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Abstract

Risk measures are used not only for financial institutions’ internal risk man-
agement but also for external regulation (e.g., in the Basel Accord for calcu-
lating the regulatory capital requirements for financial institutions).Though
fundamental in risk management, how to select a good risk measure is a con-
troversial issue.We review the literature on risk measures, particularly on is-
sues such as subadditivity, robustness, elicitability, and backtesting. We also
aim to clarify some misconceptions and confusions in the literature. In par-
ticular, we argue that, despite lacking some mathematical convenience, the
median shortfall—that is, the median of the tail loss distribution—is a better
option than the expected shortfall for setting the Basel Accords capital re-
quirements due to statistical and economic considerations such as capturing
tail risk, robustness, elicitability, backtesting, and surplus invariance.
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1. INTRODUCTION

The research question in this article is how to select good risk measures to appraise financial risk.
Obviously, to evaluate the appropriateness of risk measures, one has to specify the objectives first.
In terms of objectives, risk measures can be classified into two categories: internal risk measures
used for internal risk management and asset allocation at individual institutions and external risk
measures used for external regulation or margin requirements and imposed for relevant financial
institutions and traders.

A risk measure may be suitable for internal management but not for external regulation, and
vice versa. This article focuses on external risk measures and reviews three strands of related re-
search: robustness, elicitability, and backtesting.

A major difficulty in measuring risk is that the tail part of a loss distribution is difficult to es-
timate and hence bears substantial model uncertainty. As emphasized by Hansen (2013, p. 19),
“uncertainty can come from limited data, unknown models and misspecification of those mod-
els.” A risk measure is said to be robust if it can accommodate model misspecification and it has
statistical robustness with respect to changes in the data. Robustness is especially important for
an external risk measure used for banking regulation, as the risk measure needs to be consistently
implemented across all relevant financial institutions.

Different procedures may be used to forecast a risk measure. It is hence desirable to be able to
evaluate which procedure gives a better forecast. The elicitability of a risk measure is a property
based on a decision-theoretic framework for evaluating the performance of different forecasting
procedures (Gneiting 2011). The elicitability of a risk measure means that the risk measure can
be obtained by minimizing the expectation of a forecasting objective function. This is a desirable
property because the embedded forecasting objective function can then be used for evaluating
different forecasting procedures.

Elicitability is closely related to backtesting, whose objective is to evaluate the performance of
a risk forecasting model. If a risk measure is elicitable, then the sample average forecasting error
based on the objective function can be used for backtesting the risk measure. An external risk
measure used for banking regulation needs to be backtested, as the regulator needs to evaluate the
quality of the model and procedure used in forecasting the external risk measure.

The outline of the article is as follows. In Section 2, we review the axiomatic approaches of
risk measures and acceptance sets, along with some important examples including value-at-risk
(VaR), expected shortfall (ES), and median shortfall (MS). Section 3 discusses the controversial
subadditivity and convexity axioms, which are the most important axioms for the coherent and
convex risk measure, respectively, and have been at the center of the debate on what risk measure
is a good one. Robustness, elicitability, and backtesting are studied in Sections 4–6, respectively.
Section 7 presents the Basel Accord risk measures.

2. RISK MEASURES AND ACCEPTANCE SETS

We consider a risk manager who wants to propose a risk measure or an acceptance set for her
particular use. The risk manager can be a regulator, a clearing house, or a financial institution.
She represents uncertainty in the market by a measurable space (�,F ). Due to model uncertainty,
the risk manager may have a set of probability models, which are represented by P , a class of
probability measures on (�,F ).We denote withL0(�,F ,P ) the set of all random variables, which
is a vector space. We say that X ,Y ∈ L0(�,F ,P ) are identically distributed if X and Y have the
same distribution under any P ∈ P .

In many existing papers on risk measures, P is either the set of all probability measures on
(�,F ) (and thus the risk manager does not have a probabilistic model) or a singleton (and thus
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there is no model uncertainty). However, in practice, the risk measure of a capital position or
a portfolio’s P&L usually involves multiple scenarios, where P is a finite set of more than one
probability measures; see, e.g., Kou et al. (2013) and Kou & Peng (2016).

Denote X , a subset of L0(�,F ,P ), the set of firms’ capital positions or portfolio P&Ls at
the end of a given period under the risk manager’s investigation. Here, the capital position of a
firm at the end of a period refers to the firm’s asset value minus its liability, and the P&L of a
portfolio refers to its profit and loss—the portfolio value at the end of the period minus its initial
value. Then, for any X ∈ X , L = −X denotes the corresponding loss random variable. Examples
of X include L∞(�,F ,P ) (the space of all bounded random variables), Lp(�,F ,P ) for some
p � [1, +∞) (the space of random variables whose Lp norm under any P ∈ P is finite), the space
of random variables that are bounded from below, spaces known as Orlicz hearts, and L0(�,F ,P )
(see, e.g., Delbaen 2002, Frittelli & Gianin 2002, Cheridito & Li 2009, He et al. 2015).

A risk measure and an acceptance set can be mutually representable. Given a risk mea-
sure ρ, the acceptance set associated with ρ is defined as Aρ := {X | ρ(X ) ≤ 0}. Conversely,
given an acceptance set A, the risk measure associated with the acceptance set is defined as
ρA := inf{m | X +m ∈ A}.

2.1. Risk Measures: Axioms and Examples

A risk measure ρ is a mapping from X to R.1 The following are some commonly used axioms in
the literature for risk measures:

1. Monotonicity: ρ(X) ≤ ρ(Y ) for any X ,Y ∈ X such that X ≥ Y.
2. Strict monotonicity: ρ(X) ≤ ρ(Y ) for any X ,Y ∈ X such that X ≥ Y and the inequality

becomes strict if X �= Y.
3. Positive homogeneity: ρ(λX) = λρ(X) for any λ > 0 and X ∈ X such that λX ∈ X .
4. Subadditivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y ) for any X ,Y ∈ X such that X +Y ∈ X .
5. Quasi-convexity: ρ(αX + (1 − α)Y ) ≤ max (ρ(X), ρ(Y )) for any X ,Y ∈ X and α � (0, 1)

such that αX + (1 − α)Y ∈ X .
6. Convexity: ρ(αX+ (1 − α)Y ) ≤ αρ(X) + (1 − α)ρ(Y ) for any X ,Y ∈ X and α � (0, 1) such

that αX + (1 − α)Y ∈ X .
7. Translation invariance with respect to R ∈ L0(�,F ,P ), where R ≥ 0: ρ(X + mR) = ρ(X) −

m for any X ∈ X and m ∈ R such that X +mR ∈ X .
8. Law invariance: ρ(X) = ρ(Y ) for any X ,Y ∈ X such that they are identically distributed.
9. Comonotonic additivity: ρ(X + Y ) = ρ(X) + ρ(Y ) for any X ,Y ∈ X such that they are

comonotonic. [X and Y are comonotonic if (X(ω1)−X(ω2))(Y(ω1)− Y(ω2))≥ 0 holds almost
surely for any ω1 and ω2 in �.]

10. Continuity (a): limd → 0ρ(−(X − d)+) = ρ(−X+), limd → ∞ρ(−min (X, d)) = ρ(−X), and
limd → −∞ρ(−max (X, d)) = ρ(−X) hold for any X ∈ X and any x ∈ R, where x+ :=
max (x, 0).

11. Continuity (b): limd → ∞ρ(−min (max (X, −d), d)) = ρ(−X) for any X ∈ X .
12. Scale normalization: ρ(−1) = 1.
13. Standardization: ρ(−x) = sx for any x ∈ R, where s > 0 is a constant not depending on x.
14. Comonotonic subadditivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y ) for any X ,Y ∈ X such that they are

comonotonic.

1In some studies, it is assumed that a risk measure can also take +∞ or −∞ (see, e.g., Delbaen 2002,
Ruszczyński & Shapiro 2006, He et al. 2015).
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15. Comonotonic convexity: ρ(λX + (1 − λ)Y ) ≤ λρ(X) + (1 − λ)ρ(Y ) for any λ � [0, 1] and
any X ,Y ∈ X such that they are comonotonic.

