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1. Introduction 

In the past forty years, the Rosen-Roback hedonic model (Rosen, 1979; Roback, 1982) has 

become an important tool for valuing non-market amenities. An underlying assumption of the 

Rosen-Roback hedonic framework is that households have complete information about the level 

of amenities across space. On the basis of this assumption, households sort across locations 

reflecting the tradeoff between income, housing costs and amenities. Therefore, the hedonic price 

measured by geographical differences in income and housing prices reflects the implicit value of 

amenities such as environmental quality. 

However, this complete information assumption often fails to hold. In many highly polluted 

developing countries, real-time environmental information is either blocked by policy makers or 

is never even gathered.  Even in some developed countries, pollution monitoring networks are 

sparse, failing to cover a large fraction of population. Information constraints could prevent 

amenity-induced spatial sorting, and create a wedge between the estimated hedonic price and the 

real implicit value of pollution abatement. As a consequence, researchers may recover biased 

estimates of individuals’ Marginal Willingnesses to Pay (MWTP) for improvement to 

environmental quality when relying on observed residential decisions.  

In this paper, we relax the assumption of complete information in the Rosen-Roback model.  

We theoretically analyze the role of information in non-market valuation in a simple equilibrium 

framework, and then leverage the unexpected disclosure of PM2.5 data in China to evaluate the 

causal association between information availability and the hedonic price of air quality.  

We first establish a simple variant of Rosen-Roback model incorporating the public access to 

information. At its heart is the idea that people maximize utility via their residential sorting 

decisions by trading off income, housing costs, and their perceived level of a location specific 

amenity. In equilibrium under complete information, income and house price gradients will 

capture the implicit value of amenities like air quality. However, in equilibrium under incomplete 

information, there will exist a wedge between regional differences in income and housing prices 

and the true value of the amenity. Information constraints bias hedonic price estimates, and the 

magnitude and the direction of that bias will depend upon the magnitude and the direction of 

decision-makers’ perception biases. Our adaptation of the Rosen-Roback model quantifies the 

implications of information failure on hedonic values. 
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China provides an ideal laboratory to test the predictions of our modified Rosen-Roback 

model. Despite being exposed to hazardous levels of pollution, Chinese citizens used to have 

limited or no access to information about local air quality. In 2013, China launched a nation-wide, 

real-time air quality monitoring and disclosure program, incorporating PM2.5 concentration into 

the air quality measure for the first time. The information shock triggered the spatial sorting of 

people in China (Khanna, Liang, Song and Mobarak, 2021) and allows us to quantify changes in 

the compensating differential for pollution driven by the provision of pollution information.  

We derive a wage hedonic equation from our equilibrium framework with information 

constraints, in which the outcome variable is income adjusted by local housing prices.1 Thus, our 

hedonic price measure reflects spatial differences in both income and housing costs. Our primary 

variable of interest is the interaction of an information disclosure indicator for the level of pollution, 

which represents the wedge between the revealed hedonic price (under incomplete information) 

and implicit value of clean air in the Rosen-Roback Framework.  

 We leverage the staggered publication of the real time PM2.5 data across three waves of 

Chinese cities. The central government determined the sequence of staggered rollout according to 

the location and the tier of cities and several pre-determined designations.  Since these conditions 

were established prior to the information program, controlling for city-fixed effects allows us to 

account for unobservables that might affect the sequence of the data rollout.  

We isolate exogenous fluctuations in pollution, leveraging variation in wind direction 

combined with the historical placement of distant thermal power plants (as in Freeman et al., 2019), 

and a regression discontinuity around the Huai river (as in Chen et al., 2013).  We estimate the 

interaction between the information disclosure indicator and the level of pollution, controlling 

simultaneously for the two independent components of the interaction term. Adding the 

information disclosure indicator could account for remaining unobservables that may be correlated 

with the program, and controlling for the level of pollution could disentangle remaining unknown 

confounding factors that our instruments fail to address.  

In order to measure air quality before and after China’s disclosure of official PM2.5 data, we 

employ satellite-based PM2.5 data measured using the Global Annual PM2.5 Grids derived by Van 

                                                             
1 In our paper, we consider the geographical variation in both nominal income and housing prices driven by amenity differences. 

Therefore, throughout our paper, we define the compensating differential as the additional amount of real income (nominal income 

deflated by the housing price) that an individual must be offered in order to motivate them to accept a reduction in the level of 

amenity. 
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Donkelaar et al. (2016). The data have a high grid cell resolution of 0.01 degree, and can provide 

a comprehensive and reliable measurement of air quality for all Chinese cities. The correlation 

between satellite-based PM2.5 data and monitor-based PM2.5 data in China is up to 0.8 (Freeman, 

Liang, Song, Timmins, 2019). 

We find salient differences in the compensating differential for PM2.5 pollution under 

heterogenous scenarios of information availability. The disclosure of pollution data significantly 

increases the hedonic price of avoiding PM2.5 exposure in China. Driven by the unexpected 

dissemination of information, a median individual’s MWTP for a one-unit reduction in PM2.5 

concentration raises from 169 Chinese Yuan under incomplete information to 337 Chinese Yuan 

under complete information.  This increase represents approximately 0.84% of the median 

individual’s income. Our research confirms a news report saying that firms in China pay 

substantial ‘pollution premiums’ to attract workers after pollution information was widely 

disseminated (New York Times, 2015). 

Our results indicate that information constraints lead to a wedge between the revealed hedonic 

price and the true implicit value of clean air; the magnitude of the wedge accounts for as large as 

about 17.5% of the implicit value. These findings verify the predictions of our theoretical 

framework and demonstrate the importance of incorporating access to information in the Rosen-

Roback hedonic model. As Chinese people tend to underestimate the level of air pollution before 

the data disclosure (Barwick et al., 2019), the downward perception bias leads to a downward 

estimation bias in hedonic valuation. Overlooking the role of information would severely 

understate the economic value of amenities and undermine benefit-cost analysis for important 

public policies. 

Our primary contribution lies in the incorporation of public access to information into the 

Rosen-Roback hedonic theory and the analysis of the implications of information constraints on 

the applicability of the hedonic methodology. Under incomplete information, people would 

maximize their perceived utility based on their perceived level of amenities, which they would 

trade-off against earnings and housing prices across space. Perception bias would distort the 

relationship between the real implicit value and the revealed hedonic price of amenities, biasing 

MWTP estimates. We are among the first to analyze the role of information in the Rosen-Roback 
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framework, and to both theoretically and empirically demonstrate how information failure affects 

the foundation of revealed-preference framework.2 

We also speak to the literature in applied economics that employs the hedonic approach to 

measure compensating differentials. Environmental and urban economists calculate the economic 

value of (dis)amenities based on revealed compensating differentials (Blomquist et al. 1988), and 

labor economists use compensating differentials to measure the economic value of job attributes 

(Hersch, 1998) and the value of statistical life (Viscusi, 1993; Aldy and Taylor, 2019). All these 

papers implicitly assume that people have complete information on these variables, and we are 

unaware of any paper evaluating the association between information integrity and revealed 

compensating differentials. Against this backdrop, we analyze how the access to information 

determines the validity of the compensating differential estimates. 

Our work sheds light on the measure of city quality of life (QOL). A large body of literature 

measures the QOL in the U.S, based on differentials in income and housing costs across cities 

(Rosen, 1979; Roback, 1982; Kahn, 1995; Albouy, 2008). However, econometricians cannot 

simply borrow the same methodology to estimate the QOL in developing counties, where official 

data on important city attributes – e.g., environmental pollution or the crime rate – are not available 

or may be manipulated. Incomplete information would differentiate the ranking of estimated city 

QOL from true ranking of city livability. 

The empirical part of our work builds on contemporaneous works on willingness to pay for 

clean air (Freeman, Liang, Song, Timmins, 2019; Ito and Zhang, 2020) and the economic effects 

of information disclosure (Barwick et al., 2019; Wang and Zhang, 2021) in China.3 Barwick et al. 

(2019) conduct pioneering research on the effects of pollution information on a wide range of 

avoidance behaviors and health outcomes. They use AOD concentration as the pollution measure 

and also explore the exogeneous shock of PM2.5 data disclosure in China. In contrast, our 

empirical application uses satellite PM2.5 data that are highly consistent with the official PM2.5 

measure and are available both before and after the release of official data, and analyze the how 

                                                             
2 An alternative widely used revealed-preference methodology is the general equilibrium sorting model. Although we focus on how 

information failure biases the MWTP estimates from the hedonic model, our theoretical analysis indicates that incomplete 

information also undermines the estimation of the MWTP via equilibrium soring model. 
3 Freeman, Liang, Song and Timmins (2019) estimate the willingness to pay for clean air based on the spatial variation in income 

and housing prices. Ito and Zhang (2020) examine air purifier transactions to recover household preference for the reduction in 

indoor PM10 concentration. Wang and Zhang (2021) study the effects of information disclosure on face mask consumption in 

China. 
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restrictions on the access to PM2.5 information biases the hedonic price of avoiding PM2.5 

exposure estimated by regional differences in income and housing prices. 

The remainder of this paper proceeds as follows. Section 2 lays out our adaption of the Rosen-

Roback model to consider information constraints. Section 3 discusses the natural experiment of 

data disclosure in China, and Section 4 describes the data. Section 5 presents estimation techniques 

used to test our theoretical predictions and Section 6 reports estimation results. Section 7 concludes. 

 

2. A Rosen-Roback Framework with Incomplete Information  

We relax the underlying assumption of complete information and build a variant of Rosen-

Roback model incorporating the access to amenity information. Under complete information, 

people maximize their utility via geographical sorting, arbitraging location specific amenities,  

income, and housing costs. Thus, in equilibrium, spatial differences in income and housing prices 

reflect the implicit value of the amenity.  However, under incomplete information, the public tends 

to misinterpret the level of the amenity, distorting the arbitrage process. As a result, incomplete 

information leads to a wedge between income and housing price differentials and the true value of 

the amenity, biasing hedonic estimates. 

  

2.1 The Hedonic Price under Complete Information 

In this section, we develop a simple version of the Rosen-Roback model with complete 

information to use as a starting point.  Each individual’s residential location choice set is 

characterized by a location-specific amenity (say, air quality). When complete information on the 

amenity is available, individual 𝑖 chooses residential city 𝑗 to maximize its indirect utility: 

                                                        𝑉𝑖,𝑗 = 𝐼𝑖,𝑗𝜌𝑗
−𝜃𝑋𝑗

𝛾
                                                              (1) 

where  𝐼𝑖,𝑗 is the nominal income that individual 𝑖 could earn in city 𝑗, and  𝜌𝑗   and 𝑋𝑗 represent the 

unit price of housing services and the amount of the amenity in city 𝑗, respectively. 𝜃 is the fraction 

of housing expenditure in income, and 𝛾 measures preferences for the components of 𝑋𝑗.  

Under complete information, individual 𝑖 makes a tradeoff between amenities, income and 

housing costs via spatial sorting, choosing the optimal level of amenity to maximize their utility. 

The core of the hedonic framework requires that, in equilibrium, identical individuals must be 

indifferent among locations; if not, movements would occur to arbitrage away utility differences. 
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Holding indirect utility as fixed at some common level 𝑉̅, we can take the total derivative with 

respect to the level of amenity: 

                                                 
 𝜕𝑉𝑖,𝑗

𝜕𝑋𝑗
= 𝑉𝐼𝑗

∗
𝜕𝐼𝑖,𝑗

𝜕𝑋𝑗
+ 𝑉𝜌𝑗

∗
𝜕𝜌𝑗

𝜕𝑋𝑗
+ 𝑉𝑋𝑗

= 0                                        (2) 

Using Roy’s identity, the optimum consumption of housing services for individual 𝑖 in city 𝑗 is: 

                                                             𝐻𝑖,𝑗
∗ = −

𝑉𝜌𝑗

𝑉𝐼𝑖,𝑗

=
𝜃𝐼𝑖,𝑗

 𝜌𝑗 
                                                           (3) 

Substituting equation (3) into (2), the marginal willingness to pay for 𝑋  with complete 

information (𝑀𝑊𝑇𝑃𝑋
𝐶 ) for changes in the amenity 𝑋𝑗  can be written as the marginal rate of 

substitution between income and the amenity:  

                                    𝑀𝑊𝑇𝑃𝑋
𝐶 =

𝑉𝑋𝑗

𝑉𝐼𝑖,𝑗

= (
𝜕 𝑙𝑜𝑔 𝐼𝑖,𝑗

𝜕𝑋𝑗
− 𝜃

𝜕 𝑙𝑜𝑔  𝜌𝑗

𝜕𝑋𝑗
) × 𝐼𝑖,𝑗 = 𝛾 (

𝐼𝑖,𝑗

𝑋𝑗
)                            (4) 

Equation (4) is widely used for non-market valuation in literature. In equilibrium under complete 

information, the MWTP for 𝑋𝑗  is determined by the preference parameter  𝛾 , and can be fully 

captured by regional differences in income and housing prices. Therefore, econometricians can 

rely on income and housing price gradient to calculate the implicit value of the amenity.  

