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Abstract

Starting from the twelve distinct risk factors from Fama and French (1993, 2015, 2018), Hou,

Xue, and Zhang (2015), Stambaugh and Yuan (2017), and Daniel, Hirshleifer, and Sun (2020), we

construct and compare all possible asset pricing models by the Bayesian method of Chib, Zeng

and Zhao (2020), and find that six risk factors, Mkt, SMB, MOM, ROE, MGMT, and PEAD,

perform the best in terms of Bayesian posterior probability. A more extensive model comparison

of 8,388,607 models, constructed from the twelve winners plus eleven principal components (PCs)

of anomalies unexplained by the winners, shows that the best model consists of {Mkt, RMW,

MOM, IA, ROE, MGT, PEAD, FIN} and the non-consecutive {PC1, PC3, PC4, PC5, and PC7}.

The pricing performance suggests that these risk factors should be used for computing expected

returns and for assessing investment strategies, instead of the risk factors in one of the other four

collections.
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1 Introduction

The question of which risk factors best explain the cross-section of expected equity returns

continues to draw attention on account of the large importance of this topic for theoretical and

empirical finance (Cochrane, 2011). Along with the market factor, hundreds of additional risk

factors have emerged (Harvey, Liu, and Zhu, 2016; Hou, Xue, and Zhang, 2017), and the set of

possible such factors continues to grow. Rather than add to this list, we ask two questions: (1)

could we start with the risk factor collections that have generated support in the recent literature,

take the union of the factors in those collections as the pool of winners, and then find a new set of

risk factors (winners from winners) that gather even more support from the data, on both statistical

and financial grounds? (2) can such a benchmark analysis be improved (and by how much) by

considering not just the winners, but the winners plus (say) the 125 anomalies in Green, Hand, and

Zhang (2017) and Hou, Xue, and Zhang (2017)?

To answer these questions, in what we call the tale of risk factors, we start with the four leading

risk factor collections that we believe have spawned consensus support within the profession,

namely those in the papers by Fama and French (1993, 2015, 2018), Hou, Xue, and Zhang (2015),

Stambaugh and Yuan (2017), and Daniel, Hirshleifer, and Sun (2020). These collections, which

cover the market, fundamental and behavioral factors, listed by author initials and risk factor

abbreviations, are as follows1:

• FF6 collection: {Mkt, SMB, HML, RMW, CMA, MOM};

• HXZ collection: {Mkt, SMB, IA, ROE};

• SY collection: {Mkt, SMB, MGMT, PERF};

• DHS collection: {Mkt, PEAD, FIN}
1There are slight differences in these collections in relation to the size factor, which we ignore for simplicity.

1

Electronic copy available at: https://ssrn.com/abstract=3929126



In the first part of the analysis, the benchmark model scan, we focus on the set of these winners,

and ask what collection of winners from winners emerge when each factor is allowed to play the

role of a risk factor, ie., an element of the stochastic discount factor (SDF), or a non-risk factor, to

produce different groupings of risk factors in a combinatorial fashion. Each grouping consists of

a collection of factors that are risk factors in that grouping, and a complementary collection (the

remaining factors) that are not risk factors in that grouping. We compare the resulting possible

asset pricing models from a Bayesian model comparison perspective (Avramov and Chao, 2006;

Barillas and Shanken, 2018; Chib and Zeng, 2020; Chib, Zeng, and Zhao, 2020). Specifically, we

use the priors and marginal likelihoods given in Chib et al. (2020) to compare these models.

Our main result, from the benchmark model scan, is that a six-factor model, consisting of

{Mkt, SMB, MOM, ROE, MGMT, and PEAD} from the twelve factors, gets the most support

from the data. This model is closely followed by a second model, a seven-factor model that

has PERF as an additional risk factor, and a third model, a five-factor model, that does not have

MOM as a risk factor. In terms of probabilities, these models have posterior model probabilities

of around 0.13, 0.11, 0.10, respectively. Though one would have liked to witness even more

decisive posterior support for the best model, this is unrealistic on a large model space composed

of models constructed from factors that are a prior winners. Nevertheless, the data evidence is clear

in isolating the winners from winners as the posterior probability distribution beyond the top three

slumps sharply. For example, the posterior probabilities of the fourth and fifth-best models are

around 0.03, and the sixth is about 0.025. The posterior probabilities of the remaining models in

the model space barely register, being roughly of the same size as the prior probability of 1/4,095

= 0.00025, and even below. On the basis of this evidence, the top three models isolated by our scan

are worthy contenders for use in calculating risk-adjusted returns of funds and equity assets.

Some remarks about the models that are not in the top model set. For example, the model

with all 12 factors as risk-factors, the full model, has a log-marginal likelihood of 14174.01 and is

2
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ranked 853. Thus, the default strategy of including all factors as risk-factors is dominated by many

other models in the model space. Interestingly, the FF6, HXZ, SY, and DHS models also do not

appear in the top model set. As we demonstrate later, this is due to fact that the risk factors in these

4 collections are not able to price the non-risk factors for that collection. Specifically, the single

Mkt factor cannot price the remaining 11 non risk factors. The risk factors of the Fama and French

family of models can price at most IA. The risk factors of HXZ can price all the Fama and French

factors, but cannot price MGMT and PEAD. The risk factors of the SY and DHS models cannot

price one non risk factor, PEAD and MGMT, respectively. In contrast, our six risk factors, {Mkt,

SMB, MOM, ROE, MGMT, and PEAD}, can price all the remaining six factors.

We also document the performance of top models on other important statistical and economic

dimensions. For one, we examine the performance of the top models in forecasting out-of-sample.

Additionally, we find that the Sharpe ratio of the optimal mean-variance portfolio constructed from

our six factors {Mkt, SMB, MOM, ROE, MGMT, and PEAD} is higher than the Sharpe ratios of

the portfolios from the risk factors in the FF6, HXZ, SY, and DHS collections.

The next question we take up is about whether this benchmark scan can be improved by

considering also the 125 anomalies in Green et al. (2017) and Hou, Xue, and Zhang (2017). Of

course, the resulting model space of 2137 models is unfathomably large, and cannot be directly

scanned, but it is possible to make the problem tractable. Our idea is to combine a finance

motivated dimension reduction strategy (to reduce the number of factors) followed by our usual

model scan. It works as follows. We first use the initial set of 12 factors (and a Bayesian model

comparison method) to find the set of genuine anomalies, ie., anomalies that cannot be priced by

the winners. Our empirical analysis reveals that this set just consists of twenty anomalies. This

set of genuine anomalies is small enough that the model space of 232− 1 models can actually

be scanned. Nonetheless, we reduce the dimension even further by converting these genuine

anomalies to the space of principal components (PCs). Our model scan is then applied to the

3
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twelve initial factors and the first eleven principal components of the genuine anomalies. In other

words, each of the twelve winners, and each of the eleven PC’s, is allowed to play the role of a

risk-factor or a non-risk factor. Each model in this space of 8,388,607 models is then compared by

our Bayesian model comparison technique. We refer to this scan as the benchmark plus genuine

anomalies model scan.

It should be noted that in this extended scan, we keep the key factors (the winners) as is, but

only covert the less important (the genuine anomalies) into principal components. In this way, we

can understand whether the PC factors provide incremental information for pricing assets over the

factors from the benchmark scan, and which factors from the benchmark scan continue to be risk

factors in this broader space of models.

Our extended model scan shows the benefit of incorporating information in genuine anomalies

in explaining the cross-section of expected equity returns. For example, the Sharp ratios increases

by about 30%. In addition, we find that the best model consists of {Mkt, RMW, MOM, IA, ROE,

MGT, PEAD, FIN, PC1, PC3, PC4, PC5, PC7}, and that the common factors in the top model set

(the set consisting of the best model plus the models whose log-marginal distance to the best model

is less than 1.15), are the nine factors, {Mkt, MOM, ROE, PEAD, MGMT} and {PC1, PC4, and

PC5}.

This evidence about the risk factors {Mkt, RMW, MOM, IA, ROE, MGT, PEAD, FIN, PC1,

PC3, PC4, PC5, PC7} has strong implications for empirical work in finance. For one, the

pricing evidence suggests that we should use this collection for computing expected returns, or

for assessing performance of various investment strategies, instead of the risk factors in one of the

other four collections. Admittedly, these thirteen risk factors arose from a statistical approach, but

the statistical approach is grounded in the SDF, and is not ad-hoc. Therefore, given the pricing

performance of these risk factors, and performance on other metrics, one can be confident about

4
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the empirical usefulness of these risk factors.

