⌧ |Xit,�i(⌧), ft] = �0(⌧)0Xit+�i(⌧)0ft. Thus, our main

object of interest is �0(⌧), i.e., the marginal quantile e↵ect of the regressors Xit conditional on

the factors and factor loadings.

In addition, following the literature on common correlated e↵ects (CCE) estimation of panel

data models (see Pesaran 2006 and Karabiyik et al. 2017), I assume that the regressors are

driven by the common factors ft, i.e., the dynamics of Xit is captured by the following factor

model structure:

Xit = �ift + eit, for i = 1, . . . , N ; t = 1, . . . , T, (3)

where �i 2 Rp⇥r is a matrix of constants, and eit 2 Rp is a vector of random errors.

The main reason of adopting the CCE framework in this paper is that it allows us to estimate

�0(⌧) in a simple two-step procedure that will be defined below. The benefits of employing the
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two-step estimation approach are twofold: first, under some standard assumptions, the factors

can be consistently estimated in the first step using the regressors, which greatly simplifies the

asymptotic analysis of the estimator in the second step; second, the low computational cost of

the two-step estimator makes it appealing to empirical researchers.

In comparison, in an alternative framework where the relationship between the regressors

and the factors is left unspecified (such as Bai 2009 and Ando and Bai 2020), the coe�cients

for the regressors, the factors and the factor loadings are usually estimated jointly. One the one

hand, such “joint estimators” are computationally intensive since they involve iterations between

the factors and the factor loadings. On the other hand, the asymptotic properties of such “joint

estimators” are much more di�cult to establish in the context of quantile regressions. Ando

and Bai (2020) consider heterogeneous panels where the estimator of each individual’s coe�cient

converges at
p
N rate. In a homogeneous panel, the estimator for the coe�cient converges at the

much fast
p
NT rate, making it much more challenging to derive the asymptotic distribution

of the estimator because many higher order terms that have been ignored in Ando and Bai

(2020)’s analysis will become relevant. Moreover, note that the asymptotic analysis of Chen

et al. (2020) for nonlinear panel data models with interactive fixed e↵ects, which is already very

involved, does not apply to these “joint estimators” since the parameters in the quantile models

are defined through non-smooth moment conditions.3

2.2 The Two-Step Estimator

For the moment, assume that the number of factors r is known (Section 3.1 below discusses

how to consistently estimate r) and that p � r. Define X̄t = N�1PN
i=1Xit, and ⌃̂X̄ =

T�1PT
t=1 X̄tX̄

0
t. Moreover, let K(z) = 1 �

R z
�1 k(x)dx, where k(·) is a symmetric continu-

ous kernel function with support [�1, 1] and h is a bandwidth parameter. Then the two-step

estimator of �0(⌧) is defined as follows:

Step 1: f̂t =  ̂0X̄t, where  ̂ 2 Rp⇥r is the matrix of eigenvectors associated with largest r

eigenvalues of ⌃̂X̄ .

Step 2: �̂(⌧) is defined as:

[�̂(⌧), ⇤̂(⌧)] = argmin
�2B,�i2A

1

NT

NX

i=1

TX

t=1

"
⌧ �K

 
Yit � �0Xit � �0

if̂t
h

!#
(Yit � �0Xit � �0

if̂t), (4)

where ⇤̂(⌧) = [�̂1(⌧), . . . , �̂N (⌧)]0.

Define l(u) = (⌧ � K(u/h))u and L(�,⇤) = (NT )�1PN
i=1

PT
t=1 l(Yit � �0Xit � �0

if̂t), Step

3One can smooth the object function in quantile regressions like I do in this paper, but some important
assumptions of Chen et al. (2020) (such as the boundness of the derivatives of the object function) can not be
satisfied by the smoothed check function.
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2 of the estimation procedure can be e↵ectively solved by the gradient descent algorithm as

follows:

Step 2.1: Choose the initial value of the parameter: (�(0),⇤(0)).

Step 2.2: For j = 0, set sj = 1; for j � 1, define L�
j = �(NT )�1PN

i=1

PT
t=1 l

(1)(Yit��(j)0Xit�
�
(j)0

i f̂t)Xit, L
�i
j = �(NT )�1PT

t=1 l
(1)(Yit � �(j)0Xit � �

(j)0

i f̂t)f̂t, where l(1)(u) = @l(u)/@u. Set4

sj =

���(�(j) � �(j�1))0(L�
j � L�

j�1) +
PN

i=1(�
(j)
i � �

(j�1)
i )0(L�i

j � L�i
j�1)

���
���L�

j � L�
j�1

���
2
+
PN

i=1

���L�i
j � L�i

j�1

���
2 .

Step 2.3: Update the parameters by

�(j+1) = �(j) � sj · L�
j and �

(j+1)
i = �

(j)
i � sj · L�i

j .

Step 2.4: Iterate Step 2.2 and Step 2.3 until the object function converges.

Since the object function L(�,⇤) is not convex in (�,⇤), there is no guarantee that the

gradient descent algorithm above is able to find the global minimum. Thus, choosing a good

initial value for the parameter is essential. In practice, I recommend using the following estimator

as the initial value of the parameter:

[�̃(⌧), ⇤̃(⌧)] = argmin
�2B,�i2A

1

NT

NX

i=1

TX

t=1

⇢⌧ (Yit � �0Xit � �0
if̂t), (5)

where ⇢⌧ = (⌧ � 1{u  0})u is the check function. Under Assumptions 1 and 2 of the next

section, it can be shown that �̃(⌧) is a consistent estimator of �0(⌧).5

Remark 1 The way I estimate the unknown factors in Step 1 is di↵erent from the standard

CCE method that uses X̄t and Ȳt = N�1PN
i=1 Yit as the proxies of ft. A problem with the CCE

approach, as pointed out by Karabiyik et al. (2017), is that the second moment matrix of the

estimated factors is asymptotically singular when p+1 > r, known as the problem of “degenerated

regressors”. This problem results in two possible complications for nonlinear panel data models:

first, the asymptotic property of the CCE estimator is more challenging to establish and there

might be extra biases due to the degenerated regressors (see Theorem 3 of Karabiyik et al. 2017);

Second, since the nonlinear models usually requires nonlinear optimization algorithms to obtain

the estimator, it is di�cult to find the (local) minimum with degenerated regressors. My approach

4This method of choosing the step size is known as the Barzilai-Borwein method.
5The proof of this claim is essentially the same as the proof of Theorem 1, and it is therefore omitted. In fact,

the consistency of �̃(⌧) does not require B to be compact thanks to the convexity of the check function — see
Kato et al. (2012).
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avoids this problem because it will be shown in the next section that the second moment matrix

of the estimated factors is asymptotically full rank as long as p � r.

Remark 2 A natural question that arises is why not just use the estimator given in (5) in Step

2. The main reason is that it is di�cult to work out the analytical expression of the asymptotic

bias of �̃(⌧) due to the non-smoothness of the check function — see Kato et al. (2012) for a

detailed discussion. The use of SQR in Step 2 is inspired by Galvao and Kato (2016), who

derived the asymptotic bias of the fixed e↵ects estimator for quantile panel data models with only

individual e↵ects. Similar ideas has been explored by Amemiya (1982) and Horowitz (1998), but

for di↵erent objectives.

Remark 3 At ⌧ = 0.5, the models (1) to (3) can be viewed as a variant of the model of Pesaran

(2006) where the assumption that uit has conditional mean 0 is replaced by the assumption that

uit has conditional median 0. Accordingly, my two-step estimator at ⌧ = 0.5 can be viewed as

the least absolute deviation (LAD) counterpart of the CCE estimator. As will be shown below,

the advantage of the LAD estimator is that I only need restrictions on the conditional density

of uit to establish its consistency and asymptotic normality, making it more robust to outliers

and heavy-tailed distributions. The robustness of the proposed estimator against heavy-tailed

distributions is examined through Monte Carlo simulations in Section 4.2.

3 Asymptotic Results

Suppose that we have a panel of observations {(Yit, Xit), i = 1, . . . , N, t = 1, . . . , T} generated

from (1) and (3), where the realized values of the individual and time e↵ects are ⇤0(⌧) =

[�01(⌧), . . . ,�0N (⌧)]0 and F0 = [f01, . . . , f0T ]0. In the section, following the literature on nonlinear

panel data models, I adopt a fixed e↵ects approach by treating ⇤0(⌧) and F0 as fixed (nuisance)

parameters. Thus, given ⇤0(⌧) and F0, my model can be written as

Yit = �0(⌧)
0Xit + �0i(⌧)

0f0t + uit, Quit [⌧ |Xit] = ⌧, and Xit = �if0t + eit.

Alternatively, all the assumptions and asymptotic results in this section can be understood as

being conditional on ⇤(⌧) = ⇤0(⌧) and F = F0. Moreover, to simplify the notations, I suppress

the dependence of �0i(⌧) on ⌧ throughout this section.

3.1 The Number of Factors

In the previous section I assume that r is known, which is rarely that case in most empirical

applications. Thus, in this subsection I propose a consistent estimator of r.
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Note that

⌃̂X̄ =
1

T

TX

t=1

ētē
0
t + �̄ · 1

T

TX

t=1

f0tē
0
t +

1

T

TX

t=1

ētf
0
0t�̄

0 + �̄⌃̂f0�̄
0,

where ⌃̂f0 = T�1PT
t=1 f0tf

0
0t, �̄ = N�1PN

i=1 �i and ēt = N�1PN
i=1 eit. If we assume that

{eit, i = 1, . . . , N} is weakly dependent for each t, the first three terms on the right-hand side of

the above equation can be shown to be oP (1). Moreover, if both �̄ and ⌃̂f0 have full rank, then

⌃̂X̄ converges in probability to a matrix with rank r. This observation motivates the following

estimator of r.

Let ⇢̂1 � ⇢̂2 · · · � ⇢̂p be the eigenvalues of ⌃̂X̄ , and let PNT be a sequence of non-negative

constants. Then the estimator of r is defined as

r̂ =
pX

j=1

1{⇢̂j > PNT }.

In order to prove the consistency of r̂, I impose the following conditions:

Assumption 1 Let M > 0 be a generic bounded constant.

(i) p � r.

(ii) kf0tk  M for all t. There exists ⌃f0 2 Rr⇥r and �0 2 Rp⇥r such that k⌃̂f0 � ⌃f0k =

O(T�1/2), k�̄� �0k = O(N�1/2), and rank(⌃f0) = rank(�0) = r.

(iii) E[eit] = 0 for i, t, and EkN�1/2PN
i=1 eitk2  M for all t.

The conditions that p � r and rank(�0) = r are standard in the literature of CCE estimation to

ensure that the space of the common factors can be approximated by the cross-sectional averages

of the regressors. Condition (ii) implies �0⌃f0�
0
0 has full rank. It is also worth noting that I

only require weak cross-sectional correlations of eit through condition (iii), and the temporal

correlations of eit are left unrestricted.

Then it can be shown that:

Proposition 1 Under Assumption 1, P [r̂ = r] ! 1 as N,T ! 1 if PNT ! 0 and PNT ·
min(

p
N,

p
T ) ! 1.

Given the above result, the number of factors r can be treated as known in the subsequent

analysis regarding the asymptotic properties of �̂(⌧) (see footnote 5 of Bai 2003).

3.2 Consistency

let  0 2 Rp⇥r be the matrix of eigenvectors associated with the r distinct positive eigenvalues

of �0⌃f0�
0
0, and define H0 =  0

0�0, f̃0t = H0f0t, �̃0i = (H0
0)

�1�0i. Note that H0 is a full rank
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matrix6. In addition, define Vit = [X 0
it, f̃

0
0t]

0, let fit(·|x) denote the conditional density of uit

given Xit = x, and let %i,T denote the smallest eigenvalue of T�1PT
t=1 E[fit(0|Xit)VitV

0
it].

To derive the consistency of the estimator, I impose the following conditions in addition to

Assumption 1:

Assumption 2 Let M > 0 be a generic bounded constant and let m � 1 be a positive integer.

(i) The r positive eigenvalues of �0⌃f0�
0
0 are distinct.

(ii) �0(⌧) 2 B, �̃0i 2 A for all i, and A,B are compact.

(iii) There exists % > 0 such that N�1PN
i=1 %i,T > % for all large N and T . f(1)it (c|x) =

@fit(c|x)/@c exists and maxi,t |f(1)it (c|x)| < M uniformly over (c, x).

(iv) For each i, the sequence {(Xit, uit), i = 1, . . . , N} is ↵-mixing with coe�cients ↵i(j) satis-

fying that max1iN ↵i(j)  M · ↵j for some 0 < ↵ < 1.

(v) There exists � > 0 such that EkXitk2m+� < M for all i, t.

(vi) As N,T ! 1, h ! 0 and N/Tm ! 0.

Before presenting the consistency result, I briefly comment on the conditions in Assumption

2.

Condition (i) allows the use of perturbation theory for the eigenvectors of �0⌃f0�
0
0, which is

important for the result that f̂t converges to H0f0t. Similar condition has been imposed in the

study of PCA estimators for approximate factor models (see Assumption G of Bai 2003).

Condition (ii) requires the parameter spaces to be compact. The compactness of B is needed

because the smoothed check function is no longer convex in (�,�i) given (Xit, ft), and the

compactness of A helps to bound the impact of the estimation errors of f̂t on the object function.

Condition (iii) is similar to the standard identification condition in quantile regressions. The

main di↵erence here is that I have to take into account the common factors. Note that it

allows %i,T , the smallest eigenvalue of T�1PT
t=1 E[fit(0|Xit)VitV

0
it], to be 0 for some i as long as

N�1PN
i=1 %i,T is bounded below by a positive constant. But it will fail if Xi = [Xi1, . . . , XiT ]0

and F0 = [f01, . . . , f0t]0 span the same space for all i, e.g., eit = 0 for all i, t.

Condition (iv) is also standard in the literature (see Assumption D.1 of Kato et al. 2012).

The strong mixing condition is used to derive moments bounds in order to apply law of large

numbers and central limit theorems. It is commonly employed in nonlinear panel data models

because the mixing property is nicely preserved by nonlinear transformations. However, I don’t

assume stationarity because for the factor loadings to be quantile dependent, uit should be

allowed to depend on the factors. Therefore, conditional on f0t, it become necessary to allow

the distribution of uit to change across t. Moreover, conditional on f0t, the mean of Xit is given

by �if0t, thus the distribution of Xit should also be time dependent.

6see the proof of Lemma 1.
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Condition (v) and (vi) reflect a trade-o↵ between the moments of Xit and the required

relative size of T compare to N . The existence of higher moments of Xit allows for less restrictive

conditions on the size of T . In particular, if m = 1 and EkXitk2+� < M , we need N/T ! 0 — a

very strong condition that is hard to satisfy in most empirical applications. However, if m = 2

and EkXitk4+� < M , only N/T 2 ! 0 is needed. Moreover, if it is assumed that kXitk  M

for all i, t almost surely, condition (vi) can be relaxed to logN/
p
T ! 0 (see Proposition 3.1 of

Galvao and Kato 2016).

Besides the above conditions imposed in Assumption 2, it is worth mentioning that the

cross-sectional dependence of (Xit, uit) is not explicitly restricted. While the cross-sectional

dependence of Xit is implicitly controlled by Assumption 1(iii), no such restriction is needed

for uit. The intuition is that in the large-T asymptotic framework, given {f0t}, �0(⌧) can be

consistently estimated from observations of any individual i. Thus, for consistency I only need

weak dependence of uit on the time dimension, and the weak cross-sectional dependence of Xit

is only needed to ensure that the space of {f0t} can be well approximated by {f̂t}.

Last but not least, note that unlike Ando and Bai (2020), I don’t impose any moment restric-

tions on uit, making my estimation procedure robust to outliers and heavy-tailed distributions.

Moreover, compared with the procedures that estimate the factor and factor loadings jointly

(such as Chen et al. 2019), I don’t need any rank condition on the factor loading matrix, which

means that some of the factor loadings in model (1) can be 0. In other words, there can be some

factors that a↵ect Xit but not Yit.

The following theorem establishes the consistency of �̂(⌧) for any given ⌧ 2 (0, 1).

Theorem 1 Under Assumptions 1 and 2, �̂(⌧) is weakly consistent, i.e., k�̂(⌧)��0(⌧)k = oP (1)

for any ⌧ 2 (0, 1).

