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1. Introduction

Economists and financial analysts are often interested in knowing if a shock in one market affects

other markets. Developing a useful and robust correlation test is the first step towards investigating how

information is transmitted across assets and markets and for exploring the significance of its effect. In general,

the common approach to measuring the correlation between two time series is to perform a regression

analysis in the pre-specified functional form, and then test for significance of the regression coefficients.

However, a series of studies recognize that the most widely discussed problem undermining confidence in

the reliable regression test is the uncertainty about the unobservable time-series properties of the variables,

such as the degrees of the persistence. When the integrated orders of two series are imbalanced, i.e., the

regressor is persistent (near unit root or long memory) and the regressand displays covariance stationary

time series , empirical facts cast doubt on the finite sample accuracy of standard t-tests based on least

squares regressions. For example, under the local-to-unity assumptions, the distribution of the standard

t-statistics is non-standard and thus conventional statistical inference of current empirical findings could be

called into question (e.g., Cavanagh et al., 1995; Maynard and Phillips, 2002; Liu and Maynard, 2005). Tsay

and Chung (2000) found that the usual t-statistic in a regression between two uncorrelated stationary long

memory processes (Id1 and I(d2), d1, d2 ∈ (0, 0.5)) diverges, given that both orders of integration sum up

to a value greater than 0.5. This divergence of the usual t-statistic is a defining characteristic of a spurious

regression. Furthermore, Tsay and Chung (Theorem 4, 2000) showed that the insignificant testing problem

first considered by Robinson (1993) could also arise when the integrated order of one long memory process

is negative, and that of the other one is positive, because the t-ratio converges to zero, leading to the actual

size of using the t-test for the null hypothesis of no correlation between the two unrelated long memory

processes being significantly below the nominal size. These results imply that the usual t-statistic could be

of no use in empirical testing with long memory processes.

Few previous attempts in practice consider tests that are immune to such persistent behavior, al-

though many studies document regression estimator, and tests have fundamentally different properties in

the presence of persistent regressors. Bekaert and Hodrick (2001), and Liu and Maynard (2005) are notable

exceptions, nevertheless, there exists a restriction on the testing procedure of Bekaert and Hodrick (2001)

and both literature rule out long memory models (see Maynard, 2006). Maynard (2003) and Maynard (2006)

suggest the covariance schemes to test for the forward exchange rate hypothesis (FRUH) that are free from

the problems associated with persistent regressors. However, the spurious cross-correlation resulted from

two time series with imbalanced integrated orders by Wang et al. (2020) could be on account of the biased

empirical results using the covariance framework.

As a remedy, this paper develops a tool to test for the correlation between two integrated-order imbal-

anced time series, that allows for persistent behavior; i.e., one series displays a near unit root or stationary

long memory process, and the other displays a covariance stationary time series (or I(0) process). Empir-

ically, it is not surprising to test for the relationship between two time series with imbalanced orders. A

notable example of this type in international finance is the forward premium puzzle, in which the return of

the spot rate exhibits an I(0) process, and the forward discount is near unit root or long memory. In this

regard, we generalize Hong’s (1996) correlation statistics based on an AR(k) pre-filtered approach to test

for two time series with imbalanced integrated-orders.

This study makes the following theoretical and empirical contributions. First, we show that the limiting

distribution of Hong’s correlation test follows the standard normal distribution when the integrated orders of

two time series are imbalanced. Hence, Hong’s correlation test is easy to implement. One simply uses an AR
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model to filter an I(0), I(d), or a differenced near unit root process and then constructs the Hong’s correlation

test by the AR-filtered residuals. The main advantage of using an AR model to filter a I(d) process is that

it does not require the prior knowledge and estimation of an exactly identified I(d) model. It can also

substantially reduce the computational burden and inaccurate parameter estimates of the integrated order

d. In fact, when d is unknown, the maximum likelihood estimation (MLE) of the fractional parameter in a

parametric ARFIMA process is quite time-consuming and is not very accurate in finite samples, especially

when d is close to 0.5 and the sample size is small (T = 100 and 200). Therefore, simulation methods

based on the estimated ds could lead to severe bias in finite samples. Although Sun (2004) proposed

a heteroskedasiticity and autocorrelation consistent t-test (HAC-t test) to avoid the spurious regression

problem, the limiting distribution of the HAC-t test is non-standard. The critical values thus vary with the

use of different kernel functions, fractional parameters (d), and bandwidth parameters (M), which make the

application of the HAC-t test difficult. Thus, using Hong’s correlation test could avoid the pitfalls associated

with an estimation of the fractional parameter and the HAC-t testing procedure.

Second, Monte Carlo simulations demonstrate the desirability of Hong’s correlation test in finite samples.

Results confirm our theoretical justification. The size-control ability of the Hong’s statistics is convincing

for various combinations of integrated orders of two time series. In addition, the power performance is very

promising relative to that of the HAC-t (Sun, 2004). More importantly, the spurious correlation due to the

near unit root or long memory process in the conventional t test is less likely to occur. This situation is

particularly noticeable in the forward premium puzzle.

Third, the commonly cited bias in regression analysis, such as the model mis-specifications, or omitted

variables in pre-determined functional forms, could be averted in Hong’s correlation testing framework. In

addition, our testing procedure also allows for examining the cross-correlations over various lags.

Fourth and Finally, as an illustration, we demonstrate the applicability of the Hong correlation testing

procedure by examining the time-varying pattern of foreign exchange rate unbiasedness hypothesis (FRUH)

for several developed economies from 1996 to 2020 with the rolling window scheme. This long-standing

anomaly is of specific interest to us, due to the vulnerability of the conventional regression-based testing

procedure to the biased statistical inference, when the forward discount follows an I(d), d ∈ (0, 0.5), or a

near unit root process.

In brief, our testing framework aims to bridge the gap in the current literature on FRUH. For instances,

the spurious effect and inaccurate estimate of the long memory parameter d, could both occur with high

possibility in the covariance test and two-stage rebalancing estimation for FRUH as in Maynard (2003,

2005) and Maynard et al. (2013). Empirical evidence indicates that during or prior to the period of the

general global economic events or crises, the strength of the correlation between spot rate return and forward

discount for each currency increases, and thus, the unbiasedness hypothesis for several countries would be

rejected. Additionally, our correlation tests suggest that the forward premium responds with a time lag

to a change in the spot rate. Such an empirical observation can be reconciled by the theoretical argument

that investors may react slowly to changes in financial markets on the basis of a limited set of information.

Collectively, these findings could provide important information for business practitioners in the portfolio

adjustment and risk control.

The rest of the paper runs organized as follows. Section 2 provides the theoretical justification of the

test statistics. Section 3 uses Monte Carlo studies to investigate the finite sample properties of Hong’s test

statistics constructed by the AR-filtered residuals. Section 5 presents an empirical application of Hong’s

correlation test on the forward rate unbiasedness hypothesis. Concluding remarks are given in Section 5.

All proofs are in the Appendix.
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2. The Model and Test Statistics

Many researchers and business practitioners are interested in the lead-lag cross-correlations, because

the duration of cross-correlation and elucidation of various causalities between two series are quite crucial

to signal the pattern of spillover effects in financial markets.

Haugh (1976) proposed the following test statistics for two ARMA processes being independent :

SM = T

M∑
l=−M

ρ̂ij(l)
2 and S∗

M = T 2
M∑

l=−M

(T − |l|)−1ρ̂ij(l)
2, (1)

where

ρ̂ij(l) =

T−l∑
t=k+1

êt,k,iêt+l,k,j

(
T∑

t=k+1

ê2t,k,i

)1/2( T∑
t=k+1

ê2t+l,k,j

)1/2
, (2)

and êt,k,i and êt,k,j are prewhitened yt,i and yt,j processes, derived from residuals of fitting ARMA model

for yt,i and yt,j , respectively. Haugh (1976) proved that SM and S∗
M are both asymptotically distributed

as χ2
2M+1. Because of the lower power of the Haugh test, Hong (1996) proposed a powerful test of no

contemporaneous or lagged correlations between two stationary covariance time series (I(0) processes) yt,i

and yt,j based on Haugh’s (1976) test statistic. In this study, we further generalize Hong’s (1996) test

statistics to the case when two time series have different orders of integration; i.e., either I(0), I(d), d ∈
(0, 0.5), or a nearly unit root process as defined in Assumptions 1-3.

Assumption 1. The processes yt follows an ARMA(p, q) processes of the form:

ϕ(L)yt = θ(L)et,

where (i) the autoregressive (AR) and moving average (MA) polynomials ϕ(·) and θ(·) in the lag operator

L have all roots outside the unit circle; (ii) ϕ(·) and θ(·) have no common roots; (iii) et is an i.i.d. process

with E[et] = 0, E[e2t ] = σ2
e , and E[e4t ] <∞.