Our paper is part of a new wave of Bayesian approaches to risk factor selection. For instance,

Kozak, Nagel, and Santosh (2020) focus on PC factors that are constructed from 50 anomalies,

and utilize economic priors to estimate a single model with those 50 contending factors in a

classical penalized regression estimation. Bryzgalova, Huang, and Julliard (2019) on the other

hand, focus on the Fama-McBeth regression, and select from amongst 50 factors by a Bayesian

variable selection method. More broadly, Bayesian contributions in finance include, for example,

Pástor (2000), Pástor and Stambaugh (2000), Pástor and Stambaugh (2001), Avramov (2002), Ang

and Timmermann (2012), Goyal, He, and Huh (2018) and Smith and Timmermann (2021). These

papers consider a variety of problems, economic priors, predictability, model uncertainty, regime

changes, and testing, from the Bayesian viewpoint, but do not directly intersect with the work in

this paper.

We see our paper as contributing to the further understanding of risk-factor determination from

a Bayesian model uncertainty perspective. A key contribution is the procedure that allows us to

consider a large initial pool of factors by splitting that pool into winners, and using the winners

to whittle down the genuine (or non-priced factors) into a set of principal components, and then

applying our model scan strategy to the winners plus principal components. By only converting

the genuine anomalies to PCs, we enhance interpretability of the final set of risk-factors. We

would like to emphasize that the dimension reduction method we outline broadens the scope of the

model scanning method of Chib and Zeng (2020) to a much larger pools of factors than has been

considered to date.

The rest of the paper is organized as follows. In Section 2, we briefly outline the methodology

that we use to conduct our model comparisons. In Section 3, we consider the benchmark model

scan, and in Section 4 the winners plus genuine anomalies model scan. Section 5 and Section 6

5
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contain results and Section 7 concludes.

2 Methodology

Suppose that the potential risk factor set is denoted by ft : K×1, where t denotes the t-th month.

We now allow each factor to play the role of a risk factor i.e., an element of the SDF, or a non-

risk factor, to produce different groupings of risk factors in a combinatorial fashion. Starting with

K initial possible risk factors, there are, therefore, J = 2K − 1 possible risk factor combinations

(assuming that the risk-factor set cannot be empty). Each of these risk factor combinations defines

a particular asset pricing model M j, j = 1, ...,J.

Consider now a specific model M j, j = 1, ...,J consisting of the risk factors x j,t : kx, j × 1,

and the complementary set of factors (the non risk factors) w j,t : kx, j× 1, where K = kx, j + kw, j.

By definition, factors are risk factors if they are in the stochastic discount factor M j,t . Following

Hansen and Jagannathan (1991), we specify the SDF as

M j,t = 1−λ′x, jΩ−1
x, j
(
x j,t−E[x j,t ]

)
, (1)

where bx, j , Ω
−1
x, jλx, j : kx, j× 1 are the unknown risk factor loadings, and Ωx, j : kx, j× kx, j is the

covariance matrix of x j. Enforcing the pricing restrictions implied by the no-arbitrage condition

E[M j,tx
′
j,t ] = 0 and E[M j,tw

′
j,t ] = 0

for all t, we get that E[x j,t ] = λx, j, and E[w j,t ] = Γ jλx, j, for some matrix Γ j : kw, j× kx, j. If we

assume that the joint distribution of (x j,w j) is Gaussian, then the latter pricing restrictions imply

that under a marginal-conditional decomposition of the factors, M j has the restricted reduced form
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given by

x j,t = λx, j +εx, j,t , (2)

w j,t = Γ jx j,t +εw·x, j,t , (3)

where the errors are block independent Gaussian

 εx, j,t

εw·x, j,t

∼ NK

0,

Ωx, j 0

0 Ωw·x, j


 , (4)

and Ωw·x, j : kw, j× kw, j is the covariance matrix of the conditional residuals εw·x, j,t .

The goal of the analysis is to calculate the support for these models, M j, j = 1, ...,J, given

the sample data on the factors. To explain how this is done, we start with the prior distributions

of the parameters across models. It is important that these priors are comparable across models

to ensure that the ranking of the models depends on the data evidence, not on differences in the

prior. Chib and Zeng (2020) introduce an approach for doing this with proper prior distributions.

Subsequently, Chib, Zeng, and Zhao (2020) specialize their approach with improper priors.

The starting point of the Chib and Zeng (2020) priors is a prior on the model in which all

factors are pricing factors (and therefore kx,1 = K). Call this model M1. Consider now

η1 = Ωx,1 ,

the variance parameter (the covariance matrix) in this model. Give Ωx,1 an inverse Wishart prior

π(η1|M1) = IWK(ν ,Q) ∝ |Ωx,1|−
ν+K+1

2 exp
(
−1

2
tr(QΩ

−1
x,1)

)
, (5)
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where ν , the degree of freedom, and Q, the scale matrix, are the two parameters of this prior.

The next step is to notice that for any other model M j, the set of parameters

η j = (Γ j,Ωx, j,Ωw·x, j)

are simply 1-1 functions of η1. To see this, first note that the dimension of η j, which equals

{kw, jkx, j + kx, j(kx, j +1)/2+ kw, j(kw, j +1)/2}

={k2
x, j + k2

w, j +2kx, jkw, j +(kx, j + kw, j)}/2

=(K2 +K)/2,

is the same as the dimension of η1. To show that the mapping is 1-1, calculate the Jacobian,

∣∣∣∣dη1

dη j

∣∣∣∣= |Ωx, j|kw, j

which is positive. The derivation of this Jacobian is in Chib, Zeng, and Zhao (2020).

Based on these facts, Chib and Zeng (2020) derive the prior of η j (for j > 1) from the prior of

η1 by the change of variable formula

π(η j|M j) = π(η1|M1)

∣∣∣∣dη1

dη j

∣∣∣∣ (6)

where the Jacobian is given above. By this tactic, all the priors are derived from a single prior

distribution. In other words, all the different priors are fixed by just specifying ν and Q. These

different priors can be viewed as identical. Substituting (5) on the right hand side, using properties

of the determinant of a partitioned matrix, that of the inverse of a partitioned matrix, and those of

8
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the trace operator, we get

π(η j|M j) = IWkx, j(Ωx, j|ν− kw, j,Qx, j)IWkw, j(Ωw·x, j|ν ,Qw·x, j) (7)

×Nkx j×kw j

(
γ j|vec(Qwx, jQ−1

x, j ),Q
−1
x, j ⊗Ωw·x, j

)
, (8)

where γ j = vec(Γ j), and the different Q matrices are partitioned according to Ω.

In this paper we use the priors of Chib et al. (2020) instead. These can be derived from (5), (7)

and (8) by setting ν = 0 and Q = 0. Then for the full model we get Jeffreys’ improper prior

π(η1|M1) = c|Ωx,1|−
K+1

2 , (9)

and for all the remaining models we get

π(η j|M j) = c|Ωx, j|−
−kw, j+kx, j+1

2 ×|Ωw·x, j|−
kw, j+1

2 ×|Ωw·x, j|−
kx, j

2 (10)

= c|Ωx, j|−
2kx, j−K+1

2 |Ωw·x, j|−
K+1

2 , j > 1. (11)

One key benefit of the priors in (9) and (11) is that the marginal likelihoods, discussed next, are

all in closed form. The constant c is irrelevant because it is the same constant in all the priors and

cancels in taking log marginal likelihood differences across models.

Finally, we complete the prior distributions by supposing that, conditional on η j,

λx, j|M j,η j ∼ Nkx, j(λx, j,0,κ jΩx, j),

whereλx, j,0 and κ j are model-specific hyperparameters that are determined from a training sample.

9
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2.1 Marginal Likelihoods

Assume that each model M j ∈M has a prior model probability of Pr(M j) of being the correct

model. The objective is to calculate the posterior model probability Pr(M j|y1:T ), where y1:T =

(f1, ...,fT ) is the estimation sample of the potential risk factors.

The key quantities for performing this prior-posterior update for the models in M are the

marginal likelihoods, defined as

m j(y1:T |M j) =
∫

Θ j

p(y1:T |M j,θ j)π(λx, j|M j,η j)ψ(η j|M j)dθ j, (12)

where Θ j is the domain of θ j,

p(y1:T |M j,θ j) =
T

∏
t=1

Nkx, j(x j,t |λx, j,Ωx, j)Nkw, j(w j,t |Γ jx j,t ,Ωw·x, j)

is the density of the data and Nd(·|µ,Ω) is the d-dimensional multivariate normal density function

with mean µ and covariance matrix Ω.

Notice that the phrase marginal likelihood encapsulates two concepts: one that it is a function

that is marginalized over the parameters of model j, hence the word marginal; and second that it is

the likelihood of the model parameter M j, hence the word likelihood.