3.3 Asymptotic Distribution

Let fit(·) be the density function of uit, fit(·|xit) be the conditional density of uit given Xit = xit,

and fi,ts(·, ·|xit, xis) be the joint density of (uit, uis) given (Xit, Xis) = (xit, xis). Moreover, let

f(j)it (c) = @jfit(c)/@cj , f
(j)
it (c|xit) = @jfit(c|xit)/@cj , f(j,k)i,ts (c1, c2|xit, xis) = @j+kfit(c|xit)/@cj1@ck2.

In particular, let f(0)it (c) = fit(c) and f(0)it (c|xit) = fit(c|xit).

In addition, define

⌅i|{z}
p⇥r

=
1

T

TX

t=1

E[fit(0|Xit)Xit]f
0
0t, ⌦i|{z}

r⇥r

=
1

T

TX

t=1

fit(0)f0tf
0
0t, �i|{z}

p⇥r

= ⌅i⌦
�1
i ,

11



Zit|{z}
p⇥1

= Xit � ⌅i⌦
�1
i f0t, �|{z}

r⇥r

= lim
N,T!1

1

NT

NX

i=1

TX

t=1

E[fit(0|Xit)ZitZ
0
it].

To derive the asymptotic distribution of �̂(⌧), I need the following conditions:

Assumption 3 Let M > 0 a generic bounded constant, and let q � 8 be an even integer.

(i) �0(⌧) is an interior point of B and {�̃01, . . . , �̃0N} are interior points of A.

(ii) {⌦i, i = 1, . . . , N} are all invertible for large T and � is invertible.

(iii) maxi,t kXitk < M almost surely.

(iv) Define XT
i = (Xi1, . . . , XiT ) and uTi = (ui1, . . . , uiT ). {(XT

i , u
T
i ), i = 1, . . . , T} are indepen-

dent across i.

(v) fit(c|xit) is q times continuously di↵erentiable with respect to c and fi,ts(c1, c2|xit, xis) is q

times continuously di↵erentiable with respect to (c1, c2);
���f(j)it (c|xit)

���  M uniformly over (c, xit)

for all j = 0, . . . , q;
���f(j,0)i,ts (c1, c2|xit, xis)

���  M and
���f(0,j)i,ts (c1, c2|xit, xis)

���  M uniformly over

(c1, c2, xit, xis) for all j = 0, . . . , q.

(vi)
R 1
�1 k(u)du = 1,

R 1
�1 k(u)u

jdu = 0 for j = 1, . . . , q � 1 and
R 1
�1 k(u)u

qdu 6= 0.

(vii) N/T ! 2 > 0 as N,T ! 1. h ⇣ T�c and 1/q < c < 1/6.

Remark 4 The conditions of Assumption 3 above are very similar to the assumptions imposed

in Galvao and Kato (2016). Thus, I refer to Galvao and Kato (2016) for the details of these

conditions. The only di↵erence is that Galvao and Kato (2016) requires q � 4 and 1/q < c < 1/3

while I need the stronger conditions that q � 8 and 1/q < c < 1/6. More specifically, due to the

presence of the interactive e↵ects, Lemma B.2 of Galvao and Kato (2016) can not be used to

show that the remaining terms in the expansion of �̂(⌧) � �0(⌧) is oP (T�1). Instead, to bound

the higher order terms, I combine the uniform convergence rates of �̂i and f̂t and the fact that

the third order derivative of the object function is uniformly bounded (up to a positive constant)

by 1/h2 — this is why I need a much larger h and therefore a much smaller c.

Next, define:

At|{z}
p⇥r

=
1

N

NX

i=1

E[fit(0|Xit)Zit]�
0
0i, Bt,k|{z}

r⇥r

=
1

N

NX

i=1

fit(0)�0i�i,k,

Ci,k|{z}
r⇥r

= � 1

T

TX

t=1

E[f(1)it (0|Xit)Zit,k]f0tf
0
0t, Dt,k|{z}

r⇥r

= � 1

N

NX

i=1

E[f(1)it (0|Xit)Zit,k]�0i�
0
0i.

I need to impose some extra conditions to make sure that the asymptotic biases of �̂(⌧) are well

defined.
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Assumption 4 Define:

!
(1)
T,i =

1

T

TX

t=1

E
⇥
fit(0|Xit)Zit

⇤
f 0
0t⌦

�1
i f0t,

!
(2)
T,i =

1

T

TX

t=1

TX

s 6=t

✓
⌧E[fit(0|Xit)Zit]� E

Z 0

1
fi,ts(0, v|Xit, Xis)dv · Zit

�◆
f 0
0t⌦

�1
i f0s,

!
(3)
T,i,k = ⌧(1� ⌧) · 1

T

TX

t=1

f 0
0t⌦

�1
i Ci,k⌦

�1
i f0t,

!
(4)
T,i,k =

1

T

TX

t=1

TX

s 6=t

�
E[1{uit  0, uis  0}]� ⌧2

 
f 0
0t⌦

�1
i Ci,k⌦

�1
i f0s,

and assume that the following limits exist:

b1 = �(⌧ � 0.5) · lim
N,T!1

1

N

NX

i=1

!
(1)
T,i � lim

N,T!1

1

N

NX

i=1

!
(2)
T,i,

b2,k = 0.5 lim
N,T!1

1

N

NX

i=1

!
(3)
T,i,k + 0.5 lim

N,T!1

1

N

NX

i=1

!
(4)
T,i,k,

d1 = � lim
N,T!1

1

NT

NX

i=1

TX

t=1

E[fit(0|Xit)Zit�
0
0i(H0)

�1 0
0eit],

d2,k = 0.5 lim
N,T!1

1

NT

NX

i=1

TX

t=1

Tr
�
E[eite0it] · 0(H

0
0)

�1 (2Bt,k +Dt,k) (H0)
�1 0

0

 
.

The following theorem gives the asymptotic distribution of �̂(⌧).

Theorem 2 Suppose that Assumptions 1 to 4 hold, then as N,T ! 1,

p
NT

h
�̂(⌧)� �0(⌧)

i
d! N (��1(b+ �1d),��1V��1),

where b = b1 + b2, d = d1 + d2, b2 = [b2,1, . . . b2,p]0, d2 = [d2,1, . . . d2,p]0, V = V1 +V2,

V1 = lim
N,T!1

1

NT

NX

i=1

TX

t=1

E[WitW
0
it], V2 = lim

N,T!1

1

NT

NX

i=1

TX

t=1

TX

s 6=t

E[WitW
0
is],

and

Wit = [⌧ � 1{uit  0}]Zit �At(H0)
�1 0

0eit.

Remark 5 In the proof of Theorem 2, I show that �̂(⌧) � �0(⌧) has the following Bahadur
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representation:

�(�̂(⌧)� �0(⌧)) =
1

NT

NX

i=1

TX

t=1

W ⇤
it +

b

T
+

d

N
+ oP (T

�1),

where W ⇤
it = l(1)(uit)Zit � At(H0)�1 0

0eit, and l(1)(u) = ⌧ � K(u/h) + k(u/h)u/h. The first

bias term b/T is caused by the estimation of ⇤0 and the second bias term d/N originates from

the estimation of F0. In nonlinear (probit, logit) panel data models with interactive e↵ects,

Chen et al. (2020) is the first to establish a similar Bahadur representation for the fixed-e↵ects

estimator. Similar to my result, the biases of their estimator, which are generally non-zero

except for some special cases, arise from the estimation of the fixed e↵ects. This is in contrast

to linear panel data models with interactive e↵ects, where the fixed-e↵ects estimator of the slope

parameter has a similar Bahadur representation (see Theorem 3 of Bai 2009), but the bias term

b/T is due to cross-sectional correlation and heteroskedasticity and the bias term d/T is caused

by serial correlation and heteroskedasticity.

3.3.1 Some Special Cases

(a) Observed factors

First, in some applications, the common factors are observed (e.g., money suppy). In this case,

we don’t need to estimate F0 from the first step. As a consequence, the asymptotic distribution

of �̂(⌧) will not be a↵ected by the estimation errors of the factors. In particular, it can be shown

that d1 = d2 = 0 and that W ⇤
it = [⌧ � 1{uit  0}]Zit. Thus,

p
NT

h
�̂(⌧)� �0(⌧)

i
d! N (��1b,��1V��1)

where

V = ⌧(1� ⌧) · lim
N,T!1

1

NT

NX

i=1

TX

t=1

E[ZitZ
0
it]+

lim
N,T!1

1

NT

NX

i=1

TX

t=1

TX

s 6=t

E
⇥�
⌧2 � Fit(0|Xit, Xis)� Fis(0|Xit, Xis) + Fi,ts(0, 0|Xit, Xis)

�
ZitZ

0
is

⇤
,

and Fit(0|Xit, Xis) = E[1{uit  0}|Xit, Xis], Fi,ts(0, 0|Xit, Xis) = E[1{uit  0, uis  0}|Xit, Xis].

(b) Only individual e↵ects

If we further assume that r = 1, f0t = 1 for all t, and {(Xit, uit), t = 1, . . . , T} is stationary for
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each i, then ⌅i = E[fi(0|Xit)Xit], ⌦i = fi(0), Zit = Xit � E[fi(0|Xit)Xit]/fi(0),

!
(1)
T,i = E

⇥
fit(0|Xit)Zit

⇤
/fi(0) = 0,

!
(2)
T,i =

X

1|k|T�1

✓
1� |k|

T

◆✓
⌧E[fi(0|Xit)Zit]� E

Z 0

1
fi,t,t+k(0, v|Xit, Xi,t+k)dv · Zit

�◆
/fi(0),

!
(3)
T,i = �⌧(1� ⌧)

fi(0)2
E[f(1)i (0|Xit)Zit],

!
(4)
T,i = �

X

1|k|T�1

✓
1� |k|

T

◆�
E[1{uit  0, ui,t+k  0}]� ⌧2

 
· E[f(1)i (0|Xit)Zit]/fi(0)

2.

Therefore, the asymptotic distribution of �̂(⌧)� �0(⌧) is identical to the one given by Theorem

3.2 of Galvao and Kato (2016).

(c) No time-series dependences

When there are no time-series dependences, i.e., {(Xit, uit), t = 1, . . . , T} is independent across

t for each i, it is easy to see that !(2)
T,i = 0, !(4)

T,i,k = 0, and V2 = 0. Thus, we have

b1 = �(⌧ � 0.5) · lim
N,T!1

1

NT

NX

i=1

TX

t=1

E
⇥
fit(0|Xit)Zit

⇤
f 0
0t⌦

�1
i f0t,

b2,k =
⌧(1� ⌧)

2
· lim
N,T!1

1

NT

NX

i=1

TX

t=1

f 0
0t⌦

�1
i Ci,k⌦

�1
i f0t,

and

V = lim
N,T!1

1

NT

NX

i=1

TX

t=1

E[WitW
0
it] = ⌧(1� ⌧) · lim

N,T!1

1

NT

NX

i=1

TX

t=1

E[ZitZ
0
it]

+ lim
N,T!1

1

NT

NX

i=1

TX

t=1

At(H0)
�1 0

0E[eite0it] 0(H
0
0)

�1A0
t.
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3.4 Bias Correction

3.4.1 Analytical Bias Correction

Theorem 2 above provides the basis of analytical bias correction for �̂(⌧). Suppose that �̂, b̂

and d̂ are consistent estimators of �, b, d respectively, and define

�̂abc(⌧) = �̂(⌧)� �̂�1

 
b̂

T
+

d̂

N

!
.

Then it follows easily from Theorem 2 that the bias corrected estimator �̂ABC(⌧) will have an

asymptotic normal distribution that is centered around 0, i.e.,

p
NT

h
�̂abc(⌧)� �0(⌧)

i
d! N (0,��1V��1). (6)

To construct consistent estimators of �, b, d, let {êit} be the OLS residuals of regressing

{Xit} on {f̂t}, define l(u) = (⌧ � K(u/h))u, l(j)(u) = @jl(u)/@uj , ûit = Yit � �̂(⌧)0Xit � �̂0
if̂t,

and

⌅̂i =
1

T

TX

t=1

l(2)(ûit)Xitf̂
0
t , ⌦̂i =

1

T

TX

t=1

l(2)(ûit)f̂tf̂
0
t , �̂i = ⌅̂i⌦̂

�1
i ,

Ẑit = Xit � ⌅̂i⌦̂
�1
i f̂t, �̂ =

1

NT

NX

i=1

TX

t=1

l(2)(ûit)ẐitẐ
0
it,

B̂t,k =
1

N

NX

i=1

l(2)(ûit)�̂i�̂i,k , Ĉi,k =
1

T

TX

t=1

l(3)(ûit)Ẑit,kf̂tf̂
0
t , D̂t,k =

1

N

NX

i=1

l(3)(ûit)Ẑit,k�̂i�̂
0
i.

!̂
(1)
T,i =

1

T

TX

t=1

l(2)(ûit)Ẑit · f̂ 0
t⌦̂

�1
i f̂t, !̂

(3)
T,i,k = ⌧(1� ⌧) · 1

T

TX

t=1

f̂ 0
t⌦̂

�1
i Ĉi,k⌦̂

�1
i f̂t,

!̂
(2)
T,i =

1

T

T�LX

t=1

t+LX

s=t+1

l(2)(ûit)Ẑitl
(1)(ûis) · f̂ 0

t⌦̂
�1
i f̂s +

1

T

TX

t=L+1

t�1X

s=t�L

l(2)(ûit)Ẑitl
(1)(ûis) · f̂ 0

t⌦̂
�1
i f̂s,

!
(4)
T,i,k =

1

T

T�LX

t=1

t+LX

s=t+1

l(1)(ûit)l
(1)(ûis)f̂

0
t⌦̂

�1
i Ĉi,k⌦̂

�1
i f̂s+

1

T

TX

t=L+1

t�1X

s=t�L

l(1)(ûit)l
(1)(ûis)f̂

0
t⌦̂

�1
i Ĉi,k⌦̂

�1
i f̂s,

b̂1 = �(⌧ � 0.5) · 1

N

NX

i=1

!̂
(1)
T,i �

1

N

NX

i=1

!̂
(2)
T,i, b̂2,k = 0.5

1

N

NX

i=1

⇣
!̂
(3)
T,i,k + !̂

(4)
T,i,k

⌘
,

d̂1 = � 1

NT

NX

i=1

TX

t=1

l(2)(ûit)Ẑit�̂
0
i ̂

0êit, d̂2,k = 0.5
1

NT

NX

i=1

TX

t=1

ê0it ̂
⇣
2B̂t,k + D̂t,k

⌘
 ̂0êit.
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Given the above definitions, the estimators for b and d are given by b̂ = b̂1+b̂2 and d̂ = d̂1+d̂2

respectively, where b̂2 = [b̂2,1, . . . , b̂2,p]0 and d̂2 = [d̂2,1, . . . , d̂2,p]0. The following result confirms

the validity of the proposed analytical bias correction.

Theorem 3 Let ⌫ < 1/6 � c be a positive constant where c is defined in Assumption 3(vii).

Then under Assumptions 1 to 4, �̂ = �+ oP (1), b̂ = b+ oP (1), d̂ = d+ oP (1) and therefore (6)

holds if L ! 1 and L/(T 0.5�⌫h3) ! 0 as N,T ! 1.

3.4.2 Jackknife Bias Correction

Following Dhaene and Jochmans (2015), Fernández-Val and Weidner (2016) and Chen et al.

(2020), an alternative method to correct the leading bias of �̂(⌧) is the SPJ.

For a given ⌧ , let �̂(1)
N,T/2(⌧) be the two-step estimator, defined as in (4), using the subsample

i = 1, . . . , N ; t = 1, . . . , T/2, and let �̂
(2)
N,T/2(⌧) be the two-step estimator using the subsample

i = 1, . . . , N ; t = T/2 + 1, . . . , T . Similarly, define �̂
(1)
N/2,T (⌧) as the two-step estimator using

the subsample i = 1, . . . , N/2; t = 1, . . . , T , and �̂
(2)
N/2,T (⌧) as the two-step estimator using the

subsample i = N/2 + 1, . . . , N and t = 1, . . . , T . Then the bias-corrected estimator using the

SPJ is defined as

�̂spj(⌧) = 3�̂(⌧)� 1

2

h
�̂
(1)
N,T/2(⌧) + �̂

(2)
N,T/2(⌧)

i
� 1

2

h
�̂
(1)
N/2,T (⌧) + �̂

(2)
N/2,T (⌧)

i
. (7)

The computation of this estimator is almost as easy as the original two-step estimator �̂(⌧).