 

2.2 The Hedonic Price under Incomplete Information 

When people do not have full access to information about amenities, the level of the location-

specific amenity perceived by individuals is 𝑋𝑗̃: 

                                                                       𝑋𝑗̃ = 𝑋𝑗
𝜆                                                                     (3) 

where 𝜆 measures the magnitude and the direction of perceptual bias. If people tend to understate 

the actual level of the amenity,  𝜆 < 1; if they overstate the level of the amenity, 𝜆 > 1. Individual 

𝑖 will then sort across locations in order to maximize their perceived indirect utility: 

                                                                 𝑉𝑖,𝑗̃ = 𝐼𝑖,𝑗𝜌𝑗
𝜃𝑋𝑗

−𝜆𝛾
                                                           (4) 

Returning to sorting equilibrium and taking the total derivative of perceived indirect utility with 

respect to the level of amenity yields: 

 𝜕𝑉̃𝑖,𝑗

𝜕𝑋𝑗
= 𝑉̃𝐼𝑗

∗
𝜕𝐼𝑖,𝑗

𝜕𝑋𝑗
+ 𝑉̃𝜌𝑗

∗
𝜕𝜌𝑗

𝜕𝑋𝑗
+ 𝑉̃𝑋𝑗

= 0                                             (5) 

The optimal consumption of housing services conditional upon choosing a particular city remains 

the same as equation (3). Thus, the marginal willingness to pay for 𝑋𝑗  under incomplete 

information (𝑀𝑊𝑇𝑃𝑋
𝐼 ) is: 
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𝑀𝑊𝑇𝑃𝑋
𝐼 =

𝑉̃𝑋𝑗

𝑉̃𝐼𝑗

= (
𝜕 𝑙𝑜𝑔 𝐼𝑖,𝑗

𝜕𝑋𝑗
− 𝜃

𝜕 𝑙𝑜𝑔  𝜌𝑗

𝜕𝑋𝑗
) × 𝐼𝑖,𝑗 = 𝜆𝛾 (

𝐼𝑖,𝑗

𝑋𝑗
)                          (7) 

MWTP differs between scenarios of complete and incomplete information: 

                   𝑀𝑊𝑇𝑃𝑋
𝐼 = 𝜆𝛾 (

𝐼𝑖,𝑗

𝑋𝑗
) ≠ 𝑀𝑊𝑇𝑃𝑋

𝐶 = 𝛾 (
𝐼𝑖,𝑗

𝑋𝑗
)                                    (8) 

and 𝑀𝑊𝑇𝑃𝑋
𝐼   will not represent the actual preference for 𝑋𝑗 due to the perception bias captured by 

𝜆.  The researcher cannot therefore rely on spatial differences in income and housing prices to 

quantify the implicit value of  𝑋𝑗.  Information constraints could explain the unreasonable low 

MWTP for environmental quality improvement in many highly polluted developing countries (an 

issue raised by Greenstone and Jack (2015))4. 

 

3. Natural Experiment in China  

China provides a unique setting in which to study the impacts of information constraints on 

hedonic valuation. Despite the hazardous level of exposure to pollution, Chinese citizens used to 

have limited or no access to real time information about local air quality. In 2000, China started to 

publish air quality data, including an Air Pollution Index (API) along with specific information on 

PM10,5 but only did so for 42 cities. The number of cities in which this information was available 

increased gradually to 120 in 2012. However, official API and PM10 data were vulnerable to the 

manipulation of local government prior to 2012 due to weak monitoring and enforcement of the 

central government (Chen et al., 2012; Ghanem and Zhang, 2014). 

While air pollution information prior to 2012 focused on SO2, NO2 and PM10, fine 

particulate pollution has been the most important source of air pollution in China. Fine particles 

(PM2.5, diameter < 2.5μm) are much more hazardous than larger particles with respect to mortality, 

cardiovascular and respiratory endpoints, and PM2.5 is considered to be the best indicator of the 

level of health risk resulting from air pollution by the WHO. 6  However, real time PM2.5 

information was not included in the calculation of API.  As they had little or no information about 

this important determinant of air quality, Chinese people used to regularly understate the level of 

                                                             
4 Roback (1982) points out that hedonic prices of different amenities can be used as weights in the calculation of a city quality of 

life (QOL) ranking. Our analysis suggests that information constraints will also lead to a wedge between the estimated and true 

QOL rankings. 
5 API is defined as the maximum value of three pollutant indexes, including SO2, NO2, and PM10. 
6 See WHO reports: http://www.who.int/mediacentre/news/releases/2014/air-quality/en/ 
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atmospheric contamination, and would often mistake low visibility on polluted days caused by 

severe PM2.5 pollution for fog rather than smog (Barwick et al., 2019). 

In 2013, China launched a nation-wide, real-time air quality monitoring and disclosure 

program.  The program published a real-time Air Quality Index (AQI) and information about 

PM2.5,7 incorporating PM2.5 concentration into air quality measures for the first time in China. 

To address the issue with the previous reporting system, the program established a monitoring 

network delivering real-time air quality data to the central government, effectively enforcing 

pollution monitoring and significantly improving data accuracy.       

The nation-wide program was conducted in three waves on the basis of pre-determined 

conditions, including the location (e.g. Yangtze River Delta, Pearl River Delta), the city tier (e.g. 

provincial-level cities), and pre-determined designations (e.g. national environmental protection 

exemplary cities designated prior to the program).8  In the first wave, 74 major Chinese cities 

released real-time data on PM2.5 and other air pollutants by December, 2012. The second wave 

added 116 cities by October 31, 2013, and the remaining 177 cities joined the program by 

November 20, 2014 in the final wave. The information on real time PM2.5 concentration has been 

available to all Chinese cities by 2015.   

The program published both hourly and daily PM2.5 data in real time on the website of the 

Ministry of Environmental Protection of China (MEP), and mass media was encouraged to 

disseminate the data. The sudden disclosure and dissemination of real time air quality data 

dramatically improved the public access to local pollution information and dramatically increased 

public awareness of the health costs of pollution exposure. The unexpected data disclosure strongly 

affected the avoidance behavior of Chinese citizens. As illustrated in Figure A1, the transaction of 

indoor air filtration increases sharply in response to the information shock. 

 Khanna, Liang, Mobarak and Song (2021) document that people tend to sort from polluted 

to clean cities in China, and the PM2.5 data disclosure significantly enhanced the migration 

response to air pollution. The strength of the Rosen-Roback hedonic framework lies in the use of 

income and housing price differentials across space driven by amenity-induced sorting. Therefore, 

the information disclosure should impact the hedonic price of an air quality improvement measured 

                                                             
7 Since 2013, China started to release real time data on six major air pollutants, including PM2.5, P10, O3, CO, NO2 and SO2. The 

AQI is an overall index of these major air pollutants. 
8 See the Implementation Plan for the First Phase Monitoring of the New Air Quality Standards, the Implementation Plan for the 

Second Phase Monitoring of the New Air Quality Standards and the Implementation Plan for the Third Phase Monitoring of the 

New Air Quality Standards released by the Ministry of Environmental Protection of China (MEP). 
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by the Rosen-Roback framework. Figure 1a shows that there was no detectable relationship 

between real income (i.e., nominal income adjusted by housing costs, defined formally in Section 

5) and the amount of PM2.5 across space when PM2.5 data were not available to the public. 

However, as illustrated in Figure 1b, we see a clear positive association between PM2.5 

concentration and real income after the publication of real-time PM2.5 data. The positive 

compensating differential for PM2.5 exposure after the data disclosure is in accordance with the 

spirit of Rosen-Roback theory. 

 

4. Data 

4.1 Air Quality Data 

We use satellite-derived PM2.5 data, covering periods before and after China’s disclosure of 

official PM2.5 data. City-level annual PM2.5 concentrations are measured using the Global 

Annual PM2.5 Grids derived from satellite data by Van Donkelaar et al. (2016).9 The raster grids 

of this ground calibrated PM2.5 data have a high grid cell resolution of 0.01 degree. This yields a 

comprehensive and reliable measurement of air quality for a wide range of cities in China, covering 

all the prefecture, sub-provincial and provincial cities.  Figure A2 shows that our satellite-based 

measure of PM2.5 is consistent with the official measure of PM2.5 released by the MEP in China. 

The correlation between satellite PM2.5 data and monitor-based PM2.5 data in China is up to 0.8 

(Freeman, Liang, Song Timmins, 2020). 

 

4.2  Income and Housing Price Data 

Income and housing price data come from China Labor-force Dynamics Survey (CLDS). 

CLDS is a national social survey, covering information of around 21,000 individuals in about 

14,000 households across 29 provinces of China. A probability-proportional-to-size sampling (PPS) 

based on population size and administrative units is adopted to ensure the national representatives 

of the survey. As a result, the distribution of sample size across cities in CLDS is consistent with 

the geographic distribution of population in China.  

The data not only record very detailed information of housing prices and housing conditions, 

but also contain a wide range of demographic and social economic characteristics of individuals, 

                                                             
9 Van Donkelaar et al. (2016) estimate ground-level PM2.5 by combining Aerosol Optical Depth (AOD) retrievals from the NASA 

MODIS, MISR, and SeaWiFS, which are subsequently calibrated to global ground-based observations of PM2.5 using 

Geographically Weighted Regression (GWR). 
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including age, gender, education level, residential city, employment status, hukou type 

(rural/urban), and income. We restrict our attention to the working population with positive income. 

On average, wage income accounts for 97.3% of individual income in our sample. As housing 

attributes and ownership may confound the location-specific housing price measure, we follow 

Bayer et al. (2007, 2009) to use micro housing information to compute the city-specific housing 

price, regardless of housing attributes and ownership10. 

CLDS is conducted in three waves in 2012, 2014 and 2016, recording information about 

income and housing price one-year prior to the survey. Thus, the data cover periods both before 

and after the publication of official PM2.5 data in China. We combine three waves of the survey, 

and construct individual-level pool cross-section data across 2011, 2013 and 2015 for our empirical 

analysis. 

 

4.3 Inputs into Instrumental Variables and City Controls 

We collect information on large-scale (capacity>1.5 million KW) thermal power plants, and 

their coal consumption from China’s Electric Power Yearbooks and Energy Statistical Yearbooks. 

We supplement this with information on the establishment year of plants, the angle between their 

locations and annual dominant wind direction of each city, and the distance to each city. 

We obtain city characteristics, involving GDP per capita, government expenditure and other 

amenities from the City Statistical Yearbooks and China Urban Construction Statistical Yearbook. 

Weather condition data come from China Meteorological Data Service Center. We collect monthly 

data on weather amenities and convert into corresponding yearly measure. 

 

5. Empirical Specification 

In this section, we empirically test the predictions of our variant of Rosen-Roback theory 

incorporating the role of information. We rearrange equation (4) and (7) in section 2, and the 

MWTP for improvement to a particular amenity 𝑋𝑗 can be estimated as: 

𝑀𝑊𝑇𝑃𝑋 =
𝜕𝐿𝑜𝑔(𝐼𝑖,𝑗/𝜌𝑗

𝜃)

𝜕𝑋𝑗
× 𝐼𝑖,𝑗                                                    (9) 

𝐼𝑖,𝑗/𝜌𝑗
𝜃 measures real income – i.e., housing price adjusted income11. The parameter 𝜃 measures 

                                                             
10 See Appendix B for the detailed procedure to calculate city-specific housing price. 

11 Tombe and Zhu (2019) and Khanna, Liang, Mobarak and Song (2021) use the same specification to measure real income in 



 11 

the fraction of housing expenditure in income and captures the relevance of housing costs in the 

deflation of income in this expression.  Thus, our real income measure represents the spatial 

variation in both nominal income and housing prices, and we use the real income gradient with 

respect to the level of the amenity to calculate the corresponding hedonic price.  

Our theoretical analysis documents that the MWTP estimates differ in scenarios with and 

without the public access to amenity information, so we leverage the natural experiment of 

unexpected PM2.5 data disclosure in China to estimate changes in the hedonic price of air quality 

driven by the information shock. Our empirical specification is as follows: 

 

𝐿𝑜𝑔(𝑅𝑒𝑎𝑙 𝐼𝑛𝑐𝑜𝑚𝑒𝑖𝑗,𝑡) = 𝛽0 + 𝛽1𝑃𝑀2.5𝑗𝑡 × 𝐷𝑖𝑠𝑐𝑙𝑜𝑠𝑢𝑟𝑒𝑗𝑡 + 𝛽2𝑃𝑀2.5𝑗𝑡 + 𝛽3𝐷𝑖𝑠𝑐𝑙𝑜𝑠𝑢𝑟𝑒𝑗𝑡  (10) 

𝛽4𝑍𝑖𝑗 + 𝜉𝑗 + 𝜂𝑅𝑒𝑔𝑖𝑜𝑛,𝑡 + 𝛿 𝑇𝑖𝑒𝑟,𝑡 + 𝜀𝑖𝑗,𝑡 

where 𝑅𝑒𝑎𝑙 𝐼𝑛𝑐𝑜𝑚𝑒𝑖𝑗,𝑡  is the real income received by individual 𝑖  in city 𝑗  and year 𝑡 . 