Assumption 2. yt is generated as:

ϕ(L)(1− L)dyt = θ(L)et, (3)

where (i) d ∈ (0, 0.5) such that (1 − L)d =
∑∞

j=0 βjL
j is the fractional differencing operator; (ii) AR-and

MA-polynomials ϕ(L) =
∑∞

j=0 ϕ(j)L
j and θ(L) =

∑∞
j=0 θjL

j have all roots outside the unit circle; (iii) ϕ(L)

and θ(L) have no common zeroes; (iv) et is an i.i.d. process as defined in Assumption 1.

Assumption 2 here ensures the conditions in Theorem 3 of Hosking (1996) hold and allows an I(d)

process, yt, to be represented by an infinite-order moving average process;

yt =
∞∑
j=0

ψjet−j , where ψj = O
(
jd−1

)
as j → ∞, (4)

or an infinite order autoregressive process, AR(∞):

yt =
∞∑
j=1

βjyt−j + et, where βj = O
(
j−d−1

)
as j → ∞. (5)
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Assumption 3. yt is generated by the process of the form:

[1− (1 +
c

T
)L]yt = ut, ut = et + θT et−1, θT = −1 + δ/

√
T (6)

where c < 0 and et is an i.i.d. process as defined in Assumption 1 (e.g., Perron and Ng, 1996 and 1998).

Based on the analysis of Berk (1974), Hong (1996a) suggested two modified test statistics, QT and QT∗ :

QT =
T
∑T−1

l=1−T g
2(l/M)ρ̂ij,AR(l)

2 − ST (g)

{2DT (g)}1/2
, (7)

and

QT∗ =
T
∑T−1

l=1−T g
2(j/M)ρ̂ij,AR(l)

2 −MS(g)

{2MD(g)}1/2
, (8)

where the smoothing parameter M is an increasing function of T , M =M(T ) → ∞, M/T → 0, as T → ∞,

ST (g) =

T−1∑
l=1−T

(1− |l|/T )g2(l/M),

DT (g) =
T−2∑

l=2−T

(1− |l|/T )(1− (|l|+ 1)/T )g4(l/M),

S(g) =

∫ ∞

−∞
g2(z)dz,

D(g) =

∫ ∞

−∞
g4(z)dz,

ρ̂AR,ij(l) =
T−1

∑T−l
t=k+1 êt,i,kêt+l,j,k√

T−1
∑T

t=k+1 ê
2
t,i,k

√
T−1

∑T
t=k+1 ê

2
t+l,j,k

,

where yt,i and yt,j series are fitted by the AR(k) approximation as follows,

ϕ̂i(L)yt,i = êt,i,k and ϕ̂j(L)yt,j = êt,j,k

êt,i,k and êt,j,k are AR-filtered residuals and asymptotically mimic et,i and et,j , correspondingly (see Berk,1974;

Poskitt, 2007). In addition, g(.) is a kernel function assigning different weights to various lags and satisfying

the following assumption:

Assumption 4. (i) For all x ∈ R, |g(x)| ≤ 1 and g(x) = g(−x); g(0) = 1; g(x) is continuous at zero and

for almost all x ∈ R. (ii) |g(x) − g(y)| < c|x − y| for some c > 0. (iii) |g(x)| − |g(y)| ≥ 0 for |x| ≤ |y|. (iv)∫∞
−∞ g2dz <∞.

Assumption 4 allows the utilization of some commonly-used kernels such as the Bartlett, Daniell, Parzen,

quadratic-spectral (QS), and the truncated kernels (Priestley, 1981). Furthermore, Hong (1996a, 1996b)

showed that under some additional conditions on g and M , one can replace DT (g) by MD(g) without

affecting the asymptotic distribution of QT . Both QT and QT∗ are asymptotically normally distributed

under the null hypothesis of the independence and have the same asymptotic power properties. Particularly,

the lag order M indicates the lag length is used to characterize the co-movement between two markets, to

the extent that we are able to measure the cross-correlation between the financial series with a time horizon

of M . In our empirical example, we shall discuss how the forward rate correlates with the spot rate in the

context of FRUH under different lag orders.
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Hong (1996) suggested the following optimal kernel that maximizes the power of QT and QT∗ over a

suitable class of kernel functions :

g(τ) =
{
g satisfies Assumption 4, g2 = 0.5τ2, G(λ) ≥ 0 for λ ∈ (−∞,∞)

}
,

where

G(λ) =
1

2π

∫ ∞

−∞
g(z)e−izλdz.

When the characteristic exponent of the function g(z), m = 2, where m > 0 is the largest positive integer

such that

gm := limz→0
1− g(z)

|z|m

exists finite and nonzero.

Assumption 5. (i) g(.) satisfies Assumption 1, (ii) |g(x)| ≤ C1|x|−b for some b > 1 + 1/m and some

C1 <∞.

Hong (1996) showed thatQT andQT∗ deliver better power than Haugh’s test for two I(0) processes being

correlated. We now show that the two test statistics, QT and Q∗
T , developed for testing the independence

between two I(0) time series, can also be used to test for the independence between two integrated order-

imbalanced time series.

3. Asymptotic Properties of Hong Tests

3.1. The AR approximation of a time series

We note that yt,i satisfying either Assumption 1, 2 or 3 can be represented by an infinite-order autore-

gressive process (AR(∞)):

ϕi(L)yt,i = et,i, i = 1, 2, ·, N, (9)

where ϕi(L) =
∑∞

j=0 ϕjiL
j with a lag operator L, and |ϕi(L)| is bounded away from zero, and et,i is a

sequence of independent identically distributed random variables with zero mean and variance E e2t,i = σ2
i .

Approximating yt,i by an AR(k) process:

yt,i =
k∑

j=1

βji(k)yt−j,i + et,i,k, (10)

where k increases with T (e.g., Berk, 1974; Poskitt, 2007). If yt,i follows Assumption 1, then Berk (1974)

shows that if (k, T ) → ∞ and k3/T → 0, then β̂ji(k) → ϕji and E(e2t,i,k) → σ2
i . If yt,i follows Assumption

2, then Poskitt (2007) proves that as long as k = o(( T
logT )

0.5−d) 1, when (k, T ) → ∞, β̂ji(k) → ϕji and

limk→∞E(êt,i,k−et,i)2 = 0. If yt,i follows Assumption 3, Perron and Ng (1998) show that the first differences

of the data can be approximated by an AR(k) process;

∆yt,i =
k∑

j=1

βji∆yt−j,i + ϵt,i,k, (11)

1 This condition satisfies the model selection criterion for the AR(k) approximation of a long memory

process discussed in Section 5 of Poskitt (2007).
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where ∆yt,i = yt,i− yt−1,i. In addition, the estimate of residual variance resulting from the AR-fitted model

converges to the true error variance as k, T → ∞ and k11/T → 0.

3.2 The AR-filtered version of sample correlation coefficient

As shown in Wang et al. (2020 a) and Wang et al. (2020 b), ρ̂ij does not necessarily have the limiting

distribution for the cases when the integrated orders of two time series are imbalanced, i.e., one time series

is an I(di), di ∈ (0, 0.5) process and the other is an I(0) process or an I(dj), dj ∈ (0, 0.5), di ≤ dj . Therefore,

following Haugh (1976) and Hong (1996), instead of testing the correlation between yt,i and yt,j , we propose

to consider the correlation of the two individually AR-filtering residuals of yt,i and yt,j , i.e., et,i and et,j .
2

The intuition behind this procedure is that if two series, yt,i and yt,j are independent, so are et,i and et,j .

On the other hand, if there exists a common shock between et,i and et,j , then yt,i and yt,j are correlated.

Filtering two series by the AR scheme would not alter the independence of the filtered time series, but could

lead to correct asymptotic distribution of the correlation coefficients.

We then demonstrate the Pearson sample correlation coefficient based on the residuals of two individual

AR approximations. The properties of the AR-filtering version of Pearson sample correlation coefficient

ρ̂ij,AR for two imbalanced-order time series, either I(0), I(d), d ∈ (0, 0.5) or nearly unit root process3 are

summarized as follows.

Lemma 1. Suppose yt,i follows an ARMA process defined as Assumption 1 and yt,j follows either a sta-

tionary long memory process or a nearly unit root process as defined by Assumptions 2 and 3, respectively.

Under the null hypothesis of the independence between yt.i and yt,j , as (k1, k2, k3, T ) → ∞,

1.
√
T ρ̂ij,AR

d−→ N(0, 1), when (i) yt,j follows a nearly unit root process; (ii) k1 = o(T 1/3) is the lag

length for the AR(k1) approximation of an I(0) process; (iii) k2 = o(T 1/11) is the lag length for the AR(k2)

approximation of a differenced nearly unit root process.

2.
√
T ρ̂ij,AR

d−→ N(0, 1), when (i) yt,j follows an I(d), d ∈ (0, 0.5) process; (ii) k1 = o(T 1/3) is the lag

length for the AR(k1) approximation of an I(0) process; (iii) k3 = o((T/logT )0.5−d) is the lag length for the

AR(k3) approximation of an I(d), d ∈ (0, 0.5) process.