The main intuition of the SPJ estimator is that if the underlying distributions of the data

are stable across i and t, the term 0.5(�̂(1)
N,T/2(⌧) + �̂

(2)
N,T/2(⌧)) � �̂(⌧) is a good estimate of

b/T , and the term 0.5(�̂(1)
N/2,T (⌧) + �̂

(2)
N/2,T (⌧)) � �̂(⌧) is a good estimate of d/N . In models

with only individual e↵ects, the asymptotic bias of the fixed-e↵ects estimator is determined

by the distribution of (Xit, uit). Thus, the formal justification of the SPJ only requires the

sequence {(Xit, uit), t = 1, 2, . . .} to be stationary for each i (see Dhaene and Jochmans 2015

and Galvao and Kato 2016). However, in models with interactive e↵ects, the asymptotic biases

are also a↵ected by ⇤0 and F0. Thus, to justify the use of the SPJ, we also need some kind

of of conditions to ensure that the distributions of f1, . . . , fT are stable across t and that the

distributions of �1, . . . ,�N are stable across i. On one hand, such assumptions involve the

unconditional distributions of ⇤ and F ; on the other hand, my asymptotic theory is established

conditional on ⇤0 and F0 (realizations of ⇤ and F ) — this gap makes it di�cult to rigorously

prove the validity of the SPJ estimator. I leave this important but challenging question for

future research, and the finite sample performance of the SPJ estimator is evaluated in the next

section using Monte Carlo simulations.
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3.5 Estimating the Variance

The previous subsection gives a consistent estimator of �. Thus, it remains to construct a

consistent estimator of V. Define

Ât =
1

N

NX

i=1

l(2)(ûit)Ẑit�̂
0
i, Ŵit = l(1)(ûit)Ẑit � Ât ̂

0êit, V̂1 =
1

NT

NX

i=1

TX

t=1

ŴitŴ
0
it,

V̂2 =
1

NT

NX

i=1

T�LX

t=1

t+LX

s=t+1

ŴitŴ
0
is +

1

NT

NX

i=1

TX

t=1+L

t�1X

s=t�L

ŴitŴ
0
is,

and V̂ = V̂1 + V̂2. The following result establishes the consistency of V̂.

Theorem 4 Let L satisfy the condition of Theorem 3. Then under Assumptions 1 to 4, V̂ =

V + oP (1).

3.6 The Choice of Tuning Parameters in Practice

The implementation of the proposed estimation procedure in practice involves choosing the

kernel function k(·), the bandwidth parameter h, and the truncation parameter L in the HAC-

type estimators of the biases and variance.

First, Assumption 3 requires k(·) to be (at least) an eighth-order kernel function. Thus, I

recommend using the following kernel function (see Muller 1984):

k(z) = 1{|z|  1} · 3465
8192

�
7� 105z2 + 462z4 � 858z6 + 715z8 � 221z10

�
.

Second, if one chooses the eighth-order kernel function above, Assumption 3 requires that

h ⇣ T�c and 1/8 < c < 1/6. Thus, when N is about the size of T in practice, a possible choice

is h = 1.5(NT )�1/14, which is the one I use in all the simulations in the next section. Note that

even when there are only individual e↵ects, the optimal bandwidth choice in SQR still remains

an open question (see Galvao and Kato 2016). Thus, I would like to leave the important but

challenging question for future research.

Finally, the choice of L in dynamic models is a more delicate issue, especially in the current

context. As pointed out by Galvao and Kato (2016), the standard theory for the HAC estimator

of covariance matrix in models with smooth object functions does not apply to the quantile

panel data models. Even though Theorem 3 and Theorem 4 require that L goes to infinity as

N,T get large, the simulation results in the next section support the proposal of Galvao and

Kato (2016) and Hahn and Kuersteiner (2011) to use L = 1 in practice, especially when T is not

large. Thus, following the literature and based on my simulation results (see the next section),
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I recommend choosing L = 1 in practice as a rule of thumb.

4 Finite Sample Performance

To evaluate the finite sample performance of the proposed estimators, the following data gener-

ating process (DGP) is employed:

Yit = �1Xit,1 + �2Xit,2 + �3Xit,3 + ↵i + �ift +Xit,1 · ✏it,

where [�1,�2,�3] = [1, 1, 1], ↵i ⇠ i.i.d N (0, 1), �i ⇠ i.i.d N (0, 1), ft ⇠ i.i.d N (0, 1), Xit,1 ⇠
i.i.d �2(1) + 1, and Xit,2 = ✓2i + ⌘2ift + e2,it, Xit,3 = ✓3i + ⌘3ift + e3,it, where ✓2i, ✓3i, ⌘2i, ⌘3i ⇠
i.i.d N (1, 1). Since the asymptotic results are conditional on the fixed e↵ects, onlyXit,1, e2,it, e3,it, ✏it

vary across repetitions. The distributions of e2,it, e3,it, ✏it are specified in each subsection below.

Throughout this section, the kernel function k(·) and the bandwidth parameter h are chosen as

mentioned in Section 3.6.

In this DGP, there are two common factors: 1 and ft and the factor loading is given by

�i = [↵i, �i]0. Section 3.1 below examines the estimation of r, while Section 3.2 and Section 3.3

focus on the estimation of the coe�cient of Xit,1, which varies across di↵erent quantiles.

4.1 The Number of Factors

The performance of the estimator for the number of factor depends crucially on the properties

of ej,it. Following Bai and Ng (2002), I consider the following DGP for ej,it:

ej,it = �ej,it�1 + ⌫j,it + ⇣ ·
i+mX

l=i�m,l 6=i

⌫j,lt

where ⌫j,it ⇠ i.i.d N (0, 1) for j = 2, 3. The parameter � controls the serial dependence and the

parameters ⇣,m determine the cross-sectional dependence. The following models are considered

in the simulations:

Q1: i.i.d errors: � = ⇣ = 0.

Q2: serial dependence: � = 0.2, ⇣ = 0.

Q3: cross-sectional dependence: � = 0, ⇣ = 0.2, m = 5.

Q4: serial and cross-sectional dependence: � = 0.2, ⇣ = 0.2, m = 5.

Recall that the estimator for the number of factors is defined as the number of eigenvalues

of ⌃̂X̄ that is larger than PNT . Note that Proposition 1 requires that PNT = (min{N,T})�c for

some 0 < c < 1/2. Thus, in the simulations I choose c = 1/3. Tabel 1 reports the frequencies of

choosing the right number of factors (denoted as P̂ [r̂ = 2]) and the mean number of estimated
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factors (denoted as mean[r̂]) from 1000 repetitions for N,T 2 {20, 50, 100, 200}. It can be seen

that the proposed method choose the right number of factors in all models with very high

precision as long as min[N,T ] � 50.

4.2 Static Models

In this subsection, e2,it, e3,it are generated as i.i.d standard normal random variables, and I

consider two di↵erent specifications for the distribution of ✏it:

M1: ✏it ⇠ i.i.d N (0, 1).

M2: ✏it ⇠ i.i.d T (3), where T (3) denotes the student’s t distribution with 3 degrees of freedom.

The main object of interest is the quantile coe�cients of X1,it at ⌧ = 0.25, 0.9, and the

following three estimators are considered:

�̂(⌧): the two-step estimator using SQR.

�̂abc(⌧): the bias-corrected two-step estimator using analytical bias correction.

�̂spj(⌧): the bias-corrected two-step estimator using the SPJ.

The kernel function and the bandwidth parameter are chosen as mentioned in Section 3.6.

Given the excellent performance of the estimated number of factors in the previous subsection

I treat the true number of factors as known. The simulation results from 500 repetitions are

reported in Table 2, where column 3 to column 5 report the biases the estimators, column 6 to

column 8 report the standard deviations, and the last three columns report the coverage rates

of the confidence intervals with 95% nominal levels. Note that the DGP in this subsection has

no serial correlations. Thus, when constructing the analytical-bias-correction estimators and

the confidence intervals, the biases are estiamted by setting !̂
(2)
T,i = !̂

(4)
T,i = 0, and the covariance

matrices are estimated using the formula given in Section 3.5 with V̂2 = 0.

There are four main takeaways from the simulation results. First, the biases and the standard

deviations of the estimators are larger when the distributions of the idiosyncratic errors have

heavier tails (normal v.s. student’s t distibutions) and when the quantile of interest is further

away from the median (⌧ = 0.9 v.s. ⌧ = 0.25). This is true for both the original two-step

estimators and the bias-corrected estimators.

Second, it is clear from the results that the biases of the estimators decrease either as N

increases while T is fixed, or as T increases while N is fixed. This confirms the existence of

a leading bias term whose size depends on both N and T , as I have established in Theorem

2. Such results are in contrast with the findings in quantile panel modes with only individual

e↵ects, where the leading bias term is approximately of order T�1 and thus the biases decrease

only when T increases.

Third, for the analytical bias correction to have good performance, the number of time series
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observations (T ) needs to be at least 100. On the other hand, the SPJ perform much better

when T = 50 because there is no need to estimate those complex objects (such as the inverse of

the density functions) when constructing the estimators of the biases.

Last but not least, it can be seen that both analytical and the SPJ bias corrections can

significantly reduce the biases of the two-step estimator, as predicted by my theoretical results.

However, the reduction of biases comes at the cost of inflating the standard deviations — this

is especially noticeable for the analytical bias correction when T = 50. As a consequence, the

coverage rates of the confidence intervals based on the bias-corrected estimators are in general

lower than those based on the original two-step estimators. Therefore, di↵erent from the usual

suggestion of applying bias correction technique to the fixed-e↵ects estimator of nonlinear panel

data models (including quantile panel data models) to improve finite sample performance, for

the models considered in this paper the important lesson we can learn is that bias correction

can be harmful and it is actually better to use the original estimator (without bias-correction)

to achieve better finite sample performance.

4.3 Dynamic Models

In this subsection, I consider dynamic models where ✏it are generated as autoregressive processes:

✏it = ⇢ · ✏i,t�1 +
p
1� ⇢2 · ⌫it, where ⌫it ⇠ i.i.d N (0, 1)

As in the previous subsection, e2,it and e3,it are i.i.d standard normal variables. Now, !̂(2)
T,i, !̂

(4)
T,i

and V̂2 are estimated by the formulas given in Section 3.4 and 3.5. As discussed in Section 3.6, I

focus on the choice of L = 1, 2. The results with weak serial correlation (⇢ = 0.2) and moderate

serial correlation (⇢ = 0.5) are reported in Table 3 and Table 4 respectively.

In general, except for a few cases where the standard deviation of �̂abc is extremely large,

which usually happen when T = 50, the results are very similar to those reported in Table 2

for the static cases. In particular, changing the truncation parameter L from 1 to 2 does not

significantly improve the finite sample performance of the estimators. This is also true if I allow

L to increase with sample sizes (more simulation results are available upon request). Thus, as

mentioned in Section 3.6, L = 1 is recommended as a rule of thumb for practitioners.

5 Conclusions

Estimating the coe�cients of the regressors and the interactive fixed e↵ects jointly in a quantile

panel model is not only computationally di�cult but also theoretically challenging to derive the

asymptotic properties of the estimators, mainly due to the fact that the object function is non-

smooth and non-convex. In this paper, I propose a two-step estimator that is easy to implement
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in practice. Because I use smoothed quantile regressions in the second step, the derivation of the

asymptotic distribution and the asymptotic biases of the estimator is possible. The asymptotic

distribution provides a formal justification for the use of analytical bias correction and a heuristic

argument for the use of the SPJ to correct the asymptotic biases, and the simulation results

confirm that both bias-correction methods can e↵ectively reduce the biases with moderate sample

sizes. However, it should be cautioned that the bias correction methods inevitably inflate the

standard deviations of the estimators, and result in confidence intervals with lower coverage rate

than the estimators without bias correction. Finally, even though I have provided conditions

with regard to the sizes of the bandwidth parameter in SQR and the truncation parameter in

the HAC-type estimators of the bias and variance, there remains the important but challenging

question of how to choose these parameters optimally in a data-dependent manner. Such an

interesting question is left for future research.
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Table 1: The Number of Factors.

(N,T ) Q1 Q2 Q3 Q4

P̂ [r̂ = 2] mean[r̂] P̂ [r̂ = 2] mean[r̂] P̂ [r̂ = 2] mean[r̂] P̂ [r̂ = 2] mean[r̂]

(20,20) 0.997 1.997 0.997 1.997 0.996 1.996 0.997 1.997

(20,50) 1.000 2.000 1.000 2.000 1.000 2.000 1.000 2.000

(20,100) 1.000 2.000 1.000 2.000 1.000 2.000 1.000 2.000

(20,200) 1.000 2.000 1.000 2.000 1.000 2.000 1.000 2.000

(50,20) 0.002 1.002 0.003 1.003 0.064 1.064 0.075 1.075

(50,50) 1.000 2.000 1.000 2.000 1.000 2.000 0.999 1.999

(50,100) 1.000 2.000 1.000 2.000 1.000 2.000 1.000 2.000

(50,200) 1.000 2.000 1.000 2.000 1.000 2.000 1.000 2.000

(100,20) 1.000 2.000 1.000 2.000 1.000 2.000 1.000 2.000

(100,50) 1.000 2.000 1.000 2.000 1.000 2.000 1.000 2.000

(100,100) 1.000 2.000 1.000 2.000 1.000 2.000 1.000 2.000

(100,200) 1.000 2.000 1.000 2.000 1.000 2.000 1.000 2.000

(200,20) 1.000 2.000 1.000 2.000 1.000 2.000 1.000 2.000

(200,50) 1.000 2.000 1.000 2.000 1.000 2.000 1.000 2.000

(200,100) 1.000 2.000 1.000 2.000 1.000 2.000 1.000 2.000

(200,200) 1.000 2.000 1.000 2.000 1.000 2.000 1.000 2.000

Note: 1000 repetitions. DGP: ft ⇠ i.i.d N (0, 1), Xit,1 ⇠ i.i.d �2(1)+1, and Xit,2 = ✓2i+⌘2ift+e2,it,

Xit,3 = ✓3i + ⌘3ift + e3,it, where ej,it = �ej,it�1 + ⌫j,it + ⇣ ·
Pi+m

l=i�m,l 6=i ⌫j,lt, ✓2i, ✓3i, ⌘2i, ⌘3i ⇠
i.i.d N (1, 1), ⌫2,it, ⌫3,it ⇠ i.i.d N (0, 1). Q1: � = ⇣ = 0; Q2: � = 0.2, ⇣ = 0; Q3: � = 0, ⇣ = 0.2,

m = 5; Q4: � = 0.2, ⇣ = 0.2, m = 5. The above table reports the frequencies of choosing the

right number of factors (denoted as P̂ [r̂ = r]) and the mean number of estimated factors (denoted as

mean[r̂]).
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Table 2: Static Models.