16. Comonotonic independence: For any pairwise comonotonic random variables X ,Y ,Z ∈ X
and for any α � (0, 1), ρ(X) < ρ(Y ) implies that ρ(αX + (1 − α)Z) < ρ(αY + (1 − α)Z).

17. Cash loss: ρ(−x) = x for any x ∈ R+.
18. Loss dependence: ρ(X) = ρ(min (X, 0)) for any X ∈ X .
19. Excess invariance: ρ(X) = ρ(Y ) for any X ,Y ∈ X such that X− = Y−.
20. Prudence: limk → ∞ρ(ξ k) ≥ ρ(X) holds if ξ i → X and limk → ∞ρ(ξ k) exists.
21. No reward for concentration: There exists an event A such that ρ(X + Y ) = ρ(X) + ρ(Y )

holds for any X and Y sharing the tail event A.

The (strict) monotonicity axiom and the translation invariance (with respect to R) axiom are
commonly assumed in the literature of risk measures.While the former is reasonable and natural,
the latter is valid only when the risk measure has a physical meaning. For instance, consider a
clearing house that wants to compute the margin requirement for each of its clearing members.
Suppose X represents the P&L of a member’s portfolio at the end of a given period plus the total
return of the member’s existing deposit in his margin account, which generates gross return R
in the same period (e.g., the risk-free gross return). Thus, ρ(X) refers to the additional deposit
the member needs to post in the margin account, where a negative ρ(X) means that the member
can take −ρ(X) amount of deposit out of the margin account. If the member increases m dollars
in the margin account at the beginning of the period, then the remaining amount the member
needs to post, namely ρ(X) − m, should be the same as ρ(X + mR), which is the required amount
should the clearing house reevaluate the member’s position. Thus, translation invariance needs to
hold.

The subadditivity axiom is based on the intuition that “a merger does not create extra risk”
(Artzner et al. 1999, p. 209), which may not be true. We discuss the controversies related to this
axiom in Section 3.

Artzner et al. (1999) propose the coherent risk measures that satisfy the translation invariance,
monotonicity, positive homogeneity, and subadditivity axioms.The representation of coherent risk
measures for a finite space � are obtained by Artzner et al. (1999) based on the results of Huber
(1981), who use the same set of axioms. Gilboa & Schmeidler (1989) obtain a more general repre-
sentation based on a different set of axioms.Delbaen (2002) obtains the representation of coherent
risk measures for general probability space, which is given by ρ(X ) = supQ∈Q{EQ[−X ]}, ∀X ∈ X ,
where Q is a family of probability measures, and EQ[−X] is the expectation of −X under the
probability measure Q. Kusuoka (2001) derives the representation of law-invariant coherent risk
measures. Föllmer & Schied (2002) and Frittelli & Gianin (2002) propose and obtain representa-
tions of the convex risk measures that satisfy translation invariance, monotonicity, and convexity
axioms, which relax the positive homogeneity and subadditivity axioms.Weber et al. (2013) show
that coherent risk measures applied to systems that exhibit price impact may induce convex risk
measures that are not positively homogeneous.

Comonotonic random variables are studied by Yaari (1987), Schmeidler (1989), Denneberg
(1994), and others. If two random variables X and Y are comonotonic,X(ω) and Y(ω) always move
in the same direction however the state ω changes. For example, the payoffs of a call option and
its underlying asset are comonotonic.

Wang et al. (1997) propose the distortion risk measures (also called insurance risk measures)
that satisfy the axioms of law invariance, comonotonic additivity, continuity (a), and scale normal-
ization. Wang et al. (1997) show that ρ is a distortion risk measure if and only if ρ has a Choquet
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integral representation with respect to a distorted probability:

ρ(X ) =
∫

(−X )d(h ° P) =
∫ 0

−∞
(h(P(−X > t )) − 1)dt +

∫ ∞

0
h(P(−X > t ))dt, 1.

where h(·) is a distortion function which is nondecreasing and satisfies h(0) = 0 and h(1) = 1;
h(·) need not be left or right continuous. h ° P is called the distorted probability and is defined
by h ° P(A) := h(P(A)) for any event A. In general, a distortion risk measure does not satisfy
subadditivity unless h(·) is concave (Denneberg 1994).

The standardization axiom with s = 1 is proposed by Schmeidler (1986); the constant s in
the axiom can be related to the countercyclical indexing risk measures proposed by Gordy &
Howells (2006), where a time-varying multiplier s that increases during booms and decreases dur-
ing recessions is used to dampen the procyclicality of capital requirements (see also Brunnermeier
& Pedersen 2009, Brunnermeier et al. 2009, Adrian & Shin 2014).

The comonotonic subadditivity axiom is proposed by Kou et al. (2006, 2013) and indepen-
dently by Song & Yan (2006). Kou et al. (2006, 2013) provide representation of risk statistics
(empirical risk measures) that satisfy comonotonic subadditivity and other axioms. Song &
Yan (2006) provide representations of risk measures that satisfy positive homogeneity, mono-
tonicity, translation invariance, and comonotonic subadditivity or comonotonic convexity. Song
& Yan (2009) give a representation of risk measures that respect stochastic orders and are
comonotonically subadditive or convex.

The comonotonic independence axiom is proposed by Kou & Peng (2016). The axiom is
related to the comonotonic independence axiom for the Choquet expected utility risk preference
(Schmeidler 1989). The motivation for proposing the comonotonic independence axiom is
twofold. First, it is a very weak requirement on ρ, as the pairwise comonotonicity of three random
variables is a very strong condition; second, to see the intuition behind the axiom, consider three
pairwise comonotonic random variables X, Y, and Z, and α � (0, 1). If ρ(X) < ρ(Y ), then it seems
reasonable that ρ(αX) < ρ(αY ). In addition, since X, Y, and Z are comonotonic, adding (1 − α)Z
to αX or αY does not hedge away the risk of αX or αY; hence, it would be reasonable to have
ρ(αX + (1 − α)Z) < ρ(αY + (1 − α)Z), which leads to the axiom. Kou & Peng (2016) show
that a risk measure ρ satisfies the set of axioms of comonotonic independence, monotonicity,
standardization with s= 1, law invariance, and continuity (b) if and only if ρ has the representation
in Equation 1; the representation result extends that of Wang et al. (1997) as the set of axioms
required by Kou & Peng (2016) are weaker. Many commonly used risk measures are special cases
of the distortion risk measures in Equation 1.

Cont et al. (2013) propose the cash loss axiom and the loss dependence axiom; the latter is
equivalent to the excess invariance axiom proposed by Staum (2013). The loss dependence (ex-
cess invariance) axiom postulates that the risk of a portfolio only depends on its losses, which is
a desirable property when the risk measure is used for computing margin requirements or cap-
ital reserves. Cont et al. (2013) propose the loss-based risk measures that satisfy the axioms of
cash loss, monotonicity, and loss dependence. They provide the representation of convex loss-
based risk measures and law-invariant convex loss-based risk measures. Staum (2013) proposes
the shortfall risk measures that are normalized [i.e., ρ(0) = 0], are nonnegative, and satisfy the
axioms of monotonicity and excess invariance.

Example 1 (Value-at-risk).VaR is a quantile of the loss distribution at some predefined prob-
ability level. More precisely, let X be the P&L; then, −X is the loss with distribution function
F−X(·), which may not be continuous or strictly increasing. For a given α � (0, 1], VaR of X at
level α is defined as the left α-quantile of F−X—i.e., VaRα (X ) := q−α (F−X ) := F−1

−X (α) = inf{x |
F−X (x) ≥ α}. For α = 0, VaR of X at level α is defined to be VaR0(X ) := inf{x | F−X (x) > 0}

www.annualreviews.org • Risk Measures 9.5
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and VaR0(X) is equal to the essential infimum of −X. VaR is a distortion risk measure. In fact,
for α � (0, 1], ρ in Equation 1 is equal to VaRα if h(x) := 1{x > 1 − α}, and ρ in Equation 1 is equal
to VaR0 if h(x) := 1{x = 1}.