Lemma 2. If yt,i and yt,j follow a stationary long memory process and a nearly integrated process as defined

by Assumptions 2 and 3, respectively, then, under the null hypothesis of no cross-sectional dependence

between yt.i and yt,j , as (k1, k2, T ) → ∞,

1.
√
T ρ̂ij,AR

d−→ N(0, 1), where (i) k1 = o((T/logT )0.5−d) is the lag length for the AR(k1) approximation

of an I(d), d ∈ (0, 0.5) process; (ii) k2 = o(T 1/11) is the lag length for the AR(k2) approximation of a

differenced nearly unit root process.

Lemma 3. When yt,i follows an I(di), di ∈ (0, 0.5) process, yt,j follows an I(dj) process, dj ∈ (0, 0.5)

then as (k1, k2, T ) → ∞ and under the null hypothesis of the independence between yt,i and yt,j , with

k1 = o((T/logT )0.5−di) for an I(di) ∈ (0, 0.5) process and k2 = o((T/logT )0.5−dj ) for an I(dj) ∈ (0, 0.5)

2 This framework is inspired by Haugh (1976) and Hong (1996) which consider to use et,i and et,j to

examine the correlation between yt,i and yt,j . In other words, using individually constructed AR model to

filter yt,i and yt,j does not change the correlation or independence between yt,i and yt,j .
3 When one of a pair follows a nearly unit root process, one could take the first difference on this nearly

unit root process.
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process, where k1 and k2 are lag lengths for the AR(k) approximation of the I(di) and I(dj) processes,

respectively, we then have the following results:

1.
√
T ρ̂AR,ij

d−→ N(0, 1), when yt,j follows an I(dj), dj ∈ (0, 0.5) process and (d2i +di)+(d2j +dj)−1 < 0.

Remark 1. Under the null hypothesis of the independence between yt,i and yt,j , Wang et al. (2020)

suggest that inference based on
√
T ρ̂ij without the AR-filtered version of sample correlation coefficient

between yt,i and yt,j could lead to the spurious correlation. Theorems 1-3 establish the consistency of AR-

filtering version of Pearson sample correlation coefficient (ρ̂ij,AR) and its limiting distribution following a

standard normal distribution provided that the order k of AR(k) approximation satisfies the given conditions.

Thus, we can construct the conventional Pearson correlation coefficients from the residuals of AR(k) model

and derive the limiting properties of the usual correlation-related tests using the analysis of ρ̂ij,AR when

imbalanced integrated orders of two time series occur.

3.3. Asymptotic Properties of Hong’s Statistics

Theorem 1. Let yt,i and yt,j satisfy Assumption 1 and 2, respectively. Suppose the kernel functions

with r = 2 satisfy Assumption 4 and 5. When the smooth parameter M = M(T ) → ∞, M/T → 0, as

k1, k2, T → ∞, both QT and Q∗
T are asymptotically distributed as N(0, 1) if et,1 is independent of es,2 for

all t and s, where (i) k1 = o(T 1/3) is the lag length for the AR(k1) approximation of an I(0) process; (ii)

k2 = o((T/logT )0.5−dj ) is the lag length for the AR(k2) approximation of an I(dj), dj ∈ (0, 0.5) process.

Theorem 2. Let yt,i and yt,j satisfy Assumption 1 and 3, respectively. Suppose the kernel functions

with r = 2 satisfy Assumptions 4 and 5. When the smooth parameter M = M(T ) → ∞, M/T → 0, as

k1, k2, k3, T → ∞, both QT and Q∗
T are asymptotically distributed as N(0, 1) if et,1 is independent of es,2

for all t and s, where (i) k1 = o(T 1/3) is the lag length for the AR(k1) approximation of an I(0) process; (ii)

k2 = o(T 1/11) is the lag length for the AR(k2) approximation of a differenced nearly unit root process.

Theorem 3. Let yt,i and yt,j satisfy Assumption 2 and 3, respectively. Suppose the kernel functions

with r = 2 satisfy Assumptions 4 and 5. When the smooth parameter M = M(T ) → ∞, M/T → 0,

as k1, k2, T → ∞, both QT and Q∗
T are asymptotically distributed as N(0, 1) if et,1 is independent of es,2

for all t and s, where (i) k1 = o(T 1/11) is the lag length for the AR(k1) approximation of a differenced

nearly unit root process; (ii) k2 = o((T/logT )0.5−dj ) is the lag length for the AR(k2) approximation of an

I(dj), dj ∈ (0, 0.5) process.

Theorem 4. Let yt,i and yt,j satisfy I(di) and I(dj), di, dj ∈ (0, 0.5) as defined in Assumption 3. Suppose

the kernel functions with r = 2 satisfy Assumptions 4 and 5. When the smooth parameterM =M(T ) → ∞,

M/T → 0, as k1, k2, T → ∞, both QT and Q∗
T are asymptotically distributed as N(0, 1) if et,1 is independent

of es,2 for all t and s. where (i) k1 = o((T/logT )0.5−di) is the lag length for the AR(k1) approximation of

an I(di) ∈ (0, 0.5) process; (ii) k2 = o((T/logT )0.5−dj ) is the lag length for the AR(k2) approximation of an

I(dj) ∈ (0, 0.5) process.

Theorems 1-4 shows that QT and QT∗ constructed from the residuals of ever-increasing order AR

models are asymptotically normally distributed under the null hypothesis of the independence between two

integrated-order imbalanced time series. Although three AR(k) models with ever-increasing orders, k =

o(T 1/3), k = o((T/logT )0.5−d) and k = o(T 1/11), are sufficient to establish the asymptotic distributions of
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Hong’s statistics, our interest is not in getting consistent estimate of βj , but rather in obtaining fitted residuals

that are close to white noises, often a finite order AR(k) process is sufficient, because (yt−1, yt−2, · · · , yt−k)

are collinear. When regressors are correlated, dropping collinear variables may bias the estimate of βj , but

it does not affect the prediction and hence the estimated residuals.

The circumstances discussed in Theorems 1 and 2 are commonly found in empirical applications such as

the forward discount anomaly proposed in Baillie and Bollerslev (2000), Maynard and Phillips (2001), and

Liu and Maynard (2005). The common characteristic of these examples is the regression model including

a stationary I(d) or nearly unit root regressor (forward premium) and an I(0) dependent variable (spot

return). Theorem 4 illustrates the empirical finding of the FRUH in Maynard at al. (2013), where both the

spot rate return and forward discount display I(d) processes.

Remark 2. Using an ever increasing AR(k) model to transform the residuals of yt,i into white noise residuals

as (k, T ) → ∞, Berk (1974) showed that if yt,i is an I(0) process, k = o(T 1/3) and Poskitt (2007) showed

that if yt,i is an I(d) process, k = o((T/logT )0.5−d). When yt,i is a differenced nearly unit root process,

k = o(T 1/11). In implementation of our adjusted AR(k) filtered correlation coefficients, we suggest to use

a common bound, i.e, k∗∗ = o((T/logT )0.5), for an AR(k∗∗) model to approximate the I(0), I(d), and

differenced processes for QT and Q∗
T .

4. Order Selection

Lemmas 1-3 and Theorems 1-4 establish the asymptotic properties of QT and Q∗
T based on the AR-

filtered residuals of I(0), nearly unit root and I(d) processes. However, we only have finite T observations

for the observed series. We thus encounter an issue of how to select the order of an AR approximation based

on T observations.

The data generating process (DGP) of yt under our Assumptions 1-2 and 3 can be represented by

yt =
∞∑
j=1

βjyt−j + ϵt (12)

and

∆yt =
∞∑
j=1

βj∆yt−j + ϵt, (13)

respectively,4 where ϵt is i.i.d with mean 0 and variance σ2. Thus, before computing the correlation between

two series, we suggest first using an AR filter, Bh(L) = (1 − β1hL − β2hL
2 − · · · − βhhL

h) to transform yt

into a white noise process

ϵth = βh(L)yt = (yt −
h∑

j=1

βjhyt−j), (14)

where h = 1, · · · ,MT , MT increases with T while MT

T → 0 as T → ∞. Let σ2
h = 1

T

∑T
t=1 ϵ

2
th and kT be the

order of the AR filter such that

σ2
kT

= min(σ2
1 , · · · , σ2

MT
). (15)

Let σ̂2
h = 1

T

∑T
t=1 ϵ̂

2
th, where

ϵth = yt − β̂1hyt−1 − · · · − β̂hhyt−h, (16)

4 Equation (13) is considered in Perron and Ng (1998) as the equation (A.1) of Perron and Ng (1998) on

page 585.
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and βjh is the least square estimate of βjh.
5 The popular order selection criterion takes the form

SCT (h) = logσ̂2
h +

hCT

T
, (17)

where CT > 0, CT

T → 0 as T → ∞. If CT = 2, we have AIC (see Akaike, 1970). If CT = logT , we have BIC

(see Schwartz, 1978).