𝐷𝑖𝑠𝑐𝑙𝑜𝑠𝑢𝑟𝑒𝑗𝑡 is an indicator for whether or not real time PM2.5 data have been published in city 

𝑗  and year 𝑡 , and 𝑃𝑀2.5𝑗𝑡  is the amount of PM2.5 concentration. Our primary independent 

variable of interest is the interaction of the amount of PM2.5 to the information disclosure indicator, 

which represents the wedge between the revealed hedonic price and the implicit value of clean air 

under information constraints.  Our modified Rosen-Roback model documents that the wedge 

depends on people’s perception bias under incomplete information, and the parameter 𝜆 in the 

model measures the direction and the magnitude of that bias. We can directly link equation (10) to 

our model, and 𝜆 = 𝛽0/(𝛽0 + 𝛽1). If the perception parameter 𝜆<1, people understate the level of 

air pollution before the data disclosure. 

The schedule of staggered publication of PM2.5 data depends on tier and location of cities 

and other pre-determined conditions, so we control for city fixed effects 𝜉𝑗, and city tier-by-year 

fixed effects 𝛿 𝑇𝑖𝑒𝑟,𝑡. We also include region-by-year fixed effects 𝜂𝑅𝑒𝑔𝑖𝑜𝑛,𝑡  to account for spatial 

differentiated environmental and economic policies in China12. We use individual-level pooled 

cross-sectional data in 2011, 2013 and 2015 to estimate equation (10). 𝑍𝑖𝑗 are controls, including 

individual demographic characteristics and Dahl correction terms to address the potential issue of 

                                                             
China. 
12 There are seven macro-regions in China: East China, North China, Central China, South China, Southwest China, Northwest 

China and Northeast China. 
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Roy sorting bias (Roy, 1951; Dahl, 2002)13.   

Our specification explores the exogenous changes in the public access to pollution data. The 

central government determined the sequence of staggered data publication according to the tier 

and the location of cities, as well as other pre-determined designations. Since these conditions are 

pre-determined prior to the program, controlling for city-fixed effects along with city tier-by-year 

fixed effects allows us to account for unobservables correlated with the staggered sequence of the 

program. In Table A2, we test whether lagged city attributes can predict the sequence of 

information disclosure across cities controlling for these fixed effects. We fail to find any 

meaningful associations between the unexpected information release and lagged city attributes, 

like population, GDP, energy consumption, pollutants emission and industrial structure. 

        Pollution is likely to be associated with local economic activity, so naïve OLS estimates may 

be biased as a result. To deal with the endogeneity concern, we use two different strategies to 

isolate the causal effect of pollution—an instrumental variable based on how wind direction 

interacts with the placement of distant thermal power plants (as in Freeman et al., 2019), and a 

regression discontinuity around the Huai river (as in Chen et al., 2013). 

 

5.1 Instrument #1: Wind Direction and Coal-Fired Power Plants 

Our first source of plausibly exogenous variation in pollution is based on an insight from 

Freeman, Liang, Song, and Timmins (2019). We quantify the extent to which distant large-scaled 

thermal power plants are located upwind of a given city. The instrument value is penalized if plants 

are not located directly upwind of the city and if it is farther away, using our first-stage equation: 

𝑃𝑀2.5𝑗𝑡 = 𝛾0 + 𝛾1 ∑ (
1

𝛼𝑝𝑡+1
)𝑃

𝑝 (
1

𝑑𝑖𝑠𝑡𝑝𝑗
) 𝐶𝑝𝑡 + 𝜉𝑗 + 𝜂𝑅𝑒𝑔𝑖𝑜𝑛,𝑡 + 𝛿 𝑇𝑖𝑒𝑟,𝑡 + 𝜇𝑗𝑡           (11) 

where 𝛼𝑝𝑡 is the angle between the annual dominant wind direction of city 𝑗 and the plant 𝑝, and 

changes across years, 𝑑𝑖𝑠𝑡𝑝𝑗  denotes the distance from the plant 𝑝  to city  𝑗  , 𝐶𝑝𝑡  is the coal 

consumption of plant 𝑝 in year 𝑡 . We only use large-scale thermal power plants that are located 

                                                             
13A potential issue with the wage hedonic estimation is the Roy sorting bias. Roy sorting refers to the problem that individuals 

respond to idiosyncratic wage draws and are likely to move to a location where that wage draw is good. For example, individuals 

from a particular region could earn unusual high wages in a given place, because their personal abilities have unusual comparative 

advantages specific for working in this place. Thus, other people who looks like these individuals cannot earn same wages if they 

move to the place. We follow the semi-parametric approach proposed by Dahl (2002) to address the Roy sorting bias by adding 

correction terms. See Appendix C for detailed discussions on Roy sorting and the approach of Dahl (2002). Addressing the Roy 

sorting bias also helps us to account for mobility costs faced by migrants; mobility costs may affect wages earned by migrants. 
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more than 50 km from a city, but within a 300km from the city. Figure A3a describes the intuition 

of the instrument. The underlying variation comes from how wind patterns blow air pollutants 

from distant thermal power plants to cities. Both yearly wind direction and the number of power 

plants change overtime. Figure A4 shows that the first stage relationship between the wind 

direction IV and local air pollution is strong, and Table A4 reports that the F-statistics are all greater 

than 10 across different specifications.  

We expect that our instrumental variable is orthogonal to local economic activities. First, wind 

direction is determined by nature, and it is exogenous to local economic activities.  Second, those 

large-scale thermal power plants supply electricity to vast areas of China, including many remote 

regions; many even do not supply electricity at all to their nearby cities, but rather to many remote 

provinces. Further, the setup of large-scale power plants and the allocation of electricity supply 

from them is determined by the central government – it is difficult for local governments to exert 

influence on the siting of large-scale plants and the electricity supply from them.14 Finally, the 

spillover from distant power plants on local economic activity is extremely small, but the pollutants 

emitted from power plants located upwind severely contaminate the local air. 

We examine potential concerns with this instrument in Section 6.2. For instance, the location 

and the coal consumption of power plants tend to be correlated with economic conditions of nearby 

cities, and so we demonstrate robustness to excluding power plants in various distances from cities. 

Our falsification tests further indicate that baseline economic characteristics, population and 

electricity demand do not predict the future placement of plants. Both the public and the 

government’s concern over environmental quality are relatively recent, and we show robustness 

to using only old power plants, such as those built before the establishment of the MEP. Among 

other sensitivity tests, the IV results are strongly robust to excluding populated and politically 

important cities and coal-producing provinces, as well as adding additional controls for electricity 

consumption and economic conditions. 

 

5.2 Instrument #2: The Huai River Regression Discontinuity 

Our second identification strategy relies on an important spatial-differentiated public heating 

policy in China.  Since the 1950s, China established a coal-based free heating system to cities 

north of the Huai River. This policy had long lasting effects, as even today the heating supplies 

                                                             
14 In 2015, large-scale (capacity>1.5 million KW) thermal power plants only accounts for 2.59% of coal-fired plants in China.  
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differ largely between cities on different sides of the river. The large amount of coal burning used 

for centralized heating supply has substantially driven up the level of air pollution in northern cities.  

As shown in Figure A5, there is a sharp increase in PM2.5 concentration just north of the River 

border. Chen et al. (2013) use this spatial policy discontinuity to study the impacts of air pollution 

on life expectancy by comparing cities straddling cross the Huai River.  

Driven by the Action Plan on Air Pollution Prevention released by the State Council of China, 

cities in the north of China started to gradually switch from coal to natural gas for winter heating 

beginning in 2013. Thus, our second plausibly exogenous source of variation in pollution comes 

from the interaction of the long-lasting public heating policy to the recent fuel switching policy. 

The interplay of two polices causes the difference in air quality between the north and the south to 

change over time. We will discuss the Huai River regression discontinuity in detail in section 6.2.4.   

 

5.3 Identification on how Pollution Effects Shift with the Information Shock 

We focus on how the real income-pollution gradient changes in response to the unexpected 

publication of PM2.5 data. Our primary variable of interest is the interaction of an information 

publication indicator with the level of PM2.5, and we control for the two independent components 

of interaction term simultaneously. Including the information dummy accounts for any remaining 

unobservables that may be correlated with the program, and adding the level of pollution accounts 

for unknown confounders that may not be fully accounted for by our instruments.  The validity of 

our identification strategy is therefore based on the assumption that there are no remaining 

unobservables that are systematically correlated with the instruments. In other words, the nature 

of the potential endogeneity concern of our instruments does not change before and after the 

information shock. To examine this assumption, we perform balance tests in Table A3. There are 

no systematic differences in both the level of air pollution and the value of our wind direction IV 

before and after the unexpected disclosure of pollution data. Additionally, the information 

disclosure does not have any meaningful effect on a wide range of city characteristics, including 

other amenities, government environmental protection expenditure, industrial structure, emission 

discharges, and among others.  

 

6. Empirical Results 

6.1 Baseline Results 
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Table 1 presents the baseline results of the shift in the real income gradient with respect to 

PM2.5 concentration driven by the unexpected disclosure of real-time PM2.5 information. Panel 

A shows the OLS estimates. Both the amount of PM2.5 and its interaction with the information 

disclosure indicator are statistically insignificant. Local PM2.5 concentration tends to be correlated 

with industrial production, population and other confounding factors, which may affect earnings 

and housing prices. Thus, the endogeneity problem biases the naïve OLS estimates, resulting in 

both statistical and economic insignificance of the coefficient estimates. 

In Panel B, we deal with the endogeneity concern using the instrumental variable based on 

the interaction between wind direction, the location and the coal consumption of distant coal fired 

plants. In column (1), we control for both city fixed effects and region-by-year fixed effects to 

account for city-level predetermined characteristics (prior to the information program and may be 

associated with its implementation) and spatially differentiated public policies in China. Since the 

sequence of the information policy rollout depends on the tier of cities, we further add the city tier-

by-year fixed effects in column (2). Column (2) presents the results of our baseline specification 

of Equation (10), and we impose a more stringent restriction by controlling for a triple interaction 

between region-, city tier- and year- fixed effects in column (3). Our IV estimates are robust to 

different specifications. Across all these specifications, the coefficients on the interaction of PM2.5 

concentration and the PM2.5 data disclosure dummy are positive and statistically different from 

zero. The results indicate that the release of official PM2.5 data raises public awareness of air 

pollution and significantly increases the compensating differential required for exposure to PM2.5 

pollution. The coefficient on the level of PM2.5 alone is positive but insignificant, indicating no 

significant association between PM2.5 concentration and real income before the public had access 

to local PM2.5 information. We further include weather amenities in columns (4)-(6) to rule out 

the potential for endogeneity due to the correlation between pollution and weather conditions. Our 

parameter estimates are quantitively and qualitatively similar.  

The IV estimates of the interaction term range from 0.0084 to 0.0087 and the estimates of the 

information disclosure indictor range from -0.34 to -0.35. Since the median level of PM2.5 is 

around 40 in China, combining the two parameter estimates implies that the release of pollution 

information raises real income in highly polluted cities to compensate for the adverse effects of 

pollution, but reduces real earnings in less-polluted cities.  

The empirical results are consistent with the predictions of the variant of Rosen-Roback 
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theory sketched in Section 2. Incomplete information biases the hedonic price estimates and 

creates a wedge between the revealed hedonic price and the true implicit value of amenities. As 

demonstrated by our model with information constraints, the direction of the estimation bias 

depends on the direction of people’s perceptual bias. The corresponding perception bias parameter 

in the model 𝜆 = 𝛽0/(𝛽0 + 𝛽1) =  0.5, and the coefficient on the interaction of data disclosure 

indicator and the level of PM2.5-- i.e. 𝛽1 -- is significantly positive. Thus, people tend to 

underestimate the level of air pollution before the disclosure of pollution information. This is in 

accordance with the finding of Barwick et al. (2019) that Chinese citizens used to regularly 

understate the severity of atmospheric contamination, and would mistake low visibility on polluted 

days caused by severe PM2.5 pollution for fog rather than smog (Barwick et al., 2019). As a 

consequence of the downward perceptual bias, there is a downward estimation bias in the hedonic 

price of clean air due to incomplete information.  

Referring to our baseline results in column (2), a median Chinese citizen is willing to pay 169 

Chinese Yuan for a 1 𝜇𝑔/𝑚3 reduction in PM2.5 concentration under incomplete information, and 

337 Chinese Yuan for the same marginal reduction in PM2.5 concentration under complete 

information. The shift in the MWTP estimates driven by the data disclosure accounts for 

approximately 0.84% of the median income in China.   

  

6.2 Sensitivity Analysis 

Our baseline empirical results confirm the conclusions of our variant of Rosen-Roback model 

with information availability. In this section, we perform a wide range of meaningful robustness 

checks. We explore threats to identification, different source of variation, alternative model 

specifications and data sources.  

 

6.2.1 Endogeneity Concerns over the Wind-Direction IV 

In our baseline empirical specification, we employ the instrumental variable based on the 

interplay between wind direction, the distance to cities and the coal consumption of distant large-

scale coal-fired plants to address the endogeneity issue of air pollution. A major issue with this IV 

is the potential endogenous placement of power plants. Policy makers may take the three 

components of the IV into account when placing thermal power plants, and they may tend to 

protect the air quality of certain types of cities. Thus, address the concern that this IV is correlated 
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with unobservables associated with nearby cities. In Table A6, we further exclude the power plants 

within 80km, 130km and 180km around the city, respectively. Our empirical pattern is pretty 

robust to excluding nearby coal-fired plants.  