VaR does not satisfy the subadditivity axiom in general, so it is not a coherent risk measure.
VaR has two other important properties: ordinal covariance and monotonicity with respect to
first-order stochastic dominance (see, e.g.,Denneberg 1994).Chambers (2009) shows that the two
properties essentially characterize VaR. Duffie & Pan (1997, 2001), Gordy (2003), Jorion (2007),
and Hull (2009) provide comprehensive discussions of VaR and risk management.

Example 2 (Expected shortfall). For α � [0, 1), ES of X at level α is defined as the mean of
the α-tail distribution of −X (Rockafellar & Uryasev 2002, Tasche 2002)—i.e.,

ESα (X ) :=
∫ ∞

−∞
xdFα,−X (x), α ∈ [0, 1),

where Fα, −X(x) is the α-tail distribution of the loss −X, which is defined as by Rockafellar &
Uryasev (2002):

Fα,−X (x) :=
{
0, for x < VaRα (X )
F−X (x)−α

1−α , for x ≥ VaRα (X ).

For α = 1, ES of X at level α is defined as ES1(X ) := F−1
−X (1). If the loss distribution F−X

is continuous, then Fα, −X is the same as the conditional distribution of −X given that −X ≥
VaRα(X); if F−X is not continuous, then Fα, −X(x) is a slight modification of the conditional loss
distribution. For α � [0, 1), ρ(X) in Equation 1 is equal to ESα(X) if h(x) = x/(1 − α), if x ≤
1 − α, and h(x) = 1 otherwise. For α = 1, ρ(X) in Equation 1 is equal to ES1(X) if h(x) = 1{x > 0}.
Tasche (2002, proposition 3.4) shows that

ESα (X ) = 1
1 − α

∫ 1

α

F−1
−X (s)ds = 1

1 − α

∫ 1

α

VaRs (X )ds. 2.

ES is also called conditional VaR and superquantile. Rockafellar et al. (2014) show that
ESα (X ) = argminc∈R Eα (X − c), where Eα (·) is an error function; based on such representation
of ESα(X), they develop the superquantile regression for the estimation of ESα .

Wang & Zitikis (2021) propose the axioms of prudence and no reward for concentration. The
former yields the lower semicontinuity of the risk measure; the latter means that if X and Y in-
cur large loss simultaneously in the stress event A, then the capital requirement of the portfolio
X + Y does not receive reduction. They show that ES can be characterized by the two axioms
along with the axioms of monotonicity and law invariance.

Example 3 (Median shortfall). As we discuss later, ES has several statistical drawbacks, in-
cluding nonelicitability and nonrobustness. To mitigate the problems, one may simply use MS.
In contrast to ES, which is the mean of the tail loss distribution, MS is the median of the same
tail loss distribution. More precisely, MS of X at level α � [0, 1) is defined as (Kou et al. 2013)2

MSα (X ) := median of the α-tail distribution of the loss − X = F−1
α,−X

(
1
2

)
.

For α = 1,MS at level α is defined as MS1(X ) := F−1
−X (1). Therefore, MS at level α can capture

the tail risk and considers both the size and likelihood of losses beyond VaR at level α, because

2The termmedian shortfall is also used byMoscadelli (2004) and So&Wong (2012) but is respectively defined
as median[−X| − X > u] for a constant u and median[−X| − X > VaRα (X)], which are different from that
defined by Kou et al. (2013). In fact, the definition in the second aforementioned paper is the same as the tail
conditional median proposed by Kou et al. (2006).
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it measures the median of the loss size conditional on that the loss exceeds VaR at level α. Kou
et al. (2013) show that

MSα (X ) = VaR 1+α
2
(X ), ∀X , ∀α ∈ [0, 1]. 3.

Hence, ρ(X) in Equation 1 is equal to MSα(X) if h(x) := 1{x > (1 − α)/2}.

Since MSα = VaR(1 + α)/2, we know that MSα does not quantify the risk beyond VaR(1 + α)/2.
However, it is also difficult to know the precise degree to which ESα quantifies the risk beyond
VaR(1 + α)/2; in fact, just like MSα , ESα can also fail to reveal large loss beyond VaR(1 + α)/2. For
example, let λ, μ > 0, fix c := VaRα , and consider a sequence of α-tail distributions Fα, n that are
mixtures of translated exponential distributions and point mass distributions, which are defined
by

Fα,n(x) :=
{
0, for x < c,
(1 − β (n))(1 − e−λ(x−c) ) + β (n)1{n≤x}, for x ≥ c,

4.

where β (n) := μ

n−c− 1
λ

. In other words,Fα, n is the mixture of c+ exp (λ) [with probability (1− β(n))]

and the point mass δn [with probability β(n)]. Under Fα, n, a large loss with size n occurs with a
small probability β(n). For each n, ESα, n, which is the mean of Fα, n, is always equal to c + μ+ 1

λ
;

hence, ESα fails in the same way as MSα regarding the detection of the large loss with size n that
may occur beyond VaR(1 + α)/2. This example shows that the degree to which ESα quantifies the
risk beyond VaR(1 + α)/2 might also be limited. After all, MSα and ESα are, respectively, the median
and the mean of the same α-tail loss distribution. The information contained in the mean of a
distribution might not be more than that contained in the median of the same distribution, and
vice versa.

Example 4 (Generalized spectral risk measures). A generalized spectral risk measure is de-
fined by

ρ
(X ) :=
∫
(0,1]

F−1
−X (u)d
(u), 5.

where 
 is a probability measure on (0, 1]. Kou & Peng (2016) show that the class of dis-
tortion risk measures represented by Equation 1 includes and is strictly larger than the class
of generalized spectral risk measures. In fact, for an α � (0, 1), the right quantile q+α (−X ) :=
inf{x | F−X (x) > α} is a special case of the risk measure defined in Equation 1, with h(x) being
defined as h(x) := 1{x ≥ 1 − α}, but q+α cannot be represented by Equation 5. A special case of
Equation 5 is the spectral risk measure (Acerbi 2002, definition 3.1), defined as

ρ(X ) =
∫
(0,1)

F−1
−X (u)φ(u)du, φ(·) is increasing, nonnegative, and

∫ 1

0
φ(u)du = 1. 6.

Because of the requirement that φ is increasing, the class of spectral risk measures is much
smaller than the class of generalized spectral risk measures defined in Equation 5. The distinc-
tion between the spectral risk measure and that in Equation 5 is that the former is convex but
the latter may not be convex. The convexity requires that the function φ in Equation 6 is an
increasing function. The MINMAXVAR risk measure proposed in Cherny & Madan (2009)
for the measurement of trading performance is a special case of the spectral risk measure, cor-

responding to a distortion function h(x) = 1 − (1 − x
1

1+α )1+α in Equation 1 with s = 1, where
α ≥ 0 is a constant.

The class of distortion risk measures and the class of law-invariant coherent (convex) risk mea-
sures have nonempty intersections, but one is not the subset of the other. For example, ES belongs
to both classes; VaR belongs to the former but not the latter. The class of distortion risk measures
includes the class of law-invariant spectral risk measures as a strict subset. For example, VaR be-
longs to the former but not the latter.
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2.2. Acceptance Sets

The regulator can propose a capital adequacy test by specifying an acceptance setA ⊂ X for firms’
capital positions at time T; a formal definition of capital positions and the motivation for the test
is provided by, for instance, He & Peng (2018). The following axioms for the acceptance set A
have been proposed in the literature.

1. Positive inclusion: X ∈ A for any X ∈ X such that X ≥ 0.
2. Strict negative exclusion: X /∈ A for any X ∈ X such that X < 0.
3. Convexity: If X ,Y ∈ A, then for any α � (0, 1) such that αX + (1 − α)Y ∈ X , αX +

(1 − α)Y ∈ A.
4. Conicity: If X ∈ A, then for any λ > 0 such that λX ∈ X , λX ∈ A.
5. Monotonicity: If X ∈ A, then for any Y ∈ X such that Y ≥ X,Y ∈ A.
6. Law invariance: For any X ,Y ∈ X such that X and Y are identically distributed, if X ∈ A,

then Y ∈ A.
7. Numéraire invariance: For any X ∈ X and any strictly positive random variable Z on

(�,F ,P) such that ZX ∈ X , if X ∈ A, then ZX ∈ A.
8. Surplus invariance: For any X ,Y ∈ X , if X ∈ A and X− ≥ Y− almost surely, then Y ∈ A.
9. Truncation-closedness: For any X ∈ X , if min(max(−d,X ), d ) ∈ A for any d > 0, then

X ∈ A.