Let σ̂∗
kT

be the estimate of variance constructed by the residuals from the AR(k̂∗T ) approximation of yt

based on the selection criterion (17). Shibata (1980) defined a sequence of selected orders k̂∗T as efficient if

the limit of sequence limT→∞
SCT (̂k∗

T )

SCT (̂kT )
= 1 as T → ∞. Poskitt (2007) showed that if yt is a stationary long

memory I(d) process satisfying Assumption 2, where 0 < d < 0.5, then letting CT = 2 (AIC) is the efficient

condition of Shibata (1980). When yt is a covariance stationary as defined in Assumption 1 or a differenced

nearly unit root process as defined in Assumption 3, β̂h converges to βh at the speed of faster rate relative

to that of a stationary long memory (see Berk, 1974; Perron and Ng, 1998; Poskitt, 2007), thus, using AIC

also satisfies Shibata (1980) efficiency condition, for that being
k̂∗
T

kT
= 1+ o(1). We shall therefore using AIC

to select the order of AR to filter yt process.
6 7

5. Monte Carlo Simulations

Monte Carlo experiments are conducted to examine finite sample properties of our analytical results.

The Monte Carlo experiment for each case is based on 2,000 replications with sample size T . For each T , we

generate T + 200 observations and discard the first 200 to reduce the effects of initial values. We simulate a

pair of time series yt,1 and yt,2 generated as the following combinations of DGPs and assume that there is

no cross correlation between them, i.e., ρet,1,et,2 = 0 (see Haugh, 1976)8 are independent (see Hong, 1996).

DGP (a). (1 + 0.7L)yt,1 = (1 + 0.5L)et,1, (1 + 0.95L)yt,2 = (1− 0.5L)et,2,

DGP (b). (1 + 0.7L)yt,1 = (1 + 0.4L)et,1, (1 + 0.8L)(1− L)0.45yt,2 = (1 + 0.2L)et,2,

where dyt,2 = {0.1, 0.2, 0.3, 0.4, 0.45}.

DGP (c). (1− 0.95L)yt,1 = (1− 0.5L)et,1, (1− L)dyt,2 yt,2 = et,2,

where dyt,2 = {0.1, 0.2, 0.3, 0.4, 0.45}.

DGP (d). (1 + 0.8L)(1− L)dyt,1 yt,1 = (1 + 0.2L)et,1, (1− L)dyt,2 yt,2 = et,2,

where dyt,1 = {0.33, 0.36, 0.38, 0.4, 0.44}, dyt,2 = {0.33, 0.36, 0.38, 0.4, 0.44}.

Here, et,1 and et,2 are identically and independently distributed N(0, 1) random variables. DGP (a) rep-

resents the combination of two stationary time series, but one of them follows a nearly unit root process.

DGP (b) indicates a combination of a stationary I(d) process and an I(0) process. DGP (c) presents the

two integrated-order imbalanced time series; i.e., one of them follows a nearly I(1) process and the other

exhibits a stationary long memory process. DGP (d) displays two stationary long memory processes with

5 For ease of notation, we let y−j = 0 for j = 1, 2, · · · ,MT .
6 In fact, Mellow’s criterion also satisfies the Shibata (1980) condition.
7 Although BIC is known to be consistent, Schmidt and Tschernig (1993) found that the BIC criterion

sometimes performs poorly. When the true model is of infinite dimension, AIC yields the best finite di-

mensional approximating model (e.g., Shibata (1981), Ng and Perron (2005), Beran (1995) and Poskitt

(2007)).
8 It is well known that yt,1 and yt,2 are independent if and only if the innovations et,1 and et,2
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different differencing parameters. It should be noted that DGPs (a), (b), and (c) are widely discussed in the

FRUH literature, such as Maynard (2003) and Choi et al. (2010).

4.1. Finite sample properties of Hong’s statistics for DGPs (a)-(c)

We report the finite sample performance of Hong’s statistics for DGPs (a)-(c) in Tables 1-2. To save

space, only the simulation results for T = 200 are displayed in this paper, but the results for the other T are

available from the authors upon request. We follow the simulation design of Hong (1996). Two commonly-

used kernels, Daniell and Parzen, having D(k) = 1.209200/τ and 1.325414/τ are considered. Three rates of

M are [ln(T )], [3T 0.2] and [3T 0.3], where [a] denotes the integer part of a. For T = 200, these rates deliver

M = 5, 9, 15. We use AIC to choose an order k of the AR(k) approximation of each time series. Furthermore,

Hong (1996a, 2001) pointed out that both QT and QT∗ diverge to positive infinity in probability as T → ∞
under a general class of alternatives, which implies that asymptotically, negative values of QT and QT∗ occur

only under the null hypothesis. Therefore, QT and QT∗ could be one-sided test, and the upper-tailed N(0, 1)

critical value should thus be used in our simulation. Tables 1-3 examine the size and power of Hong’s QT

and QT∗ tests with the Parzen kernel at the 5% significant level, respectively, where yt,1 and yt,2 follows the

DGPs (a)-(c). Results for the case where the Daniell kernel is used for constructing two tests are available

on request. Results show that the empirical sizes are very close to 5% for every pair of time series with

imbalanced orders where the two processes are independent with each other no matter which kernel is used.

The nominal size is close to the actual size for Hong’s two test statistics for DGPs (a)-(c).

We further assess the power of Hong’s statistic when many financial time series share a similar pattern

of short cross-correlations, as described in Hong (1996). We assume that the error term et,1 and et,2 are

generated as: ρ12(j) = 0.2 for j = 0 and ρ12(j) = 0 for j ̸= 0, where ρ12(j) denotes the cross correlation

function of e1t and e2t at lag j. The results in Tables 1-2 show that the rejection percentages of 1000

replications at the 5% significance level are similar to those of Table 2 in Hong (1996 a), where the two time

series are short memory processes. Both QT and QT∗ perform similarly for the two kernels considered. For

each kernel, the more slowly M grows, the better is the power of the test. On the other hand, the power

performance of Hong’s statistics does not depend on the long memory or nearly I(1) characteristics of the

data series, as long as the data series themselves are stationary. We also compare the power performance

of Hong’s statistic by considering two cross correlated long memory processes with imbalanced integrated

orders. We assume that yt,1 and yt,2 are generated with ρy12(j) = 0.2 for j = 0 and ρy12(j) = 0 for j ̸= 0,

where ρy12(j) denotes the cross correlation function of yt,1 and yt,2 at lag j. The power patterns of the

results yielded by the Paren kernel are similar to those obtained by the Daniell kernel, when the significant

level is at 5%. The results of Theorems 7 and 8 are clearly supported in our simulation studies. Simulation

evidence indicates that the generalizations of both Hong tests to two integrated-order imbalanced time series

are applicable.

4.2. Finite sample Properties of Hong’s Statistics for DGP (d)

We summarize the finite sample performance of Hong’s statistics for DGP (d) in Tables 3-4. We as well

use AIC to choose an order k of the AR(k) approximation of each time series. Tables 3 and 4 show the size

and power of the Hong’s tests QT and QT∗ with the Parzen kernel at the 5% significant level, respectively,

where both yt,1 and yt,2 follow I(d) processes. The results show that the empirical sizes are very close to

5% for every pair of d1 and d2 where the two processes are independent, regardless of the kernel functions.

The investigation of the power of the Hong’s statistic for DGP (d) is reported in Table 5. The results in

Table 4 indicate that the rejection percentage of 1000 replications at the 5% significant level is also similar to
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Table 2 in Hong (1996), where the two time series are short memory processes. Both QT and QT∗ perform

similarly for the two kernels considered. For each kernel, the more slowly M grows, the better is the power

of the test. On the other hand, the power performance of the Hong’s statistics does not depend on the long

memory characteristics of the data series, as long as the processes are stationary. We also compare the power

performance of the Hong’s statistic by considering two cross-correlated long memory processes. We further

assume that yt,1 and yt,2 are generated with ρy12(j) = 0.2 for j = 0 and ρy12(j) = 0 for j ̸= 0 where ρy12(j)

denotes the cross-correlation function of yt,1 and yt,2 at lag j. The power patterns in Table 4 are similar to

those presented in Tables 1-2 when the significance level is set at 5%. The results of Theorem 4 are clearly

supported by our simulation studies, demonstrating that the Hong’s statistics derived from prewhitening

stationary I(d) processes by the AR(k) approximation behave well in finite samples.

In a comparison, we present the conventional procedure of examining the correlation between two

stationary long memory processes, yt,1 and yt,2 , that is, regressing yt,1 on yt,2,

yt,1 = α+ δyt,2 + ut, t = 1, · · · , T,

where we first estimate the fractional parameter, d of two long memory processes by the maximum likelihood

method, and then construct the usual t-ratio,

t = (δ̂ − δ)/se(δ̂),

to test whether δ = 0 or not, where δ̂ is the OLS estimate of δ and se(δ̂) is the standard error of δ̂. The

results are reported in Table 5. Generally, when the value of the fractional parameter d increases, the bias

of the maximum likelihood estimates of d becomes larger (e.g., Sowell, 1992). At the 5% significance level,

t-test may exhibit significant size distortions. As a result, the usual t-ratios without proper filtering may

induce spurious correlations.