Under our assumptions, the log marginal likelihoods are in closed form. Specifically,

logm1(y1:T |M1) =−
T K
2

logπ− K
2

log(T κ1 +1)− T
2

log |Ψ1|+ logΓK

(
T
2

)
, (13)

10
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and

logm j(y1:T |M j) =−
T kx, j

2
logπ−

kx, j

2
log(T κ j +1)−

(
T + kx, j−K

)
2

log |Ψ j|+ logΓkx, j

(
T + kx, j−K

2

)
(14)

−
(K− kx, j)(T − kx, j)

2
logπ−

(
K− kx, j

)
2

log |W ∗j |−
T
2

log |Ψ∗j |+ logΓK−L j

(
T
2

)
, j > 1 , (15)

where we have set c = 1 (as this choice is irrelevant, by construction), and

Ψ j =
T

∑
t=1

(x j,t− λ̂x, j)(x j,t− λ̂x, j)
′+

T
T κ j +1

(
λ̂x, j−λx j0

)(
λ̂x, j−λx j0

)′
W ∗j =

T

∑
t=1
x j,tx

′
j,t , Ψ

∗
j =

T

∑
t=1

(w j,t− Γ̂ jx j,t)(w j,t− Γ̂ jx j,t)
′.

Note that the variables in hat in the above expressions are the least squares estimates calculated

using the estimation sample, and Γd(·) denotes the d dimensional multivariate gamma function.

2.2 Model Scan Approach

We conduct a prior-posterior analysis on the model space denoted by M = {M1,M2, . . . ,MJ}.

Assume that each model in the model space is given an uninformative and equalized prior model

probability, that is, for any j

Pr(M j) = 1/J. (16)

Applying Bayes theorem to the unknown model parameter M j, the posterior model probability is

given by

Pr(M j|y1:T ) =
m j(y1:T |M j)
J
∑

l=1
ml(y1:T |Ml)

, (17)

as the model prior probabilities in the numerator and the denominator cancel out.

11
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Both the prior and posterior probability distributions on model space acknowledge the notion of

model uncertainty. The prior distribution on model space represents our beliefs about the models

before we see the data. A discrete uniform prior is our default, but, of course, it is possible to

consider other prior distributions. The posterior distribution retains model uncertainty unless the

sample size is large in relation to the dimension of the model space. By this we mean that the

posterior distribution on model space will not concentrate on a single model. As T becomes

large, however, the asymptotic theory of the marginal likelihood (see, e.g., Chib, Shin, and Simoni

(2018)), implies that the posterior model probabilities will concentrate on the true model (if it is

in the set of models), or on the model that is closest to the true model in the Kullback-Leibler

distance.

Regardless of the sample size, however, the end-product of our analysis is a ranking of models

by posterior model probabilities (equivalently, by marginal likelihoods given that the denominator

in the posterior probability calculation is just a normalization constant). We indicate these ranked

models by

{M1∗,M2∗, . . . ,MJ∗}

such that

m1∗(y1:T |M1∗)> m2∗(y1:T |M2∗)> · · ·> mJ∗(y1:T |MJ∗).

This ranking provides the basis for our empirical Bayesian model comparison.

3 Benchmark Model Scan

As mentioned in the introduction, we conduct an initial analysis with the 12 winners to benchmark

what is possible by working with just well known factors. This sets the stage for our extended

analysis on a larger space of models that are based on the standard factors plus anomaly factors.

12
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Details of these standard factors, {Mkt, SMB, HML, RMW, CMA, MOM, IA, ROE, MGMT,

PERF, PEAD, FIN}, are given in Table 1. While Mkt captures the overall market risk, SMB, HML,

RMW, CMA, MOM, IA, and ROE are well-known characteristic-based factors and are constructed

by sorting stocks in a relatively simple way. For those remaining novel four mispricing factors,

MGMT and PERF are constructed based on average rankings of eleven anomalies of stocks, and

PEAD and FIN are related to investors’ psychology. Although the construction and motivation

of those factors are different, those twelve factors are named “winners” as they are believed and

proved to have strong power in explaining the cross-section of expected equity returns.

The data on these standard factors are monthly, spanning the period from January 1974 to

December 2018, for a total of 540 starting observations. Of these the last 12 months of data are

held-out for out-of-sample prediction validation purpose. For the other 528 in-sample monthly

observations, the first 10 percent is used as a training sample to construct the prior distributions of

the risk premia parameters, leaving a sample size of T = 475 as estimation sample.

3.1 Two special cases

To understand how the framework is applied, consider first the model in which all twelve winners

are risk factors. In this case, model M1 (say), the general model reduces to

x1,t = λx,1︸︷︷︸
12×1

+εx,1,t , εx,1,t ∼ N12(0,Ωx,1), (18)

where x1,t = (Mkt,SMB,SML,RMW,CMA,MOM, IA,ROE,MGMT,PERF,PEAD,FIN)′t and,

since the non-risk factor collection w1,t is empty, kx,1 = 12 and Ωx,1 : 12×12.

Now consider M2 (say) with the FF6 risk factorsx2,t =(Mkt,SMB,SML,RMW,CMA,MOM)′t .

13
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Then, we have

x2,t = λx,2︸︷︷︸
6×1

+εx,2,t , εx,2,t ∼ N6(0,Ωx,2),

while for w2,t = (IA,ROE,MGMT,PERF,PEAD,FIN)′t we have

w2,t = Γ2︸︷︷︸
6×6

x2,t +εw·x,2, t , εw·x,2, t ∼ N6(0,Ωw·x,2),

where kx,2 = 6, kw,2 = 6, Ωx,2 : 6× 6, and Ωw·x,2 : 6× 6. The latter model embodies the pricing

restrictions that the assumed risk factors of this model price the non-risk factors w2,t .

There are J = 4,095 such models in the model space M . Our goal is to compare these J models

using the model scan approach described in Section 2.

3.2 Benchmark Model Scan Results

3.2.1 Top Model Set

To get a clear picture of the prior-posterior update on the model space M , we view each model

as a point in that space. The prior distribution of models on that space is uniform. The posterior

probabilities of the models are proportional to the product of the uniform prior and the marginal

likelihoods. We can use these posterior probabilities to plot these points (or models) in that space

in decreasing order. From Figure 1, which plots the posterior model probability of the top 220

models. We can see from the figure that the posterior model probabilities drop sharply beyond the

top three models. For example, the posterior probabilities of the fourth and fifth-best models are

around 0.03, and the sixth is about 0.025. The posterior probabilities of the remaining models in

the model space barely register, being roughly of the same size as the prior probability of 1/4,095

= 0.00025, and even below.
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In Figure 2 we plot these posterior model probabilities but, this time, only for the top 5 models.

We see that the top three models have a joint posterior probability of 0.3407. In a sense, we can

think of these models as being indistinguishable, or equivalent. To make this more precise, in the

notation introduction above, let M1∗ denote the highest posterior probability model. If we now let

the Bayes factor of the best model against any other model be denoted by

B1 j =
m1∗(y1:T |M1∗)

m j∗(y1:T |M j∗)
,

then, according to Jeffreys’ scale, if B1 j ≤ 10
1
2 , the evidence supporting M1∗ over M j∗ is barely

worth mentioning. Equivalently, in terms of the log Bayes factor, the indistinguishably condition

above can be expressed as

logB1 j = logm1∗(y1:T |M1∗)− logm j∗(y1:T |M j∗)≤ 1.15.

We can, therefore, refer to M j∗ that is in the radius of the best model in this way as being

indistinguishable from the best model.

Applying this criterion, we conclude that M1∗, M2∗, and M3∗ constitute the top model set M∗

in the winners scan, while M4∗ and M5∗ also given in Figure 2 are not in the top model set.

Table 2 shows that the six-factor model M1∗ consisting of Mkt, SMB, MOM, ROE, MGMT,

and PEAD as risk factors gets the most support from the data. This model is closely followed by

the seven-factor model M2∗ that has PERF as an additional risk factor, and the five-factor model

M3∗ that does not have MOM as a risk factor.

Interestingly, Mkt, SMB, ROE, MGMT, and PEAD, are present in each of the three top

groupings. It appears that both fundamental and behavioral factors play an important role in pricing

the cross-section of expected equity returns. It should also be noted that the top groupings feature
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between five and seven-factors, similar to the number of factors in most of the literature.

Besides, the ratio of the posterior model probability and the prior model probability of any

given model M j, denoted by Pr(y1:T |M j∗)
Pr(M j∗)

, is provided in Table 2. That ratio reflects the information

improvement of posterior over the same prior for M j when data are observed. Therefore it is a

good measure for evaluating the joint superiority of candidate models. For comparison, Panel B

of Table 2 reports the marginal likelihoods and that ratios for M1 and models with the same risk

factor sets as CAPM, Fama and French family, HXZ, SY, and DHS. It can seen that the information

improvement of each of those models is substantially smaller than that of top models. Because

M1 is also not supported by the data, we can conclude that the twelve factors together contain

information redundancies.