The convexity and conicity axioms for an acceptance set correspond to the convexity and pos-
itive homogeneity axioms for a risk measure. Conicity stipulates that scaling the capital position
of a firm by a positive constant does not change the acceptability of the firm. Artzner et al. (1999)
show that a coherent risk measure corresponds to a coherent acceptance set that satisfies the ax-
ioms of positive inclusion, strict negative exclusion, convexity, and conicity. Föllmer & Schied
(2002) show that a convex risk measure corresponds to a convex acceptance set that satisfies the
axioms of convexity and monotonicity.

The numéraire invariance axiom is introduced by Artzner et al. (2009) and further investigated
by Koch-Medina et al. (2017). It means that the acceptance set should not depend on the choice
of the numéraire asset.When a capital adequacy test is applied internationally, it may be desirable
to be numéraire invariant: Whether a firm passes the test should not depend on the currency
that is used to denominate the firm’s capital position. Koch-Medina & Munari (2016, section 6)
show that the acceptance set associated with VaR is numéraire invariant but that associated with
ES is not. Clearly, numéraire invariance implies conicity; furthermore, Koch-Medina et al. (2017,
proposition 5) show that a closed acceptance set A is numéraire invariant and monotone if and
only if it is surplus invariant and conic.Without assuming numéraire invariance, the currency risk
can also be explicitly incorporated in capital adequacy tests by using vector-valued risk measures
(see, e.g., Jouini et al. 2004).

The surplus invariance axiom is proposed by Koch-Medina et al. (2015),3 extending the excess
invariance axiom of the shortfall risk measures and the loss dependence axiom of the loss-based
risk measures proposed by Staum (2013) and Cont et al. (2013), respectively.X−, the negative part
of a firm’s capital position X, is its option to default, and the positive part of X is the surplus of
the firm’s shareholders. The surplus invariance axiom stipulates that if firm A passes the test, then
firm B, whose option to default is smaller than that of firm A, should also pass the test.

3Koch-Medina et al. (2015) use a slightly different, but equivalent, definition of surplus invariance (see equa-
tion 1.1 in their paper and Koch-Medina et al. 2017, proposition 1).
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Staum (2013) shows that the surplus invariance axiom is satisfied by the acceptance set that
is associated with VaR, i.e., A = {X ∈ X | VaRα (X ) ≤ 0}, and the one that is associated with a
shortfall risk measure, i.e., A = {X ∈ X | E[l (X − )] ≤ c}, where l is a nonconstant and increasing
function. In contrast, Koch-Medina et al. (2015) find that the acceptance set associated with ES,
i.e.,A = {X ∈ X | ESα (X ) ≤ 0}, is not surplus invariant. Koch-Medina et al. (2015, 2017) provide
dual characterizations of convex and surplus-invariant acceptance sets. Furthermore, they prove
that the only coherent acceptance set that is simultaneously law invariant and surplus invariant is
the positive cone L+ = {X ∈ X | X ≥ 0}.

The truncation-closedness axiom means that if any truncated version of the (possibly un-
bounded) capital position X is acceptable, then X itself is also acceptable. This axiom is similar
to the continuity axiom for the distortion risk measure ρ (Kou & Peng 2016). The truncation-
closedness axiom automatically holds for any acceptance set if X = L∞(�,F ,P).

He & Peng (2018) show that surplus-invariant, law-invariant, conic (or numéraire-invariant),
and truncation-closed acceptance sets must be the sets induced by VaR at some confidence level
α, and such acceptance sets cannot be induced by ES. The result highlights the relevance of using
VaR in capital adequacy tests. Because the surplus invariance and law invariance axioms are indis-
pensable to a large extent, to use other acceptance sets, such as convex ones, one has to drop the
conicity axiom and thus the numéraire invariance axiom. This, however, means that capital ade-
quacy tests based on those acceptance sets are sensitive to the choice of denominating currencies.

3. CONTROVERSY OF THE SUBADDITIVITY
AND CONVEXITY AXIOMS

Although the subadditivity and convexity axioms yield some mathematical convenience, we give
some economic and statistical reasons to relax them from the following aspects: (a) diversification
may not always be beneficial, (b) a merger may create extra risk, and (c) other issues of subadditivity
may apply.

3.1. Diversification May Not Always Be Beneficial

Both the subadditivity and convexity axioms are related to the idea that diversification does not
increase risk. There are two main justifications for diversification. One is based on the simple
observation that σ (X+ Y )≤ σ (X)+ σ (Y ), for any two random variablesX and Ywith finite second
moments, where σ (·) denotes standard deviation. The other is based on expected utility theory.
Samuelson (1967) shows that any investor with a strictly concave utility function will uniformly
diversify among independently and identically distributed (i.i.d.) risks with finite second moments
[see, e.g., McMinn (1984), Hong &Herk (1996), and Kijima (1997) for the discussion on whether
diversification is beneficial when the asset returns are dependent]. Both justifications require that
the risks have finite second moments.

Is diversification still preferable for risks with infinite second moments? The answer can be no.
Fama & Miller (1972, pp. 271–72) show that diversification is ineffective for asset returns with
heavy tails (with tail index less than 1). Ibragimov (2004, 2009) and Ibragimov & Walden (2007)
show that diversification is not preferable for risks with extremely heavy-tailed distributions (with
tail index less than 1) in the sense that (a) the loss of the diversified portfolio stochastically dom-
inates that of the undiversified portfolio at the first order and second order, and (b) the expected
utility of the (truncated) payoff of the diversified portfolio is smaller than that of the undiversified
portfolio. They also show that investors with certain S-shaped utility functions would prefer non-
diversification, even for bounded risks. The possibility of S-shaped utility functions is supported
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by experimental results and prospect theory (Kahneman & Tversky 1979, Tversky & Kahneman
1992).

In addition, the conclusion that VaR prohibits diversification, drawn from simple examples in
the literature, may not be solid, for the following reasons. First, Artzner et al. (1999, pp. 217–18)
show that VaR prohibits diversification by a simple example in which 95% VaR of the diversified
portfolio is higher than that of the undiversified portfolio. However, in the same example, 99%
VaR encourages diversification because the 99%VaR of the diversified portfolio is equal to 20,800,
which is much lower than 1,000,000, the 99% VaR of the undiversified portfolio. Second,McNeil
et al. (2005, p. 241, example 6.7) show that for α = 95%, the VaRα of a fully concentrated portfolio
is smaller than that of a fully diversified portfolio. However, for α > 98%, such a pathological
example no longer holds.

Even if one believes in subadditivity, VaR and MS satisfy subadditivity in most relevant situa-
tions. In fact, Daníelsson et al. (2013) show that VaR and MS are subadditive in the relevant tail
region if asset returns are regularly varying and possibly dependent, although VaR does not satisfy
global subadditivity. Ibragimov (2004, 2009) and Ibragimov & Walden (2007) also show that al-
though VaR does not satisfy subadditivity for risks with extremely heavy-tailed distributions (with
tail index less than 1), VaR satisfies subadditivity for wide classes of independent and dependent
risks with tail indices greater than 1, such as the infinite variance stable distributions with finite
mean. In the words of Gaglianone et al. (2011, p. 150), “in this sense, they showed that VaR is
subadditive for the tails of all fat distributions, provided the tails are not super fat (e.g., Cauchy
distribution).” Garcia et al. (2007, p. 483) stress that “tail thickness required [for VaR] to violate
subadditivity, even for small probabilities, remains an extreme situation because it corresponds to
such poor conditioning information that expected loss appears to be infinite.”

To summarize, there seems to be no conflict between the use of VaR and diversification.When
the risks do not have extremely heavy tails, diversification seems to be preferred and VaR seems to
satisfy subadditivity; when the risks have extremely heavy tails, diversification may not be prefer-
able and VaR may fail to satisfy subadditivity.