Consequently, we further consider the HAC-t statistics proposed by Sun (2004). The HAC-t test is

defined as HAC-t = (δ̂ − δ)/σ̃, where σ̃ is the HAC estimator given by

σ̃2 =

(
T∑

t=1

(yt,2 − ȳ2)
2

)−1

T Σ̂

(
T∑

t=1

(yt,2 − ȳ2)
2

)−1

,

where

Σ̂ =
T−1∑

j=−T+1

k(j/M ′)Γ̃(j),

Γ̃(j) =


1
T

∑T−j
t=1 (yt+j,2 − ȳ2)ût+j ût(yt,2 − ¯yt,2) for j ≥ 0,

1
T

∑T
t=−j+1(yt+j,2 − ȳ2)ût+j ût(yt,2 − ¯yt,2) for j < 0,

k(.) is a kernel function, and M ′ = bT, b ∈ (0, 1] is the bandwidth parameter. We follow the Sun’s (2004)

simulation procedure to obtain the limiting distribution of the HAC-t test. The simulation results of Sun

(2004) show that the limiting distribution becomes close to the standard normal when b is close to 0.1 and

k(.) is the Bartlett kernel with b being 0.1 (e.g. Sun, 2004, p. 955-956). We also use 5000 replications and

a sample size of T = 200 to calculate the 95% quantile of the limiting distribution of t̃ for different (d1, d2)

combinations. The results for all combinations of d1 and d2 in this study are qualitatively similar. The

corresponding 95% quantiles for different (d1, d2) combinations are given in Table 6. Table 7 illustrates the

size and power performance of the HAC-t test, when ρy12(j) = 0.2 for j = 0 and ρy12(j) = 0 for j ̸= 0. It

appears that although the HAC-t test eliminates the spurious effect presented in Table 7, the power of the
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HAC-t is lower than that of the Hong’s tests when DGPs are long memory processes. Additionally, Hong’s

QT and Q∗
T can be used to measure the cross-correlations with various lags (not just j = 0), and tend to

have better power than the HAC-t test, which focuses exclusively on instantaneous correlation between two

long memory series. All the simulation results have confirmed that the Hong’s test based on the AR(k)

approximation is a very useful tool for examining the interactions between two stationary long memory

processes.

6. An Application to the Forward Premium Anomaly

6.1. Forward rate unbiasedness hypothesis

The forward premium, or forward discount puzzle, has been a long standing issue in international

finance, and is of great practical relevance to financial decisions (e.g., Taylor, 2003). The puzzle or the

anomaly comes from the empirical failure of the forward rate unbiasedness hypothesis (hereafter “FRUH”).

The consensus about its failure is based, largely, on the failure of the regression of the change in the future

spot rate on the current forward premium to produce unity slope coefficients. Very often, researchers find

that this slope coefficient is statistically negative, implying that forward rates are biased predictors of future

spot rates. In a high-cited study, for example, Froot and Thaler (1990) reported that the average of the

estimated slope coefficient is −0.88 across 75 studies. To some extent the variations in the forward discount

anomaly across studies can be attributed to model specifications, data availability, sample period of interest,

and econometrics analysis. To date, however, the empirical quest for the FRUH has not been fully settled.

Under this backdrop, recent studies have suggested that the anomaly is exaggerated and simply a

statistical artifact because of improper treatments of the FRUH test regression. To be specific, this regression

itself is not balanced, in the sense that the orders of integration of the dependent variable and the regressors

are different. For example, Baillie and Bollerslev (1994) and Baillie and Bollerslev (2000) noted that the

long memory process of the forward discount could explain the anomaly when the return of the spot rate

displays an I(0) process. Similar results are also provided in Maynard and Phillips (2001) and Maynard et al.

(2013). Moreover, when both the forward discount and return of spot rate follow I(d), d ∈ (0, 0.5) processes,

the test result of FRUH may be spurious (e.g., Maynard et al., 2013). In other words, with traditional

regression-based tests, the validity of the FRUH could be called into question owing to the misleading

statistical inference caused by improper statistical treatment. We therefore adopt a simple, intuitive, and

straightforwardly implementable approach to the forward rate anomaly.

In contrast to regression-based tests, we consider to test for the forward rate unbiasedness directly using

the generalized Hong (1996a) correlation tests as this hypothesis may be rewritten as a test of correlation

between excess spot returns and the lagged forward premium. The most appealing advantage of this extension

is that the AR-filtered correlation tests can accommodate simultaneously the effects by the imbalanced and

spurious regressions (Wang et al., 2021). Our proposed procedure is robust to the persistent behavior of the

forward premium, and the literature on test for the FRUH using a correlation test remains unexplored. In

particular, long memory in the forward premium has been widely documented and is critical to the validity of

standard tests of the FRUH. In this study, we particularly emphasize the use of the generalized Hong (1996a)

correlation testing procedure as it does not require us to model explicitly the extent, or even the nature of

the persistence in the forward premium. Accordingly, we can avoid the debate about characterizations of

the persistence in the forward premium, even though our method remains valid in the presence of a long

memory forward premium. The details of the correlation testing procedure for the FRUH are as follows.
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Let the current forward exchange rate be denoted as ft and the next period spot exchange rate be

denoted as st+1. FRUH (Fama, 1984) implies:

st+1 = ft + ϵt,

where E(ϵt|ft) = 0. Hence, a test of FRUH is often put in the regression framework (e.g., Maynard et al.,

2013),

st+1 − ft = α+ β(ft − st) + ϵt+1.

The null hypothesis is:9

H0 : α = β = Et(ϵt+1) = 0.

However, generally (st+1−ft) is a short memory process (I(0)) while ft− st displays a long memory process

(e.g., Maynard and Phillips, 2001; Choi and Zivot, 2007; Maynard et al., 2013).

Instead of regressing current (st+1 − ft) on (ft − st), we use the generalized Hong’s test statistics to

determine whether (st+1 − ft) are correlated with the current and past (ft − st). Moreover, our proposed

test is useful not only to test contemporaneous correlations, but also to identify past or future correlations

which can reveal a more interesting pattern of market interactions across various lags.

6.2. Empirical analysis

All exchange rates considered in this study are taken from Bloomberg. We use the log spot and 1-month

log forward exchange rates at monthly frequency from June 1996 to October 2020. These exchange rates

are end-of-month national currency units per US dollar quoted by the arithmetic average of the bid and

ask rates for 5 advanced countries: Australia (AUD), Canada (CAD), Japan (JPY), Swiss (CHF), and the

United Kingdom (GBP). The inclusion of these countries provides a diverse, yet comparable landscape for

examining the validity of FRUH. First of all, most of these countries experienced the currency or financial

crises in the 1990s and 2000s when the role of default or counterpart risks became increasingly important in

affecting the parity. In particular, since 2008 it has been prominent that short rates have effectively hit the

zero interest rate bound, which prompted a sequence of research on the impact of narrowing interest rate

differentials: see Chinn and Quayyum (2013), Du et al. (2018), Burnside (2019), and Bussiere et al. (2019),

among others. Second, the data analyzed in this paper span through the period of the COVID-19 pandemic.

Uncertainty and anxiety over the economic fallout induced by COVID-19 have roiled global financial markets

and raised the prospect of far-reaching, unintended effects on the world economy and investors (see Baker et

al. and references therein). It is worthwhile to examine whether COVID-19 has any effects on the behavior

of exchange rates and thus the validity of FRUH.

We summarize the descriptive statistics of the exchange rate data in Table 8. There are several key

features. First, the correlation coefficient between excess spot return (st+1 − ft) and the forward premium

(ft − st) shows that (st+1 − ft) negatively correlates with (ft − st) for all major currencies except for JPY

with a negligibly small positive correlation.10 Second, the first-order autocorrelation coefficient (ρ) of the

forward premium is high (ranging from 0.971 for AUD to 0.912 for GBP). Hence, the forward premium for

the industrial countries exhibits persistence. Finally, results (the last column) also show st+1−ft and ft−st
are integrated of different orders as the former is less persistent while the latter exhibits non-stationary long

memory with d > 0.5. We thus examine the correlation between the excess spot return and forward premium

9 This is equivalent to testing for β = 1 in the “Fama” regression that regresses the expected change in

the exchange rate on the forward premium.
10 It is interesting to note that the correlation for JPY turns negative if we excluded the period of 2020.
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for each exchange rate market by the Hong’s tests, in order to validate the predictive ability of the forward

premium on the excess spot return.