M1 Bias Std Coverage Rate (95%)

⌧ (N,T ) �̂(⌧) �̂abc(⌧) �̂spj(⌧) �̂(⌧) �̂abc(⌧) �̂spj(⌧) �̂(⌧) �̂abc(⌧) �̂spj(⌧)

0.25 (50,50) 0.024 0.004 0.005 0.086 0.484 0.111 0.908 0.596 0.852

(50,100) 0.016 0.005 -0.011 0.062 0.081 0.076 0.910 0.860 0.854

(50,200) 0.007 -0.002 -0.001 0.043 0.049 0.050 0.934 0.910 0.906

(100,50) 0.019 -0.014 0.001 0.062 0.413 0.074 0.908 0.582 0.898

(100,100) 0.009 0.005 0.000 0.043 0.063 0.051 0.924 0.814 0.890

(100,200) 0.003 0.001 -0.001 0.031 0.035 0.034 0.946 0.926 0.920

(200,50) 0.016 0.017 -0.001 0.043 0.484 0.050 0.924 0.484 0.906

(200,100) 0.007 0.005 -0.001 0.030 0.050 0.035 0.926 0.820 0.908

(200,200) 0.004 0.002 0.001 0.022 0.024 0.024 0.946 0.920 0.916

0.9 (50,50) -0.051 0.004 0.017 0.110 0.812 0.151 0.874 0.676 0.812

(50,100) -0.030 -0.022 0.001 0.076 0.097 0.100 0.874 0.808 0.798

(50,200) -0.014 -0.010 -0.001 0.054 0.061 0.067 0.914 0.874 0.834

(100,50) -0.049 -0.039 0.019 0.074 0.218 0.091 0.864 0.664 0.860

(100,100) -0.026 -0.021 0.003 0.055 0.066 0.065 0.884 0.834 0.850

(100,200) -0.010 -0.003 0.004 0.038 0.043 0.045 0.898 0.868 0.846

(200,50) -0.048 -0.046 -0.013 0.057 0.128 0.069 0.796 0.640 0.866

(200,100) -0.021 -0.017 0.004 0.037 0.045 0.044 0.864 0.814 0.862

(200,200) -0.012 -0.007 0.001 0.026 0.028 0.030 0.884 0.882 0.880

M2 Bias Std Coverage Rate (95%)

⌧ (N,T ) �̂(⌧) �̂abc(⌧) �̂spj(⌧) �̂(⌧) �̂abc(⌧) �̂spj(⌧) �̂(⌧) �̂abc(⌧) �̂spj(⌧)

0.25 (50,50) 0.033 0.077 0.004 0.110 1.502 0.140 0.874 0.604 0.814

(50,100) 0.020 0.010 0.000 0.075 0.095 0.090 0.884 0.844 0.842

(50,200) 0.010 -0.000 -0.000 0.053 0.062 0.061 0.928 0.902 0.898

(100,50) 0.028 0.022 -0.002 0.077 0.341 0.092 0.896 0.606 0.882

(100,100) 0.012 0.005 -0.004 0.053 0.078 0.061 0.934 0.818 0.902

(100,200) 0.005 0.001 -0.003 0.036 0.042 0.040 0.950 0.902 0.928

(200,50) 0.027 0.023 -0.001 0.055 0.214 0.064 0.904 0.522 0.904

(200,100) 0.010 0.007 -0.004 0.037 0.056 0.042 0.924 0.788 0.902

(200,200) 0.007 0.002 -0.000 0.026 0.029 0.029 0.946 0.916 0.918

0.9 (50,50) -0.113 -0.259 -0.006 0.180 3.739 0.250 0.806 0.668 0.782

(50,100) -0.061 -0.070 -0.004 0.122 0.183 0.151 0.806 0.750 0.782

(50,200) -0.028 -0.027 0.001 0.097 0.111 0.117 0.814 0.784 0.760

(100,50) -0.115 -0.113 0.001 0.121 0.266 0.161 0.778 0.656 0.812

(100,100) -0.055 -0.050 -0.000 0.095 0.109 0.116 0.768 0.742 0.778

(100,200) -0.029 -0.021 0.001 0.066 0.076 0.078 0.808 0.786 0.782

(200,50) -0.109 -0.111 0.012 0.094 0.182 0.117 0.688 0.594 0.810

(200,100) -0.055 -0.051 0.001 0.067 0.080 0.079 0.726 0.688 0.772

(200,200) -0.027 -0.021 0.001 0.044 0.048 0.050 0.786 0.782 0.802

Note: 500 repetitions. DGP: Yit = �1Xit,1+�2Xit,2+�3Xit,3+↵i+�ift+Xit,1 · ✏it, where [�1,�2,�3] =

[1, 1, 1], ↵i ⇠ i.i.d N (0, 1), �i ⇠ i.i.d N (0, 1), ft ⇠ i.i.d N (0, 1), Xit,1 ⇠ i.i.d �2(1) + 1, and Xit,2 =

✓2i+⌘2ift+ e2,it, Xit,3 = ✓3i+⌘3ift+ e3,it, where ✓2i, ✓3i, ⌘2i, ⌘3i ⇠ i.i.d N (1, 1), e2,it, e3,it ⇠ i.i.d N (0, 1).

M1: ✏it ⇠ i.i.d N (0, 1); M2: ✏it ⇠ i.i.d T (3).
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Table 3: Dynamic Models with ⇢ = 0.2.

L = 1 Bias Std Coverage Rate (95%)

⌧ (N,T ) �̂(⌧) �̂abc(⌧) �̂spj(⌧) �̂(⌧) �̂abc(⌧) �̂spj(⌧) �̂(⌧) �̂abc(⌧) �̂spj(⌧)

0.25 (50,50) 0.024 0.004 0.000 0.083 1.244 0.105 0.914 0.594 0.878

(50,100) 0.016 0.003 0.001 0.061 0.088 0.073 0.904 0.832 0.864

(50,200) 0.009 0.001 -0.000 0.046 0.055 0.053 0.916 0.866 0.890

(100,50) 0.018 0.008 -0.005 0.061 0.655 0.073 0.940 0.548 0.916

(100,100) 0.012 0.008 0.002 0.041 0.073 0.049 0.948 0.822 0.918

(100,200) 0.003 -0.001 -0.002 0.029 0.034 0.033 0.948 0.914 0.918

(200,50) 0.018 0.031 -0.003 0.044 0.236 0.052 0.922 0.564 0.902

(200,100) 0.010 0.004 0.000 0.030 0.044 0.034 0.944 0.830 0.904

(200,200) 0.004 0.001 -0.001 0.021 0.024 0.023 0.940 0.912 0.918

0.9 (50,50) -0.060 -14.137 0.013 0.113 315.845 0.153 0.840 0.604 0.794

(50,100) -0.030 -0.026 0.003 0.075 0.106 0.097 0.858 0.770 0.794

(50,200) -0.009 -0.004 0.008 0.051 0.062 0.062 0.926 0.874 0.880

(100,50) -0.050 -0.056 0.015 0.081 0.238 0.105 0.838 0.626 0.806

(100,100) -0.026 -0.020 0.002 0.056 0.074 0.068 0.842 0.778 0.830

(100,200) -0.013 -0.006 0.001 0.038 0.044 0.043 0.906 0.876 0.884

(200,50) 0.049 -0.046 0.020 0.055 0.117 0.069 0.820 0.648 0.840

(200,100) -0.027 -0.021 0.027 0.041 0.052 0.048 0.794 0.746 0.836

(200,200) -0.013 -0.007 0.001 0.026 0.029 0.030 0.880 0.890 0.870

L = 2 Bias Std Coverage Rate (95%)

⌧ (N,T ) �̂(⌧) �̂abc(⌧) �̂spj(⌧) �̂(⌧) �̂abc(⌧) �̂spj(⌧) �̂(⌧) �̂abc(⌧) �̂spj(⌧)

0.25 (50,50) 0.024 -0.011 0.000 0.083 1.037 0.105 0.914 0.614 0.878

(50,100) 0.016 0.003 0.001 0.061 0.088 0.073 0.902 0.838 0.862

(50,200) 0.009 0.001 -0.000 0.046 0.055 0.053 0.918 0.862 0.890

(100,50) 0.018 0.005 -0.005 0.061 0.600 0.073 0.940 0.554 0.918

(100,100) 0.012 0.009 0.002 0.041 0.074 0.049 0.948 0.814 0.918

(100,200) 0.003 -0.001 -0.002 0.029 0.034 0.033 0.950 0.916 0.920

(200,50) 0.018 0.034 -0.003 0.044 0.262 0.052 0.926 0.560 0.898

(200,100) 0.010 0.004 0.000 0.030 0.045 0.034 0.942 0.836 0.904

(200,200) 0.004 0.001 -0.001 0.021 0.024 0.023 0.942 0.914 0.918

0.9 (50,50) -0.060 -12.934 0.013 0.113 288.685 0.153 0.838 0.604 0.790

(50,100) -0.003 -0.026 0.003 0.075 0.106 0.097 0.858 0.766 0.800

(50,200) -0.009 -0.004 0.008 0.051 0.062 0.062 0.930 0.874 0.882

(100,50) -0.050 -0.057 0.015 0.081 0.243 0.105 0.840 0.614 0.802

(100,100) -0.026 -0.021 0.002 0.056 0.074 0.068 0.842 0.778 0.830

(100,200) -0.013 -0.006 0.001 0.038 0.044 0.043 0.908 0.880 0.886

(200,50) -0.049 -0.045 0.020 0.055 0.117 0.069 0.820 0.658 0.838

(200,100) -0.027 -0.021 0.003 0.041 0.052 0.048 0.796 0.750 0.836

(200,200) -0.013 -0.007 0.001 0.026 0.029 0.030 0.880 0.890 0.868

Note: 500 repetitions. DGP: Yit = �1Xit,1 + �2Xit,2 + �3Xit,3 + ↵i + �ift +Xit,1 · ✏it, where [�1,�2,�3] =

[1, 1, 1], ↵i ⇠ i.i.d N (0, 1), �i ⇠ i.i.d N (0, 1), ft ⇠ i.i.d N (0, 1), Xit,1 ⇠ i.i.d �2(1) + 1, and Xit,2 = ✓2i +

⌘2ift + e2,it, Xit,3 = ✓3i + ⌘3ift + e3,it, where ✓2i, ✓3i, ⌘2i, ⌘3i ⇠ i.i.d N (1, 1), e2,it, e3,it ⇠ i.i.d N (0, 1).

✏it = ⇢ · ✏i,t�1 +
p

1� ⇢2 · ⌫it, where ⌫it ⇠ i.i.d N (0, 1) and ⇢ = 0.2.
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Table 4: Dynamic Models with ⇢ = 0.5.

L = 1 Bias Std Coverage Rate (95%)

⌧ (N,T ) �̂(⌧) �̂abc(⌧) �̂spj(⌧) �̂(⌧) �̂abc(⌧) �̂spj(⌧) �̂(⌧) �̂abc(⌧) �̂spj(⌧)

0.25 (50,50) 0.026 -0.010 -0.007 0.087 1.141 0.112 0.904 0.544 0.854

(50,100) 0.021 0.009 0.002 0.063 0.088 0.073 0.924 0.844 0.886

(50,200) 0.012 0.005 0.004 0.047 0.056 0.052 0.922 0.880 0.898

(100,50) 0.024 0.005 -0.001 0.062 0.419 0.076 0.930 0.542 0.894

(100,100) 0.017 0.009 0.004 0.042 0.077 0.050 0.940 0.776 0.916

(100,200) 0.005 0.001 -0.001 0.031 0.039 0.036 0.948 0.914 0.916

(200,50) 0.024 0.013 -0.002 0.045 0.290 0.053 0.908 0.508 0.894

(200,100) 0.012 0.006 -0.000 0.032 0.050 0.037 0.932 0.794 0.902

(200,200) 0.006 0.003 0.000 0.023 0.027 0.025 0.934 0.880 0.914

0.9 (50,50) -0.076 -0.072 0.013 0.110 0.473 0.154 0.824 0.582 0.798

(50,100) -0.040 -0.033 -0.001 0.074 0.099 0.092 0.848 0.788 0.810

(50,200) -0.012 -0.006 0.005 0.052 0.064 0.062 0.916 0.882 0.886

(100,50) -0.063 -0.050 0.015 0.082 0.414 0.107 0.814 0.612 0.814

(100,100) -0.035 -0.030 0.000 0.058 0.083 0.071 0.822 0.774 0.808

(100,200) -0.018 -0.009 0.002 0.039 0.044 0.045 0.876 0.868 0.870

(200,50) -0.065 -0.065 0.011 0.055 0.151 0.071 0.728 0.584 0.836

(200,100) -0.032 -0.024 0.004 0.040 0.048 0.049 0.786 0.792 0.840

(200,200) -0.015 -0.008 0.002 0.028 0.031 0.031 0.854 0.852 0.856

L = 2 Bias Std Coverage Rate (95%)

⌧ (N,T ) �̂(⌧) �̂abc(⌧) �̂spj(⌧) �̂(⌧) �̂abc(⌧) �̂spj(⌧) �̂(⌧) �̂abc(⌧) �̂spj(⌧)

0.25 (50,50) 0.026 -0.001 -0.007 0.087 1.120 0.112 0.906 0.522 0.862

(50,100) 0.021 0.008 0.002 0.063 0.091 0.073 0.930 0.842 0.890

(50,200) 0.012 0.005 0.004 0.047 0.057 0.052 0.926 0.886 0.902

(100,50) 0.024 0.006 -0.001 0.062 0.411 0.076 0.938 0.520 0.898

(100,100) 0.017 0.008 0.004 0.042 0.083 0.050 0.940 0.766 0.918

(100,200) 0.005 0.001 -0.001 0.031 0.040 0.036 0.952 0.914 0.916

(200,50) 0.024 0.010 -0.002 0.045 0.312 0.053 0.914 0.508 0.898

(200,100) 0.012 0.005 -0.000 0.032 0.052 0.037 0.934 0.776 0.912

(200,200) 0.006 0.003 0.000 0.023 0.027 0.025 0.936 0.876 0.916

0.9 (50,50) -0.076 -0.073 0.013 0.110 0.474 0.154 0.828 0.574 0.804

(50,100) -0.040 -0.033 -0.001 0.074 0.101 0.092 0.850 0.780 0.814

(50,200) -0.012 -0.005 0.005 0.052 0.064 0.062 0.877 0.916 0.901

(100,50) -0.063 -0.049 0.015 0.082 0.461 0.107 0.818 0.616 0.808

(100,100) -0.035 -0.030 0.000 0.058 0.084 0.071 0.824 0.762 0.816

(100,200) -0.018 -0.009 0.002 0.039 0.044 0.045 0.878 0.864 0.870

(200,50) -0.065 -0.063 0.011 0.055 0.161 0.071 0.736 0.562 0.844

(200,100) -0.032 -0.024 0.004 0.040 0.049 0.049 0.790 0.808 0.844

(200,200) -0.015 -0.008 0.002 0.028 0.031 0.031 0.860 0.856 0.858

Note: 500 repetitions. DGP: Yit = �1Xit,1 + �2Xit,2 + �3Xit,3 + ↵i + �ift +Xit,1 · ✏it, where [�1,�2,�3] =

[1, 1, 1], ↵i ⇠ i.i.d N (0, 1), �i ⇠ i.i.d N (0, 1), ft ⇠ i.i.d N (0, 1), Xit,1 ⇠ i.i.d �2(1) + 1, and Xit,2 = ✓2i +

⌘2ift + e2,it, Xit,3 = ✓3i + ⌘3ift + e3,it, where ✓2i, ✓3i, ⌘2i, ⌘3i ⇠ i.i.d N (1, 1), e2,it, e3,it ⇠ i.i.d N (0, 1).

✏it = ⇢ · ✏i,t�1 +
p

1� ⇢2 · ⌫it, where ⌫it ⇠ i.i.d N (0, 1) and ⇢ = 0.5.
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A Proof of the Main Resutls

Definitions and Notations

For any random variable W
i

or W
t

, W
i

= Ō
P

(1) means that max1iN

kW
i

k = O
P

(1), and W
t

= Ō
P

(1)

means that max1tT

kW
t

k = O
P

(1). ō
P

(1) is defined similarly. For notational simplicity, we suppress

the dependence of �0i(⌧), �̂(⌧) and �0(⌧) on ⌧ . Let M > 0 denote a generic bounded constant that does

not depend on N or T .

Define:

S
NT

(�,⇤, F ) = (NT )�1
N

X

i=1

T

X

t=1

l
it

(�,�
i

, f
t

) S⇤
NT

(�,⇤, F ) = (NT )�1
N

X

i=1

T

X

t=1

⇢
it

(�,�
i

, f
t

)

S
i,T

(�,�
i

, F ) =
1

T

T

X

t=1

l
it

(�,�
i

, f
t

) S⇤
i,T

(�,�
i

, F ) =
1

T

T

X

t=1

⇢
it

(�,�
i

, f
t

)

where l(u) = [⌧ �K(u/h)]u, ⇢
⌧

(u) is the check function, and

l
it

(�,�
i

, f
t

) = l(Y
it

� �0X
it

� �0
i

f
t

), ⇢
it

(�,�
i

, f
t

) = ⇢
⌧

(Y
it

� �0X
it

� �0
i

f
t

).

For any random function L(�,⇤, F ) and fixed (�,⇤, F ), define L̄(�,⇤, F ) = E[L(�,⇤, F )] and L̃(�,⇤, F ) =

L(�,⇤, F )� L̄(�,⇤, F ). Let l(j)(u) denote the jth order derivative of l, i.e.,

l(1)(u) = ⌧ �K(u/h) + k(u/h)u/h, l(2)(u) = 2k(u/h)1/h+ k(1)(u/h)u/h2,

l(3)(u) = 3k(1)(u/h)1/h2 + k(2)(u/h)u/h3, l(4)(u) = 4k(2)(u/h)1/h3 + k(3)(u/h)u/h4.
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Let l
(j)
it

(�,�
i

, f
t

) = l(j)(Y
it

� �0X
it

� �0
i

f
t

) for j = 1, . . . , 4, and their arguments are dropped when

evaluated at (�0,�0i, f0t).