Even though policy makers may not have used the same criteria – the interaction between 

wind direction, the distance to cities and the coal consumption – to site power plants in the past, 

they may have paid more attention to the resulting environmental costs when locating power plants 

in more recent years. Both the public and the government have recently started to attach more 

importance to environmental protection in China; an important signal of this was the establishment 

of the Ministry of Environmental Protection (MEP) in 2008. We thus exclude power plants built 

within the most recent five to eight years, respectively, in Table A7. Indeed, when we use power 

plants built more than eight years ago, we rely only on plants built prior to the establishment of 

the MEP in China. This empirical strategy is more conservative, because cities with newly built 

plants are assigned to the ‘control group’. However, we still see a similar empirical pattern. The 

disclosure of pollution information significantly raises the real income-pollution gradient in the 

Rosen-Roback framework, and hedonic price of avoiding PM2.5 exposure increases around 152-

181 Chinese Yuan. Therefore, we rule out the concern that our IV results are confounded by the 

recent environmental concern and policies in China. 

We may expect that thermal power plants are more likely to be located in coal-producing 

regions in China. The concentration of coal production may affect regional industrial structure, 

raising concerns over other unobserved correlations with individual income. Shanxi is the largest 

coal producing province in China, we therefore drop Shanxi province in Table A8. Excluding coal 

producing region does little to influence the association between pollution information and the 

estimated hedonic price in our Rosen-Roback Framework. 

Another concern with this IV strategy is that the siting and coal consumption of power plants 

may be driven by the electricity demand of nearby cities, even though large-scale plants supply 

electricity to vast areas in China, including many remote provinces (Freeman, Liang, Song, and 

Timmins, 2019). To account for the potential role played by electricity demand, we control for 

city-level industrial electricity consumption (in Panel A), and then total electricity consumption 

(in Panel B) in Table A9. Controlling for electricity demand barely changes our empirical pattern. 

The MWTP to avoid exposure to PM2.5 pollution increases from 156 to 172 Chinese Yuan in 

response to the information shock, which is quite similar with our baseline estimates. 
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To further test whether policy makers favor populated and politically important cities, and 

locate power plants in a way that takes the interplay between wind direction, the location and the 

coal consumption of power plants into account. We examine whether baseline city attributes can 

predict newly built plants. In Table A10, we look at the predictive effects of city characteristics in 

2004 on the ratio of upwind power plants built after 2005, as well as the IV constructed only using 

plants built after 2005. Baseline city characteristics, including GDP, population and electricity 

demand, have nothing to do with the location and coal consumption of newly built coal-fired plants. 

 

6.2.2 An Alternative Version of the Wind-Direction IV 

In this section, we construct an alternative version of the wind-direction IV that the coal 

consumption of power plants located upwind of a given city as the IV, controlling for the aggregate 

coal consumption of all other power plants located not in the upwind area but within the same 

distance radius from the city. The empirical specification of first stage and second stage IV 

estimation is as follows: 

𝑃𝑀2.5𝑗𝑡 = 𝛾0 + 𝛾1 ∑ (
1

𝑑𝑖𝑠𝑡𝑝𝑗
) 𝐶𝑃𝑡

𝑃
𝑝,𝑈𝑝𝑤𝑖𝑛𝑑 + 𝛾2 ∑ (

1

𝑑𝑖𝑠𝑡𝑝𝑗
) 𝐶𝑝𝑡

𝑃
𝑝,𝑁𝑜𝑛−𝑢𝑝𝑤𝑖𝑛𝑑           (12) 

+𝜉𝑗 + 𝜂𝑅𝑒𝑔𝑖𝑜𝑛,𝑡 + 𝛿 𝑇𝑖𝑒𝑟,𝑡 + 𝜇𝑗,𝑡 

𝐿𝑜𝑔(𝑅𝑒𝑎𝑙 𝐼𝑛𝑐𝑜𝑚𝑒𝑖𝑗,𝑡) = 𝛼 + 𝛽1𝑃𝑀2.5𝑗𝑡 + 𝛽2 ∑ (
1

𝑑𝑖𝑠𝑡𝑝𝑗
) 𝐶𝑝𝑡

𝑃
𝑝,𝑁𝑜𝑛−𝑢𝑝𝑤𝑖𝑛𝑑           (13) 

+𝜉𝑗 + 𝜂𝑅𝑒𝑔𝑖𝑜𝑛,𝑡 + 𝛿 𝑇𝑖𝑒𝑟,𝑡 + 𝜀𝑖𝑗,𝑡    

where ∑ (
1

𝑑𝑖𝑠𝑡𝑝𝑗
) 𝐶𝑝𝑡

𝑃
𝑝,𝑢𝑝𝑤𝑖𝑛𝑑  represents the total coal consumption of plants located in the upwind 

area of city 𝑗, and the value is penalized if those plants are further away. As illustrated in Figure 

A3b, the upwind area is a section of a circular buffer drawn at a distance of 50-300km from city 𝑗, 

and the angle between the left/right side of the section and the wind direction of the city is 45 

degrees.  ∑ (
1

𝑑𝑖𝑠𝑡𝑝𝑗
) 𝐶𝑝𝑡

𝑃
𝑝,𝑁𝑜𝑛−𝑢𝑝𝑤𝑖𝑛𝑑  denotes the total coal consumption of plants located within 

the same distance (50-300km) from city 𝑗 but not in the upwind area, and the value is penalized in 

the same way based on distance.  In Figure A3b, the shaded dark grey area is the upwind area of 

city 𝑗. We exclude the upwind area around the city, and the light grey area is defined as the non-

upwind area around city 𝑗. 

The variation of this alternative wind-direction IV comes only from how wind direction 
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allocates coal consumption between the upwind versus the non-upwind areas around a particular 

city.  Although we consider the distance to the city and the coal consumption of upwind plants in 

the IV construction in Equation (12), we account for the distance and the coal consumption of 

those ‘controlled’ plants located in the non-upwind area around the city. Therefore, this IV strategy 

allows us to account for any remaining unobservables that may be correlated with total coal 

consumption and distance to cities.   

Table A11 reports the first-stage estimates. Because we only leverage the distribution of coal 

consumption between the upwind area versus other areas in this IV, the first stage relationship is 

not so strong as that of our baseline wind direction IV, but the F-statistics are still close to 10 across 

different specifications. 

Table A12 presents the corresponding second stage results. The empirical pattern is 

quantitively and qualitatively similar to our baseline results. The coefficients on our primary 

variable of interest – the interaction between PM2.5 concentration and the data disclosure indicator 

– is precisely estimated and significantly positive. The results are also insensitive to excluding 

power plants within various distance bins of cities. Therefore, our alternative wind direction IV 

yields a similar empirical pattern that incomplete information leads to a wedge between the 

hedonic price and implicit value of clean air, and release and dissemination of air quality data kills 

such wedge. 

The only potential concern with this alternative IV is the endogeneity of wind direction. 

Policy makers may locate coal-fired plants such that pollutants do not travel to politically 

important or heavily populated cities. If that were the case, we should see fewer thermal plants 

placed upwind of these influential cities. Table A13 reports the number of large-scale coal-fired 

plants sited upwind of five largest cities as well as the total amount of their coal consumption in 

2015. Beijing and Tianjin are the most populated and politically important cities in Northern China, 

but they experience severe atmospheric contamination. However, we see three large-scale coal-

fired plants located upwind of Beijing and Tianjin, respectively. The total consumption of plants 

located upwind of Beijing is up to 195 million tons, and is 150 million tons for those located 

upwind of Tianjin. In contrast, an average Chinese city only has two upwind large-scale plants 

with the total coal consumption of 79 million tons, which are far below the values in Beijing and 

Tianjin.  We next compute the fraction of the upwind plants in the total number of large coal-fired 

plants in the second column. The ratio is 38% for both Beijing and Tianjin, slightly higher than the 
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corresponding national mean. Overall, the summary statistics of the coal consumption and the 

location of power plants indicate that policy makers do not intentionally place the coal-fired plants 

away from these populated or politically important cities. This is in line with the falsification test 

showing that baseline city population and economic conditions do not predict the future placement 

of plants in section 6.2.1. 

 

6.2.3 Additional Controls and Alternative Samples 

        In this section, we first introduce various sets of covariates that might confound the 

relationship between public access to PM2.5 information and the compensating differential for 

PM2.5 exposure.  We then examine whether our empirical pattern is driven by big cities and highly 

polluted cities.  

       The strength of the Rosen-Roback theory lies in that regional differences in income and 

housing costs reflect the implicit values of amenities. Thus, spatial differentiated economic 

conditions may confound the estimated compensating differential for air pollution exposure. As 

reported in Panel A of Table A14, our estimates display similar patterns as before if we include 

GDP per capita, population and industrial structure as covariates. Therefore, the changes in the 

MWTP estimates (revealed by the Rosen-Roback Framework) in response to the information 

dissemination is not driven by economic conditions. 

       Air quality is only one of the important amenities determining location-specific livability, so 

based on the spirit of the Rosen Roback theory, regional differences in real income may pick up 

the effects of other amenities. To allay this concern, we control for other local amenities affecting 

the welfare of residents in Panel B of Table A14, including the number of doctors, the number of 

library books, and the area of green coverage.  Adding additional amenities does not affect our 

results meaningfully, indicating that our IV strategy does a good job to isolate the effects of air 

quality. 

We expect that fine particulate matter concentration may correlate with local industrial 

emissions. To account for the confounding effects of local pollutant discharges, we control for 

industrial water emission, industrial SO2 emission and industrial dust emission in Panel C of Table 

A14. Our estimated empirical pattern hardly changes, and the effects of information disclosure on 

the estimated MWTP from the Rosen-Roback framework is quite similar to our baseline estimates. 

In developing countries like China, industrialization, severe pollution and economic 
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opportunities are highly concentrated in several big cities, which may confound the relationship 

between pollution and spatial income differences in the Rosen-Roback Framework.  To examine 

whether our hedonic estimates are driven by these cities, we exclude one influential city at a time 

in Table A15. Our results are quantitively and qualitatively similar.  

 

6.24 The Huai River Regression Discontinuity 

In this section, we use a different identification strategy based on the spatially-differentiated 

winter heating system in China.  Beginning in the 1950s, China has provided a centralized coal-

based heating system to cities north of the Huai River. This policy has had long lasting effects, as 

even today, cities north of the river boundary receive centralized heating supply from the 

government every winter, whereas cities in the south do not (Ito and Zhang, 2020). The heating 

system relies on coal burning in water boilers, releasing a large amount of particulate matter and 

leading to a higher level of air pollution in the north. 

In response to the Action Plan on Air Pollution Prevention, China started to gradually switch 

coal to natural gas for winter heating after 2013, which has attenuated the effects of the centralized 

heating on air quality deterioration in northern cities. Thus, we leverage the variation in pollution 

coming from the interplay of the long-lasting public heating policy to the recent fuel policy. Driven 

by the interaction of the two polices, the difference in air quality between the north and the south 

would change over time. Thus, the first-stage equation is given by: 

 𝑃𝑀2.5𝑗𝑡 = 𝜓0 + 𝜓1𝑁𝑜𝑟𝑡ℎ𝑗 × 𝑌𝑒𝑎𝑟 𝐹𝐸𝑡 + 𝜓2𝑅𝑗 × 𝑁𝑜𝑟𝑡ℎ𝑗 × 𝑌𝑒𝑎𝑟 𝐹𝐸𝑡              (14) 

+𝜉𝑗 + 𝜂𝑅𝑒𝑔𝑖𝑜𝑛,𝑡 + 𝛿 𝑇𝑖𝑒𝑟,𝑡 + 𝜈𝑗𝑡               

𝑁𝑜𝑟𝑡ℎ𝑗  is an indicator variable for whether city 𝑗 is located north of the Huai River boundary,  and 

the running variable 𝑅𝑗 is the distance of city 𝑗 to the river border. We use the interaction of north 

of Huai River indicator and year-fixed effects to leverage the overtime variation in the 

discontinuous shift in fine particle concentration at the river border (𝑅𝑗 =0). The strength of this 

specification lies in that it allows us to control for city-fixed effects to account for city-level 

unobsevables that may confound the effects of information disclosure. 

We follow Ito and Zhang (2020) to select 400 miles as the bandwidth, and use a local linear 

control for the running variable. We interact the linear control with year-fixed effects to allow for 

changes in the effects of distance to the river border overtime. Table A5 presents the first-stage 

results of our spatial regression discontinuity, with F-statistics greater than 10 across various 
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specifications. The north-south air quality gap is significantly larger in 2011 and 2013, in 

comparison with that in 2016 when China has largely switched to natural gas for winter heating in 

northern cities. Table A16 presents the second stage RD estimates. Once again, we find a similar 

empirical pattern suggesting a significant increase in the MWTP for reducing PM2.5 concentration 

in response to the pollution information rollout. We control for the interaction of the longitude 

decile to year-specific fixed effects in the last three columns to allay the concern that unobservables 

in the west-east dimension may confound our RD estimates. However, accounting for these 

unobservables barely changes our estimates. As reported in Table A17 and A18, our spatial RD 

estimates are robust to the selection of bandwidth and control function for the running variable. 