Because Hong (1996a) demonstrated that two kernels, the Parzen and Daniell kernels, deliver similar

performance in finite samples, we only report the results of the Parzen kernel-based tests QT for brevity. In

addition, FRUH is tested in five major currencies based on the Parzen kernel-based test statistic QT with

M = 3, 6, 9, 12. The analysis is performed in the rolling-window framework using a window size W = 48 11.

The order k of the AR(k) approximation for each exchange rate is selected by the AIC criterion.

Figures 1-5 illustrate the rolling correlation patterns between (st+1− ft) and (ft− st) for all currencies.
There are several striking features by plotting the test statistics over time. First, it exhibits time-varying

co-movements between excess return and the forward premium, though with varying degrees of statistical

significance (cutoff value for the one-tailed t-test is 1.645). This is consistent with empirical evidence that

the predictability coefficient is unstable over time (e.g., Bansal, 1997; Baillie and Chang, 2011; Chinn and

Meredith, 2005). Second, our present results complement previous findings by showing that the parity

condition is less likely to hold in the 2000s, particularly during periods of high financial instability as with

the early 2000s or the during the global financial crisis. Third, our filtered correlation test can detect the

location of every turning point where the spot-forward parity changes from an upward trend to a downsize

trend when there is growing uncertainty about the financial markets, in particular, in the midst of the 2020

COVID-19 pandemic.

Figures 1-2 show the correlation patterns of the most commonly cited funding currencies, JPY and

CHF. It is clear that the correlation for both hedging currencies is less likely to be of the same order of

magnitude prior to and in the aftermath of each global event. Regardless of the choice ofM , the value of the

correlation test statistic of QT for CHF is greater than 1.645 from the end of 2008 through 2015, covering

the 2008 subprime crisis and European debt crisis. On the other hand, our AR-filtered test statistics for

JPY indicate the unbiasedness hypothesis is rejected more frequently in the 2000s, even though the strength

of the rejection is tapering off sporadically. In fact, our AR-filtered test statistics indicate the unbiasedness

hypothesis is more likely to be rejected when the yen carry trade gained its popularity throughout the 2000s,

although the yen carry trade with the US dollar took a brief hiatus in the late 2005 leading up to the

global financial crisis. Starting in the late 2010s, our proposed test indicates that there is strong evidence

to refute the validity of FRUH for both hedging currencies. The rejection was particularly evident for both

CHF and JPY when the financial markets were hit hard by the recent COVID-19 pandemic as increased

demand to hedge exchange rate risks in countries’ net foreign asset positions with forward contracts, leading

to misalignment in spot and forward exchange rates (Liao and Zhang, 2020). We note that our results from

the AR-filtered tests are consistent with Chinn and Quayyum (2013) in which they found the evidence for

FRUH became weaker for both the franc and the yen from the mid-1990s onward (up to 2012) in a time of

extraordinarily low interest rates when the major central banks were actively pursuing a zero-bound-interest-

rate policy. In addition, it is observed that the correlations tend to increase or suddenly jump prior to the

aforementioned crisis. That is, by testing the FRUH proposition for both of which are widely considered

“safe haven” currencies, JPY and CHF, our proposed method provides a reasonably good means to detect

the recent financial crises, which is highly correlated with sudden shift of test statistics.

As shown in Figure 3, the unbiasedness hypothesis for GBP is strongly rejected by our AR-filtered test

statistics in the wake of the historical economic downfalls including the 2001-02 dot-com bubble bursts, the

11 Rossi and Inoue (2012) indicate the use of different window sizes may lead to different empirical results

in practice. Thus, we also consider the case of W = 60. The resulting results are similar to those based on

W = 48. Results are available on request.
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2009 global financial crisis, and the ensuing European debt crisis. In particular, several abrupt shifts in

patterns of correlation took place in the early 2000s and during the periods of 2006-2007 and 2012-2013. We

also observe the significant spikes in 2020 which reflect the devastating impact of the COVID-19 pandemic

as the UK has struggled to contain the spread of coronavirus.

Two commodity currencies, AUD and CAD, are closely connected to the price of gold and of oil.

Compared to AUD, CAD is more sensitive to the Global financial crisis. Our AR-filtered statistics in Figure

4 indicate that FRUH for CAD is rejected in the wake of the global financial crisis and oil prices fell amid

the global slowdown in 2013-2014. For AUD in Figure 5, the unbiasedness hypothesis is significantly rejected

over a sustained period of time in 2008 through 2016, which is heavily influenced by commodity prices. The

strength of the rejection began to taper off in the early 2017, and remained a steady decline until 2020.

Our empirical results from the Hong’s correlation tests are consistent with previous observations. First,

FURH may not be a general phenomenon, but in fact is regime-dependent. Given the reduced-form nature

of the Fama regression, the spot-forward parity could break down in the face of changes in policy regimes or

expectation formations due to the heightened counterparty or default risks (Baba and Packer, 2009; Coffey

et al., 2009; Griffolli and Ranaldo, 2011; Bussiere et al., 2019). Second, the failure of FRUH proposition is

frequently observed during periods of financial crisis or a significant shift in the global economic environment,

whereas the support for the parity regains its strength after the financial crisis faded. In particular, the

favorable evidence for FRUH in recent years could be attributable to the decline and compression of interest

rates near the zero lower bound during this period (Chinn and Quayyum, 2013; Burnside, 2019). Finally,

the pattern of the correlation tests is consistent with the recent revival of exchange rate reconnect (Lilley

et al., 2019). Countries with large positive external imbalances (e.g., Japan and Swiss) tend to experience

a deviation from the covered interest rate parity during the periods of increased market volatility since

the financial distress increases hedging demand of global investors which in turn tightens balance sheet

constraints for financial intermediaries (Liao and Zhang, 2020). Such an exchange rate hedging channel can

explain the observed time varying pattern of the spot-forward parity and the rejection of the unbiasedness

proposition occurs in times of financial crises including the COVID-induced financial turmoil.

6.3. Correlation tests under different lags

One of the major advantages of our proposed correlation tests is to allow us to examine the pattern of

co-movements between the spot and the forward exchange markets across various lags. Such an evaluation

of patterns is important to better understand whether the investors would respond to market shocks with

a time-lag. In this subsection, we investigate how the strength of correlation changes as the lag order M

increases. We calculate the test statistics for cross-correlations based on our proposed AR-filtered methods

during the period 1996–2020 with varying lags from 1 to 48. Figure 6 depicts the correlation tests as functions

of lag. Tests for AUD, JPY and CHF sharply increase at lags 2-6, reach peaks at lags 7-10 before gradually

decreasing and finally achieve stabilization at protracted lags. By contrast, both CAD and GBP drop until

hitting the bottom at lag 4, and then reach stabilization when lags M ≥ 12. This trend confirms that the

market takes time (almost a year as shown in Figure 6) to adapt to sudden shocks, and cross-correlations

between the spot and forward rates have time-lags.

The time-lag effect observed above is consistent with the so-called ‘delayed overshooting’ put forth by

Bacchetta and van Wincoop (2010), who provided a theoretical framework of information heterogeneity

as a potential solution to the forward premium puzzle. In the same vein of Froot and Thaler (1990) and

Eichenbaum and Evans (1995), and Bacchetta and van Wincoop (2010) formally modelled the notion of

infrequent revisions of investor portfolio decisions where many investors do not actively manage their foreign
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exchange portfolios which can be rationalized by the costs of portfolio adjustments, or the costs of evaluations

with new information. The argument can be presented as follows. Investors’ international portfolios consist

of both domestic and foreign bonds in order to diversify foreign exchange risks. In the event of rising interest

rates, foreign currency appreciation is driven by a rising demand for the foreign bonds. However, only some

investors changes their portfolio positions with the purchases of foreign bonds to exploit potential arbitrage

gains, while the rest remain inattentive to the spike in the interest rate. As time goes on, most investors will

reassess their portfolios and gradually buy the foreign bonds, and therefore the foreign currency appreciates

further for a sustained period of time. Simply put, “after the initial increase in the foreign interest rate,

the currency appreciates initially but continues to appreciate for some time as the whole market gradually

adjusts its portfolio. The early movers might earn a high excess return, but the expected return differential

will die out over time” (Engel, 2014, p.510). Thus, an increase in the interest rate can lead to a continued

exchange rate appreciation if investors make infrequent portfolio decisions, and thus deviations from the

parity will be left uncorrected.

7. Concluding Remarks

This research considers testing correlations between two long memory processes, where a stationary

long memory process in a finite sample can be approximated very well by an AR(k) model if the lag length

k is selected appropriately. Moreover, we have demonstrated the applicability of Hong’s (1996a) statistics

to test for two long memory processes being uncorrelated based on the sample cross-correlation function of

the AR-filtered stationary long memory processes. The newly developed test procedure does not require the

pre-specified functional form as in traditional regression-based approaches, and thus avoids the difficulties

arising from an inaccurate estimation of the fractional parameter d, or the spurious regression induced by

the long memory processes in the sense of Tsay and Chung (2000). The desirability of using the Akaike

criterion seems to be a useful tool to select the order of an autoregression in approximating long memory

processes. The Monte Carlo experiments conducted in this paper confirm our theoretical results. We find in

finite samples that Hong’s statistics based on the AR pre-whitening appear more useful for testing correlation

between two stationary long memory processes than some currently popular methods.