3.2.2 Parameter Updating for the Best Model of the Benchmark Model Scan

We now provide more details about the best model in the benchmark model scan M1∗, which takes

the form

M1∗ :



Mktt

SMBt

MOMt

ROEt

MGMTt

PEADt


= λx,1∗︸︷︷︸

6×1

+εx,1∗, t , εx,1∗, t ∼ N6(0,Ωx,1∗),
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HMLt

RMWt

CMAt

IAt

PERFt

FINt


= Γ1∗︸︷︷︸

6×6



Mktt

SMBt

MOMt

ROEt

MGMTt

PEADt


+εw·x,1∗, t , εw·x,1∗, t ∼ N6(0,Ωw·x,1∗).

In calculating the marginal likelihood of this model, which equals 14186.43, as reported earlier in

Table 2, we used the prior on η1∗ = (Γ1∗,Ωx ,1∗,Ωw·x,1∗) from (11) equal to |Ωx,1∗|−
1
2 |Ωw·x,1∗|−

13
2 ,

and the proper prior of the risk premia parameters λx,1∗ from the training sample equal to

π(λx ,1∗|M1∗,η1∗) = N6(λx ,1∗|λx,1∗,0,0.1915×Ωx,1∗),

where λx,1∗,0 = (0.0017,0.0130,0.0044,0.0041,0.0084,0.0085)′.

Under our prior distributions, it is easy to confirm that the posterior distributions π(θ j|M j,y1:T )

of parameters θ j of any given model M j have the marginal-conditional forms given by

π(Ωx, j|M j,y1:T ) =W−1
kx, j

(Ωx, j|Ψ j,T + kx, j−K), (19)

π(λx, j|M j,y1:T ,Ωx, j) = Nkx, j(λx, j|λx j1,
(
1/κ j +T

)−1
Ωx, j), (20)

and

π(Ωw·x, j|M j,y1:T ) =W−1
kw, j

(Ωw·x, j|Ψ∗j ,T ), (21)

π(vec(Γ j)|M j,y1:T ,Ωw·x, j) = Nkw, j×kx, j(vec(Γ j)|vec(Γ̂ j),W ∗−1
j ⊗Ωw·x, j), (22)

where λx, j,1 = 1
T κ j+1λx, j,0 +

T κ j
T κ j+1λ̂x, j and W−1(Ψ,ν) denotes the inverse Wishart distribution
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with ν degrees of freedom and scale matrix Ψ. Thus, the posterior distribution π(θ j|M j,y1:T ) is

given by the product of equations (19), (20), (21), and (22). We can apply this result to generate

a large number of simulated draws, first by sampling the marginal distribution, and then by the

conditional distribution given the draws from the marginal distributions. These sampled draws can

be used to make marginal posterior distributions of relevant parameters, and other summaries.

Applying the above sampling procedure to M1∗, we obtain the marginal posterior distributions

of the risk premia parameters λx,1∗ , given in Figure 3, and the posterior means, standard deviations

and quantiles, given in Table 3. It is interesting that the posterior means of the risk premia

parameters are similar, except for that of SMB, while the posterior standard deviations of the

risk premia of Mkt and MOM are almost twice as large as the rest.

3.3 Pricing Performance

We now discuss why the FF6, HXZ, SY, and DHS risk factor models do not appear in the top

model set. The reason for this is interesting. Essentially, these models are not able to price the left

out factors. For example, consider the case of the {Mkt, SMB, HML, RMW, CMA, and MOM}

risk factors in the FF6 collection. The w factors (the remaining factors) for this collection are {IA,

ROE, MGMT, PERF, PEAD, and FIN}. The asset pricing model for FF6 assumes that these six w

factors can be priced - hence the intercepts are all zero. But what if the FF6 factors cannot price

these w factors? In that case, the data would prefer that we did not impose the restrictions, but the

model requires that we do - the pricing condition is, therefore, binding. The x factors in that model

can be said to fail an internal consistency condition, and the model suffers a marginal likelihood

penalty.

Hence, this is our definition. We say that a particular model satisfies the internal consistency

condition if its risk factors can price the set of non risk factors in that model without incurring a
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penalty. In other words, a penalty is incurred, and the marginal likelihood suffers if the constraint

that the intercepts in w model, which by assumption must be all zero, is binding. If the constraints

are not binding, then its marginal likelihood is significantly higher.

Consider model M j

x j,t = λx, j +εx, j,t ,

w j,t = Γ jx j,t +εw·x, j,t ,

with risk factors x j,t and non risk factors w j,t = (w j,1,t , . . . ,w j,kw, j,t)
′ with dimension kw, j×1. Now

for each non risk factor w j,i,t , i = 1,2, . . . ,kw, j, we compare the two models,

Mi
j,0 : w j,i,t = γ

′
j,ix j,t + ε j,i,t (23)

and

Mi
j,1 : w j,i,t = α j,i + γ

′
j,ix j,t + ε j,i,t (24)

using marginal likelihoods. If the log marginal likelihood of the second model does not exceed that

of the first model by more than 1.15, then, by an application of Jeffreys’ rule, we can conclude that

imposing the zero α j,i pricing restriction does not result in a marginal likelihood penalty. Stated

yet another way, this means that the non risk factor w j,i can be priced by the risk factor set x j of

that model M j. If this condition holds for each of the factors in w j, we conclude that the risk factor

set of that model satisfies the ICC condition.

Our analysis shows that the CAPM, Fama and French family, HXZ, SY, and DHS models do

not satisfy ICC. Specifically, the single Mkt factor cannot price the remaining 11 non risk factors.

The risk factor sets of the Fama and French family of models can price at most one non risk factor

(IA). The risk factors of HXZ can price all of the Fama and French factors, but cannot price MGMT
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and PEAD. The risk factors of SY and DHS models cannot price one non risk factor, PEAD and

MGMT, respectively. In contrast, the top models in M∗ satisfy the ICC condition fully, which

helps to explain why those models rank high in the benchmark model scan.

3.4 Prediction

It is worthwhile to consider how well the top models perform out-of-sample. From the Bayesian

perspective, an elegant way to examine this question is by calculating the predictive likelihood

for a set of future observations. This predictive likelihood, which like the marginal likelihood, is

a number when evaluated at a particular sample of future observations, can be used to rank the

predictive performance of each model in the model space.

To define the predictive likelihood, let π(θ j|M j,y1:T ) denote the posterior distributions of

the parameters θ j of M j, and let y(T+1):(T+12) = (fT+1, ...,fT+12) denote 12 months of held-out

out-of-sample data on those winners. Then, for any given model M j, the predictive likelihood is

defined as

m j
(
y(T+1):(T+12)|M j,y1:T

)
=
∫

Θ j

p(y(T+1):(T+12)|M j,θ j)π(θ j|M j,y1:T )dθ j,

where

p(y(T+1):(T+12)|M j,θ j) =
12

∏
s=1

Nkx, j(x j,T+s|λx, j,Ωx, j)Nkw, j(w j,T+s|Γ jx j,T+s,Ωw·x, j)

is the out-of-sample density of the factors given the parameters. We can compute this integral by

Monte Carlo. Taking draws {θ(1)j , ...,θ
(G)
j } from π(θ j|M j,y1:T ), with G being a large integer, we
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calculate the predictive likelihood as the Monte Carlo average

m j
(
y(T+1):(T+12)|M j,y1:T

)
=

1
G

G

∑
g=1

p(y(T+1):(T+12)|M j,θ
(g)
j ).

Table 4 reports the log predictive likelihoods of the top three models as well as those competing

models. We can see that the top three models also have larger predictive likelihoods, which means

that they outperform the competing models on the predictive dimension.

4 Benchmark Plus Genuine Anomalies Model Scan

We now show that there are some benefits to including additional potential risk factors along with

the winners. There are many additional risk factors to draw upon and the approach we describe can

be used with any set of additional potential risk factors. For our analysis here we focus on the 125

anomalies in ? and ?. These anomalies, which are re-balanced at an annual or quarterly frequency,

exclude anomalies that are re-balanced at a monthly frequency, because the latter cease to be

anomalies once transaction costs are taken into account (Novy-Marx and Velikov, 2016; Patton

and Weller, 2020). All these portfolios are value-weighted and held for one month. Just as in the

case of the winners, we have monthly observations on these anomalies spanning the period from

January 1974 to December 2018, for a total of 540 observations. We partition these observations

into out-of-sample and in-sample, which consists of the training sample and the estimation sample,

just as in Section 3.