3.2. A Merger May Create Extra Risk

Subadditivity basically means that “a merger does not create extra risk” (Artzner et al. 1999,
p. 209). However, Dhaene et al. (2003) point out that a merger may increase risk, particularly
when there is bankruptcy protection for institutions. For example, an institution can split a risky
trading business into a separate subsidiary so that it has the option to let the subsidiary go bankrupt
when the subsidiary suffers enormous losses, confining losses to that subsidiary. Therefore, cre-
ating subsidiaries may incur less risk, and a merger may increase risk. Had Barings Bank set up
a separate institution for its Singapore unit, the bankruptcy of that unit would not have sunk the
entire bank in 1995.

In addition, there is little empirical evidence supporting the argument that a merger does not
create extra risk. In practice, credit rating agencies do not upgrade an institution’s credit rating
because of a merger; on the contrary, the credit rating of the joint institution may be lowered
shortly after the merger. The merger of Bank of America and Merrill Lynch in 2008 is such an
example.

3.3. Other Issues of Subadditivity May Apply

Subadditivity is not necessarily needed for capital allocation or asset allocation. Kou et al. (2013,
section 7) derive the Euler capital allocation rule for a class of risk measures including VaR with
scenario analysis and the Basel Accord risk measures; Shi & Werker (2012), Wen et al. (2013),
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Xi et al. (2014), and the references therein provide asset allocation models and methods based on
VaR and Basel Accord risk measures.

It is often argued that if a nonsubadditive risk measure is used in determining the regulatory
capital for a financial institution, then to reduce its regulatory capital, the institution has an in-
centive to legally break up into various subsidiaries. However, breaking up an institution into
subsidiaries may not be bad, as it prevents the loss of one single business unit from causing the
bankruptcy of the entire institution. On the contrary, if a subadditive risk measure is used, then a
firm has an incentive to merge with other firms, which may lead to financial firms that are too big
to fail. Hence, it is not clear by using this type of argument alone whether a risk measure should
be subadditive or not.

Although subadditivity of ρ ensures that ρ(X1) + ρ(X2) is an upper bound for ρ(X1 + X2), this
upper bound may not be valid in face of model uncertainty. In fact, suppose we are concerned
with obtaining an upper bound for ESα(X1 + X2). In practice, due to model uncertainty, we can
only compute ÊSα (X1) and ÊSα (X2), which are estimates of ESα(X1) and ESα(X2) respectively.
ÊSα (X1) + ÊSα (X2) cannot be used as an upper bound for ESα(X1 + X2) because it is possible that
ÊSα (X1) + ÊSα (X2) < ESα (X1) + ESα (X2) due to model misspecification.

In addition, ρ(X1) + ρ(X2) may not be a useful upper bound for ρ(X1 + X2) as the former may
be too much larger than the latter. For example, let X1 be the P&L of a long position of a call
option on a stock (whose price is $100) at strike $100 and let X2 be the P&L of a short position of
a call option on that stock at strike $95. Then, the margin requirement for X1 + X2, ρ(X1 + X2),
should not be larger than $5, as −(X1 + X2) ≤ 5. However, ρ(X1) = 0 and ρ(X2) ≈ 20 (the margin
is about 20% of the underlying stock price). In this case, no one would use the subadditivity to
charge the upper bound ρ(X1) + ρ(X2) ≈ 20 as the margin for the portfolio X1 + X2; instead,
people will directly compute ρ(X1 + X2).

Finally, the theory of individual choice, particularly prospect theory, suggests that it may be
appropriate to relax the subadditivity, which motivates the postulation of the comonotonic subad-
ditivity axiom. There are simple examples showing that the risk associated with noncomonotonic
random variables can violate subadditivity because people are risk seeking instead of risk averse
when facing losses of medium or large probabilities, as implied by prospect theory. In fact, consider
the following simple example: Suppose there is an urn that contains 50 black balls and 50 red balls.
Randomly draw a ball from the urn. Let B be the position of losing $10,000 in the event that the
ball is black, and let R be the position of losing $10,000 in the event that the ball is red. Obviously,
B and R bear the same amount of risk, i.e., ρ(B) = ρ(R). Let S be the event of losing $5,000
for sure; then, ρ(S) = 5,000. According to prospect theory, people are risk seeking in choices
between probable and sure losses—i.e., most people would prefer a larger loss with a substantial
probability to a sure loss. Most people would thus prefer position B to position S (see Kahneman
& Tversky 1979, p. 273, problem 12; Tversky & Kahneman 1992, p. 307, table 3). In other words,
ρ(B) = ρ(R) < ρ(S) = 5,000. Since the position B + R corresponds to a sure loss of $10,000,
ρ(B + R) = 10,000. Combining them, ρ(B) + ρ(R) < 5,000 + 5,000 = 10,000 = ρ(B + R), which
violates subadditivity. Clearly the random losses associated with B and R are not comonotonic.
In addition, even in terms of expected utility theory, it is not clear whether a risk measure should
be superadditive or subadditive for independent random variables (see Eeckhoudt & Schlesinger
2006).

4. ROBUSTNESS OF RISK MEASURES

A risk measure is said to be robust if (a) it is insensitive to small changes in the data—i.e., a small
change of the data set, such as changing a few samples, or adding a few outliers to the data set,
or making small changes to many samples, only results in a small change to the estimated risk
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measure—and (b) it can accommodate model misspecification (possibly by incorporating multiple
scenarios and models).

The first part of the meaning of robustness comes from the study of robust statistics, which
is mainly concerned with the statistical (distributional) robustness (see, e.g., Huber & Ronchetti
2009). The second part of the meaning of robustness is related to ambiguity and model uncer-
tainty in decision theory. To address these issues, multiple priors or multiple alternative models
represented by a set of probability measures may be used (see, e.g., Gilboa & Schmeidler 1989,
Maccheroni et al. 2006, Hansen & Sargent 2007).

4.1. Robustness is Indispensable for External Risk Measures

Kou et al. (2006, 2013) argue that an external risk measure used for financial regulation should
be robust, because (a) legal realism, a basic concept in law, emphasizes that robustness is essential
for law enforcement, and (b) for consistent implementation of an external risk measure across all
relevant financial institutions, the risk measure needs to be robust with respect to noise in the data
and unavoidable model misspecification.

Legal realism is the viewpoint that the legal decisions of a court are determined by the actual
practices of the judges rather than the law set forth in statutes and precedents. All the legal rules
contained in statutes and precedents are uncertain because of the uncertainty in human language
and because human beings are unable to anticipate all possible future circumstances (Hart 1994,
p. 128). Hence, a law is only a guideline for judges and enforcement officers (Hart 1994, pp. 204–
5)—that is, it is only intended to be the average of what judges and officers will decide. This
concerns the robustness of law; i.e., a law should be established in such a way that different judges
will reach similar conclusions when they implement it. In particular, consistent enforcement of an
external risk measure in banking regulation requires that it be robust with respect to underlying
models and data.

In determining capital requirements, regulators impose a risk measure and allow institutions
to use their own internal risk models and private data in the calculation. However, there are two
issues arising from the use of internal models and private data in external regulation: (a) The data
can be noisy, flawed, or unreliable, and (b) there can be several statistically indistinguishablemodels
for the same asset or portfolio because of limited availability of data. For example, the heaviness of
tail distributions cannot be identified in many cases.Heyde &Kou (2004) show that it is very diffi-
cult to distinguish between exponential-type and power-type tails with 5,000 observations (about
20 years of daily observations) because the estimated quantiles of exponential-type distributions
and power-type distributions may overlap.

To address the two aforementioned issues, external risk measures should demonstrate robust-
ness with respect to model misspecification and small changes in the data. From a regulator’s
viewpoint, an external risk measure must be unambiguous, stable, and capable of being imple-
mented consistently across all the relevant institutions, no matter what internal beliefs or internal
models each may rely on.When the correct model cannot be identified, two institutions that have
exactly the same portfolio can use different internal models, both of which can obtain the approval
of the regulator; however, the two institutions should be required to hold the same or at least al-
most the same amount of regulatory capital because they have the same portfolio. Therefore, the
external risk measure should be robust; otherwise, different institutions can be required to hold
very different regulatory capital for the same risk exposure, which makes the risk measure unac-
ceptable to both the institutions and the regulators. In addition, if the external risk measure is not
robust, institutions can take regulatory arbitrage by choosing a model that significantly reduces
the capital requirements or by manipulating the input data.
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4.2. Statistical Robustness of Value-at-Risk and Median Shortfall

VaR and MS are shown to be more robust than ES by four tools in robust statistics: influence
functions, asymptotic breakdown points, finite sample breakdown points, and Hampel robustness.
We now describe these in more detail.