For the empirical application of our approach, this study re-visits the forward rate unbiasedness hy-

pothesis for currencies of five developed countries, with special focus on the pattern of cross-correlations

when there is an imminent systematic risk in the financial system. While our empirical results are consistent

with the previous findings that the validity of FRUH is regime-dependent, the shift in the patterns of the

correlation between the spot and forward rates coincides with the timing of the global financial crisis or the

economic environment changes, implying the proposed test statistics can be used as an early warning signals

of imminent market crashes or potential adverse events.

correlation is generally a symmetric measure of dependence that does not provide information about

the direction of the association. Consequently, an interesting extension of this work would be to consider

a Granger causality test based on directional predictability between time series. More specifically, our AR-

filtered metrics for measuring contributions to systemic risk could be extracted using Granger-causality tests

in tail events or extreme risk. An example of such a test can be found in Hong (2001), Hong et al. (2009)

and Wang et al. (2020) based on the occurrence of tail events and to detect the possible causality among

such events. In this context, the main challenge to resolve is the extension of this test to a conditional setup.

We leave this as an issue for future research.
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APPENDIX

To prove Theorems 1-4, the following arguments are similar to those in Wang et al.(2021 a) and Wang

et al. (2021 b). All the following analytical results are based on (B.1) and (B.2) of Wang et al, (2021 b).

Thus, by Wang et al. (2021 a) and Wang et al. (2021 b), we note that the AR(k)-filtered residual

cross-correlation function, ρ̂AR,ij , i, j = 1, 2, , · · · , N, i ̸= j, asymptotically converges to the population cross-

correlation function γij , i, j = 1, 2, , · · · , N, i ̸= j, i.e., ρ̂AR,ij → γij , under combinations of any two of three

of the following time series, an I(0), a nearly unit root, and an I(d), d ∈ (0, d) processes, in order to obtain

the proofs of Theorems 1-4.

ρ̂AR,ij and ρij are denoted as follows.

ρ̂AR,ij =
R̂ij

{R̂iiR̂jj}1/2
,

R̂ij = T−1ε̂′k,iε̂k,j ,

R̂ii = T−1ε̂′k,iε̂k,i and R̂jj = T−1
T∑

t=k+1

ê2t,k,j = T−1ε̂′k,j ε̂k,j .

where (i)R̂ij is the cross-covariance function constructed by estimates of AR-filtered residuals; (ii) Rii and

R̂jj are the variance functions based on estimates of AR-filtered residuals. (iii) ε̂k,i and ε̂k,j are AR-filtered

residuals of yt,i and yt,j .

γij =
Rij

{RiiRjj}1/2
,

Rij = T−1ε′T−k,iεT−k,j , Rii = T−1ε′T−k,iεT−k,i and Rjj = T−1ε′T−k,jεT−k,j . where (i) Rii and Rjj are the

population variance functions; (ii) Rij is the cross-covariance function; (iii) εT−k,i and εT−k,j are white noise

error terms.

A. Proof of Theorem 1
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On the analysis of Hong (1996) and Hong (2001), using Lemma A.4 of Wang et al. (2021 b), we note

that and
T−1∑

s=1−T

g2(l/M)ρ̂AR,ij(l)
2 =

T−1∑
s=1−T

g2(l/M)(γij(l)
2 +Op(T

−2dj−1(logT )−2dj−1)) (A.1)

Following results of Hong (2001) and use Markove’s inequality, we obtain

T−1∑
s=1−T

g2(l/M)γij(l)
2 = Op(M/T ) (A.2)

Because (A.1), (A.2) and M−1DT (k) → D(k) (see, Hong (1996 b)) hold and when yt,i and yt,j are

the stationary I(0) process and stationary I(d) processes respectively, the AR-filtered residuals ε̂k,i and ε̂k,j

behave as those constructed by two white noise series, εT−k,i and εT−k,j , asymptotically, thus once we

consider a class of kernels with r = 2, by assumptions 4, 5 and using the same argument on the page 620 of

Hong (1996 a), when M
T → 0,

QT =
T
∑T−1

l=1−T g
2(l/M)ρ̂ij(l)

2 − ST (k)

2DT (k)
1/2

=
T
∑T−1

l=1−T g
2(s/M)(γij(l)

2 +Op(T
−2dj−1(logT )−2dj−1)− ST (k)

{2DT (k)}1/2

≤
T
∑T−1

l=1−T g
2(l/M)γij(l)

2 − ST (k)

{2MD(k)}1/2

+
T
∑T−1

l=1−T g
2(s/M)Op(T

−2dj (logT )−2dj−1)

{2MD(k)}1/2

=
T
∑T−1

l=1−T g
2(j/M)γij(l)

2 − ST (k)

{2DT (k)}1/2
+ op(1) = Q̄T + op(1).

(A.3)

By Theorem 1 of Hong (1996 a), we know that QT converges to N(0, 1) in distribution even when two series

follow the DGPs of Theorem 7. Likewise, by the same reasoning of (B.47), as M
T → 0,

QT∗ =
T
∑T−1

l=1−T g
2(l/M)ρ̂AR,ij(l)

2 −MST (k)

{2MDT (k)}1/2

=
T
∑T−1

l=1−T g
2(l/M)γij(l)

2 −MST (k)

{2MDT (k)}1/2
+ op(1)

.

and Q∗
T converges to N(0, 1) in distribution when two series follow the DGPs of Theorem 1. Hence, we can

conclude that as the DGP processes satisfy Theorem 1, both QT and Q∗
T are asymptotically distributed as

N(0, 1) when εT−k,t is uncorrelated of εT−k,s for all t and s. Thus the cross-correlation estimates constructed

with the AR-filtered residuals behave as those constructed by two white noise series, εT−k,i and εT−k,j ,

asymptotically.

A. Proof of Theorem 2

Similarly, using (A.2) and the Lemma A.4 of Wang et al. (2021 a), when yt,i follows an I(0) process

and yt,j follows an nearly I(1) process and M
T → 0

QT =
T
∑T−1

l=1−T g
2(l/M)ρ̂ij(l)

2 − ST (k)

2DT (k)
1/2

=
T
∑T−1

l=1−T g
2(s/M)(γAR,ij(l)

2 +Op(T
−1))− ST (k)

{2DT (k)}1/2

=
T
∑T−1

l=1−T g
2(l/M)γij(l)

2 − ST (k)

{2MD(k)}1/2

+
T
∑T−1

l=1−T g
2(s/M)Op(T

−1)

{2MD(k)}1/2
= Q̄T + op(1).

(A.3)
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QT∗ =
T
∑T−1

l=1−T g
2(j/M)ρ̂ij(l)

2 −MST (k)

{2MDT (k)}1/2

=
T
∑T−1

l=1−T g
2(s/M)γij(l)

2 −MST (k)

{2MDT (k)}1/2
+ op(1)

.

when we consider a class of kernels with r = 2, by using assumptions 4, 5 and the same argument on the

page 620 of Hong (1996 a).

Proofs of Theorem 3

By (A.1) and (A.2) and Lemma 2 (or Lemma A.4 of Wang et al., 2021 a), we know that when yt,i follows

an I(d), d ∈ (0, 0.5) process and yt,j follows an nearly I(1) process, and as we consider a class of kernels with

r = 2, by using assumptions 4, 5 and the same argument on the page 620 of Hong (1996 a), as M
T → 0,

QT =
T
∑T−1

l=1−T g
2(s/M)ρ̂AR,ij(l)

2 − ST (k)

2DT (k)
1/2

=
T
∑T−1

l=1−T g
2(s/M)(γij(l)

2 +Op(k
−2di−1)− ST (k)

{2DT (k)}1/2

=
T
∑T−1

l=1−T g
2(s/M)ρAR,ij(l)

2 − ST (k)

{2MD(k)}1/2

+
T
∑T−1

s=1−T g
2(s/M)Op(k

−2di−1T−1)

{2MD(k)}1/2
= Q̄T + op(1).

(A.4)

By Theorem 1 of Hong (1996 a), we know that QT converges to N(0, 1) in distribution even when two series

follow the DGPs of Theorem 3. Likewise,

QT∗ =
T
∑T−1

s=1−T g
2(j/M)ρ̂ij(s)

2 −MST (k)

{2MDT (k)}1/2

=
T
∑T−1

s=1−T g
2(s/M)ρij(s)

2 −MST (k)

{2MDT (k)}1/2
+ op(1)

.

and Q∗
T converges to N(0, 1) in distribution when two series follow the DGPs of Theorem 3. Hence, we can

conclude that as the DGP processes satisfy Theorem 3 both QT and Q∗
T are asymptotically distributed as

N(0, 1).