What we aim to show is that there is information in these anomalies that can be captured to

produce better statistical performance (in terms of marginal likelihoods) and higher Sharpe-ratios

of portfolios built from the best fitting risk-factors. In order to show this, we recognize that the

winners are already carefully vetted factors and, therefore, the anomalies that are allowed to enter
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the pool of augmented potential risk factors must be those that cannot be priced by these winners.

This point helps to limit the dimension of the model space and allows us to design a full model

scan approach, as we now detail.

4.1 Genuine Anomalies

The model space with all 125 anomalies is 2137, which is astronomically large. However, it is

unnecessary to consider such a large model space because many of the anomalies can actually be

priced by the winners. In fact, Harvey, Liu, and Zhu (2016) and ? have cast doubt on the credibility

of these anomalies and Cochrane (2011) has raised similar concerns.

The first step, therefore, is to eliminate anomalies that are not genuine anomalies. An anomaly

is a genuine anomaly if it cannot be priced by the winners. Here is how we sort this issue out.

Let zi, i = 1,2, . . . ,125, denote the anomalies. Let x = (Mkt, SMB, HML, RMW, CMA, MOM,

IA, ROE, MGMT, PERF, PEAD, FIN) denote the twelve winners. Now for each anomaly zi as the

response, and x as the covariates, we estimate two models, one without an intercept and one with:

Mi
0 : zi,t = γ

′
ixt + εi,t , εi,t

i.i.d.∼ N(0,σ2
i ) (25)

and

Mi
1 : zi,t = αi + γ

′
ixt + εi,t εi,t

i.i.d.∼ N(0,σ2
i ). (26)

In estimating these models, the first 10 percent of the data are used as a training sample to

pin down the hyperparameters of the proper prior distributions. We then use standard Bayesian

Markov chain Monte Carlo methods to estimate model on the remaining 90 percent of the data,

y1:T . The log marginal likelihood of each model is computed by the Chib (1995) method. Denote

these marginal likelihoods by logmi
0(y1:T |Mi

0) and logmi
1(y1:T |Mi

0). Then, based on the Jeffreys
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(1961) scale, if the following condition holds

logmi
1(y1:T |Mi

1)− logmi
0(y1:T |Mi

0)> 1.15, (27)

then x is not able to price zi. In this case, we assert that zi is a genuine anomaly; otherwise zi is not

a genuine anomaly.

Applying the procedure described above, twenty genuine anomalies emerge, namely, acc, age,

currat, hire, lev, quick, salecash, sgr, Em, Lbp, dFin, Cop, Lfe, SA, sue, cash, OLAQ, CLAQ,

TBIQ, and BLQ. Details about these anomalies are given in Table 5.

4.2 The Potential Risk Factor Set

Now instead of conducting our model scan on the original twelve winners and these twenty genuine

anomalies, which leads to a model space of around four billion models (232−1 = 4,294,967,295),

we apply a second dimension reduction step by converting the genuine anomalies to principal

components (with the rotated mean added back in), of which we then consider the first eleven

that explain in total approximating 91% of the variation in the genuine anomalies, as can be seen

from Table 6. This set, of the twelve winners and the first eleven PCs of the genuine anomalies,

constitutes our potential risk factor set which we use to launch our extended risk factor analysis.

We note that this strategy of blending of winners and the PCs in this way appears to be new to

the literature. By this strategy, we are able to limit the model space to a reasonable dimension (of

around eight million models), while simultaneously avoiding the problem of working with twenty

correlated PCs that are also quite correlated with the winners. For instance, some anomalies are

related to leverage (currat, lev, quick, Lbp, and BLQ) and some are linked to sales status (salecash

and sgr). Considering two groups of risk factors in this way, where some are in their original form
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and some are PCs, appears to be novel. It allows us to show the value of including anomalies as

potential risk factors.

We also note that the idea of transforming our genuine anomalies into their corresponding

principal components is similar to Kozak, Nagel, and Santosh (2020) who argued that “a relatively

small set of principal component from the universe of potential characteristics-based factors can

approximate the SDF quite well.” Our idea is related, but distinct, as we keep the key factors

(the winners) as is, but only covert the less important (the genuine anomalies) into principal

components.

We emphasize again that our approach of reducing the 125 anomalies to the set of twenty

genuine anomalies is a dimension-reduction strategy. Furthermore, our idea of converting these

anomalies to the space of principal components, is another element of that same strategy. Of

course, whether as anomalies, or as PC’s, these factors are portfolios of assets. Our purpose here

is to understand whether the PC factors provide incremental information for pricing assets.

5 Benchmark Plus Genuine Anomalies Model Scan Results

5.1 Top Model Set

Starting with the potential risk factor set of dimension K̃ = 23, twelve winners plus eleven PCs,

and applying the methodology given in Section 2, we calculate the marginal likelihood of each of

the J̃ = 8,388,607 models in M̃ . Converting these marginal likelihoods into posterior model

probabilities, the ratios of these posterior model probabilities and the prior model probability

(assumed equal to 1/J̃ ) can be calculated. The ratio, Pr(ỹ1:T |M̃ j∗)

Pr(M̃ j∗)
, defined earlier in Section 3.2.1,

makes it easier to see which models receive more support from the data. We report these ratios for

the top 220 models in Figure 4, in which the dashed blue vertical line represents the cutoff of the

24

Electronic copy available at: https://ssrn.com/abstract=3929126



top model set.

The top model set, denoted by M̃∗ as in Section 3.2.1, can be defined in relation to the best

model M̃1∗. A model is in the top model set if its distance to the best model on the log marginal

likelihood scale is less than 1.15. These 29 models, along with the including associated risk

factor sets, log marginal likelihoods, and the ratios of posterior model probability and prior model

probability are provided in Panel A of Table 7. The risk factors common to all these top models are

Mkt, MOM, ROE, PEAD, MGMT, PC1, PC4, and PC5. We also note that the risk factors that are

common to the top 3 models in the benchmark model scan, {Mkt, SMB, ROE, PEAD, MGMT},

are also the risk factors that are common to the top 29 models in the extended model scan except

that SMB is replaced by MOM, which is also risk factors of the top 2 models of the winners scan.

5.1.1 Parameter Updating for the Best Model

We now provide more details about the best model in the winners plus genuine model scan M̃1∗,

in which the risk factor set is given by x̃1∗,t = (Mkt,RMW,MOM, IA,ROE,MGMT,PEAD,FIN,

PC1,PC3,PC4,PC5,PC7)′t and the non risk factor set is given by w̃1∗,t =(SMB,HML,CMA,PERF,

PC2,PC6,PC8,PC9,PC10,PC11)′t :

M̃1∗ : x̃1∗,t = λ̃x,1∗︸︷︷︸
13×1

+ε̃x,1∗, t , ε̃x,1∗, t ∼ N13(0,Ω̃x,1∗),

w̃1∗,t = Γ̃1∗︸︷︷︸
10×10

x̃1∗,t + ε̃w·x,1∗, t , ε̃w·x,1∗, t ∼ N10(0,Ω̃w·x,1∗).

Similar to Section 3.2, the prior and posterior statistics, i.e. prior mean, posterior mean, posterior

standard deviation, posterior median, 2.5% quantile, and 97.5% quantile for the risk premia λ̃1∗

are provided in Table 8.
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5.2 Pricing performance: Internal consistency check

Just as in Section 3.3, we can see that 27 out of 29 models in the top model set M̃∗ satisfy the ICC

completely. The two exceptions occur for M16∗ which is unable to explain IA and M16∗ which is

unable to explain RMW. In constrast, models with the same risk factor sets as CAPM, Fama and

French family, HXZ, SY, and DHS deviate from ICC further, leaving out 13, 12, 10, 9, 5, 5, and 4

non-risk factors unexplained. Moreover, none of models with the same risk factor sets as the top

three models in the winners scan can explain PC1, PC2, and PC3.

5.3 Prediction

Similar to Section 3.4, it is important to consider how well the winning model performs out-of-

sample and we compute the predictive likelihood for a set of future observations ỹ(T+1):(T+12) =

(f̃T+1, ..., f̃T+12) denote 12 months of out-of-sample data on the winners and principal compo-

nents. Table 9 reports the log predictive likelihoods for top models in M̃∗ as well as models with

the same risk factor sets as CAPM, Fama and French family models, SY and DHS. We can tell that

those top models do not fail out of sample.