1. Let F be the distribution function of X. Let X1, X2, . . . be a sequence of independent ob-
servations with distribution F. Let Fn(x) := 1

n

∑n
i=1 1{Xi≤x} be the empirical distribution.

The influence function of a statistical functional T at F and a point y ∈ R is defined as
IF (y,T ,F ) := limε↓0 1

ε

[
T ((1 − ε)F + εδy ) − T (F )

]
, y ∈ R, where δy is the point mass 1 at

y that represents a contamination point to the distribution F. If the influence function is
bounded, i.e., supy∈R |IF (y,T ,F )| < ∞, then T(Fn) is robust; otherwise, T(Fn) is not robust,
and outliers in the data may cause large changes to T(Fn) (Huber & Ronchetti 2009). Kou
et al. (2006, 2013) show that VaR and MS have bounded influence functions but ES has an
unbounded one.

2. The asymptotic breakdown point is, roughly, the smallest fraction of bad observations that
may cause an estimator to take on arbitrarily large aberrant values (for the mathematical
definition, see Huber & Ronchetti 2009, section 1.4). Hence, a high breakdown point is
clearly desirable. Kou et al. (2006, 2013) show that the asymptotic breakdown point of VaRα
(resp. MSα) is 1 − α [resp. (1 − α)/2] and that of ESα is 0.

3. The finite sample breakdown point (Huber & Ronchetti 2009, chapter 11) of VaRα(Fn)
[resp. MSα(Fn)] is (n − �nα + 1)/(2n − �nα + 1) ≈ (1 − α)/(2 − α) [resp. (n − �n(1 + α)/
2 + 1)/(2n− �n(1 + α)/2 + 1) ≈ (1 − α)/(3 − α)], but that of ESα(Fn) is 1/(n+ 1), which
means one additional corrupted sample can cause arbitrarily large bias to ESα .

4. Hampel robustness (Hampel 1971) is one commonly accepted definition of distributional
robustness. Let Tn = Tn(X1, . . . , Xn) be a sequence of estimates. Let LF (Tn ) be the distri-
bution of Tn under F. The sequence of estimates Tn is called Hampel robust at F0 if the
sequence of maps F → LF (Tn ) is equicontinuous at F0—i.e., if for any ε > 0, there exists
δ > 0 and n0 > 0, such that for all F and all n ≥ n0, d∗(F ,F0) < δ ⇒ d∗(LF (Tn ),LF0 (Tn )) < ε,
where d∗ is anymetric generating the weak topology, such as the Prokhorovmetric and Lévy
metric. Let q+

α (F ) := inf{x : F (x) > α} be the right α-quantile of F. Cont et al. (2010) show
that (a) for any α and any F0 such that q−

α (F0) = q+
α (F0) [resp. q

−
(1+α)/2(F0) = q+

(1+α)/2(F0)],
VaRα(Fn) [resp. MSα(Fn)] is Hampel robust at F0, and (b) for any α and any F0, ESα(Fn) is
not Hampel robust at F0.

Krätschmer et al. (2014) develop a notion of qualitative robustness that is more refined than
Hampel robustness.The degree of robustness of a risk measure under this notion can be expressed
by an index of qualitative robustness that takes values in [0, ∞], with the value ∞ corresponding
to Hampel robustness. Under this notion of robustness, VaR is still more robust than ES and
expectile, as the index of qualitative robustness of VaR is ∞ but those of ES and expectile are both
equal to 1.

Embrechts et al. (2015) introduce the notion of aggregation robustness, which is a notion
of robustness that is weaker than Hampel robustness. By theorem 2.21 of Huber & Ronchetti
(2009), saying that a risk measure (statistical functional) ρ is Hampel robust at a distribution F
is essentially equivalent to saying that ρ is weakly continuous at F. More precisely, if ρ is Hampel
robust at F, then for any ε > 0, there exists δ > 0 such that for ∀G ∈ Nδ (F ) := {H | d(F ,H ) < δ},
it holds that |ρ(F) − ρ(G)| < ε. In contrast, if ρ is aggregation robust at F, it means that for any
ε > 0, there exists δ > 0 such that for ∀G ∈ Nδ (F ) ∩ AF , it holds that |ρ(F) − ρ(G)| < ε, where
AF := {H | there exist integer m > 0 and random variables X1, . . . ,Xm,X ′

1, . . . ,X
′
m, such that
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Xi
d∼ X ′

i , i = 1, . . . ,m,
∑m

i=1 Xi
d∼ F , and

∑m
i=1 X

′
i

d∼ H}. Since Nδ (F ) ∩ AF � Nδ (F ), aggregation
robustness is weaker than Hampel robustness. Embrechts et al. (2015) argue that with respect to
dependence uncertainty in aggregation,VaR is less robust compared to expected shortfall, because
VaR is not aggregation robust but ES is. However, their counterexample (Embrechts et al. 2015,
example 2.2) only shows that VaR may not be aggregation robust at the level α such that F−1(·)
is not continuous at α. There are only at most a countable number of such α � (0, 1); in fact, if F
is a continuous distribution, then no such α exists. On the contrary, for any other α, VaR at level
α is aggregation robust, because VaR at level α is Hampel robust and Hampel robustness implies
aggregation robustness; note that by Cont et al. (2010, corollary 3.7), ES is not Hampel robust.

ES is also highly model dependent and particularly sensitive to modeling assumptions on the
extreme tails of loss distributions because the computation of ES relies on these extreme tails, as
is shown by Equation 2. Kou et al. (2013, figure 1) illustrate the sensitivity of ES to modeling
assumptions; MS is less sensitive to tail behavior than ES because the changes of MS with respect
to the changes of loss distributions have narrower ranges than do those of ES.

MS is statistically robust as it uses the median of the tail distribution and the median is robust.
Other robust measures of the tail distribution, such as the trimmed mean, may also be used to
generate robust risk measures. Cont et al. (2010) propose the range value-at-risk (RVaR) measure
ρ(X ) = 1

α2−α1
∫ α2
α1
F−1

−X (u)du, where 0 < α1 < α2 < 1. RVaR is Hampel robust; however, RVaR is
not elicitable. In fact, RVaR is a special case of spectral risk measure and hence a special case of
the distortion risk measure defined in Equation 1. Kou & Peng (2016) show that the only two
elicitable risk measures among the class of distribution risk measures are VaR (including MS) and
the mean functional.

4.3. Robust Risk Measures Incorporating Multiple Scenarios
(Prior Probability Measures)

Kou et al. (2006, 2013) propose the natural risk statistics, a class of data-based risk measures that
incorporate multiple prior probability measures (scenarios) and robust risk measurement under
each scenario. In external regulation, the behavior of the random variableX under different scenar-
ios is preferably represented by different sets of data observed or generated under those scenarios
because specifying accurate models for X (under different scenarios) is usually very difficult.More
precisely, suppose the behavior ofX is represented by a collection of data x̃ = (x̃1, x̃2, . . . , x̃m ) ∈ Rn,
where x̃i = (xi1, . . . , x

i
ni ) ∈ Rni is the data subset that corresponds to the ith scenario and ni is the

sample size of x̃i, n1 + n2 + ��� + nm = n. For each i = 1, . . . , m, x̃i can be a data set based on
historical observations, hypothetical samples simulated according to a model, or a mixture of ob-
servations and simulated samples. X can be either discrete or continuous. For example, the data
used in the calculation of the Basel III risk measure comprise 120 data subsets corresponding to
120 different scenarios (m = 120); Section 7 discusses the details of the Basel III risk measures.

A risk statistic ρ̂ is simply a mapping fromRn toR.The advantage of using risk statistics include
the following: (a) risk statistics can directly measure risk from observations without specifying
subjective models, which greatly reduces model misspecification error; (b) risk statistics can incor-
porate forward-looking views or prior knowledge by including data subsets generated by models
based on such views or knowledge; and (c) risk statistics can incorporate multiple prior probabil-
ities on the set of scenarios that reflect multiple beliefs about the probabilities of occurrence of
different scenarios.