Proofs of Theorem 4

Likewise, By (A.1), (A.2) and Lemma 4 (or Lemma A.4 of Wang et al., 2021 b), we know that when

yt,i follows an I(di), di ∈ (0, 0.5) process and yt,j follows an I(dj), dj ∈ (0, 0.5) process, as M
T → 0,

QT =
T
∑T−1

l=1−T g
2(s/M)ρ̂AR,ij(l)

2 − ST (k)

2DT (k)
1/2

=
T
∑T−1

l=1−T g
2(s/M)(γij(l)

2 +Op(k
−2di−1
1 k

−2dj−1
2 T 2di+2dj−2))− ST (k)

{2DT (k)}1/2

=
T
∑T−1

l=1−T g
2(s/M)ρAR,ij(l)

2 − ST (k)

{2MD(k)}1/2

+
T
∑T−1

s=1−T g
2(s/M)Op(k

−2di−1
1 k

−2dj−1
2 T 2di+2dj−2))

{2MD(k)}1/2
= Q̄T + op(1).

(A.5)
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By Theorem 1 of Hong (1996 a), we know that QT converges to N(0, 1) in distribution even when two series

follow the DGPs of Theorem 4. Likewise,

QT∗ =
T
∑T−1

l=1−T g
2(j/M)ρ̂ij(l)

2 −MST (k)

{2MDT (k)}1/2

=
T
∑T−1

l=1−T g
2(s/M)ρij(l)

2 −MST (k)

{2MDT (k)}1/2
+ op(1)

.

and Q∗
T converges to N(0, 1) in distribution when two series follow the DGPs of Theorem 3. Hence, we can

conclude that as the DGP processes satisfy Theorem 3 both QT and Q∗
T are asymptotically distributed as

N(0, 1), when we consider a class of kernels with r = 2, by using assumptions 4, 5 and the same argument

on the page 620 of Hong (1996 a).

Table 1. The Size Performance of the QT and QT∗ Test at 5%
Level of Significance When yt,1 and yt,2 follow DGPs (a), (b) and (c).

DGP yt,2 k M 0.1 0.2 0.3 0.40 0.45

DGP (c) yt,1

QT kAIC 5 5.1 5.2 5.3 5.5 5.8
9 5.0 5.1 5.1 5.3 5.4
15 4.8 4.9 5.0 5.2 5.3

QT∗ kAIC 5 5.0 5.0 5.2 5.3 5.5
9 4.7 4.9 5.0 5.1 5.3
15 4.5 4.7 4.8 4.9 5.1

DGP (b) yt,1

QT kAIC 5 5.2 5.4 5.5 5.7 5.7
9 5.1 5.2 5.2 5.5 5.6
15 4.9 4.9 5.1 5.1 5.4

QT∗ kAIC 5 5.2 5.3 5.3 5.4 5.6
9 4.8 4.8 5.0 5.0 5.4
15 4.6 4.9 4.9 5.0 5.0

DGP(a) yt,2 k M nearly I(1)

QT kAIC 5 5.8
9 5.6
15 5.2

QT∗ kAIC 5 5.2
9 5.0
15 5.5

Notes: T = 200. The chosen kernel is the Parzen kernel.
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Table 2. The Power Performance of the QT and QT∗ Test at 5%
Level of Significance When yt,1 and yt,2 follow DGPs (a), (b)and (c).

DGP yt,2 k M 0.1 0.2 0.3 0.40 0.45

DGP (c) yt,1

QT kAIC 5 68.1 68.6 68.3 68.9 69.8
9 57.2 57.5 57.9 58.3 59.2
15 46.2 46.2 46.9 47.3 47.6

QT∗ kAIC 5 69.0 69.2 69.3 69.8 70.3
9 57.6 58.1 58.3 58.9 60.1
15 47.0 47.4 47.6 48.2 48.2

DGP(b) yt,2 k M
QT kAIC 5 68.9 69.0 69.1 69.2 69.2

9 59.1 60.2 60.0 60.0 60.3
15 48.2 49.2 50.0 50.2 50.4

QT∗ kAIC 5 69.1 69.1 69.3 69.3 69.4
9 57.1 57.3 57.9 58.2 58.3
15 47.3 47.3 47.9 48.3 48.5

DGP(a) yt,2 k M nearly I(1)
QT kAIC 5 69.0

9 67.1
15 51.2

QT∗ kAIC 5 68.8
9 56.8
15 48.1

Notes: T = 200. The chosen kernel is the Parzen kernel.
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Table 3. The Size Performance of the QT and Q∗
T Tests

When yt,1 = DGP(b), yt,2 = DGP(b)

Y1t d1 k M 0.33 0.36 0.38 0.40 0.44

Size Y2t d2

QT 0.36 kAIC 5 5.6 5.6 5.7 5.8 5.8
9 5.4 5.3 5.4 5.4 5.6
15 5.2 5.2 5.2 5.2 5.7

0.40 kAIC 5 5.7 5.6 5.6 5.5 5.9
9 5.3 5.7 5.4 5.5 5.8
15 5.2 5.2 5.5 5.6 5.6

0.44 kAIC 5 5.2 5.3 5.4 5.6 6.1
9 5.0 5.0 5.4 5.3 5.7
15 5.0 5.0 5.3 5.2 5.5

Q∗
T 0.36 kAIC 5 5.5 5.6 5.6 5.6 5.9

9 4.5 4.4 4.6 4.7 5.2
15 4.4 4.4 4.4 4.6 4.6

0.40 kAIC 5 5.3 5.2 5.2 5.3 5.6
9 5.0 5.1 5.1 5.2 5.2
15 4.6 4.7 4.6 4.8 5.0

0.44 kAIC 5 5.4 5.3 5.6 6.0 6.2
9 5.9 5.6 5.7 5.5 5.8
15 5.0 5.1 5.2 5.5 5.7

Notes: T = 200. The chosen kernel is the Parzen kernel.
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Table 4. The Power Performance of the QT and QT∗ Tests
at 5% Level of Significance When yt,1 = DGP (b),

yt,2 = DGP(b)

Y1t d1 k M 0.33 0.36 0.38 0.40 0.45

Size Y2t d2

QT 0.36 kAIC 5 67.2 67.1 67.6 67.8 68.2
9 57.2 58.1 58.7 58.5 58.7
15 46.1 46.2 46.9 46.7 47.1

0.40 kAIC 5 67.2 67.0 66.9 67.4 67.4
9 57.4 58.6 58.6 58.6 59.3
15 45.8 46.0 45.9 45.9 46.7

0.44 kAIC 5 67.6 67.2 67.5 67.8 67.9
9 58.4 59.2 59.7 59.3 59.8
15 45.6 45.5 45.6 45.6 45.9

QT∗ 0.36 kAIC 5 64.3 64.6 64.7 64.8 65.0
9 54.9 54.9 54.9 55.2 55.1
15 44.2 44.0 43.9 44.7 45.1

0.40 kAIC 5 65.6 65.6 65.5 65.6 66.2
9 55.4 55.7 55.4 55.2 55.8
15 44.0 44.3 44.6 44.5 44.5

0.44 kAIC 5 65.7 65.7 65.8 65.6 66.0
9 57.1 57.0 57.3 57.3 57.6
15 43.3 43.3 43.6 43.6 43.9

Notes: T = 200. The chosen kernel is the Parzen kernel.
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Table 5. The Rejection Percentages of the t
test at 5% Level of Significance When

yt,1 = DGP (b), yt,2 = DGP (b)
and ρ12(j) = 0 for all j

Y1t d1 0.33 0.36 0.38 0.40 0.44

Y2t d2

0.33 17.9 19.9 22.3 24.8 29.1
0.36 19.1 23.1 24.8 26.7 30.1
0.38 22.3 23.9 25.4 27.7 31.8
0.40 24.1 26.1 27.3 28.9 32.1
0.44 29.3 30.3 31.9 32.1 33.2

Table 6. 95 % Quantiles for t̃ Test

Y1t d1 0.33 0.36 0.38 0.40 0.44

Y2t d2

0.36 2.0522 2.0531 2.0539 2.0584 2.0616
0.40 2.0580 2.0595 2.0601 2.0625 2.0632
0.44 2.0611 2.0618 2.0625 2.0631 2.0644

Table 7. The Size and Power Performance of the
t̃ Test When yt,1 = DGP (b)

, yt,2 = DGP (b)

Y1t d1 0.33 0.36 0.38 0.40 0.44

Size Y2t d2

0.36 5.6 5.5 5.5 5.6 5.8
0.40 5.5 5.5 5.7 5.9 6.0
0.44 5.7 5.9 5.9 6.1 6.3

Power 0.36 28.2 29.1 29.3 29.9 30.6
0.40 29.6 30.2 30.6 31.3 31.9
0.44 30.3 30.7 31.0 31.6 32.5

Notes: T = 200.
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