6 Economic Performance: Sharpe Ratios

Now suppose that based on the identity of the risk factors in (say) the best model M̃1∗ of the winners

plus genuine anomalies model scan, namely, Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, FIN,

PC1, PC3, PC4, PC5, and PC7, we construct an optimal mean-variance portfolio of these risk

factors together with a risk-free asset. Similarly, we construct the optimal mean-variance portfolios

from the risk factors in M̃1, M1 CAPM, Fama and French family, HXZ, SY, and DHS collections,

as well as the risk factors of top models of the benchmark model scan. This leads to the important
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question: how do the Sharpe ratios of those different portfolios compare?

We construct these different portfolios in the following manner. Consider model M j with

associated risk factors x j. Given the data y1:T , consider calculating the predictive mean of x j,T+1

E[x j,T+1|M j,y1:T ], x j,T+1|T =
∫
x j,T+1Nkx, j(x j,T+1|λx, j,Ωx, j)π(θ j|M j,y1:T )dθ jdx j,T+1,

which by changing the order of the integration can be seen to just equal the posterior mean of λx, j

x j,T+1|T = λ̂x, j ,
∫

Θ j

λx, jπ(θ j|M j,y1:T )dθ j,

and the predictive covariance of x j,T+1

Ωx, j,T+1|T ,
∫
(x j,T+1−x j,T+1|T )(x j,T+1−x j,T+1|T )

′Nkx, j(x j,T+1|λx, j,Ωx, j)π(θ j|M j,y1:T )dθ jdx j,T+1,

which by the law of iterated expectations for covariances simplifies to the sum of the posterior

mean of Ωx, j and the posterior variance of λx, j:

Ωx, j,T+1|T =
∫

Θ j

Ωx, jπ(θ j|M j,y1:T )dθ j +
∫

Θ j

(λx, j− λ̂x, j)(λx, j− λ̂x, j)
′
π(θ j|M j,y1:T )dθ j.

Of course, both these quantities are straightforwardly estimated from the output of the simulation

of the posterior density π(θ j|M j,y1:T ). Given these predictive moments, with certain calculations,

the Sharpe ratio of the optimal mean-variance portfolio of the factors in x j plus a risk-free asset is

available as

Sh j =
(
λ̂′x, jΩ

−1
x, j,T+1|T λ̂x, j

) 1
2
.

In Table 10 we report the Sharpe ratios of risk-factor portfolios based on several asset pricing
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models. In Panel A we consider the risk factor sets of the top models in M̃∗, in Panel B for the

risk factor sets of the top models in M∗, and in Panel C for the M̃1, M1, CAPM, Fama and French

family, HXZ, SY, and DHS models.

Looking at the results in Panel B and C, we can see that the Sharpe ratios are higher for the

top models from the winners scan than those from some of the existing asset pricing models.

Comparing the results in Panel A and Panel B, we see that the top models from the winners plus

genuine anomalies model scan provide even higher Sharpe ratios. Taken together, if we consider

the best performing DHS model as the benchmark from Panel C, we can see that the models in M∗

have about 17% higher Sharpe ratios, and the models in M̃∗ have about 49% higher Sharpe ratios.

Finally, in the benchmark model scan, all twelve winners can achieve a Sharpe ratio of 0.56,

whereas investing in the seven winners of winners in M2∗ gives a Sharpe ratio of 0.55. And in

the winners plus genuine anomalies model scan, investing in those top risk factor sets produces a

Sharpe ratio as high as 0.70 while investing in all twelve winners plus eleven PCs gives 0.71.

In summary, based on the Sharpe ratios, we have three observations. First, the portfolios of

risk factors from the top models perform as well as those from the complete set of risk factors.

In other words, there is some information redundancy in the potential risk factor set. Second, the

marginal likelihood ranking and Sharpe ratio rankings are aligned. Third, the PCs have incremental

explanatory power, but further research is needed to identify if some individual factors from

amongst the selected PCs are equivalent to those PCs.

7 Pricing the cross-section

We conclude by providing a comparison of our two risk factor collections

• Mkt, SMB, MOM, ROE, MGMT, and PEAD and
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• {Mkt, RMW, MOM, IA, ROE, MGT, PEAD, FIN} and {PC1, PC3, PC4, PC5, and PC7}

in pricing the cross-section of stocks. In particular, the testing assets are excess returns of

individual stocks over the period 1974:01 to 2018:12, which is the period of our estimation sample.

For this sample period, we have 282 such stock returns. Following the method used to extract the

genuine anomalies, for each individual stock return, we estimate two models for each risk factor

set, one without an intercept and one with, and use the 1.15 log-marginal likelihood criterion to

decide whether that testing asset is priced.

The results show that the first risk factor collection fails to price three testing assets. On the

other hand, the second risk factor set (from the benchmark plus genuine anomalies scan) is able to

price all 282 testing assets. We view this as further compelling evidence of the empirical usefulness

of this collection for computing expected returns and assessing investment strategies.

8 Conclusion

We have studied the implications of the Bayesian model scan framework of Chib and Zeng (2020)

and Chib et al. (2020) for risk factor selection. Starting from the twelve distinct risk factors in

Fama and French (1993, 2015, 2018), Hou, Xue, and Zhang (2015), Stambaugh and Yuan (2017),

and Daniel, Hirshleifer, and Sun (2020), a comparison of all possible implied asset pricing models

shows that the six-factor model consisting of {Mkt, SMB, MOM, ROE, MGMT, and PEAD} gets

the most support from the data in terms of posterior model probability, out-of-sample predictive

performance, and Sharpe ratio.

We also devise a way for conducting a model scan when the initial set of potential risk factors

leads to a model space that is astronomically large. For example, we consider the case where one is

interested in selecting the best risk factors from the initial set of 12 risk factors plus 125 anomalies.
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The resulting model space of 2137 models is intractable. It is not known which of the existing

methods (if any) could work in such a case. The idea we develop employs a finance motivated

dimension reduction strategy to reduce the model space to a manageable size.

The results from the benchmark plus genuine anomalies scan show that the best model

consists of {Mkt, RMW, MOM, IA, ROE, MGT, PEAD, FIN} plus the non-consecutive principal

components, {PC1, PC3, PC4, PC5, PC7}. The pricing comparison suggests that we should use

this collection for computing expected returns and assessing investment strategies, instead of the

risk factors in one of the standard collections.

The general approach that we have described in this paper has applications beyond this paper.

The idea of combining well vetted factors to come up the best few, and the idea of using a

finance-motivated dimension reduction to make scanning of otherwise insurmountably large model

spaces possible, are likely to prove useful for other asset categories such as bonds, currencies and

commodities, and is likely to open up other avenues for further research.
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Table 1 Winners Definitions

Factors Definitions

Mkt the excess return of the market portfolio
SMB the return spread between diversified portfolios of small size and big size stocks
HML the return spread between diversified portfolios of high and low B/M stocks
RMW the return spread between diversified portfolios of stocks with robust and weak profitability
CMA the return spread between diversified portfolios of the stocks of low (conservative) and high (aggressive) investment firms
MOM the momentum factor based on two prior returns
IA the investment factor based on annual changes in total assets divided by lagged total assets
ROE the profitability factor based on income before extraordinary items divided by one-quarter-lagged book equity
MGMT the mispricing factor controlled by management
PERF the mispricing factor related to performance
PEAD the short-horizon behavioral factor motivated by investor inattention and evidence of short-horizon under reaction
FIN the long-horizon behavioral factor exploiting the information in managers’ decisions to issue or repurchase equity

Figure 1 Top 220 Models of the Winners Model Scan
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Figure 2 Top 5 Models of the Winners Model Scan

Table 2 Marginal Likelihoods and the Ratios of Posterior Model Probability and Prior
Model Probability of Selected Models in the Winners Model Space M
Results from the comparison of the J̃ = 4,095 models. Panel A has the results for the top three
models, and Panel B for M̃1 and models with the same risk factor sets as CAPM, FF3, FF5, FF6,
HXZ, SY, and DHS.

Risk factors logm j(y1:T |M j)
Pr(M j |y1:T )

Pr(M j)

Panel A: Top three models

Mkt, SMB, MOM, ROE, MGMT, PEAD 14186.43 527.89
Mkt, SMB, MOM, ROE, MGMT, PERF, PEAD 14186.28 454.09
Mkt, SMB, ROE, MGMT, PEAD 14186.18 413.01

Panel B: M̃1 and models with the same risk factor sets as CAPM, FF3, FF5, FF6, HXZ, SY, and DHS

12 winners 1.66×10−1

Mkt 14140.85 8.44×10−18

Mkt, SMB, HML 14140.32 4.98×10−18

Mkt, SMB, HML, RMW, CMA 14152.79 1.30×10−12

Mkt, SMB, HML, RMW, CMA, MOM 14154.45 6.87×10−12

Mkt, SMB, IA, ROE 14164.47 1.54×10−7

Mkt, SMB, MGMT, PERF 14173.32 1.07×10−3

Mkt, PEAD, FIN 14178.86 2.73×10−1
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Figure 3 Posterior Distributions of the Risk Premia Parameters of the Best of the Winners
Model Scan M1∗

Table 3 Prior and Posterior Statistics of the Risk Premia Parameters of the Best of the
Winners Model Scan M1∗
Prior and posterior statistics, i.e. prior mean, posterior mean, posterior standard deviation,
posterior median, 2.5% quantile, and 97.5% quantile for the risk premia λx,1∗ of the best model
M∗1, which has Mkt, SMB, MOM, ROE, MGMT, and PEAD as risk factors.