    

6.2.5 Placebo Tests 

To further examine the causal relationship between the unexpected information disclosure 

and the shift in the hedonic price of avoiding PM2.5 exposure, we conduct various sets of placebo 

tests on our IV identification as well as the treatment effects of the unexpected information 

disclosure. 

Our first IV is based on the plausibly exogenous variation driven by how wind direction 

interacts with the location and the coal consumption of distant coal-fired plants. Section 6.2.2 

documents that we can consistently find similar results, if we fix the total coal consumption of 

power plants and only leverage how wind direction allocates coal consumption between the 

upwind area and other areas within the same distance radius. This indicates that wind direction is 

the dominant factor driving our empirical pattern (rather than the distance to cities and the total 

coal consumption of plants). To further test the validity of this approach, we perform a placebo test 

by adding 180 degrees, to the wind direction angle, while holding all other factors in the IV 

construction constant. As reported in Table A19, the falsified instrument can hardly identify the 

effects of air pollution exposure, confirming that wind direction is the driving factor determining 

our baseline IV results. 

Our second source of plausibly exogeneous variation lies in the interplay of the centralized 

heating policy in cities north of the Huai River and the recent energy policy of switching coal to 

natural gas for winter heating. The cutoff for our RD design is the Huai River boundary, we thus 

move the river border in a parallel fashion by 5 degrees in Table A 20.  The placebo spatial RD is 

less likely to predict the effects of our primary variable of interest.  
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We next turn our attention to the treatment effects of the data rollout in China.  The real time 

PM2.5 data were released in three waves, and the sequence of data rollout determine the treatment 

status of cities. We assign a “placebo” treatment status to each city by randomly allocating cities 

to each of the three waves.  Table A21 shows that the “placebo” treatment of data disclosure does 

not have any meaningful effect on the hedonic price of reducing PM2.5 exposure. In Table A22, 

we conduct additional placebo tests by arbitrarily delay the time of data release by one year and 

two years, respectively. The placebo data disclosure is unable to pick up the significant change in 

the MWTP for clean air induced by the improved access to information, predicted by our variant 

of Rosen-Roback theory sketched in Section 2. 

 

7. Conclusion 

Our paper highlights the consequences of restricted access to information on non-market 

valuation.  The core of the Rosen-Roback theory lies in that the hedonic price of an amenity 

measured by spatial differences in income and housing prices is equivalent to its implicit value.  

Our theoretical analysis demonstrates that information failure would differentiate the estimated 

hedonic price from the true implicit price of the amenity, undermining the core of the Rosen-

Roback framework. Changes in the hedonic price of avoiding PM2.5 exposure, driven by the 

natural experiment of unexpected PM2.5 information disclosure in China, consolidate the 

predictions of our theoretical analysis. Since the public has limited or no access to real time 

environmental information in many developing countries, our theoretical and empirical evidence 

directly speaks to behavioral paradox between the extreme high economic and health burden of 

pollution and people’s unreasonable low MWTP for improvement to environmental quality in 

developing countries (Greenstone and Jack, 2015). 

Our work has important implications for cost-benefit analysis of environmental policies. The 

goal of Pigouvian policies is to force polluters to internalize the social costs of polluting activities 

in the absence of a market (Pigou, 1912).  Information constraints would bias the estimates of the 

social costs of pollution, rendering it much harder for policy makers to design optimal 

environmental policies. 

Our analysis documents that estimation bias in hedonic valuation is driven by perception 

biases that arise due to limited information. With the increased availability of global satellite-based 

data on various dimensions of environmental quality, future researchers can continue to measure 
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the difference between levels of environmental quality perceived by the public and measured by 

satellite data and develop approaches to recover estimates of the true willingness to pay under 

incomplete information. 
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Figure 1a: PM2.5 and Real Income before the Information Disclosure 

 

 

Figure 1b: PM2.5 and Real Income after the Information Disclosure 
 

 

Notes: Real Income is measured by 𝐼/𝜌𝜃. 𝐼 and 𝜌 are nominal income and housing price, respectively, and 𝜃 is the share of housing 

expenditure in income. Cities are grouped into one hundred groups according to the quantile of PM2.5 concentration. The y-axis 

denotes the log of the mean value of real income in each quantile, and x-axis denotes the mean value of PM2.5 in each quantile. 

Income and housing price data come from CLDS, and PM2.5 data are drawn from the Global Annual PM2.5 Grides. 
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Table1:  Information Disclosure and Income-Pollution Gradient  

 Dependent variable: Log Real Income 

 (1) (2) (3) (4) (5) (6) 

Panel A: OLS regression 

PM 2.5 × Disclosure -0.000245 -0.000397 -0.000363 -0.000236 -0.000411 -0.000440 

 (0.00133) (0.00129) (0.00134) (0.00137) (0.00133) (0.00136) 

PM 2.5 -0.000806 -0.000995 -0.000246 -0.000596 -0.000796 -0.000108 

 (0.00326) (0.00328) (0.00333) (0.00316) (0.00319) (0.00327) 

Disclosure 0.0129 0.0145 0.0229 0.0212 0.0240 0.0323 

 (0.0679) (0.0702) (0.0721) (0.0686) (0.0684) (0.0711) 

Adjusted R-squared 0.416 0.416 0.417 0.416 0.416 0.417 

Panel B: IV regression 

PM 2.5 × Disclosure 0.00836** 0.00838** 0.00870** 0.00862** 0.00856** 0.00868** 

 (0.00398) (0.00408) (0.00395) (0.00410) (0.00419) (0.00403) 

PM 2.5 0.00830 0.00845 0.0141 0.00728 0.00765 0.0127 

 (0.0266) (0.0261) (0.0297) (0.0265) (0.0260) (0.0295) 

Disclosure -0.341* -0.352* -0.349* -0.342* -0.347* -0.340* 

 (0.184) (0.188) (0.188) (0.190) (0.192) (0.191) 

ΔMWTP 167.2 167.5 174 172.3 171.3 173.5 

Observations 34,731 34,731 34,731 34,731 34,731 34,731 

City FE Yes Yes Yes Yes Yes Yes 

Region FE × Year FE Yes Yes No Yes Yes No 

City-Tier FE × Year FE No Yes No No Yes No 

Region FE ×  City-Tier 

FE × Year FE No No Yes No No Yes 

Weather controls No No No Yes Yes Yes 

Demographics Yes Yes Yes Yes Yes Yes 

Notes: Demographics include age, gender, hukou status and indicators for education attainment. Weather controls include 

temperature and humidity. We employ individual-level pool cross-section data across 2011, 2013 and 2015, and use cities that are 

included in all the three waves of our CLDS sample. We add Dalh correction terms to account for the potential Roy sorting issue. 

In Panel B, we use instrumental variables specification using the interaction between wind direction, the location and the coal 

consumption of power plants. Standard errors that are clustered at the city level are reported in parentheses.  * p < 0.10, ** p < 

0.05, *** p < 0.01. 
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Appendix A: Additional Tables and Figures 

A.1Additional Figures 
 
 

 

Figure A1: The number of air purifier sales from 2006 to 2014 

 

Notes: Air purifier transaction data collected by a consulting company.  

 

 

 

 

Figure A2: Monitor-based PM2.5 and Satellite-based PM2.5 

 
Notes: Cities are grouped into one hundred groups according to the quantile of PM2.5 concentration measured by ground monitors. 

The y-axis denotes the mean value of satellite-based PM2.5 in each quantile, and x-axis denotes the mean value of monitor-based 

PM2.5 in each quantile. Monitor-based data come from the official website of the MEP of China, and satellite-based PM2.5 data 

are drawn from the Global Annual PM2.5 Grides. 
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Figure A3a: Baseline Wind Direction IV 

 

 

 

 

Figure A3b: Alternative Wind Direction IV 

 
 

 

Notes: The thick arrow denotes the annual dominant wind direction of city 𝑗. In Figure A2a, the dark dot denotes a large-scale 

thermal power plant located at least 50km outside city 𝑗 and within 150km from the city. The angle 𝛼 represents the angle between 

the annual prevailing wind direction of city 𝑗 and the large-scale power plant. Large-scale thermal power plants are defined as 

plants whose installed-capacities are larger than 1.5 million KW. In Figure A2b, the dark grey area is the upwind area of city 𝑗, 

which is defined as a section of a circular buffer drawn at a distance of 50km-300km from the city, and the angle between the 

left/right side of the section and the annual dominant wind direction of city 𝑗 is 45 degree. We exclude the upwind area from the 

50km-300km ‘loop’ around city 𝑗, and the light grey area is defined as the non-upwind area around the city.  
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Figure A4: First Stage Relationship of Baseline Wind direction IV 

 
Notes: Cities are grouped into one hundred groups according to the quantile of the baseline wind direction IV measure. The y-axis 

denotes the mean value of PM2.5 in each quantile and x-axis denotes the quantile of wind direction IV. PM2.5 data are drawn from 

the Global Annual PM2.5 Grides. 

 

 

 

 

Figure A5: Discontinuity in PM10 and PM2.5 at the Huai River 

 

Notes: The y-axis denotes PM2.5 concentration, and the x-axis denotes relative latitude north to the river boundary. Cities with 

positive degrees are located north of the river border, those with negative degrees are located south of the river border. PM2.5 data 

are drawn from the Global Annual PM2.5 Grides. 
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A.2 Summary Statistics and Balanced Tests  

 

 
Table A1: Summary Statistics  

Variable name Description Mean Std. dev 

Real income Nominal income adjusted by housing prices 21,459.600 19,880.842 

Rural hukou Indicator = 1 if the person holds rural hukou, =0 otherwise 0.705 0.456 

Mid-skill 
Indicator = 1 if the highest degree is high school, =0 

otherwise 
0.178 0.382 

High-skill 
Indicator = 1 if the highest degree is some college or 

above, =0 otherwise 
0.122 0.327 

Male Indicator = 1 if the person is male 0.483 0.500 

Age  44.146 14.192 

Pollution Levels Annual PM2.5 concentration 43.285 17.145 

Temperature Annual mean temperature 156.999 51.409 

Humidity Annual mean humidity 67.936 10.336 

GDP per capita  57,152.041 36,090.569 

Population Number of city population 595.341 426.090 

Indu elec cons Industrial electricity consumption 1,154,910.276 1,504,542.415 

Total elec cons Total electricity consumption 1,931,323.405 2,604,252.372 

Wastewater Industrial wastewater emission 9,428.148 9,251.731 

SO2 Industrial SO2 emission 55,054.823 59,742.000 

Dust Industrial Dust emission 48,186.896 222,583.024 

Note: Table shows summary statistics for outcome variable and most control variables. Real Income is measured by 𝐼𝑖,𝑗/𝜌𝑗
𝜃. 𝐼 and 

𝜌  are nominal income and housing price, respectively, and 𝜃  is the share of housing expenditure in income. Total electricity 

consumption includes industrial, residential and commercial consumption. 
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Table A2: Lagged City Attributes and Data Disclosure 

Dependent variable: Data Disclosure Indicator  

 (1) (2) (3) (4) 

Lagged GDP 0.00354 -0.00857 0.00841 -0.0114 

 (0.0167) (0.0126) (0.0178) (0.0131) 

Lagged Population  0.0149 0.0168 0.0149 0.0173 

 (0.0660) (0.0442) (0.0655) (0.0443) 

Share of Secondary Industry in GDP 0.00408 0.00897 0.00403 0.00880 

 (0.0122) (0.00889) (0.0122) (0.00881) 

Share of Tertiary Industry in GDP 0.00165 0.0119 0.00163 0.0117 

 (0.0114) (0.00853) (0.0113) (0.00852) 

Lagged SO2 Emission 0.0906 0.0291 0.0877 0.0361 

 (0.0634) (0.0465) (0.0657) (0.0432) 

Lagged Total electricity consumption -0.0250 0.0462   

 (0.0987) (0.0595)   

Lagged Industrial electricity consumption   -0.0314 0.0321 

   (0.0546) (0.0304) 

Observations 308 308 308 308 

Adjusted R-squared 0.665 0.777 0.779 0.665 

City FE Yes Yes Yes Yes 

Region FE × Year FE Yes Yes Yes Yes 

City-Tier FE × Year FE No Yes No Yes 

Notes: City-level panel regression across 2011, 2013 and 2015. Dependent variable is an indicator whether PM2.5 data have been 

published in a given city-year, independent variables are city attributes lagged by one year. We use cities that are included in our 

baseline regression and drop cities with missing values in city attributes. Standard errors that are clustered at the city level are 

reported in parentheses.  * p < 0.10, ** p < 0.05, *** p < 0.01. 
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Table A3: Changes in Pollution, Wind Direction IV and City Attributes Before and After the Disclosure 

Independent variable: Information Disclosure Indicator 

 (1) (2) (3) 

Panel A. Pollution levels 

PM 2.5  -0.775 -0.616 -0.459 

 (0.745) (0.925) (0.975) 

Panel B. Wind Direction IV 

Baseline Wind Direction IV -3.427 -5.482 -4.623 

 (3.685) (4.435) (5.164) 

Wind Direction IV excluding Plants within 80km 0.388 -1.929 -0.398 

 (3.073) (3.758) (4.458) 