Let x̃ = (x̃1, x̃2, . . . , x̃m ) ∈ Rn and ỹ = (ỹ1, ỹ2, . . . , ỹm ) ∈ Rn represent the observations of ran-
dom losses X and Y under m scenarios. The notion of scenario-wise comonotonicity for x̃ and ỹ is
the counterpart of the notion of comonotonicity for the two random variables X and Y. x̃ and ỹ are
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said to be scenario-wise comonotonic if for �i,�1 ≤ j, k ≤ ni, it holds that (xij − xik )(y
i
j − yik ) ≥ 0.

Kou et al. (2006, 2013) propose the following axiom for a risk statistic ρ̂:

Scenario-wise comonotonic subadditivity: ρ̂(x̃+ ỹ) ≤ ρ̂(x̃) + ρ̂(ỹ), for any x̃ and ỹ that are scenario-wise
comonotonic.

The axiom relaxes the subadditivity requirement in coherent risk measures and relaxes the
comonotonic additivity requirement in distortion risk measures. A risk statistic is called a natural
risk statistic if it satisfies the axioms of monotonicity, positive homogeneity, translation invariance
with respect toR= 1/s (s> 0 is a constant), scenario-wise comonotonic subadditivity, and empirical
law invariance. Kou et al. (2006, 2013) show that ρ̂ is a natural risk statistic if and only if ρ̂ is
represented by

ρ̂(x̃) := s · sup
w̃∈W

⎧⎨⎩
n1∑
j=1

w1
j l

1
( j) +

n2∑
j=1

w2
j l

2
( j) + · · · +

nm∑
j=1

wm
j l

m
( j)

⎫⎬⎭, ∀x̃ = (x̃1, . . . , x̃m ) ∈ Rn, 7.

where l̃ = −x̃, l̃ = (l̃1, . . . , l̃ m ), and (l i(1), . . . , l
i
(ni )

) is the order statistics of l̃ i = (l i1, . . . , l
i
ni ), with

l i(ni ) being the largest, i = 1, . . . , m; W = {w̃} ⊂ Rn is a set of weights; and each weight w̃ =
(w1

1, . . . ,w
1
n1
, . . . ,wm

1 , . . . ,w
m
nm ) ∈ W satisfies

n1∑
j=1

w1
j +

n2∑
j=1

w2
j + · · · +

nm∑
j=1

wm
j = 1, wi

j ≥ 0, j = 1, . . . , ni; i = 1, . . . ,m. 8.

Natural risk statistics include subclasses that are robust. Let ρ̂ be a natural risk statistic
defined in Equation 7 that corresponds to the set of weights W . Define the map φ : W →
Rm × Rn such that w̃ �→ φ(w̃) := ( p̃, q̃), where p̃ := (p1, . . . , pm ), pi := ∑ni

j=1 wi
j , i = 1, . . . , m;

q̃ := (q11, . . . , q
1
n1
, . . . , qm1 , . . . , q

m
nm ), q

i
j := 1{pi>0}wi

j/p
i. Since pi ≥ 0 and

∑m
i=1 p

i = 1, p̃ can be viewed
as a prior probability distribution on the set of scenarios. Then ρ̂ can be rewritten as

ρ̂(x̃) = s · sup
( p̃,q̃)∈φ(W )

{
m∑
i=1

piρ̂ i,q̃(x̃i )

}
, where ρ̂ i,q̃(x̃i ) :=

ni∑
j=1

qij l
i
( j). 9.

Eachweight w̃ ∈ W then corresponds to φ(w̃) = ( p̃, q̃) ∈ φ(W ),which specifies: (a) the prior prob-
ability measure p̃ on the set of scenarios and (b) the subsidiary risk statistic ρ̂ i,q̃ for each scenario
i, i = 1, . . . , m. Hence, ρ̂ can be robust with respect to model misspecification by incorporating
multiple prior probabilities p̃ and multiple risk statistics ρ̂ i,q̃ for each scenario. In addition, ρ̂ can
be robust with respect to small changes in the data if each subsidiary risk statistic ρ̂ i,q̃ is a robust
statistic, such as VaR or MS. In particular, VaR and MS with scenario analysis, such as the Basel II
and Basel III risk measures (see their definition in Section 7), are robust natural risk statistics.

In contrast, Kou et al. (2006, 2013) show that no law-invariant coherent risk measure is robust
with respect to small changes in the data. In fact, they show that a risk statistic ρ̂ is an empirical-
law-invariant coherent risk statistic if and only if ρ̂ is in the form of Equation 7, with the addi-
tional constraint that each weight w̃ ∈ W must satisfy wi

1 ≤ wi
2 ≤ · · · ≤ wi

ni , i = 1, . . . ,m. Hence,
any empirical-law-invariant coherent risk statistic assigns larger weights to larger loss observa-
tions because both l i( j) and wi

j increase when j increases, but assigning larger weights to larger loss
observations is clearly sensitive to small changes in the data. Indeed, the finite sample breakdown
point (for definition, see, e.g.,Huber&Ronchetti 2009, chapter 11) of any empirical-law-invariant
coherent risk statistic is equal to 1/(1 + n), which implies that one single contamination sample
can cause unbounded bias.
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Kou & Peng (2016) propose a class of multiple-scenario-based distortion risk measures that
include robust subclasses. Consider m probability measures Pi, i = 1, . . . , m, on the state space
(�,F ). Each Pi corresponds to one model or one scenario, which may refer to a specific economic
regime such as an economic boom or a financial crisis. Suppose that under the ith scenario, the
measurement of risk is given by a distortion risk measure ρ i(X) = �(−X)d(hi ° Pi), where hi is
a distortion function, i = 1, . . . , m. Kou & Peng (2016) propose the following risk measure to
incorporate multiple scenarios:

ρ(X ) = f (ρ1(X ), ρ2(X ), . . . , ρm(X )), 10.

where f : Rm → R is called a scenario aggregation function. Consider the following axiom for the
scenario aggregation function f:

Uncertainty aversion: If f (x̃) = f (ỹ), then for any α � (0, 1), f (αx̃+ (1 − α)ỹ) ≤ f (x̃).

The axiom is proposed byGilboa& Schmeidler (1989) to capture the phenomenon of hedging;
it is used as one of the axioms for the maxmin expected utility that incorporates robustness. Kou
& Peng (2016) show that the scenario aggregation function f in Equation 10 satisfies the axioms of
positive homogeneity, translation invariance, monotonicity, and uncertainty aversion if and only
if ρ(X) in Equation 10 is represented by4

ρ(X ) = s · sup
w̃∈W

{
m∑
i=1

wi

∫
(−X ) d(hi ° Pi )

}
, 11.

where W = {w̃} ⊂ Rm is a set of weights with each w̃ = (w1, . . . ,wm ) ∈ W satisfying wi ≥ 0 and∑m
i=1 wi = 1. The class of multiple-scenario-based distortion risk measures in Equation 11 in-

cludes the following robust subclasses:

ρ(X ) = s · sup
w̃∈W

{
m∑
i=1

wiMSi,αi (X )

}
, 12.

where MSi,αi (X ) is the MS of X at confidence level αi calculated under the ith scenario. Such a
risk measure ρ is robust in both aspects: Under each scenario i, MSi,αi is statistically robust, and it
incorporates multiple scenarios.

5. ELICITABILITY AND COELICITABILITY

5.1. Elicitability of One Risk Measure

The measurement of risk of X using ρ may be viewed as a point forecasting problem, because the
risk measurement ρ(X) [or ρ(FX)] summarizes the distribution FX by a real number ρ(X), just as a
point forecast for X does. In practice, the true distribution FX is unknown and one has to estimate
the unknown true value ρ(FX). As one may come up with different procedures to forecast ρ(FX),
it is important to evaluate which procedure provides a better forecast of ρ(FX).