Finally, define �̃0i = (H0
0)

�1�0i, f̃0t = H0f0t, ⇤̃0 = [�̃01, . . . , �̃0N ]0, and F̃0 = [f̃01, . . . , f̃0T ]0.

A.1 Proof of Proposition 1:

Proof. Note that

k⌃̂
x̄

� �0⌃f0�
0
0k

=

�

�

�

�

�

�̄⌃̂
f0 �̄

0 � �0⌃f0�
0
0 + �̄ · 1

T

T

X

t=1

f0tē
0
t

+
1

T

T

X

t=1

ē
t

f 0
0t · �̄0 +

1

T

T

X

t=1

ē
t

ē0
t

�

�

�

�

�


�

�

�

�̄⌃̂
f0 �̄

0 � �0⌃f0�
0
0

�

�

�

+ 2

�

�

�

�

�

�̄ · 1
T

T

X

t=1

f0tē
0
t

�

�

�

�

�

+

�

�

�

�

�

1

T

T

X

t=1

ē
t

ē0
t

�

�

�

�

�

.

First, by Assumption 1(ii),
�

�

�

�̄⌃̂
f0 �̄

0 � �0⌃f0�
0
0

�

�

�

= O(N�1/2+T�1/2). Second, by Assumption 1(iii) and

the Cauchy-Schwarz inequality, we have

�

�

�

�

�

1
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T
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f0tē
0
t

�
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�

�

�

 1p
N
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1
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T

X
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kf0tk2

v

u

u

t

1

T

T

X

t=1

k
p
Nē

t

k2 = O
P

(N�1/2)

and
�

�

�

�

�

1

T

T

X

t=1

ē
t

ē0
t

�

�

�

�

�

 1

N
· 1
T

T

X

t=1

k
p
Nē

t

k2 = O
P

(N�1).

It then follows that k⌃̂
x̄

� �0⌃f0�
0
0k = O

P

(N�1/2 + T�1/2). Third, by matrix perturbation theory

(Ho↵man-Wielandt inequality) and the fact that �0⌃f0�
0
0 is a matrix with rank r (Assumption 1(ii)), it

can be concluded that ⇢̂1, . . . , ⇢̂r converge in probability to some positive constants, while ⇢̂
r+1, . . . , ⇢̂k

are all O
P

(N�1/2 + T�1/2). Thus, it follows that

P [r̂ 6= r]  P [r̂ < r] + P [r̂ > r]  P [⇢̂
r

< P
NT

] + P [⇢̂
r+1 � P

NT

] ! 0,

and the desired result follows.

A.2 Proof of Theorem 1

Lemma 1. Define Ĥ =  ̂0�̄. Under Assumptions 1 and 2, (i) f̂
t

= Ĥf0t +  ̂0ē
t

; (ii)  ̂
p!  0 and

Ĥ
p! H0 =  0

0�0; (iii) Ĥ is invertible with probability approaching 1.

Proof. Result (i) follows directly from X̄
t

= �̄f0t + ē
t

and f̂
t

=  ̂0X̄
t

. Given Assumption 2(i), it

follows from the Bauer-Fike Theorem and k⌃̂
x̄

��0⌃f0�
0
0k = o

P

(1) (see the proof of Proposition 1) that

k ̂� 0k = o
P

(1). Thus, result (ii) follows since k�̄� �0k = o(1) by Assumption 1(ii). Finally, suppose

that rank(H0) < r, and let D be the diagonal matrix with the eigenvalues of �0⌃f0�
0
0 as the diagonal
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elements, then rank(D) = rank( 0
0�0⌃f0�

0
0 0) = rank(H0⌃f0H

0
0)  rank(H0) < r, which contradicts

with Assumption 1(ii). Thus, we have rank(H0) = r and result (iii) follows from Ĥ = H0 + o
P

(1).

Proof of Theorem 1

Proof. Step 1: By Lemma 1, we have

1

T

T

X

t=1

kf̂
t

� f̃0tk2  1

T

T

X

t=1

kf̂
t

� Ĥf0tk2+MkH0� Ĥk2  r

NT

T

X

t=1

k
p
Nē

t

k2+o
P

(1) = O
P

✓

1

N

◆

+o
P

(1).

Step 2: Adding and subtracting terms, we can write

S
NT

(�,⇤, F ) = (S
NT

(�,⇤, F )� S⇤
NT

(�,⇤, F )) + (S⇤
NT

(�,⇤, F )� S⇤
NT

(�,⇤, F̃0)) + S⇤
NT

(�,⇤, F̃0).

By the definition of the estimators, S
NT

(�̂, ⇤̂, F̂ )  S
NT

(�0, ⇤̃0, F̂ ). Thus, we have

S⇤
NT

(�̂, ⇤̂, F̃0)�S⇤
NT

(�0, ⇤̃0, F̃0)  [S
NT
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NT
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Step 3: Let � be a positive number close to 0. Define B
�,i

= {� 2 B,�
i

2 A : k���0k1+k�
i

��̃0ik1  �}.
Consider any (�,�

i

) 2 BC

�,i

. Let m = k���0k1+k�
i

� �̃0ik1 > �, then (�̄, �̄
i

) = (�,�
i

)�/m+(�0, �̃0i)(1�
�/m) is on the boundary of B

�,i

. Note that given X
it
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t

, the check function ⇢
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is convex in (�,�
i

).

Thus,
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, f̃0t) + (1� �/m) · ⇢
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and it follows that

⇢
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Write
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First, by Taylor expansion ⇢̄
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(�,�
i

, f̃0t) around (�0, �̃0i) of we have
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by Assumption 2(iii). Second, we have
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Step 4: k�̂ � �0k1 > � implies that (�̂, �̂
i

) 2 BC

�,i

for all i. It then follows from (A.1), (A.2) and (A.3)

that for small � > 0, there exists an ✏ > 0 (depending on �) such that
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"

sup
�,⇤,F

�

�

�

S
NT

(�,⇤, F )� S⇤
NT

(�,⇤, F )
�

�

�

> 1/3✏

#

+ P

"

sup
�,�i2A

�

�

�

S⇤
NT

(�,⇤, F̂ )� S⇤
NT

(�,⇤, F̃0)
�

�

�

> 1/3✏

#

+ P

"

max
1iN

sup
(�,�i)2B�,i

�

�

�

�

�

1

T

T

X

t=1

h

⇢̃
it

(�,�
i

, f̃0t)� ⇢̃
it

(�0, �̃0i, f̃0t)
i

�

�

�

�

�

> 1/3✏

#

. (A.4)

The first term on the right-hand side of (A.4) is o(1) because it is easy to show that1:

sup
�,⇤,F

�

�

�

S
NT

(�,⇤, F )� S⇤
NT

(�,⇤, F )
�

�

�

. h

and h ! 0 as N,T ! 1. The second term on the right-hand side of (A.4) is o(1) since by the result of

Step 1 and Assumption 2(ii),

sup
�,�i2A

�

�

�

S⇤
NT

(�,⇤, F̂ )� S⇤
NT

(�,⇤, F0)
�

�

�

 max
1iN

sup
�,�i2A

�

�

�

�

�

1

T

T

X

t=1

⇢
it

(�,�
i

, f̂
t

)� 1

T

T

X

t=1

⇢
it

(�,�
i

, f̃0t)

�

�

�

�

�

.

v

u

u

t

1

T

T

X

t=1

kf̂
t

� f̃0tk2 = o
P

(1).

Finally, for the consistency of �̂, it remains to show that the third term on the right-hand side of (A.4)

1
Note that |l(u)� ⇢⌧ (u)| = |(⌧ � 1{u  0})u� (⌧ �K(u/h))u|  |u| · |1{u  0}�K(u/h)| . |u| · 1{|u|  h} . h.

4



is o(1). By the union bound, it su�ces to show that for all i

P

"

sup
(�,�i)2B�,i

�

�

�

�

�

1

T

T

X

t=1

h

⇢̃
it

(�,�
i

, f̃0t)� ⇢̃
it

(�0, �̃0i, f̃0t)
i

�

�

�

�

�

> 1/3✏

#

= o(N�1). (A.5)

Step 5: Write ✓
i

= (�0,�0
i

)0, and ✓0i = (�0
0, �̃

0
0i)

0. Define �
it

(✓
i

) = ⇢
it

(�,�
i

, f̃0t)� ⇢
it

(�0, �̃0i, f̃0t). Note

that there exists C1, C2 > 0 such that |�
it

(✓a
i

)��
it

(✓b
i

)|  C1 ·k�a��bk ·kX
it

k+C2 ·k�a

i

��b

i

k. Suppose
that there exists M

X

> 0 such that EkX
it

k  M
X

for all i, t (see Assumption 2(v)).

Since B
�,i

is compact, for any ⌘ > 0, there exists a positive integer L and a maximal set of points

✓
(1)
i

, . . . , ✓
(L)
i

in B
�,i

such that k✓(k)
i

� ✓
(j)
i

k � ⌘ for any k 6= j. For any ✓
i

2 B
�,i

, let ✓⇤
i

= {✓(j)
i

: 1  j 
L, k✓

i

� ✓
(j)
i

k  ⌘}. Then,

1

T

T

X

t=1

h

⇢̃
it

(�,�
i

, f̃0t)� ⇢̃
it

(�0, �̃0i, f̃0t)
i

=
1

T

T

X

t=1

[�
it

(✓
i

)� E(�
it

(✓
i

))]

=
1

T

T

X

t=1

[�
it

(✓⇤
i

)� E(�
it

(✓⇤
i

))] +
1

T

T

X

t=1

[�
it

(✓
i

)��
it

(✓⇤
i

)� E(�
it

(✓
i

)��
it

(✓⇤
i

))] ,

and

sup
(�,�i)2B�,i

�

�

�

�

�

1

T

T

X

t=1

h

⇢̃
it

(�,�
i

, f̃0t)� ⇢̃
it

(�0, �̃0i, f̃0t)
i

�

�

�

�

�

 max
1jL

�

�

�

�

�

1

T

T

X

t=1

h

�
it

(✓(j)
i

)� E(�
it

(✓(j)
i

))
i

�

�

�

�

�

+ sup
k✓a�✓

bk⌘

�

�

�

�

�

1

T

T

X

t=1

⇥

�
it

(✓a
i

)��
it

(✓b
i

)� E(�
it

(✓a
i

)��
it

(✓b
i

))
⇤

�

�

�

�

�

Note that

sup
k✓a�✓

bk⌘

�

�

�

�

�

1

T

T

X

t=1

⇥

�
it

(✓a
i

)��
it

(✓b
i

)� E(�
it

(✓a
i

)��
it

(✓b
i

))
⇤

�

�

�

�

�

 C1⌘

 

1

T

T

X

t=1

(kX
it

k � EkX
it

k)
!

+ 2(C2 + C1MX

)⌘,

it then follows from the previous two inequalities that

P

"

sup
(�,�i)2B�,i

�

�

�

�

�

1

T

T

X

t=1

h

⇢̃
it

(�,�
i

, f̃0t)� ⇢̃
it

(�0, �̃0i, f̃0t)
i

�

�

�

�

�

> 1/3✏

#


L

X

j=1

P

"

�

�

�

�

�

1

T

T

X

t=1

h

�
it

(✓(j)
i

)� E(�
it

(✓(j)
i

))
i

�

�

�

�

�

� 1/9✏

#

+ P

"

C1⌘

�

�

�

�

�

1

T

T

X

t=1

(kX
it

k � EkX
it

k)

�

�

�

�

�

� 1/9✏

#

+ P [2(C2 + C1MX

)⌘ � 1/9✏] . (A.6)
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First, choosing ⌘ < ✏/(18(C2 + C1MX

)), the last term on the right-hand side of (A.6) is 0.

Second, for any ✓
i

2 B
�,i

, E|�
it

(✓
i

)|2m+�  M ·EkX
it

k2m+� +O(1) < 1 by Assumption 2(v). Thus,

by Assumption 2(iv) and Theorem 3 of Yoshihara (1978) we have

E
�

�

�

�

�

T�1/2
T

X

t=1

h

�
it

(✓(j)
i

)� E(�
it

(✓(j)
i

))
i

�

�

�

�

�

2m

 M,

and by Markov’s inequality,

P

"

�

�

�

�

�

1

T

T

X

t=1

h

�
it

(✓(j)
i

)� E(�
it

(✓(j)
i

))
i

�

�

�

�

�

� 1/9✏

#

= O(T�m).

Finally, we can show that the second term on the right-hand side of (A.6) is O(T�m) in a similar way.

Thus, (A.5) follows since N/Tm ! 0 by Assumption 2(vi). This completes the proof.

A.3 Proof of Theorem 2

To simplify the notations, write f̌0t = Ĥf0t and �̌0i = (Ĥ0)�1�0i.

Lemma 2. Under Assumptions 1 to 4,

(i) T�1
P

T

t=1 kf̂t � f̌0tk = O
P

(N�1/2), T�1
P

T

t=1 kf̂t � f̌0tk2 = O
P

(N�1), T�1
P

T

t=1 kf̂t � f̌0tk3 =

O
P

(N�3/2), T�1
P

T

t=1 kf̂t � f̌0tk4 = O
P

(N�2).

(ii) T�1
P

T

t=1 kf̂t � f̃0tk = O
P

(N�1/2), T�1
P

T

t=1 kf̂t � f̃0tk2 = O
P

(N�1), T�1
P

T

t=1 kf̂t � f̃0tk3 =

O
P

(N�3/2), T�1
P

T

t=1 kf̂t � f̃0tk4 = O
P

(N�2).

(iii) max1tT

kf̂
t

� f̌0tk = O
P

(
p
log T/

p
N) and max1tT

kf̂
t

� f̃0tk = O
P

(
p
log T/

p
N).

Proof. By the properties of L
p

norms in the Euclidean space, it su�ces to prove that T�1
P

T

t=1 kf̂t �
f̌0tk4 = O

P

(N�2) and T�1
P

T

t=1 kf̂t � f̃0tk4 = O
P

(N�2). Note that Assumption 3(iv) implies that

{e1t, . . . , eNt

} is independent across i and ke
it

k < M for all i, t. Thus,

Ek
p
Nē

t

k4 = E
�

�

�

�

�

1p
N

N

X

i=1

e
it

�

�

�

�

�

4


 

1

N

N

X

i=1

Eke
it

k2
!2

+
1

N2

N

X

i=1

Eke
it

k4 = O(1),

and by Lemma 1

1

T

T

X

t=1

kf̂
t

� f̌0tk4  k ̂k4 · 1

N2T

T

X

t=1

k
p
Nē

t

k4 = O
P

(N�2).

Moreover, T�1
P

T

t=1 kf̂t � f̃0tk4  T�1
P

T

t=1 kf̂t � f̌0tk4 + CkĤ � H0k4. Then result (ii) follows if we

can show that kĤ�H0k = O
P

(N�1/2).

By definition, kĤ�H0k  O
P

(k ̂� 0k)+O
P

(k�̄��0k). By the proof of Proposition 1 and Lemma 1

we have k ̂� 0k . k⌃̂
x̄

��0⌃f0�
0
0k = O

P

(N�1/2+T�1/2). Then the result (ii) follows from Assumption

1(ii) and the fact that N ⇣ T .

Finally, note that max1tT

kf̂
t

� f̌0tk  O
P

(1) ·max1tT

kē
t

k. For 1  h  r, by the Hoe↵ding’s

6



inequality, we have P [
p
N |ē

th

| � c]  exp(�c2/C) for some constant C. Thus, it follows from Lemma

2.2.1 and Lemma 2.2.2 of van der Vaart and Wellner (1996) that E[max1tT

p
N |ē

th

|] = O(
p
log T ).

Thus, result (iii) follows since kĤ�H0k = o
P

(T�1/2).

Lemma 3. Under Assumptions 1 to 4, max1iN

k�̂
i

� �̌0ik = o
P

(1).

Proof. Recall that �̃0i = (H0
0)

�1�0i, f̃0t = H0f0t. By the definition of the estimators we have S
i,T

(�̂, �̂
i

, F̂ ) 
S
i,T

(�̂, �̃0i, F̂ ) for each i. Note that

S
i,T

(�,�
i

, F ) = S⇤
i,T

(�0,�i

, F̃0) + (S
i,T

(�,�
i

, F )� S⇤
i,T

(�,�
i

, F )) + (S⇤
i,T

(�,�
i

, F )� S⇤
i,T

(�0,�i

, F̃0)).