Wind Direction IV excluding Plants within 130km -1.034 -3.161 -3.080 

 (2.277) (3.010) (3.472) 

Panel C. Amenities 

Number of Doctors -501.5 -200.9 95.05 

 (522.0) (346.3) (386.4) 

Area of green coverage 313.8 134.8 297.0 

 (351.9) (508.7) (547.0) 

𝐏anel D. Economic condition 

GDP per Capita -192.6 -367.5 -673.0 

 (529.1) (421.2) (433.0) 

Share of Secondary Industry in GDP 0.188 -0.386 -0.594 

 (0.570) (0.778) (0.824) 

Share of Tertiary Industry in GDP 0.0233 0.849 1.095 

 (0.521) (0.738) (0.728) 

Panel E. Electricity Consumption 

Industrial Electricity Consumption -0.294 3.160 3.008 

 (4.178) (5.247) (5.346) 

Total Electricity Consumption -5.372 4.434 3.970 

 (5.963) (5.618) (5.772) 

Panel F. Emissions 

Industrial SO2 emission 5.993 3.128 1.500 

 (4.646) (3.637) (2.898) 

Industrial dust emission 130.7 147.3 189.3 

 (118.2) (140.7) (180.8) 

Panel G. Government Expenditure 

Government Public Invest -25.51 -26.45 -28.71 

 (16.24) (21.37) (23.53) 

Urban Environment Expenditure -0.485 2.291 -0.274 

 (1.568) (2.160) (0.536) 
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Waste Water Treatment Expenditure  -2.329 1.817 -0.302 

 (1.683) (2.955) (0.639) 

City FE Yes Yes Yes 

Region FE × Year FE Yes Yes No 

City-Tier FE × Year FE No Yes No 

Notes: Row names show the dependent variable. The independent variable is an indicator for whether real time data have been 

published in a given city. We use cities that are included in our baseline regression and drop cities with missing values in city 

attributes. Standard errors that are clustered at the city level are reported in parentheses.  * p < 0.10, ** p < 0.05, *** p < 0.01. 
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A.3 First-Stage Results  
 

 

 

Table A4: First-stage of Wind Direction IV   

 Dependent variable: PM 2.5 

 (1) (2) (3) (4) (5) (6) 

Wind Direction and Coal Plants 0.0315*** 0.0321*** 0.0298*** 0.0323*** 0.0329*** 0.0303*** 

 (0.00790) (0.00820) (0.00815) (0.00769) (0.00794) (0.00811) 

Observations 34,731 34,731 34,731 34,731 34,731 34,731 

Adjusted R-squared 0.982 0.982 0.983 0.982 0.982 0.983 

F-Statistics  15.89 15.39 13.38 17.58 17.16 17.16 

City FE Yes Yes Yes Yes Yes Yes 

Region FE × Year FE Yes Yes No Yes Yes No 

City-Tier FE × Year FE No Yes No No Yes No 

Region FE ×  City-Tier FE × 

Year FE No No Yes No No Yes 

Weather controls No No No Yes Yes Yes 

Demographics Yes Yes Yes Yes Yes Yes 

Notes: Demographics include age, gender, hukou status and indicators for education attainment. City controls include temperature 

and humidity. We use cities that are included in all the three waves of our CLDS sample. We add Dalh correction terms to account 

for the potential Roy sorting issue. Standard errors that are clustered at the city level are reported in parentheses.  * p < 0.10, ** p 

< 0.05, *** p < 0.01. 
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Table A5: First-stage of Huai River RD 

 Dependent variable: PM 2.5 

 (1) (2) (3) (4) (5) (6) 

North × Year 2011 7.362*** 7.423*** 7.898*** 7.230*** 7.323*** 7.763*** 

 (1.689) (1.701) (1.791) (1.671) (1.683) (1.770) 

North × Year 2013 10.45*** 10.48*** 10.76*** 10.36*** 10.40*** 10.68*** 

 (2.278) (2.320) (2.430) (2.254) (2.296) (2.430) 

Control function for the running variable 
Linear × North× 

Year FE 

Linear × North× 

Year FE 

Linear × North× 

Year FE 

Linear × North× 

Year FE 

Linear × North× 

Year FE 

Linear × North× 

Year FE 

Observations 20,162 20,162 20,162 20,162 20,162 20,162 

Adjusted R-squared 0.986 0.986 0.986 0.986 0.986 0.987 

F-Statistics 11.10 10.81 10.69 11.09 10.84 10.63 

City FE Yes Yes Yes Yes Yes Yes 

Region FE × Year FE Yes Yes No Yes Yes No 

City-Tier FE × Year FE No Yes No No Yes No 

Region FE × City-Tier FE× Year FE No No Yes No No Yes 

Weather controls Yes Yes Yes Yes Yes Yes 

Demographics Yes Yes Yes Yes Yes Yes 

Longitude Decile× Year FE No No No Yes Yes Yes 

Notes: Demographics include age, gender, hukou status and indicators for education attainment. City controls include temperature and humidity. We control for the interaction 

between the local linear distance to Huai River and year-fixed effects. We use cities that are included in all the three waves of our CLDS sample and located within a 400-mile 

bandwidth around the river boundary. We add Dalh correction terms to account for the potential Roy sorting issue. Standard errors that are clustered at the city level are reported in 

parentheses.  * p < 0.10, ** p < 0.05, *** p < 0.01. 
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A.4 Additional Results and Tests of Baseline Wind Direction IV 
 

 

 

Table A6: Different Distance Bins for Selection of Power Plants 

 Dependent variable: Log real income 

 (1) (2) (3) (4) (5) (6) (7) (8) 

 Panel A 

 Baseline Results Exclude 80km 

PM 2.5 × Disclosure 0.00836** 0.00838** 0.00862** 0.00856** 0.00757* 0.00770* 0.00812* 0.00822* 

 (0.00398) (0.00408) (0.00410) (0.00419) (0.00436) (0.00449) (0.00454) (0.00464) 

ΔMWTP 167.2 167.5 172.3 171.3 151.4 154 162.5 164.5 

 Panel B 

 Exclude 130km Exclude 180km 

PM 2.5 × Disclosure 0.00897* 0.00904 0.0101* 0.0102* 0.0118* 0.0117** 0.0123** 0.0123** 

 (0.00537) (0.00551) (0.00570) (0.00581) (0.00600) (0.00590) (0.00612) (0.00603) 

ΔMWTP 179.4 180.8 202.4 203.3 235.7 234.7 245.9 245.1 

Observations 34,731 34,731 34,731 34,731 34,731 34,731 34,731 34,731 

City FE Yes Yes Yes Yes Yes Yes Yes Yes 

Region FE × Year FE Yes Yes Yes Yes Yes Yes Yes Yes 

City-Tier FE × Year FE No Yes No Yes No Yes No Yes 

Weather controls No No Yes Yes No No Yes Yes 

Demographics Yes Yes Yes Yes Yes Yes Yes Yes 

Notes: Instrumental variables specification using the interaction between wind direction, the location and the coal consumption of power plants. Demographics include age, gender, 

hukou status and indicators for education attainment. Weather controls include temperature and humidity. We use individual-level pool cross-section data across 2011, 2013 and 2015, 

and use cities that are included in all the three waves of our CLDS sample. We add Dalh correction terms to account for the potential Roy sorting issue. We replicate baseline results 

in column (1)-(4) of Panel A, exclude plants within 80 km around the city in column (5)-(8) of Panel B, exclude plants within 130 km in column (1)-(4) of Panel B, and exclude 

plants within 180 km in column (5)-(8) of Panel B. Standard errors that are clustered at the city level are reported in parentheses.  * p < 0.10, ** p < 0.05, *** p < 0.01. 
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Table A7:  Excluding Newly Built Power Plants 

 Dependent variable: Log real income 

 (1) (2) (3) (4) (5) (6) (7) (8) 

 Panel A 

 Plants> 5 yrs ago Plants> 6 yrs ago 

PM 2.5 × Disclosure 0.00764** 0.00760* 0.00786** 0.00774* 0.00788** 0.00795** 0.00819** 0.00819** 

 (0.00379) (0.00386) (0.00393) (0.00400) (0.00385) (0.00392) (0.00398) (0.00405) 

ΔMWTP 152.8 152 157.2 154.9 157.7 158.9 163.7 163.8 

 Panel B 

 Plants> 7 yrs ago Plants> 8 yrs ago 

PM 2.5 × Disclosure 0.00839* 0.00850* 0.00901* 0.00907* 0.00775* 0.00778* 0.00830* 0.00830* 

 (0.00446) (0.00452) (0.00466) (0.00471) (0.00417) (0.00422) (0.00446) (0.00452) 

ΔMWTP 167.9 170 180.3 181.3 155 155.6 166.1 166.1 

Observations 34,731 34,731 34,731 34,731 34,731 34,731 34,731 34,731 

City FE Yes Yes Yes Yes Yes Yes Yes Yes 

Region FE × Year FE Yes Yes Yes Yes Yes Yes Yes Yes 

City-Tier FE × Year FE No Yes No Yes No Yes No Yes 

Weather controls No No Yes Yes No No Yes Yes 

Demographics Yes Yes Yes Yes Yes Yes Yes Yes 

Notes: Instrumental variables specification using the interaction between wind direction, the location and the coal consumption of power plants. Cities affected by new plants included 

in sample (i.e. in the ‘control’ regions) so as to generate conservative estimates. Demographics include age, gender, hukou status and indicators for education attainment. Weather 

controls include temperature and humidity. We use individual-level pool cross-section data across 2011, 2013 and 2015, and use cities that are included in all the three waves of our 

CLDS sample. We add Dalh correction terms to account for the potential Roy sorting issue. We use power plants built more than 5 years ago in column (1)-(4) of Panel A, power 

plants built more than 6 years ago in column (5)-(8) of Panel A, power plants built more than 7 years ago in column (1)-(4) of Panel B, and power plants built more than 8 years ago 

in column (5)-(8) of Panel B. Standard errors that are clustered at the city level are reported in parentheses.  * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table A8:  Excluding Coal Producing Region 

 Dependent variable: Log real income 

 (1) (2) (3) (4) (5) (6) 

PM 2.5 × Disclosure 0.00864** 0.00873** 0.00888** 0.00887** 0.00890** 0.00887** 

 (0.00400) (0.00410) (0.00394) (0.00410) (0.00418) (0.00400) 

ΔMWTP 172.9 174.6 177.6 177.4 178 177.4 

Observations 34,091 34,091 34,091 34,091 34,091 34,091 

City FE Yes Yes Yes Yes Yes Yes 

Region FE × Year FE Yes Yes No Yes Yes No 

City-Tier FE × Year FE No Yes No No Yes No 

Region FE ×  City-Tier 

FE × Year FE No No Yes No No Yes 

Weather controls No No No Yes Yes Yes 

Demographics Yes Yes Yes Yes Yes Yes 

Notes: Instrumental variables specification using the interaction between wind direction, the location and the coal consumption of 

power plants. Demographics include age, gender, hukou status and indicators for education attainment. Weather controls include 

temperature and humidity. We use individual-level pool cross-section data across 2011, 2013 and 2015, use cities that are included 

in all the three waves of our CLDS sample, and drop all cities in Shanxi Province. We add Dalh correction terms to account for the 

potential Roy sorting issue. Standard errors that are clustered at the city level are reported in parentheses.  * p < 0.10, ** p < 0.05, 

*** p < 0.01. 
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Table A9: Controlling for Electricity Demand 

 Dependent variable: Log real income 

 (1) (2) (3) (4) (5) (6) 

Panel A: Add Industrial Elec. Cons. 

PM 2.5 × Disclosure 0.00773* 0.00789* 0.00864** 0.00777* 0.00789* 0.00848* 

 (0.00435) (0.00444) (0.00426) (0.00449) (0.00458) (0.00436) 

ΔMWTP 154.6 157.7 172.9 155.4 157.7 169.7 

Panel B: Add Elec. Cons. 