Prior mean Posterior mean Posterior sd Posterior median 2.5% Quantile 97.5% Quantile

Mkt 0.0017 0.0066 0.0020 0.0066 0.0026 0.0106
SMB 0.0130 0.0016 0.0013 0.0016 -0.0010 0.0043
MOM 0.0044 0.0061 0.0021 0.0061 0.0020 0.0101
ROE 0.0041 0.0058 0.0012 0.0058 0.0034 0.0081
MGMT 0.0084 0.0056 0.0013 0.0056 0.0030 0.0082
PEAD 0.0085 0.0056 0.0009 0.0056 0.0039 0.0074
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Table 4 Predictive Likelihoods for the Winners Model Scan
Predictive likelihoods of selected asset pricing models in winners model scan.

Risk factors logm j(y(T+1):(T+12)|M j)
Panel A: Top three models

Mkt, SMB, MOM, ROE, MGMT, PEAD 383.48
Mkt, SMB, MOM, ROE, MGMT, PERF, PEAD 383.65
Mkt, SMB, ROE, MGMT, PEAD 383.55

Panel B: Models with the same risk factor sets as CAPM, FF3, FF5, FF6, HXZ, SY, and DHS

Mkt 382.46
Mkt, SMB, HML 381.76
Mkt, SMB, HML, RMW, CMA 381.67
Mkt, SMB, HML, CMA, RMW, MOM 381.83
Mkt, SMB, IA, ROE 381.87
Mkt, SMB, MGMT, PERF 382.89
Mkt, FIN, PEAD 382.76

Table 5 Surviving Anomalies Explanations

Anomalies Explanations

acc annual income before extraordinary items minus operating cash flows divided by average total assets
age number of years since first Compustat coverage
currat current assets / current liabilities
hire percent change in number of employees
lev total liabilities divided by fiscal year-end market capitalization
quick (current assets - inventory) / current liabilities
salecash annual sales divided by cash and cash equivalents
sgr annual percent change in sales (sale)
Em enterprise value divided by operating income before depreciation (Compustat annual item OIBDP)
Lbp leverage component of book to price
dFin the change in net financial assets
Cop cash-based operating profitability
Lfe labor force efficiency
SA SA index measuring financial constraint
sue the high-minus-low earnings surprise
cash cash and cash equivalents divided by average total assets
OLAQ quarterly operating profits-to-lagged assets
CLAQ quarterly cash-based operating profits-to-lagged assets
TBIQ quarterly taxable income-to-book income
BLQ quarterly book leverage
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Table 6 Importance of Principal Components

PC1 PC2 PC3 PC4 PC5

Standard deviation 0.1143 0.0785 0.0441 0.0415 0.0408
Proportion of Variance 0.3953 0.1866 0.0590 0.0521 0.0503
Cumulative Proportion 0.3953 0.5819 0.6409 0.6930 0.7433

PC6 PC7 PC8 PC9 PC10

Standard deviation 0.0366 0.0331 0.0298 0.0282 0.0274
Proportion of Variance 0.0405 0.0332 0.0269 0.0241 0.0227
Cumulative Proportion 0.7837 0.8170 0.8438 0.8680 0.8907

PC11 PC12 PC13 PC14 PC15

Standard deviation 0.0257 0.0231 0.0218 0.0201 0.0194
Proportion of Variance 0.0200 0.0162 0.0144 0.0122 0.0113
Cumulative Proportion 0.9106 0.9268 0.9412 0.9535 0.9648

PC16 PC17 PC18 PC19 PC20

Standard deviation 0.0172 0.0162 0.0158 0.0142 0.0125
Proportion of Variance 0.0090 0.0079 0.0075 0.0061 0.0047
Cumulative Proportion 0.9737 0.9817 0.9892 0.9953 1.0000

Figure 4 Top 220 Models of the Winners Plus Genuine Anomalies Model Scan
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Table 7 Marginal Likelihoods and Ratios of Posterior Model Probability and Prior Model
Probability of Selected Models in the Winners Plus Genuine Anomalies Model Space M̃

Risk Factors logm j(ỹ1:T |M̃ j)
Pr(ỹ1:T |M̃ j)

Pr(M̃ j)

Panel A: Top models in M̃∗

Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, FIN, PC1, PC3, PC4, PC5, PC7 24621.85 57939.28
Mkt, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC4, PC5, PC7 24621.72 50803.12
Mkt, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC3, PC4, PC5, PC7 24621.68 48969.29
Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, FIN, PC1, PC3, PC4, PC5 24621.51 41429.51
Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, PC1, PC3, PC4, PC5, PC7 24621.48 40171.69
Mkt, RMW, CMA, MOM, ROE, MGMT, PEAD, FIN, PC1, PC3, PC4, PC5, PC7 24621.44 38720.10
Mkt, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC4, PC5 24621.43 38145.58
Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, PC1, PC3, PC4, PC5 24621.21 30594.32
Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, PC1, PC4, PC5 24621.16 29262.14
Mkt, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC4, PC5, PC7, PC9 24621.15 28892.28
Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, PC1, PC4, PC5, PC7 24621.14 28496.78
Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, FIN, PC1, PC4, PC5, PC7 24621.11 27648.27
Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, FIN, PC1, PC4, PC5 24621.10 27321.30
Mkt, RMW, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC3, PC4, PC5, PC7 24621.09 27292.03
Mkt, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC3, PC4, PC5 24621.08 26966.60
Mkt, MOM, ROE, MGMT, PERF, PEAD, FIN, PC1, PC3, PC4, PC5, PC7 24621.07 26499.81
Mkt, RMW, CMA, MOM, ROE, MGMT, PEAD, FIN, PC1, PC3, PC4, PC5 24621.02 25260.55
Mkt, MOM, ROE, MGMT, PEAD, FIN, PC1, PC3, PC4, PC5, PC7 24620.99 24590.60
Mkt, MOM, IA, ROE, MGMT, PEAD, FIN, PC1, PC3, PC4, PC5, PC7 24620.90 22526.00
Mkt, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC3, PC4, PC5, PC7, PC9 24620.86 21524.20
Mkt, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC4, PC5, PC9 24620.84 21061.93
Mkt, RMW, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC4, PC5, PC7 24620.81 20467.26
Mkt, RMW, MOM, IA, ROE, MGMT, PERF, PEAD, PC1, PC4, PC5, PC7 24620.78 19969.41
Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, FIN, PC1, PC3, PC4, PC5, PC7, PC9 24620.77 19636.23
Mkt, RMW, MOM, IA, ROE, MGMT, PERF, PEAD, PC1, PC4, PC5 24620.73 18874.75
Mkt, RMW, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC4, PC5 24620.71 18612.73
Mkt, CMA, MOM, ROE, MGMT, PEAD, FIN, PC1, PC3, PC4, PC5, PC7 24620.71 18597.04
Mkt, RMW, MOM, IA, ROE, MGMT, PERF, PEAD, PC1, PC3, PC4, PC5, PC7 24620.71 18577.15
Mkt, RMW, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC3, PC4, PC5 24620.71 18531.14

Panel B: M̃1 and models with the same risk factor sets as CAPM, FF3, FF5, FF6, HXZ, SY, and DHS

12 winners and 11 PCs 24606.63 1.71×10−9

Mkt 24560.93 2.42×10−29

Mkt, SMB, HML 24560.17 1.13×10−29

Mkt, SMB, HML, RMW, CMA 24572.01 1.57×10−24

Mkt, SMB, HML, RMW, CMA, MOM 24573.47 6.74×10−24

Mkt, SMB, IA, ROE 24583.58 1.66×10−19

Mkt, SMB, MGMT, PERF 24592.21 9.25×10−16

Mkt, PEAD, FIN 24597.68 2.20×10−13

Panel C: Models with the same risk factor sets as the top three models in the benchmark model scan

Mkt, SMB, MOM, ROE, MGMT, PEAD 24604.69 2.44×10−10

Mkt, SMB, MOM, ROE, MGMT, PERF, PEAD 24604.41 1.84×10−10

Mkt, SMB, ROE, MGMT, PEAD 24604.60 2.22×10−10
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Table 8 Prior and Posterior Statistics of the Risk Premia Parameters of the Best of the
Winners Plus Genuine Model Scan M̃1∗
Prior and posterior statistics, i.e. prior mean, posterior mean, posterior standard deviation,
posterior median, 2.5% quantile, and 97.5% quantile for the risk premia λ̃x,1∗ of the best model
M∗1, which has Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, FIN, PC1, PC3, PC4, PC5, and PC7
as risk factors.