Thus, S
i,T

(�̂, �̂
i

, F̂ )  S
i,T

(�̂, �̃0i, F̂ ) implies that

S⇤
i,T

(�0, �̂i

, F̃0)�S⇤
i,T

(�0, �̃0i, F̃0)  (S
i,T

(�̂, �̃0i, F̂ )�S⇤
i,T

(�̂, �̃0i, F̂ ))+(S⇤
i,T

(�̂, �̃0i, F̂ )�S⇤
i,T

(�0, �̃0i, F̃0))

� (S
i,T

(�̂, �̂0i, F̂ )� S⇤
i,T

(�̂, �̂0i, F̂ ))� (S⇤
i,T

(�̂, �̂0i, F̂ )� S⇤
i,T

(�0, �̂0i, F̃0)). (A.7)

Similar to the proof of Theorem 1, for small � > 0, define B
�,i

= {�
i

2 A : k�
i

� �̃0ik  �}. For any

�
i

2 BC

�,i

, let m = k�
i

� �̃0ik > �. Then �̄
i

= �
i

· �/m+ �̃0i · (1� �/m) is on the boundary of B
�,i

, i.e.,

k�̄
i

� �̃0ik = �. Given �0 and f̃0t, the check function is convex in �
i

, thus

�/m · ⇢
it

(�0,�i

, f̃0t) + (1� �/m) · ⇢
it

(�0, �̃0i, f̃0t) � ⇢
it

(�0, �̄i

, f̃0t),

and it follows that

⇢
it

(�0,�i

, f̃0t)� ⇢
it

(�0, �̃0i, f̃0t) � m/� ·
⇣

⇢
it

(�0, �̄i

, f̃0t)� ⇢
it

(�0, �̃0i, f̃0t)
⌘

.

Note that ⇢
it

(�0, �̄i

, f̃0t)�⇢
it

(�0, �̃0i, f̃0t) = ⇢̄
it

(�0, �̄i

, f̃0t)�⇢̄
it

(�0, �̃0i, f̃0t)+⇢̃
it

(�0, �̄i

, f̃0t)�⇢̃
it

(�0, �̃0i, f̃0t),

and

⇢̄
it

(�0, �̄i

, f̃0t)� ⇢̄
it

(�0, �̃0i, f̃0t) � (�̄
i

� �̃0i)
0
⇣

f
it

(0)f̃0tf̃
0
0t

⌘

(�̄
i

� �̃0i) + o(�2).

Thus, if k�̂
i

� �̃0ik > �, by Assumption 3(ii)

S⇤
i,T

(�0, �̂i

, F̃0)� S⇤
i,T

(�0, �̃0i, F̃0) =
1

T

T

X

t=1

h

⇢
it

(�0, �̂i

, f̃0t)� ⇢
it

(�0, �̃0i, f̃0t)
i

� (ˆ̄�
i

� �̃0i)
0

 

1

T

T

X

t=1

f
it

(0)f̃0tf̃
0
0t

!

(ˆ̄�
i

� �̃0i) + o(�2) +m/� · 1
T

T

X

t=1

h

⇢̃
it

(�0,
ˆ̄�
i

, f̃0t)� ⇢̃
it

(�0, �̃0i, f̃0t)
i

� C�2 +m/� · 1
T

T

X

t=1

h

⇢̃
it

(�0,
ˆ̄�
i

, f̃0t)� ⇢̃
it

(�0, �̃0i, f̃0t)
i

,

where ˆ̄�
i

is between �̃0i and �̂
i

and is on the boundary of B
�,i

. Thus, it follows from (A.7) that there
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exists some ✏ > 0 (depending on �) such that

P



max
1iN

k�̂
i

� �̃0ik > �

�

 P

"

max
1iN

sup
�,�i,F

�

�S
i,T

(�,�
i

, F )� S⇤
i,T

(�,�
i

, F )
�

� > ✏

#

+ P



max
1iN

sup
�i2A

�

�

�

S⇤
i,T

(�̂,�
i

, F̂ )� S⇤
i,T

(�0,�i

, F̃0)
�

�

�

> ✏

�

+ P

"

max
1iN

sup
�i2B�,i

�

�

�

S̃⇤
i,T

(�0,�i

, F̃0)� S̃⇤
i,T

(�0,�i

, F̃0)
�

�

�

> ✏

#

. (A.8)

Similar to the proof of Theorem 1, it can be shown that the first and last term on the right-hand side of

(A.8) are both o(1). It remains to show that the second term is o(1).

By the property of the check function, we have

max
1iN

sup
�i2A

�

�

�

S⇤
i,T

(�̂,�
i

, F̂ )� S⇤
i,T

(�0,�i

, F̃0)
�

�

�

. k�̂ � �0k ·
 

max
1iN

1

T

T

X

t=1

kX
it

k
!

+
1

T

T

X

t=1

kf̂
t

� f̃0tk.

It then follows from Assumption 3(iii), k�̂ � �0k = o
P

(1) and Lemma 2(ii) that

max
1iN

sup
�i2A

�

�

�

S⇤
i,T

(�̂,�
i

, F̂ )� S⇤
i,T

(�0,�i

, F̃0)
�

�

�

= o
P

(1).

This implies that the second term on the right-hand side of (A.8) is o(1). The desired result follows by

noting that max
i

k�̃0i � �̌0ik  O
P

(1) · kĤ�H0k = o
P

(1).

Lemma 4. Under Assumptions 1 to 4, k�̂ � �0k = o
P

(max
i

k�̂
i

� �̌0ik) + o
P

(1/
p
T ).

Proof. Step 1: Define the following notations:

S�(�,⇤, F )
| {z }

p⇥1

= @S
NT

(�,⇤, F )/@�, S�(�,⇤, F )
| {z }

Nr⇥1

= @S
NT

(�,⇤, F )/@⇤,

S��

0
(�,⇤, F )

| {z }

p⇥p

= @2S
NT

(�,⇤, F )/@�@�0, S��

0
(�,⇤, F )

| {z }

p⇥Nr

= @2S
NT

(�,⇤, F )/@�@⇤0.

The other functions such as S�f

0
(�,⇤, F ), S��

0
(�,⇤, F ), S�f

0
(�,⇤, F ), S��

0
fth(�,⇤, F ) are defined in a

similar fashion. The arguments of these functions are dropped when they are evaluated at (�,⇤, F ) =

(�0, ⇤̌0, F̌0), where ⇤̌0 = (�̌01, . . . , �̌0N )0, F̌0 = (f̌01, . . . , f̌0T )0 (recall that f̌0t = Ĥf0t and �̌0i = (Ĥ0)�1�0i).

Expanding S�

NT

(�̂, ⇤̂, F̂ ) and S�

NT

(�̂, ⇤̂, F̂ ) around (�0, ⇤̌0, F̌0) up to the third order gives:

0 = S�(�̂, ⇤̂, F̂ ) = S� + S��

0
(�̂ � �0) + S��

0
(⇤̂� ⇤̌0) + S�f

0
(F̂ � F̌0) + 1/2R�(�⇤,⇤⇤, F ⇤), (A.9)

0 = S�(�̂, ⇤̂, F̂ ) = S� + S��

0
(�̂ � �0) + S��

0
(⇤̂� ⇤̌0) + S�f

0
(F̂ � F̌0) + 1/2R�(�⇤,⇤⇤, F ⇤), (A.10)

8



where (�⇤,⇤⇤, F ⇤) is between (�0, ⇤̌0, F̌0) and (�̂, ⇤̂, F̂ ), and

R�(�⇤,⇤⇤, F ⇤) =
p

X

k=1

S��

0
�k

⇤ (�̂
k

� �0k)(�̂ � �0) +
p

X

k=1

S��

0
�k

⇤ (�̂
k

� �0k)(⇤̂� ⇤̌0) +
p

X

k=1

S�f

0
�k

⇤ (�̂
k

� �0k)(F̂ � F̌0)

+
N

X

i=1

r

X

h=1

S��

0
�ih

⇤ (�̂
ih

��̌0i,h)(�̂��0)+
N

X

i=1

r

X

h=1

S��

0
�ih

⇤ (�̂
ih

��̌0i,h)(⇤̂�⇤̌0)+
N

X

i=1

r

X

h=1

S�f

0
�ih

⇤ (�̂
ih

��̌0i,h)(F̂�F̌0)

+
T

X

t=1

r

X

h=1

S��

0
fth

⇤ (f̂
th

�f̌0t,h)(�̂��0)+
T

X

t=1

r

X

h=1

S��

0
fth

⇤ (f̂
th

�f̌0t,h)(⇤̂�⇤̌0)+
T

X

t=1

r

X

h=1

S�f

0
fth

⇤ (f̂
th

�f̌0t,h)(F̂�F̌0),

(A.11)

R�(�⇤,⇤⇤, F ⇤) =
p

X

k=1

S��

0
�k

⇤ (�̂
k

� �0k)(�̂ � �0) +
p

X

k=1

S��

0
�k

⇤ (�̂
k

� �0k)(⇤̂� ⇤̌0) +
p

X

k=1

S�f

0
�k

⇤ (�̂
k

� �0k)(F̂ � F̌0)

+
N

X

i=1

r

X

h=1

S��

0
�ih

⇤ (�̂
ih

��̌0i,h)(�̂��0)+
N

X

i=1

r

X

h=1

S��

0
�ih

⇤ (�̂
ih

��̌0i,h)(⇤̂�⇤̌0)+
N

X

i=1

r

X

h=1

S�f

0
�ih

⇤ (�̂
ih

��̌0i,h)(F̂�F̌0)

+
T

X

t=1

r

X

h=1

S��

0
fth

⇤ (f̂
th

�f̌0t,h)(�̂��0)+
T

X

t=1

r

X

h=1

S��

0
fth

⇤ (f̂
th

�f̌0t,h)(⇤̂�⇤̌0)+
T

X

t=1

r

X

h=1

S�f

0
fth

⇤ (f̂
th

�f̌0t,h)(F̂�F̌0),

(A.12)

where the asterisk in the subscript of the functions means that these functions are evaluated at (�⇤,⇤⇤, F ⇤).

Define S̃��

0
= S��

0�S̄��

0
, S̃��

0
= S��

0�S̄��

0
, where S̄��

0
= N�1(⌅̃1, . . . , ⌅̃N

), S̄��

0
= N�1 diag(⌦̃1, . . . , ⌦̃N

),

and ⌅̃
i

= ⌅
i

Ĥ0, ⌦̃
i

= Ĥ⌦
i

Ĥ0. Recall that

⌅
i

=
1

T

T

X

t=1

E[f
it

(0|X
it

)X
it

]f 0
0t, ⌦

i

=
1

T

T

X

t=1

f
it

(0)f0tf
0
0t.

Then (A.9) can be written as

0 = S� + S��

0
(�̂ � �0) + S̄��

0
(⇤̂� ⇤̌0) + S̃��

0
(⇤̂� ⇤̌0) + S�f

0
(F̂ � F̌0) + 1/2R�(�⇤,⇤⇤, F ⇤), (A.13)

and (A.10) can be written as

0 = S� + S��

0
(�̂ � �0) + S̄��

0
(⇤̂� ⇤̌0) + S̃��

0
(⇤̂� ⇤̌0) + S�f

0
(F̂ � F̌0) + 1/2R�(�⇤,⇤⇤, F ⇤). (A.14)
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Plugging (A.14) into (A.13) gives

[S��

0
� S̄��

0
(S̄��

0
)�1S��

0
](�̂ � �0) =

�
h

S� � S̄��

0
(S̄��

0
)�1S�

i

�
h

S�f

0
� S̄��

0
(S̄��

0
)�1S�f

0
i

(F̂ � F̌0)�
h

S̃��

0
� S̄��

0
(S̄��

0
)�1S̃��

0
i

(⇤̂� ⇤̌0)

� 1/2
h

R�(�⇤,⇤⇤, F ⇤)� S̄��

0
(S̄��

0
)�1R�(�⇤,⇤⇤, F ⇤)

i

. (A.15)

Step 2: The term S��

0 � S̄��

0
(S̄��

0
)�1S��

0
can be written as

S̄��

0
� S̄��

0
(S̄��

0
)�1S̄��

0
+ S̃��

0
� S̄��

0
(S̄��

0
)�1S̃��

0
,

where S̄��

0
= (NT )�1

P

N

i=1

P

T

t=1 E[fit(0|Xit

)X
it

X 0
it

], S̄��

0
= (S̄��

0
)0. Note that

S̄��

0
� S̄��

0
(S̄��

0
)�1S̄��

0
=

1

NT

N

X

i=1

T

X

t=1

[E[f
it

(0|X
it

)X
it

X 0
it

� ⌅
i

⌦�1
i

⌅0
i

] =
1

NT

N

X

i=1

T

X

t=1

E[f
it

(0|X
it

)Z
it

Z 0
it

].

Next, we show that S̃��

0 � S̄��

0
(S̄��

0
)�1S̃��

0
= o

P

(1). Write

S̃��

0
=

1

NT

N

X

i=1

T

X

t=1

⇣

l
(2)
it

X
it

X 0
it

� E[l(2)
it

X
it

X 0
it

]
⌘

+
1

NT

N

X

i=1

T

X

t=1

⇣

E[l(2)
it

X
it

X 0
it

]� E[f
it

(0|X
it

)X
it

X 0
it

]
⌘

where the second term on the right-side of the above equation is O(hq) = o(1) by Lemma S1, and for the

first term, by Assumption 3(iv) we have

E
�

�

�

�

�

1

NT

N

X

i=1

T

X

t=1

⇣

l
(2)
it

X
it

X 0
it

� E[l(2)
it

X
it

X 0
it

]
⌘

�

�

�

�

�

2

 1

Th2
· 1
N

N

X

i=1

E
�

�

�

�

�

1p
T

T

X

t=1

h
⇣

l
(2)
it

X
it

X 0
it

� E[l(2)
it

X
it

X 0
it

]
⌘

�

�

�

�

�

2

.

By Lemma S1 and Assumption 3(iii), kh ·l(2)
it

X
it

X 0
it

k  M almost surely. Thus, it follows from the mixing

property (Assumption 2(iv)), the fact that Th2 ! 1 (Assumption 3(vii)) and Theorem 3 of Yoshihara

(1978) that the right-hand side of the above inequality is o(1). Thus, we have S̃��

0
= o

P

(1). Similarly,

we can show that S̄��

0
(S̄��

0
)�1S̃��

0
= o

P

(1). Therefore, it follows that

S��

0
� S̄��

0
(S̄��

0
)�1S��

0
=

1

NT

N

X

i=1

T

X

t=1

E[f
it

(0|X
it

)Z
it

Z 0
it

] + o
P

(1) = �+ o
P

(1). (A.16)

Step 3: S� � S̄��

0
(S̄��

0
)�1S� can be written as

� 1

NT

N

X

i=1

T

X

t=1

l
(1)
it

Z
it

= � 1

NT

N

X

i=1

T

X

t=1

⇣

l
(1)
it

Z
it

� E[l(1)
it

Z
it

]
⌘

� 1

NT

N

X

i=1

T

X

t=1

E[l(1)
it

Z
it

].

By Lemma S1 and Assumption 3(vii), (NT )�1
P

N

i=1

P

T

t=1 E[l
(1)
it

Z
it

] = o(hq) = o(T�1/2). Similar to the

proof of (A.53) below, the first term on the right-hand side of the above equation is O
P

(1/
p
NT ) =

10



o
P

(T�1/2). Thus, we have

S� � S̄��

0
(S̄��

0
)�1S� = o

P

(1/
p
T ). (A.17)

Step 4: By Lemma 8 below

[S�f

0
� S̄��

0
(S̄��

0
)�1S�f

0
](F̂ � F̌0) = o

P

(1/
p
T ). (A.18)

Step 5: Now consider the term:
h

S̃��

0 � S̄��

0
(S̄��

0
)�1S̃��

0
i

(⇤̂� ⇤̌0). Write

S̃��

0
(⇤̂� ⇤̌0) =

1

N

N

X

i=1

 

1

T

T

X

t=1

l
(2)
it

X
it

f 0
0t � ⌅i

!

Ĥ(�̂
i

� �̌0i).

By the Cauchy-Schwarz inequality, we have

�

�

�

S̃��

0
(⇤̂� ⇤̌0)

�

�

�

.

v

u

u

t

1

N

N

X

i=1

�

�

�

�

�

1

T

T

X

t=1

l
(2)
it

X
it

f 0
0t � ⌅i

�

�

�

�

�

2

· k⇤̂� ⇤̌0k/
p
N.