PM 2.5 × Disclosure 0.00748* 0.00761* 0.00840** 0.00759* 0.00769* 0.00829* 

 (0.00431) (0.00441) (0.00418) (0.00446) (0.00457) (0.00430) 

ΔMWTP 149.6 152.3 168 151.8 153.8 165.7 

Observations 32,118 32,118 32,118 32,118 32,118 32,118 

City FE Yes Yes Yes Yes Yes Yes 

Region FE × Year FE Yes Yes No Yes Yes No 

City-Tier FE × Year FE No Yes No No Yes No 

Region FE ×  City-Tier FE × 

Year FE No No Yes No No Yes 

Weather controls No No No Yes Yes Yes 

Demographics Yes Yes Yes Yes Yes Yes 

Notes: Instrumental variables specification using the interaction between wind direction, the location and the coal consumption of 

power plants. Demographics include age, gender, hukou status and indicators for education attainment. Weather controls include 

temperature and humidity. Total electricity consumption includes industrial, residential and commercial consumption. We use 

individual-level pool cross-section data across 2011, 2013 and 2015, use cities that are included in all the three waves of our CLDS 

sample, and drop cities with missing values in electricity consumption. We add Dalh correction terms to account for the potential 

Roy sorting issue. Total electricity consumption includes industrial, residential and commercial consumption. Standard errors that 

are clustered at the city level are reported in parentheses.  * p < 0.10, ** p < 0.05, *** p < 0.01. 
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Table A10 Baseline Economy and the Wind Direction IV 

Dependent variable: The ratio of upwind plants Wind direction and coal plants IV 

 (1) (2) (3) (4) 

Baseline GDP -0.00641 -0.00611 0.156 -0.0242 

 (0.00889) (0.00513) (0.564) (0.290) 

Share of Secondary Industry in GDP 0.00120 0.000793 0.274 0.242 

 (0.00394) (0.00392) (0.301) (0.298) 

Share of Tertiary Industry in GDP -0.00288 -0.00275 0.154 0.157 

 (0.00590) (0.00592) (0.337) (0.333) 

Baseline Population  -0.00744 -0.00734 -0.611 -0.649 

 (0.00627) (0.00601) (0.480) (0.468) 

Baseline Elec cons 0.000646  0.000145  

 (0.000903)  (0.0615)  

Baseline Industrial Elec cons  0.000949  0.0303 

  (0.000773)  (0.0475) 

Observations 106 106 106 106 

Adjusted R-squared 0.0679 0.0761 0.216 0.218 

Region FE 
Yes Yes Yes Yes 

City-Tier FE 
Yes Yes Yes Yes 

Notes: City-level regression. Dependent variables are based on power plants built post 2005, and independent variables are 

measured in the year 2004. We use cities that are included in all the three waves of our CLDS sample, and drop cities with missing 

values in baseline characteristics. Standard errors clustered at the city level are reported in parentheses.  * p < 0.10, ** p < 0.05, 

*** p < 0.01. 
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A.5 Results of the Alternative Wind Direction IV 
 

 

Table A11: First-stage of Alternative Wind Direction IV 

 Dependent variable: PM 2.5 

 (1) (2) (3) (4) (5) (6) 

Upwind coal consumption 0.0193*** 0.0193*** 0.0173*** 0.0198*** 0.0198*** 0.0175*** 

 (0.00582) (0.00596) (0.00577) (0.00564) (0.00577) (0.00564) 

Observations 34,731 34,731 34,731 34,731 34,731 34,731 

Adjusted R-squared 0.982 0.982 0.983 0.982 0.982 0.983 

F-value 10.99 10.51 8.993 12.26 11.79 11.79 

City FE Yes Yes Yes Yes Yes Yes 

Region FE × Year FE Yes Yes No Yes Yes No 

City-Tier FE × Year FE No Yes No No Yes No 

Region FE × City-Tier FE× Year FE No No Yes No No Yes 

Weather controls No No No Yes Yes Yes 

Demographics Yes Yes Yes Yes Yes Yes 

Notes: Upwind coal consumption denotes the total coal consumption of power plants located at the upwind area of a given city. We 

control for the total coal consumption of plants at the counterpart non-upwind area of the city. We use cities that are included in all 

the three waves of our CLDS sample. We add Dalh correction terms to account for the potential Roy sorting issue. Demographics 

include age, gender, hukou status and indicators for education attainment. Weather controls include temperature and humidity. We 

use cities that are included in all the three waves of our CLDS sample. Standard errors that are clustered at the city level are reported 

in parentheses.  * p < 0.10, ** p < 0.05, *** p < 0.01. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



A16 
 

 

 

Table A12: Alternative Wind Direction IV with Distance Bins for Selection of Plants 

 Dependent variable: Log real income 

 (1) (2) (3) (4) (5) (6) (7) (8) 

 Panel A 

 Baseline Results Exclude 80km 

PM 2.5 × Disclosure 0.0112** 0.0112** 0.0112** 0.0109** 0.0122** 0.0122** 0.0125** 0.0124** 

 (0.00486) (0.00521) (0.00519) (0.00548) (0.00568) (0.00584) (0.00605) (0.00619) 

ΔMWTP 223.7 223.1 223.2 218.2 243.4 243.1 250.8 248.9 

 Panel B 

 Exclude 130km Exclude 180km 

PM 2.5 × Disclosure 0.0111* 0.0110* 0.0121* 0.0119 0.00868** 0.00862** 0.00875* 0.00869* 

 (0.00617) (0.00646) (0.00700) (0.00727) (0.00427) (0.00431) (0.00459) (0.00464) 

ΔMWTP 222.7 219.5 241.9 237.4 173.7 172.3 175 173.9 

Observations 34,731 34,731 34,731 34,731 34,731 34,731 34,731 34,731 

City FE Yes Yes Yes Yes Yes Yes Yes Yes 

Region FE × Year FE Yes Yes Yes Yes Yes Yes Yes Yes 

City-Tier FE × Year FE No Yes No Yes No Yes No Yes 

Weather controls No No Yes Yes No No Yes Yes 

Demographics Yes Yes Yes Yes Yes Yes Yes Yes 

Notes: Instrumental variables specification using the total coal consumption of power plants located at the upwind area of a given city, controlling for the total coal consumption of 

plants at the counterpart non-upwind area of the city.  Demographics include age, gender, hukou status and indicators for education attainment. Weather controls include temperature 

and humidity. We employ individual-level pool cross-section data across 2011, 2013 and 2015, and use cities that are included in all the three waves of our CLDS sample. We add 

Dalh correction terms to account for the potential Roy sorting issue. We exclude plants within 50 km around the city in column (1)-(4) of Panel A, exclude plants within 80 km in 

column (5)-(8) of Panel B, exclude plants within 130 km in column (1)-(4) of Panel B, and exclude plants within 180 km in Column (5)-(8) of Panel B. Standard errors that are 

clustered at the city level are reported in parentheses.  * p < 0.10, ** p < 0.05, *** p < 0.01.  
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Table A13: The Coal-fired Plants Located Upwind of Large Metropolitans 

City 

Number of Upwind 

Plants 

Ratio of Upwind 

Plants 

Coal Consumption 

of Upwind Plants 

Smallest Angle of 

Plants 

Beijing 3 37.5% 194.779 22.816 

Tianjin 3 37.5% 149.590 15.368 

Shanghai 3 13.6% 105.619 3.347 

Guangzhou 5 62.5% 170.603 0.088 

Shenzhen 4 57.1% 152.005 1.184 

National mean 2 35.8% 79.161 17.194 

Notes: The statistics are calculated using the large-scale thermal power plants located at 50-300km from a given city. We define 

the upwind area as a section of a circular buffer drawn at a distance of 50-300km from a given city, and the angle between the 

section and the annual dominant wind direction of the city being at least 45 degree. 
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A.6 Results of Additional Controls and Alternative Samples 
 

 

 

Table A14: Additional Controls: Economic Condition, Amenities, and Emissions 

 Dependent variable: Log real income 

 (1) (2) (3) (4) (5) (6) 

Panel A: Add Economic Controls 

PM 2.5 × Disclosure 0.00825* 0.00895* 0.00902** 0.00817* 0.00883* 0.00881** 

 (0.00448) (0.00475) (0.00417) (0.00470) (0.00492) (0.00431) 

ΔMWTP 165.1 179 180.4 163.5 176.5 176.1 

Observations 32,766 32,766 32,766 32,766 32,766 32,766 

Panel B: Add Other Amenities 

PM 2.5 × Disclosure 0.00828* 0.00850* 0.00861* 0.00811* 0.00832* 0.00846* 

 (0.00447) (0.00453) (0.00436) (0.00461) (0.00465) (0.00446) 

ΔMWTP 165.6 170 172.2 162.2 166.3 169.2 

Observations 32,400 32,400 32,400 32,400 32,400 32,400 

Panel C: Add Emission Controls 

PM 2.5 × Disclosure 0.00765* 0.00792* 0.00839* 0.00778* 0.00803* 0.00838* 

 (0.00442) (0.00451) (0.00442) (0.00456) (0.00463) (0.00450) 

ΔMWTP 153 158.4 167.7 155.6 160.6 167.7 

Observations 31,263 31,263 31,263 31,263 31,263 31,263 

City FE Yes Yes Yes Yes Yes Yes 

Region FE × Year FE Yes Yes No Yes Yes No 

City-Tier FE × Year FE No Yes No No Yes No 

Region FE × City-Tier FE × Year FE No No Yes No No Yes 

Weather controls No No No Yes Yes Yes 

Demographics Yes Yes Yes Yes Yes Yes 

Notes: Instrumental variables specification using the interaction between wind direction, the location and the coal consumption of 

power plants. Demographics include age, gender, hukou status and indicators for education attainment. Weather controls include 

temperature and humidity. Economic Controls include GDP per capita, the share secondary industry in GDP and share of tertiary 

industry in GDP. Other Amenities include the number of doctors, the number of library books and the area of green coverage.  

Emission Controls include industrial water emission, industrial SO2 emission and industrial dust emission. We employ individual-

level pool cross-section data across 2011, 2013 and 2015, use cities that are included in all the three waves of our CLDS sample, 

and drop cities with missing values in these control variables. We add Dalh correction terms to account for the potential Roy sorting 

issue. Standard errors that are clustered at the city level are reported in parentheses.  * p < 0.10, ** p < 0.05, *** p < 0.01. 
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Table A15: Excluding Big Cities and High Polluters 

 Dependent variable: Log real income 

City Excluded  Beijing Tianjin Shanghai Shenyang Zhengzhou Wuhan 

 (1) (2) (3) (4) (5) (6) 

PM 2.5 × Disclosure 0.00836** 0.00862** 0.00858** 0.00841** 0.00828** 0.00860** 

 (0.00418) (0.00428) (0.00422) (0.00418) (0.00414) (0.00402) 

ΔMWTP 167.1 172.4 171.6 168.1 165.7 171.9 

Observations 34,314 34,341 34,368 34,568 34,380 34,196 

City FE Yes Yes Yes Yes Yes Yes 

Region FE × Year FE Yes Yes Yes Yes Yes Yes 

City-Tier FE × Year FE Yes Yes Yes Yes Yes Yes 

Weather controls Yes Yes Yes Yes Yes Yes 

Demographics Yes Yes Yes Yes Yes Yes 

Notes: Instrumental variables specification using the interaction between wind direction, the location and the coal consumption of 

power plants. Demographics include age, gender, hukou status and indicators for education attainment. Weather controls include 

temperature and humidity. We employ individual-level pool cross-section data across 2011, 2013 and 2015, and use cities that are 

included in all the three waves of our CLDS sample. We add Dalh correction terms to account for the potential Roy sorting issue. 

Standard errors that are clustered at the city level are reported in parentheses.  * p < 0.10, ** p < 0.05, *** p < 0.01.  
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A.7 Results of Huai River Regression Discontinuity 
 

 

 

Table A16: Huai River Regression Discontinuity 

 Dependent variable: Log real income 

 (1) (2) (3) (4) (5) (6) 

PM 2.5 × Disclosure 0.0158* 0.0164* 0.0157* 0.0157* 0.0163* 0.0158* 

 (0.00816) (0.00868) (0.00825) (0.00837) (0.00867) (0.00830) 

PM 2.5 0.0177 0.0167 0.0114 0.0195 0.0183 0.0125 

 (0.0155) (0.0152) (0.0137) (0.0153) (0.0151) (0.0133) 

Disclosure -0.850* -0.916* -0.919* -0.860* -0.927* -0.960** 

 (0.460) (0.495) (0.472) (0.477) (0.499) (0.476) 

ΔMWTP 316.7 327.8 313.4 314.4 325.1 316.8 

Control function for the running variable 
Linear × North× 

Year FE 

Linear × North× 

Year FE 

Linear × North× 

Year FE 

Linear × North× 

Year FE 

Linear × North× 

Year FE 

Linear × North× 

Year FE 

Observations 20,162 20,162 20,162 20,162 20,162 20,162 

City FE Yes Yes Yes Yes Yes Yes 

Region FE × Year FE Yes Yes No Yes Yes No 

City-Tier FE × Year FE No Yes No No Yes No 

Region FE × City-Tier FE × Year FE No No Yes No No Yes 

Weather controls Yes Yes Yes Yes Yes Yes 

Demographics Yes Yes Yes Yes Yes Yes 

Longitude Quintile FE × Year FE No No No Yes Yes Yes 

Notes: Demographics include age, gender, hukou status and indicators for education attainment. Weather controls include temperature and humidity. We control for the interaction 

between the local linear distance to Huai River and year-fixed effects. We employ individual-level pool cross-section data across 2011, 2013 and 2015, and use cities that are included 

in all the three waves of our CLDS sample and located within a 400-mile bandwidth around the river boundary. We add Dalh correction terms to account for the potential Roy sorting 

issue. Standard errors that are clustered at the city level are reported in parentheses.  * p < 0.10, ** p < 0.05, *** p < 0.01. 
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Table A17: Alternative Function for the Running Variable 

 Dependent variable: Log real income 

 (1) (2) (3) (4) (5) (6) 

PM 2.5 × Disclosure 0.0159* 0.0165* 0.0156* 0.0158* 0.0164* 0.0158* 

 (0.00847) (0.00901) (0.00842) (0.00870) (0.00901) (0.00848) 

PM 2.5 0.0213 0.0202 0.0139 0.0232 0.0218 0.0150 

 (0.0164) (0.0162) (0.0141) (0.0163) (0.0160) (0.0137) 