Prior mean Posterior mean Posterior sd Posterior median 2.5% Quantile 97.5% Quantile

Mkt 0.0017 0.0066 0.0021 0.0066 0.0025 0.0106
RMW -0.0015 0.0036 0.0011 0.0036 0.0014 0.0057
MOM 0.0044 0.0061 0.0021 0.0061 0.0020 0.0102
IA 0.0075 0.0033 0.0009 0.0033 0.0016 0.0050
ROE 0.0041 0.0058 0.0012 0.0058 0.0034 0.0081
MGMT 0.0084 0.0056 0.0013 0.0056 0.0030 0.0082
PEAD 0.0085 0.0056 0.0009 0.0056 0.0039 0.0074
FIN 0.0077 0.0070 0.0018 0.0070 0.0034 0.0106
PC1 0.0044 -0.0006 0.0056 -0.0006 -0.0117 0.0103
PC3 0.0191 0.0082 0.0020 0.0082 0.0043 0.0121
PC4 0.0221 0.0112 0.0018 0.0112 0.0076 0.0147
PC5 0.0009 0.0013 0.0019 0.0013 -0.0024 0.0051
PC7 -0.0005 -0.0011 0.0015 -0.0011 -0.0040 0.0018
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Table 9 Predictive Likelihoods for the Winners Plus Genuine Anomalies Model Scan
Predictive likelihoods of selected models in the winners plus genuine anomalies model scan.

Risk factors logm j(ỹ(T+1):(T+12)|M̃ j)

Panel A: Top models in M̃∗

Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, FIN, PC1, PC3, PC4, PC5, PC7 639.27
Mkt, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC4, PC5, PC7 639.36
Mkt, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC3, PC4, PC5, PC7 639.46
Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, FIN, PC1, PC3, PC4, PC5 639.01
Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, PC1, PC3, PC4, PC5, PC7 639.86
Mkt, RMW, CMA, MOM, ROE, MGMT, PEAD, FIN, PC1, PC3, PC4, PC5, PC7 639.09
Mkt, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC4, PC5 639.08
Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, PC1, PC3, PC4, PC5 639.59
Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, PC1, PC4, PC5 639.36
Mkt, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC4, PC5, PC7, PC9 639.32
Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, PC1, PC4, PC5, PC7 639.65
Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, FIN, PC1, PC4, PC5, PC7 639.16
Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, FIN, PC1, PC4, PC5 638.86
Mkt, RMW, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC3, PC4, PC5, PC7 639.35
Mkt, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC3, PC4, PC5 639.23
Mkt, MOM, ROE, MGMT, PERF, PEAD, FIN, PC1, PC3, PC4, PC5, PC7 639.53
Mkt, RMW, CMA, MOM, ROE, MGMT, PEAD, FIN, PC1, PC3, PC4, PC5 638.82
Mkt, MOM, ROE, MGMT, PEAD, FIN, PC1, PC3, PC4, PC5, PC7 639.48
Mkt, MOM, IA, ROE, MGMT, PEAD, FIN, PC1, PC3, PC4, PC5, PC7 639.41
Mkt, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC3, PC4, PC5, PC7, PC9 639.43
Mkt, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC4, PC5, PC9 639.08
Mkt, RMW, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC4, PC5, PC7 639.25
Mkt, RMW, MOM, IA, ROE, MGMT, PERF, PEAD, PC1, PC4, PC5, PC7 639.71
Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, FIN, PC1, PC3, PC4, PC5, PC7, PC9 639.19
Mkt, RMW, MOM, IA, ROE, MGMT, PERF, PEAD, PC1, PC4, PC5 639.42
Mkt, RMW, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC4, PC5 638.95
Mkt, CMA, MOM, ROE, MGMT, PEAD, FIN, PC1, PC3, PC4, PC5, PC7 639.26
Mkt, RMW, MOM, IA, ROE, MGMT, PERF, PEAD, PC1, PC3, PC4, PC5, PC7 639.90
Mkt, RMW, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC3, PC4, PC5 639.09

Panel B: M̃1 and models with risk factor sets same as CAPM, FF3, FF5, FF6, HXZ, SY, and DHS

12 winners and 11 PCs 638.61
Mkt 640.03
Mkt, SMB, HML 639.35
Mkt, SMB, HML, RMW, CMA 639.27
Mkt, SMB, HML, CMA, RMW, MOM 639.43
Mkt, SMB, IA, ROE 639.48
Mkt, SMB, MGMT, PERF 640.48
Mkt, FIN, PEAD 640.35
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Table 10 Sharpe Ratios
Sharpe ratios for the risk factor sets of selected asset pricing models based on G = 100,000.

Risk factors Sharpe ratios
Panel A: Risk factor sets of the top models in M̃∗

Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, FIN, PC1, PC3, PC4, PC5, PC7 0.69
Mkt, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC4, PC5, PC7 0.68
Mkt, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC3, PC4, PC5, PC7 0.69
Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, FIN, PC1, PC3, PC4, PC5 0.68
Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, PC1, PC3, PC4, PC5, PC7 0.68
Mkt, RMW, CMA, MOM, ROE, MGMT, PEAD, FIN, PC1, PC3, PC4, PC5, PC7 0.69
Mkt, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC4, PC5 0.67
Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, PC1, PC3, PC4, PC5 0.67
Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, PC1, PC4, PC5 0.66
Mkt, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC4, PC5, PC7, PC9 0.69
Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, PC1, PC4, PC5, PC7 0.67
Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, FIN, PC1, PC4, PC5, PC7 0.68
Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, FIN, PC1, PC4, PC5 0.67
Mkt, RMW, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC3, PC4, PC5, PC7 0.70
Mkt, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC3, PC4, PC5 0.68
Mkt, MOM, ROE, MGMT, PERF, PEAD, FIN, PC1, PC3, PC4, PC5, PC7 0.68
Mkt, RMW, CMA, MOM, ROE, MGMT, PEAD, FIN, PC1, PC3, PC4, PC5 0.68
Mkt, MOM, ROE, MGMT, PEAD, FIN, PC1, PC3, PC4, PC5, PC7 0.67
Mkt, MOM, IA, ROE, MGMT, PEAD, FIN, PC1, PC3, PC4, PC5, PC7 0.68
Mkt, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC3, PC4, PC5, PC7, PC9 0.70
Mkt, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC4, PC5, PC9 0.68
Mkt, RMW, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC4, PC5, PC7 0.69
Mkt, RMW, MOM, IA, ROE, MGMT, PERF, PEAD, PC1, PC4, PC5, PC7 0.68
Mkt, RMW, MOM, IA, ROE, MGMT, PEAD, FIN, PC1, PC3, PC4, PC5, PC7, PC9 0.70
Mkt, RMW, MOM, IA, ROE, MGMT, PERF, PEAD, PC1, PC4, PC5 0.67
Mkt, RMW, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC4, PC5 0.68
Mkt, CMA, MOM, ROE, MGMT, PEAD, FIN, PC1, PC3, PC4, PC5, PC7 0.68
Mkt, RMW, MOM, IA, ROE, MGMT, PERF, PEAD, PC1, PC3, PC4, PC5, PC7 0.68
Mkt, RMW, MOM, IA, ROE, MGMT, PERF, PEAD, FIN, PC1, PC3, PC4, PC5 0.69

Panel B: Risk factor sets of the top three models in the benchmark model scan

Mkt, SMB, MOM, ROE, MGMT, PEAD 0.54
Mkt, SMB, MOM, ROE, MGMT, PERF, PEAD 0.55
Mkt, SMB, ROE, MGMT, PEAD 0.53

Panel C: Risk factor sets of M̃1, M1, CAPM, FF3, FF5, FF6, HXZ, SY, and DHS models

12 winners and 11 PCs 0.71
12 winners 0.56
Mkt 0.15
Mkt, SMB, HML 0.20
Mkt, SMB, HML, RMW, CMA 0.34
Mkt, SMB, HML, CMA, RMW, MOM 0.36
Mkt, SMB, IA, ROE 0.40
Mkt, SMB, MGMT, PERF 0.45
Mkt, FIN, PEAD 0.47
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