Note that by Lemma S1,

E
�

�

�

�

�

1

T

T

X

t=1

l
(2)
it

X
it

f 0
0t � ⌅i

�

�

�

�

�

2

= E
�

�

�

�

�

1

T

T

X

t=1

⇣

l
(2)
it

X
it

� E[l(2)
it

X
it

]
⌘

f 0
0t +

1

T

T

X

t=1

⇣

E[l(2)
it

X
it

]� E[f
it

(0|X
it

)X
it

]
⌘

f 0
0t

�

�

�

�

�

2

 1

h2
E
�

�

�

�

�

1

T

T

X

t=1

h
⇣

l
(2)
it

X
it

� E[l(2)
it

X
it

]
⌘

f 0
0t

�

�

�

�

�

2

+ o(1)

and by the mixing property and Theorem 3 of Yoshihara (1978) the first term on the right hand side of

the above inequality is O(1/(Th2)) = o(1). Thus, it follows that

�

�

�

S̃��

0
(⇤̂� ⇤̌0)

�

�

�

= o
P

(1) · k⇤̂� ⇤̌0k/
p
N.

Similarly, we can show that kS̄��

0
(S̄��

0
)�1S̃��

0
(⇤̂� ⇤̌0)k = o

P

(1) · k⇤̂� ⇤̌0k/
p
N , and conclude that

�

�

�

⇣

S̃��

0
� S̄��

0
(S̄��

0
)�1S̃��

0
⌘

(⇤̂� ⇤̌0)
�

�

�

= o
P

(1) · k⇤̂� ⇤̌0k/
p
N. (A.19)

Step 6: We will show that:

R�(�⇤,⇤⇤, F ⇤) = o
P

(k⇤̂� ⇤̌0k/
p
N) + o

P

(k�̂ � �0k) + o
P

(1/
p
T ), (A.20)

S̄��

0
(S̄��

0
)�1R�(�⇤,⇤⇤, F ⇤) = o

P

(k⇤̂� ⇤̌0k/
p
N) + o

P

(k�̂ � �0k) + o
P

(1/
p
T ). (A.21)

To save space, we focus on (A.20), which follows from Results 1 to 9 below. The proof of (A.21) is similar.

Result 1: S��

0
�k

⇤ (�̂
k

� �0k)(�̂ � �0) = o
P

(k�̂ � �0k).
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Observe that:

S��

0
�k

⇤ (�̂
k

� �0k)(�̂ � �0) = � 1

NT

N

X

i=1

T

X

t=1

l
(3)
it

(�⇤,�⇤
i

, f⇤
t

)X
it

X 0
it

X
it,k

(�̂
k

� �0k)(�̂ � �0),

so

kS��

0
�k

⇤ (�̂
k

� �0k)(�̂ � �0)k  k�̂ � �0k2 ·

�

�

�

�

�

1

NT

N

X

i=1

T

X

t=1

l
(3)
it

(�⇤,�⇤
i

, f⇤
t

)X
it

X 0
it

X
it,k

�

�

�

�

�

.

Expanding l
(3)
it

(�⇤,�⇤
i

, f⇤
t

) around (�⇤,�⇤
i

, f̃0t) gives

1

NT

N

X

i=1

T

X

t=1

l
(3)
it

(�⇤,�⇤
i

, f⇤
t

)X
it

X 0
it

X
it,k

=
1

NT

N

X

i=1

T

X

t=1

l
(4)
it

(�⇤,�⇤
i

, f⇤⇤
t

)X
it

X 0
it

X
it,k

(�⇤
i

)0(f⇤
t

� f̃0t) +
1

NT

N

X

i=1

T

X

t=1

E[l(3)
it

(�,�
i

, f̃0t)Xit

X 0
it

X
it,k

]|
�=�

⇤
,�i=�

⇤
i

+
1

NT

N

X

i=1

T

X

t=1

h

l
(3)
it

(�⇤,�⇤
i

, f̃0t)Xit

X 0
it

X
it,k

� E[l(3)
it

(�,�
i

, f̃0t)Xit

X 0
it

X
it,k

]|
�=�

⇤
,�i=�

⇤
i

i

. (A.22)

where f⇤⇤
t

is between f⇤
t

and f̌0t. By Lemma S1, the second term on the right hand side of (A.22) is

(NT )�1
P

N

i=1

P

T

t=1 E[f
(1)
it

(·|X
it

)X
it

X 0
it

X
it,k

] + Ō(hq�1) = O(1), and the first term is bounded by

v

u

u

t

1

T

T

X

t=1

kf⇤
t

� f̃0tk2 ·
1

NT

N

X

i=1

T

X

t=1

[l(4)
it

(�⇤,�⇤
i

, f⇤⇤
t

)]2 · kX
it

k6 · k�⇤
i

k2 = O
P

⇣

1/
p
Th6

⌘

= o
P

(1),

since we have |l(4)
it

(·)| . 1/h3 by Lemma S1 and T�1
P

T

t=1 kf⇤
t

� f̃0tk2  T�1
P

T

t=1 kf̂t � f̃0tk2 =

O
P

(N�1) = O
P

(T�1) by Lemma 2 and Assumption 3(vii). Finally, with probability approaching 1, the

last term on the right hand side of (A.22) is bounded by N�1
P

N

i=1 Zi

, where

Z
i

= sup
(�,�i)2B�,i

�

�

�

�

�

1

T

T

X

t=1

h

l
(3)
it

(�,�
i

, f̃0t)Xit

X 0
it

X
it,k

� E[l(3)
it

(�,�
i

, f̃0t)Xit

X 0
it

X
it,k

]
i

�

�

�

�

�

and B
�,i

is a neighbourhood of (�0, �̃0i). Then Result 1 follows if we can show that max1iN

E[Z
i

] < 1.

For any ✏ > 0, let ✓
(1)
i

, . . . , ✓
(L)
i

be a maximal set of points in B
�,i

such that k✓(j)
i

� ✓
(l)
i

k � ✏ for

any j 6= l. It is well know that L, the packing number of a Euclidean ball, is bounded (up to a positive

constant that only depends on p+ r) by (1/✏)p+r. Thus, we have

EZ
i

 1p
Th4

·E
"

max
1jL

�

�

�

�

�

1p
T

T

X

t=1

h2
h

l
(3)
it

(�(j),�
(j)
i

, f̃0t)Xit

X 0
it

X
it,k

� E[l(3)
it

(�(j),�
(j)
i

, f̃0t)Xit

X 0
it

X
it,k

]
i

�

�

�

�

�

#

+O(✏/h3),

where we have used that fact that |l(3)
it

(�a,�a

i

, f̃0t)� l
(3)
it

(�b,�b

i

, f̃0t)| . (k�a � �bk+ k�a

i

� �b

i

k)/h3. Note

that h2l
(3)
it

(�,�
i

, f̃0t)Xit

X 0
it

X
it,k

is uniformly bounded (almost surely) by Lemma S1 and Assumption

3(iii). Thus, by Lemma 2.2.2 of van der Vaart and Wellner (1996) and Theorem 3 of Yoshihara (1978),

for any J � 2, the first term on right hand side of the above inequality is bounded (up to a positive

12



constant) by L1/J/
p
Th4. Choosing ✏ = 1/

p
T , we have

EZ
i

 C

 

T
p+r
2J

p
Th4

+
1p
Th6

!

for some positive constant C. Since J is arbitrary, we can choose J > (p + r)/(2c) (c is defined

in Assumption 3(iii)) it follows that T
p+r
2J /

p
Th4 = o(

p
Th6). Then from Assumption 3(iii) we have

max1iN

E[Z
i

] < 1 and the desired result follows.

Result 2: S��

0
�k

⇤ (�̂
k

� �0k)(⇤̂� ⇤̌0) = o
P

(k�̂ � �0k).

We have

kS��

0
�k

⇤ (�̂
k

� �0k)(⇤̂� ⇤̌0)k =

�

�

�

�

�

1

N

N

X

i=1

 

1

T

T

X

t=1

l
(3)
it

(�⇤,�⇤
i

, f⇤
t

)X
it

X
it,k

f⇤0

t

!

(�̂
i

� �̌0i)(�̂ � �0)

�

�

�

�

�

 k�̂ � �0k ·max
iN

k�̂
i

� �̌0ik ·
1

N

N

X

i=1

�

�

�

�

�

1

T

T

X

t=1

l
(3)
it

(�⇤,�⇤
i

, f⇤
t

)X
it

X
it,k

f⇤0

t

�

�

�

�

�

.

Note that

1

T

T

X

t=1

l
(3)
it

(�⇤,�⇤
i

, f⇤
t

)X
it

X
it,k

f⇤0

t

=
1

T

T

X

t=1

l
(3)
it

(�⇤,�⇤
i

, f̃0t)Xit

X
it,k

f̃ 0
0t+

+
1

T

T

X

t=1

l
(3)
it

(�⇤,�⇤
i

, f⇤⇤
t

)X
it

X
it,k

(f⇤
t

� f̃0t)
0 +

1

T

T

X

t=1

l
(4)
it

(�⇤,�⇤
i

, f⇤⇤
t

)X
it

X
it,k

f̃ 0
0t(�

⇤
i

)0(f⇤
t

� f̃0t),

where f⇤⇤
t

is between f⇤
t

and f̃0t. Using Lemma S1, Lemma 2, Assumption 3(iii) and the Cauchy-

Schwarz inequality, we can show that the last two terms on right-hand side of the above inequality is

Ō
P

(1/
p
Nh6) = Ō

P

(1/
p
Th6) = ō

P

(1). For the first term on right-hand side of the above inequality,

with probability approaching 1, we have

1

N

N

X

i=1

�

�

�

�

�

1

T

T

X

t=1

l
(3)
it

(�⇤,�⇤
i

, f̃0t)Xit

X
it,k

f̃ 0
0t

�

�

�

�

�

 1

NT

N

X

i=1

T

X

t=1

�

�

�

E
h

l
(3)
it

(�,�
i

, f̃0t)Xit

X
it,k

f̃ 0
0t

i

|
�=�

⇤
,�i=�

⇤
i

�

�

�

+
1

N

N

X

i=1

sup
✓i2B�,i

�

�

�

�

�

1

T

T

X

t=1

⇣

l
(3)
it

(�,�
i

, f̃0t)Xit

X
it,k

f̃ 0
0t � E

h

l
(3)
it

(�,�
i

, f̃0t)Xit

X
it,k

f̃ 0
0t

i⌘

�

�

�

�

�

The first term on the right-hand side of the above inequality is O(1) by Lemma S1. Similar to the proof

of Result 1, The second term on the right-hand side of the above inequality can be shown to be o
P

(1).

Thus, we have

1

N

N

X

i=1

�

�

�

�

�

1

T

T

X

t=1

l
(3)
it

(�⇤,�⇤
i

, f⇤
t

)X
it

X
it,k

f⇤0

t

�

�

�

�

�

= O
P

(1),

and the result follows from uniform consistency of �̂
i

.
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Result 3: S�f

0
�k

⇤ (�̂
k

� �0k)(F̂ � F̌0) = o
P

(k�̂ � �0k).

Note that by Lemma 2,

kS�f

0
�k

⇤ (�̂
k

� �0k)(F̂ � F̌0)k

 k�̂ � �0k ·

�

�

�

�

�

1

T

T

X

t=1

 

1

N

N

X

i=1

l
(3)
it

(�⇤,�⇤
i

, f⇤
t

)X
it

X
it,k

�⇤0

i

!

(f̂
t

� f̌0t)

�

�

�

�

�

 k�̂ � �0k ·

v

u

u

t

1

T

T

X

t=1

kf̂
t

� f̌0tk2 ·
1

NT

N

X

i=1

T

X

t=1

[l(3)
it

(�⇤,�⇤
i

, f⇤
t

)]2 · kX
it

k4 · k�⇤
i

k2

= k�̂ � �0k ·OP

⇣

1/
p
Nh4

⌘

= o
P

(k�̂ � �0k),

because by Lemma S1, h2l
(3)
it

(�,�
i

, f
t

) is uniformly bounded, and Nh4 ! 1 by Assumption 3(vii).

Result 4:
P

N

i=1

P

r

h=1 S
��

0
�ih

⇤ (�̂
ih

� �̌0i,h)(�̂ � �0) = o
P

(k�̂ � �0k).

Observe that for each h  r,

N

X

i=1

S��

0
�ih

⇤ (�̂
ih

� �̌0i,h)(�̂ � �0) = � 1

N

N

X

i=1

(�̂
ih

� �̌0i,h)

 

1

T

T

X

t=1

l
(3)
it

(�⇤,�⇤
i

, f⇤
t

)X
it

X 0
it

f⇤
th

!

(�̂ � �0),

so

�

�

�

�

�

N

X

i=1

S��

0
�ih

⇤ (�̂
ih

� �̌0i,h)(�̂ � �0)

�

�

�

�

�

 k�̂ � �0k ·max
iN

k�̂
i

� �̌0ik ·
1

N

N

X

i=1

�

�

�

�

�

1

T

T

X

t=1

l
(3)
it

(�⇤,�⇤
i

, f⇤
t

)X
it

X 0
it

f⇤
th

�

�

�

�

�

,

which can be shown to be o
P

(k�̂ � �0k), similar to the proof of Result 2.

Result 5:
P

T

t=1

P

r

h=1 S
��

0
fth

⇤ (f̂
th

� f̌0t,h)(�̂ � �0) = o
P

(k�̂ � �0k).

The proof is similar to Result 3. For each h  r, we have

T

X

t=1

S��

0
fth

⇤ (f̂
th

� f̌0t,h) = � 1

T

T

X

t=1

(f̂
th

� f̌0t,h)

 

1

N

N

X

i=1

l
(3)
it

(�⇤,�⇤
i

, f⇤
t

)X
it

X 0
it

�⇤
ih

!

,

so

�

�

�

�

�

T

X

t=1

S��

0
fth

⇤ (f̂
th

� f̌0t,h)

�

�

�

�

�



v

u

u

t

1

T

T

X

t=1

kf̂
t

� f̌0tk2 ·
1

NT

N

X

i=1

T

X

t=1

[l(3)
it

(�⇤,�⇤
i

, f⇤
t

)]2 · kX
it

k4 · k�⇤
i

k2,

which is O
P

(1/
p
Th4). So Result 5 follows.
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Result 6:
P

N

i=1

P

r

h=1 S
�f

0
�ih

⇤ (�̂
ih

� �̌0,ih)(F̂ � F̌0) = o
P

(k⇤̂� ⇤̌0k/
p
N).

Write:

N

X

i=1

r

X

h=1

S�f

0
�ih

⇤ (�̂
ih

��̌0i,h)(F̂�F̌0) =
1

NT

N

X

i=1

T

X

t=1

[l(2)
it

(�⇤,�⇤
i

, f⇤
t

)X
it

�l
(3)
it

(�⇤,�⇤
i

, f⇤
t

)X
it

(�⇤
i

)0f⇤
t

](�̂
i

��̌0i)
0(f̂

t

�f̌0t).

Thus, by the Cauchy-Schwarz inequality, Lemma 2 and Lemma S1

�

�

�

�

�

N

X

i=1

r

X

h=1

S�f

0
�ih

⇤ (�̂
ih

� �̌0i,h)(F̂ � F̌0)

�

�

�

�

�

 k⇤̂� ⇤̌0k/
p
N ·

v

u

u

t

1

T

T

X

t=1

kf̂
t

� f̌0tk2 ·
1

NT

N

X

i=1

T

X

t=1

�

�

�

[l(2)
it

(�⇤,�⇤
i

, f⇤
t

)X
it

� l
(3)
it

(�⇤,�⇤
i

, f⇤
t

)X
it

(�⇤
i

)0f⇤
t

]
�

�

�

2

= k⇤̂� ⇤̌0k/
p
N ·O

P

(1/
p
Nh4),

so the result follows by Assumption 3(vii).

Result 7:
P

N

t=T

P

r

h=1 S
��

0
fth

⇤ (f̂
th

� f̌0t,h)(⇤̂� ⇤̌0) = o
P

(k⇤̂� ⇤̌0k/
p
N).

The proof is similar to the proof the Result 6.

Result 8:
P

N

i=1

P

r

h=1 S
��

0
�ih

⇤ (�̂
ih

� �̌0,ih)(⇤̂� ⇤̌0) = o
P

(k⇤̂� ⇤̌0k/
p
N).