Disclosure -0.858* -0.929* -0.921* -0.865* -0.937* -0.963* 

 (0.475) (0.512) (0.478) (0.493) (0.516) (0.483) 

ΔMWTP 319 331 311.9 315.5 327.2 315 

Control function for the running variable 
Quadratic × Year 

FE 

Quadratic × Year 

FE 

Quadratic × Year 

FE 

Quadratic × Year 

FE 

Quadratic × Year 

FE 

Quadratic × Year 

FE 

Observations 20,162 20,162 20,162 20,162 20,162 20,162 

City FE Yes Yes Yes Yes Yes Yes 

Region FE × Year FE Yes Yes No Yes Yes No 

City-Tier FE × Year FE No Yes No No Yes No 

Region FE × City-Tier FE × Year FE No No Yes No No Yes 

Weather controls No No No Yes Yes Yes 

Demographics Yes Yes Yes Yes Yes Yes 

Longitude Quintile FE × Year FE No No No Yes Yes Yes 

Notes: Demographics include age, gender, hukou status and indicators for education attainment. Weather controls include temperature and humidity. We control for interactions 

between quadratic controls for the distance to Huai River and year-fixed effects. We employ individual-level pool cross-section data across 2011, 2013 and 2015, and use cities that 

are included in all the three waves of our CLDS sample and located within a 400-mile bandwidth around the river boundary. We add Dalh correction terms to account for the potential 

Roy sorting issue. Standard errors that are clustered at the city level are reported in parentheses.  * p < 0.10, ** p < 0.05, *** p < 0.01. 
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TableA18 Various Bandwidths in Regression Discontinuity 

 Dependent variable: Log real income 

 (1) (2) (3) (4) 

Panel A: 500 Miles 

PM 2.5 × Disclosure 0.0173** 0.0183* 0.0185** 0.0197** 

 (0.00865) (0.00933) (0.00905) (0.00977) 

Observations 23,050 23,050 23,050 23,050 

Panel B: 525 Miles 

PM 2.5 × Disclosure 0.0239* 0.0253* 0.0248* 0.0263* 

 (0.0121) (0.0135) (0.0125) (0.0139) 

Observations 24,030 24,030 24,030 24,030 

Panel C: 550 Miles 

PM 2.5 × Disclosure 0.0165* 0.0173* 0.0178* 0.0189* 

 (0.00924) (0.00992) (0.00994) (0.0109) 

Observations 24,935 24,935 24,935 24,935 

Control function for the running variable Linear × North× Year FE Linear × North× Year FE Quadratic× Year FE Quadratic× Year FE 

City FE Yes Yes Yes Yes 

Region FE × Year FE Yes Yes Yes Yes 

City-Tier FE × Year FE No Yes No Yes 

Weather controls Yes Yes Yes Yes 

Demographics Yes Yes Yes Yes 

Notes: Demographics include age, gender, hukou status and indicators for education attainment. Weather controls include temperature and humidity. In column (1), (3) and (5), we 

control for the interaction between the local linear distance to Huai River and year-fixed effects. In column (2), (4), and (6), we control for the interactions between quadratic controls 

for the distance to Huai River and year-fixed effects. We employ individual-level pool cross-section data across 2011, 2013 and 2015, and use cities that are included in all the three 

waves of our CLDS sample and located within various bandwidths around the river boundary. We add Dalh correction terms to account for the potential Roy sorting issue. Standard 

errors that are clustered at the city level are reported in parentheses. Standard errors that are clustered at the city level are reported in parentheses.  * p < 0.10, ** p < 0.05, *** p < 

0.01
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A.8 Results of Placebo Tests 
 
 

 

Table A19: Placebo Wind Directions 

 Dependent variable: Log real income 

 (1) (2) (3) (4) (5) (6) 

PM 2.5 × Disclosure 0.00107 0.00109 0.00162 0.00290 0.00296 0.00237 

 (0.00700) (0.00737) (0.00729) (0.0107) (0.0110) (0.00919) 

Observations 34,731 34,731 34,731 34,731 34,731 34,731 

City FE Yes Yes Yes Yes Yes Yes 

Region FE × Year FE Yes Yes No Yes Yes No 

City-Tier FE × Year FE No Yes No No Yes No 

Region FE × City-Tier FE 

× Year FE No No Yes No No Yes 

Weather controls No No No Yes Yes Yes 

Demographics Yes Yes Yes Yes Yes Yes 

Notes: Instrumental variables specification using the interaction between wind direction, the location and the coal consumption of 

power plants. We use ‘placebo’ wind direction by adding 180 degree. Demographics include age, gender, hukou status and 

indicators for education attainment. Weather controls include temperature and humidity. We employ individual-level pool cross-

section data across 2011, 2013 and 2015, and use cities that are included in all the three waves of our CLDS sample. We add Dalh 

correction terms to account for the potential Roy sorting issue. Standard errors that are clustered at the city level are reported in 

parentheses. We add 180 degree to wind direction angle.  * p < 0.10, ** p < 0.05, *** p < 0.01. 
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Table A20: Placebo RD Cutoff 

 Dependent variable: Log real income 

 (1) (2) (3) (4) (5) (6) 

PM 2.5 × Disclosure -0.0308 -0.0296 -0.0261 -0.0326 -0.0310 -0.0270 

 (0.0370) (0.0347) (0.0236) (0.0391) (0.0361) (0.0237) 

PM 2.5 0.00620 0.00594 -0.00175 0.00738 0.00697 -0.000820 

 (0.0234) (0.0227) (0.0200) (0.0242) (0.0232) (0.0198) 

Disclosure 1.609 1.543 1.425 1.705 1.615 1.468 

 (1.879) (1.814) (1.290) (1.986) (1.888) (1.300) 

Control function for the running variable 
Linear × North× 

Year FE 

Linear × North× 

Year FE 

Linear × North× 

Year FE 

Quadratic× Year 

FE 

Quadratic× Year 

FE 

Quadratic× Year 

FE 

Observations 18,136 18,136 18,136 18,136 18,136 18,136 

City FE Yes Yes Yes Yes Yes Yes 

Region FE × Year FE Yes Yes No Yes Yes No 

City-Tier FE × Year FE No Yes No No Yes No 

Region FE × City-Tier FE × Year FE No No Yes No No Yes 

Weather controls No No No Yes Yes Yes 

Demographics Yes Yes Yes Yes Yes Yes 

Notes: Demographics include age, gender, hukou status and indicators for education attainment. Weather controls include temperature and humidity. We move the river border 

parallelly by 5 degree. We employ individual-level pool cross-section data across 2011, 2013 and 2015, and use cities that are included in all the three waves of our CLDS sample 

and located within a 400 mile-bandwidth around the ‘placebo’ river boundary. We add Dalh correction terms to account for the potential Roy sorting issue. Standard errors that are 

clustered at the city level are reported in parentheses.  * p < 0.10, ** p < 0.05, *** p < 0.01. 
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Table A21:  Placebo Data Rollout Sequence 

 Dependent variable: Log real income 

 (1) (2) (3) (4) (5) (6) 

PM 2.5 × Disclosure 0.00764 0.00745 0.00764 0.00908 0.00886 0.00892 

 (0.00553) (0.00576) (0.00679) (0.00576) (0.00595) (0.00722) 

PM 2.5 -0.0153 -0.0142 -0.0109 -0.0186 -0.0174 -0.0148 

 (0.0346) (0.0350) (0.0430) (0.0348) (0.0353) (0.0445) 

Disclosure -0.394 -0.384 -0.405 -0.456* -0.445* -0.458 

 (0.249) (0.259) (0.300) (0.258) (0.267) (0.318) 

Observations 34,731 34,731 34,731 34,731 34,731 34,731 

City FE Yes Yes Yes Yes Yes Yes 

Region FE × Year FE Yes Yes No Yes Yes No 

City-Tier FE × Year FE No Yes No No Yes No 

Region FE × City-Tier FE × Year 

FE No No Yes No No Yes 

Weather controls No No No Yes Yes Yes 

Demographics Yes Yes Yes Yes Yes Yes 

Notes: Instrumental variables specification using the interaction between wind direction, the location and the coal consumption of 

power plants. Demographics include age, gender, hukou status and indicators for education attainment. Weather controls include 

temperature and humidity. We randomly allocate cities to each of the three waves of data disclosure. We employ individual-level 

pool cross-section data across 2011, 2013 and 2015, and use cities that are included in all the three waves of our CLDS sample. We 

add Dalh correction terms to account for the potential Roy sorting issue. Standard errors that are clustered at the city level are 

reported in parentheses.  * p < 0.10, ** p < 0.05, *** p < 0.01. 
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Table A22:  Placebo Data Rollout Time 

 Dependent variable: Log real income 

 (1) (2) (3) (4) (5) (6) 

Panel A: Delay One Year 

PM 2.5 × Disclosure 0.00972 0.00968 0.00654 0.0110 0.0110 0.00784 

 (0.00753) (0.00768) (0.00889) (0.00796) (0.00814) (0.00915) 

Panel B: Delay Two Years 

PM 2.5 × Disclosure 0.00377 0.00357 0.00278 0.00511 0.00490 0.00394 

 (0.00345) (0.00349) (0.00437) (0.00352) (0.00350) (0.00452) 

Observations 34,731 34,731 34,731 34,731 34,731 34,731 

City FE Yes Yes Yes Yes Yes Yes 

Region FE × Year FE Yes Yes No Yes Yes No 

City-Tier FE × Year FE No Yes No No Yes No 

Region FE ×  City-Tier FE × 

Year FE No No Yes No No Yes 

Weather controls No No No Yes Yes Yes 

Demographics Yes Yes Yes Yes Yes Yes 

Notes: Instrumental variables specification using the interaction between wind direction, the location and the coal consumption of 

power plants. Demographics include age, gender, hukou status and indicators for education attainment. Weather controls include 

temperature and humidity. We employ individual-level pool cross-section data across 2011, 2013 and 2015, and use cities that are 

included in all the three waves of our CLDS sample. We add Dalh correction terms to account for the potential Roy sorting issue. 

Standard errors that are clustered at the city level are reported in parentheses.  * p < 0.10, ** p < 0.05, *** p < 0.01. 
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Appendix B: City-Specific Housing Price Measure  

 

We define the value of the home occupied by individual 𝑖 in city 𝑗, 𝑃𝑖,𝑗, as the value of the 

house (for owner-occupied units) or annual rent (for rental units) in our census data. Following 

Bayer et al. (2007, 2009), we assume that 𝑃𝑖,𝑗 is a function of a scaling parameter 𝜌𝑗 specific to 

city 𝑗 and a vector of housing characteristics  𝛨𝑖. Then, we estimate the following regression: 

    𝐿𝑜𝑔 𝑃𝑖,𝑗,𝑡 = 𝐿𝑜𝑔𝜌𝑗,𝑡 + 𝜙𝑡𝛺𝑖,𝑜𝑤𝑛𝑒𝑟 + 𝐻𝑖
′𝜏𝑡 + 𝜀𝑖,𝑗,𝑡

𝐻                                     (B1)    

Where 𝛺𝑖,𝑜𝑤𝑛𝑒𝑟 is a dummy variable that takes the value of 1 for a owner-occupied unit and 0 

otherwise. Dwelling characteristics 𝛨𝑖 describe the number of rooms, floor area, whether tap water 

is provided, whether a kitchen is provided, whether a shower room is provided and whether there 

is a bathroom. We run the housing price regression of Equation (B1) for 2011, 2013 and 2015, 

separately. The city-and year-specific fixed effect 𝐿𝑜𝑔𝜌𝑗𝑡  measures the effective ‘‘price of housing 

services’’ in city 𝑗  and year 𝑡  independent of ownership and housing attributes. Therefore, our 

housing price measure captures the variation in housing costs both spatial and time variations in 

housing costs. 
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Appendix C:  Roy Sorting and the Dahl Correction Approach  

 

Roy sorting refers to the problem that individuals respond to idiosyncratic wage draws and 

are likely to move to a location where that wage draw is good. For instance, individuals from a 

particular region could earn unusual high wages in a given place, because their personal abilities 

have unusual comparative advantages specific for working in this place. Thus, other people who 

look like these individuals cannot earn same wages if they move to the place. We follow the semi-

parametric approach proposed by Dahl (2002) to address the Roy sorting bias. 

We use population census data in 2005 and divide individuals into groups based on their 

original regions. Within each original region cell, we also allocate individuals into one of the two 

education classes: high school dropouts and high school graduates. Then, we define selection 

probability 𝜔𝑖   as the fraction of the population in individual 𝑖′𝑠  cell that chooses to live in a 

particular destination region. Finally, we augment wage hedonic equation by adding a quadratic 

function of  𝜔𝑖. Controlling for selection probability can effectively correct for Roy sorting bias 

(Dahl, 2002).  

We use baseline year data in 2005 to measure the selection probability, and control for city-

fixed effects in our baseline empirical specification of equation (10). Therefore, we can account 

for any location-specific unobservables that may be correlated with these Dahl correction terms.  

       The selection probability 𝜔𝑖  can also capture bilateral migration costs across regions. If there 

are high mobility costs associated with moving form region A to B, the share of people moving 

from region A to B should be small (Bryan and Morten 2019). 

 