Note that for each h  r, we have

N

X

i=1

S��

0
�ih

⇤ (�̂
ih

� �̌0i,h)(⇤̂� ⇤̌0) = � 1

NT

N

X

i=1

T

X

t=1

l
(3)
it

(�⇤,�⇤
i

, f⇤
t

)X
it

(f⇤
t

)0f⇤
th

(�̂
ih

� �̌0i,h)(�̂i

� �̌0i),

by Lemma 3

�

�

�

�

�

N

X

i=1

S��

0
�ih

⇤ (�̂
ih

��̌0i,h)(⇤̂�⇤̌0)

�

�

�

�

�

 max
1N

k�̂
i

��̌0ik·
1

N

N

X

i=1

 

k�̂
i

� �̌0ik ·

�

�

�

�

�

1

T

T

X

t=1

l
(3)
it

(�⇤,�⇤
i

, f⇤
t

)X
it

f⇤
t

f⇤
th

�

�

�

�

�

!

 o
P

(1) · k⇤̂� ⇤̌0k/
p
N ·

v

u

u

t

1

N

N

X

i=1

�

�

�

�

�

1

T

T

X

t=1

l
(3)
it

(�⇤,�⇤
i

, f⇤
t

)X
it

(f⇤
t

)0f⇤
th

�

�

�

�

�

2

.

Thus, it remains to show that

1

N

N

X

i=1

�

�

�

�

�

1

T

T

X

t=1

l
(3)
it

(�⇤,�⇤
i

, f⇤
t

)X
it

(f⇤
t

)0f⇤
th

�

�

�

�

�

2

= O
P

(1). (A.23)
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First, write

l
(3)
it

(�⇤,�⇤
i

, f⇤
t

)X
it

(f⇤
t

)0f⇤
th

= l
(3)
it

(�⇤,�⇤
i

, f⇤
t

)X
it

(f̃0t)
0f̃0,th + l

(3)
it

(�⇤,�⇤
i

, f⇤
t

)X
it

⇣

(f⇤
t

)0f⇤
th

� (f̃0t)
0f̃0,th

⌘

= l
(3)
it

(�⇤,�⇤
i

, f̃0t)Xit

(f̃0t)
0f̃0,th � l

(4)
it

(�⇤,�⇤
i

, f⇤⇤
t

)(�⇤
i

)0(f⇤
t

� f̃0t)Xit

(f̃0t)
0f̃0,th

+ l
(3)
it

(�⇤,�⇤
i

, f⇤
t

)X
it

⇣

(f⇤
t

)0f⇤
th

� (f̃0t)
0f̃0,th

⌘

,

thus, by the Cauchy-Schwarz inequality,

1

N

N

X

i=1

�

�

�

�

�

1

T

T

X

t=1

l
(3)
it

(�⇤,�⇤
i

, f⇤
t

)X
it

(f⇤
t

)0f⇤
th

�

�

�

�

�

2

 1

N

N

X

i=1

�

�

�

�

�

1

T

T

X

t=1

l
(3)
it

(�⇤,�⇤
i

, f̃0t)Xit

(f̃0t)
0f̃0,th

�

�

�

�

�

2

+
1

T

T

X

t=1

k(f⇤
t

)0f⇤
th

� (f̃0t)
0f̃0,thk2 ·

1

NT

N

X

i=1

T

X

t=1

kl(3)
it

(�⇤,�⇤
i

, f⇤
t

)X
it

k2

+
1

T

T

X

t=1

kf⇤
t

� f̃0tk2 ·
1

NT

N

X

i=1

T

X

t=1

kl(4)
it

(�⇤,�⇤
i

, f⇤⇤
t

)(�⇤
i

)X
it

(f̃0t)
0f̃0,thk2.

The last two terms on the right-hand side of the above inequality are both o
P

(1) by Lemma 2 and

Lemma S1. For the first term on the right-hand side of the above inequality, by Assumption 3(iii), with

probability approaching 1,

1

N

N

X

i=1

�

�

�

�

�

1

T

T

X

t=1

l
(3)
it

(�⇤,�⇤
i

, f̃0t)Xit

(f̃0t)
0f̃0,th

�

�

�

�

�

2

 max
i,t

�

�E[g
it

(�,�
i

)|
�=�

⇤
,�i=�

⇤
i
]
�

�

2
+

1

N

N

X

i=1

sup
✓i2B�,i

�

�

�

�

�

1

T

T

X

t=1

(g
it

(�,�
i

)� E[g
it

(�,�
i

)])

�

�

�

�

�

2

,

where g
it

(�,�
i

) = l
(3)
it

(�,�
i

, f̃0t)Xit

(f̃0t)0f̃0,th. The first term on the right-hand side of the above inequal-

ity is O(1) by Lemma S1. Thus, to prove (A.23), it su�ces to show that

max
1iN

E

2

4 sup
✓i2B�,i

�

�

�

�

�

1

T

T

X

t=1

(g
it

(�,�
i

)� E[g
it

(�,�
i

)])

�

�

�

�

�

2
3

5 = O(1).

Similar to the proof of Result 1, for any ✏ > 0, let ✓(1)
i

, . . . , ✓
(L)
i

be a maximal set of points in B
�,i

such

that k✓(j)
i

� ✓
(l)
i

k � ✏ for any j 6= l. Thus, for some constants C1, C2 > 0, we have

E

2

4 sup
✓i2B�,i

�

�

�

�

�

1

T

T

X

t=1

(g
it

(�,�
i

)� E[g
it

(�,�
i

)])

�

�

�

�

�

2
3

5

 C1
1

Th4
E

2

4 max
1jL

�

�

�

�

�

1p
T

T

X

t=1

h2
⇣

g
it

(�(j),�
(j)
i

)� E[g
it

(�(j),�
(j)
i

)]
⌘

�

�

�

�

�

2
3

5+C2✏
2/h6 = O

✓

L1/J

Th4
+ ✏2/h6

◆
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for any J � 1. Choosing ✏ = 1/
p
T and J > (p+ r)/(4c), then we have

O

✓

L1/J

Th4
+ ✏2/h6

◆

= O

✓

T (p+r)/(2J)

Th4

◆

+O

✓

1

Th6

◆

= o

✓

T 2c

Th4

◆

+ o(1) = o(1).

This completes the proof of Result 8.

Result 9:
P

T

t=1

P

r

h=1 S
�f

0
fth

⇤ (f̂
th

� f̌0t,h)(F̂ � F̌0) = o
P

(1/
p
T ).

For each h  r, we have

T

X

t=1

S�f

0
fth

⇤ (f̂
th

� f̌0t,h)(F̂ � F̌0) = � 1

NT

N

X

i=1

T

X

t=1

l
(3)
it

(�⇤,�⇤
i

, f⇤
t

)X
it

(�⇤
i

)0�⇤
ih

(f̂
th

� f̌0t,h)(f̂t � f̌0t),

so by Assumption 3(iii), Lemma 2 and Lemma S1,

�

�

�

�

�

T

X

t=1

S�f

0
fth

⇤ (f̂
th

� f̌0t,h)(F̂ � F̌0)

�

�

�

�

�

 1

T

T

X

t=1

 

kf̂
t

� f̌0tk2 ·

�

�

�

�

�

1

N

N

X

i=1

l
(3)
it

(�⇤,�⇤
i

, f⇤
t

)X
it

(�⇤
i

)0�⇤
ih

�

�

�

�

�

!

. 1

h2
· 1
T

T

X

t=1

kf̂
t

� f̌0tk2 = O
P

⇣

1/Nh2
⌘

.

Then the result follows since O
P

�

1/Nh2
�

= O
P

⇣

1p
N ·

p
Nh

2

⌘

and Assumption 3(vii) implies that
p
Nh2 !

1.

Step 7: It follows from (A.15) to (A.21) that:

�(�̂ � �0) = o
P

(k�̂ � �0k) + o
P

(k⇤̂� ⇤̌0k/
p
N) + o

P

(1/
p
T ),

then the desired result follows from the assumption that � is positive definite and the fact that k⇤̂ �
⇤̌0k/

p
N  max

i

k�̂
i

� �̌0ik.

Lemma 5. Under Assumptions 1 to 4, there exists 0 < ⌫ < 1/6 � c (where c is defined in Assumption

3(vii)) such that max1iN

k�̂
i

� �̌0ik = O
P

(1/T 1/2�⌫) .
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Proof. Expanding the first order condition: T�1
P

T

t=1 l
(1)
it

(�̂, �̂
i

, f̂
t

)f̂
t

= 0 gives:

⌦̃
i

(�̂
i

��̌0i) =
1

T

T

X

t=1
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f̌0t+
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T
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1

T

T
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t

[X 0
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(�̂��0)]�
 

⌦̃
i

� 1

T

T

X
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l
(2)
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f̌0tf̌
0
0t

!

(�̂
i

��̌0i)
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1

T

T
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t=1
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t

� f̌0t)f̌
0
0t

!

(�̂
i
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1

T

T
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t
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t

� f̌0t)
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!

�̌0i + 0.5
1

T

T

X
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2

+
1
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l
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t

)0(�̂
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1

T

T

X
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l
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+
1
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t
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T
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·[(f⇤
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)0(�̂
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2.

Step 1: Let M be a generic bounded constant. By Lemma S1,

max
1iN
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 max
1iN

�
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f0t
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�

· kĤk+O(hq).

Since, {l(1)
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f0t} is uniformly bounded, by the mixing property of u
it

and Theorem 3 of Yoshihara (1978),
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since O(hq) = o(T�1) by Assumption 3(vii).

Step 2: By Lemma S1, l(1)
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Step 3: Note that:
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First, by Assumption 3(iii), Lemma 2 and Lemma S1, we have
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Step 4: By the definition of ⌦̃
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, we have
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Step 5: By Lemma 2, Lemma S1 and Assumption 3(vii) we have
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Step 6: Note that
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The second term on the right-hand side of the above inequality is O
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Step 7: By the consistency of �̂,
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It then follows from Lemma 2 and Lemma S1 that
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The first term on the right-hand side of the above inequality is O(1) by Lemma S1. Next, for each i, let
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Choosing ✏ = 1/
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Step 8: Similar to the proof of Step 7, we can show that
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Step 9: From Lemma 2 and Lemma S1 it follows easily that:
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Finally, since max
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k  kĤ�1k2 · max
i

k⌦�1
i

k = O
P

(1) by Assumption 3 (ii), it follows from
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then the desired result follows from (A.36) and Lemma 4.
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Lemma 6. Under Assumptions 1 to 4,
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Proof. The result follows immediately from the proof of Lemma 5.

From (A.15) and the proof of Lemma 4 we have:
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In the next 5 lemmas, we analyze each term on the right-hand side of (A.38).
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Plugging in the result of Lemma 6, we have
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Step 2: By the Cauchy-Schwarz inequality,
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First, by Theorem 3 of Yoshihara (1978),
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For simplicity, consider the case where p = 1. Then by the mixing property we have
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Similarly, it can be shown that
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Step 3: By the Cauchy-Schwarz inequality and Lemma 5,
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Moreover, similar to the proof of the previous step, we can show that
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because 0.5� 2c� ⌫ > 0.

Step 4: By Lemma S1 and Assumption 3(vii), we can write
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First, by Lemma S1 and the mixing property, we have
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Second, similar to the proof the Lemma A6 of Galvao and Kato (2016), we can show that

Var

 

1

N

N

X

i=1

 

1p
T

T

X

t=1

l
(2)
it

Z
it

f 0
0t

!

⌦�1
i

 

1p
T

T

X

t=1

l̃
(1)
it

f0t

!!

= o(1).

Thus, we have

1

N

N

X

i=1

 

1p
T

T

X

t=1

l
(2)
it

Z
it

f 0
0t

!

⌦�1
i

 

1p
T

T

X

t=1

l̃
(1)
it

f0t

!

= �b1 + o
P

(1),

and the desired result follows from (A.39) to (A.43)

Lemma 8. Under Assumptions 1 to 4,
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Next, by Lemma S1 and Assumption 3(iv), it can be shown that
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This completes the proof.

Lemma 9. Under Assumptions 1 to 4,
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First, by Lemma 5,
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Step 5: Finally, note that by Theorem 3 of Yoshihara (1978),
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Step 4: Similarly, we can show that:
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This completes the proof.

Lemma 11. Under Assumptions 1 to 4,
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Similar to Step 2 of the proof of Lemma 7, we can show that
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because 0.5� ⌫ � 2c > 0. Thus, it follows from (A.51) and (A.52) that
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The proofs of the other results are similar and thus are omitted.

Proof of Theorem 2
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Second, by the mixing property and Theorem 3 of Yoshihara (1978)
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A.4 Proof of Theorem 3
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First, by Theorem 3 of Yoshihara (1978)
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Similar to the proof of Lemma 4, it can be shown that
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Similarly,
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Ẑ
it

� Z
it

�

�

�

. max
i

�

�

�

⌅̃
i

� ⌅̂
i

�

�

�

+max
i

�

�

�

⌦̃�1
i

� ⌦̂�1
i

�

�

�

+max
t

�

�

�

f̂
t

� f̌0t

�

�

�

= O
P

✓

1

T 0.5�⌫h

◆

.

Step 2: Define X
i

= (X
i1, . . . , XiT

)0, and �̂0
i

= (F̂ 0F̂ )�1F̂ 0X
i

. Then we have ê
it

= X
it

� �̂
i

f̂
t

, and

e
it

= X
it

� �
i

f0t = X
it

� �
i
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it

)Ẑ
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it

)� l
(1)
it

�

�

�

/h+max
i,t

�

�

�

Ẑ
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it

� 1

NT

N

X

i=1

T

X

t=1

l
(2)
it

Z
it

�0
0i(H0)

�1 0
0eit

�

�

�

�

�

+

�

�

�

�

�

1

NT

N

X

i=1

T

X

t=1

l
(2)
it

Z
it

�0
0i(H0)

�1 0
0eit �

1

NT

N

X

i=1

T

X

t=1

E[f
it

(0|X
it

)Z
it

�0
0i(H0)

�1 0
0eit]

�

�

�

�

�

.

It is easy to see that the second term on the right-hand side of the above inequality is O
P

(1/
p
NTh2) +

O
P

(hq) = o
P

(1). For the first term, by Lemma 2, Lemma 5 and Lemma 12 we have
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Therefore, we can conclude that d̂1 = d1 + o
P

(1).
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To save space, we only prove the first result. The proof of the second result is similar. Note that
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It is easy to see that the second term on the right-hand side of the above inequality is O
P

(1/
p
NT ). For
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the first term, we have
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Combining the all above results gives that d̂2,k = d2,k + o
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(1) for all k  r. This completes the proof of

Theorem 3.

A.5 Proof of Theorem 4

Proof. First, similar to the proof of Theorem 3, we have
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Third, similar to the proof of Theorem 3, we have
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kŴ
it

�W ⇤
it

k+O
P

(L/
p
NT ) = O

P

✓

L

T 0.5�⌫h2

◆

= o
P

(1).

By the proof of Theorem 2, it follows that V̂2 = V2 + o
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(1).

Finally, we can show that V̂1 = V1 + o
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(1) in a similar way. This completes the proof.

B Some Auxiliary Lemmas

Lemma S1. Let M be a generic bounded constant. Under Assumptions 1 to 3, it can be shown that
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Proof. The proof of the above results follow from standard calculations of nonparametric kernel estima-

tors, and can be found in Horowitz (1998) or Galvao and Kato (2016). Thus, it is omitted.

46



References

Galvao, A. F. and K. Kato (2016). Smoothed quantile regression for panel data. Journal of Economet-

rics 193 (1), 92–112.

Horowitz, J. L. (1998). Bootstrap methods for median regression models. Econometrica, 1327–1351.

van der Vaart, A. and J. Wellner (1996). Weak Convergence and Empirical Processes: With Applications

to Statistics. Springer Science & Business Media.

Yoshihara, K.-I. (1978). Moment inequalities for mixing sequences. Kodai Mathematical Journal 1 (2),
316–328.

47


	03 ET 2021 LiangChen.pdf
	Introduction
	The Model and The Estimator
	The Model
	The Two-Step Estimator

	Asymptotic Results
	The Number of Factors
	Consistency
	Asymptotic Distribution
	Some Special Cases

	Bias Correction
	Analytical Bias Correction
	Jackknife Bias Correction

	Estimating the Variance
	The Choice of Tuning Parameters in Practice

	Finite Sample Performance
	The Number of Factors
	Static Models
	Dynamic Models

	Conclusions