The theory of elicitability provides a decision-theoretic foundation for effective evaluation of
point forecasting procedures. Suppose one wants to forecast the realization of a random variable Y
using a point x, without knowing the true distribution FY. The expected forecasting error is given
by ES(x, Y ) = �S(x, y)dFY(y), where S(x, y) : R2 → R is a forecasting objective function—e.g.,

4Gilboa & Schmeidler (1989) consider infP∈P
∫
u(X ) dP without hi (see also Xia 2013).
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S(x, y) = (x − y)2 or S(x, y) = |x − y|. The optimal point forecast corresponding to S is ρ∗(FY ) =
argminx ES(x,Y ). For example, when S(x, y) = (x − y)2 and S(x, y) = |x − y|, the optimal forecasts
are the mean functional ρ∗(FY) = E(Y ) and the median functional ρ∗(FY ) = F−1

Y ( 12 ), respectively.
A statistical functional ρ is elicitable with respect to a specified class of distributions P if there

exists a forecasting objective function S such that for any distribution F ∈ P , minimizing the ex-
pected forecasting error yields ρ(F). Many statistical functionals are elicitable. For example, the
median functional is elicitable, as minimizing the expected forecasting error with S(x, y) = |x − y|
yields the median functional. If ρ is elicitable, then one can evaluate two point forecasting meth-
ods by comparing their respective expected forecasting error ES(x, Y ). As FY is unknown, the
expected forecasting error can be approximated by the average 1

n

∑n
i=1 S(xi,Yi ), where Y1, . . . , Yn

are samples that have the distribution FY and x1, . . . , xn are the corresponding point forecasts.
If a statistical functional ρ is not elicitable, then for any objective function S, the minimization

of the expected forecasting error does not yield the true value ρ(F). Hence, one cannot tell which
of the competing point forecasts for ρ(F) performs the best by comparing their forecasting errors,
no matter what objective function S is used.

The concept of elicitability dates back to the pioneering work of Savage (1971), Thomson
(1979), and Osband (1985) and is further developed by Lambert et al. (2008) and Gneiting (2011,
p. 749), who contends that “in issuing and evaluating point forecasts, it is essential that either the
objective function (i.e., the function S) be specified ex ante, or an elicitable target functional be
named, such as an expectation or a quantile, and objective functions be used that are consistent
for the target functional.” Engelberg et al. (2009) also points out the critical importance of the
specification of an objective function or an elicitable target functional. The elicitability of a risk
measure is also related to the statistical theory for the evaluation of probability forecasts (Lai et al.
2011).

Gneiting (2011) defines the elicitability for a set-valued statistical functional T. In the context
of risk measures, we are concerned with the measurement of risk, which is a single-valued statis-
tical functional. For example, VaR of X at level α is defined as VaRα (X ) := q−

α (F−X )—i.e., the left
α-quantile of F−X. To avoid such a minor technical nuisance, Kou & Peng (2016) slightly gener-
alize the definition of elicitability to define the general elicitability for a single-valued statistical
functional as follows.

Definition 1. A single-valued statistical functional ρ(·) is general elicitable with respect to a
class of distributions P if there exists a forecasting objective function S : R2 → R such that

ρ(F ) = min
{
x | x ∈ argmin

x

∫
S(x, y)dF (y)

}
, ∀F ∈ P . 13.

In the definition, S is only required to satisfy the condition that �S(x, y)dF(y) is well-
defined and finite for any F ∈ P . No other conditions, such as continuity or smoothness,
are required on S. Kou & Peng (2016) show that q−

α is general elicitable with respect to
D1 := {F | F is a distribution on R and has finite first moment}.

LetDdisc be the set of discrete distributions having positive probabilities only on a finite number
of values. Kou & Peng (2016) shows that, within the class of distortion risk measures in the form
of Equation 1, VaR and the minus mean functional are the only risk measures that are general
elicitable with respect to Ddisc. In particular, VaR at level (1 + α)/2, which is the MS at level α,
provides a precise description of the average size of loss beyond VaRα by the median of the tail
loss distribution. They also show that for a fixed α0 � (0, 1), within the class of distortion risk
measures, VaRα0 and the minus mean functional are the only elicitable (in the sense of set-valued
functionals) risk measures with respect to Ddisc ∩ {F | q−

α0
(F ) = q+

α0
(F )}.
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The above results imply that, among the class of risk measures in Equation 11, in order for each
single-scenario risk measure ρ i = �(−X)d(hi ° Pi) to be elicitable, i = 1, . . . ,m, the only choice is

ρ(X ) = s · sup
w̃∈W

{
m∑
i=1

wiVaRi,αi (X )

}
, and particularly, s · sup

w̃∈W

{
m∑
i=1

wiMSi,αi (X )

}
. 14.

There is also literature on elicitability of convex risk measures. Weber (2006) and Gneiting
(2011) show that ES is not elicitable, which “may challenge the use of the CVaR functional
as a predictive measure of risk, and may provide a partial explanation for the lack of literature
on the evaluation of CVaR forecasts, as opposed to quantile or VaR forecasts” (Gneiting 2011,
p. 756). Weber (2006, theorem 3.1) derives a characterization theorem for risk measures with
convex acceptance set N and convex rejection set N c under two topological conditions on N .
Based on the characterization theorem of Weber (2006), Bellini & Bignozzi (2015) and Delbaen
et al. (2016) provide a characterization of convex elicitable risk measures and show that the only
elicitable and coherent risk measures are the expectiles. Bellini & Bignozzi (2015) make strong as-
sumptions on the forecasting objective function S(·, ·),5 requiring a more restrictive definition of
elicitability than Gneiting (2011). The assumptions of Weber (2006) are relaxed by Delbaen et al.
(2016). Liu & Wang (2021) show that the only elicitable, positively homogeneous, and monetary
tail risk measures are the VaRs, and there are no elicitable tail convex or coherent risk measures
except for the essential supremum.

5.2. Coelicitability of Multiple Risk Measures

The coelicitability of k≥ 2 statistical functionals is a weaker notion of elicitability than the notion
of elicitability.

Definition 2. (Lambert et al. 2008, definition 9). Single-valued statistical functionals ρ1(·), . . . ,
ρk(·), k ≥ 2, are called coelicitable with respect to a class of distributions P if there exists a
forecasting objective function S : Rk+1 → R such that

(ρ1(F ), . . . , ρk(F )) = arg min
(x1,...,xk )

∫
S(x1, . . . , xk, y)dF (y), ∀F ∈ P . 15.

The notion of coelicitability is weaker than that of elicitability because (a) if for each i= 1, . . . ,
k, ρ i is elicitable with a corresponding forecasting objective function Si(·, ·), then (ρ1, . . . , ρk) are
coelicitable with the corresponding function S being defined as S(x1, . . . , xk, y) :=

∑k
i=1 Si(xi, y),

and (b) if (ρ1, . . . , ρk) are coelicitable, it does not imply that each ρ i is elicitable.
Acerbi & Székely (2014) show that (VaRα (F ), ESα (F )) := (q−

α (F ),
1

1−α
∫ 1
α
q−
s (F )ds) are coelic-

itable with respect to a class of distributions P that satisfy some restrictive conditions based on an
intuitive argument; Fissler & Ziegel (2016) show that (VaRα , ESα) are coelicitable with respect to
the set of loss distributions

P = {F | F has finite first moment and has unique α quantile},
and the corresponding objective function S in Definition 2 may be specified as

S(x1, x2, y) = (1{x1>y} − α)(−G1(−x1) +G1(−y))

+ 1
1 − α

G2(−x2)1{x1≤y}(y− x1) +G2(−x2)(x1 − x2) − G2(−x2), 16.

5These assumptions include three conditions presented by Bellini & Bignozzi (2015, definition 3.1) and two
conditions in their theorem 4.4: (a) S(x, y) is continuous in y, and (b) for any x � [− ε, ε] with ε > 0, S(x, y) ≤
ψ(y) for some gauge function ψ .
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where G1 and G2 are strictly increasing continuously differentiable functions, G1 is F-integrable
for any F ∈ P , limx → −∞G2(x) = 0, and G ′

2 = G2—e.g.,G1(x) = x and G2(x) = ex.
The coelicitability of (VaRα , ESα) implies that one can evaluate the performance of different

forecasting procedures that forecast the collection of (VaRα , ESα) by comparing their realized
forecasting errors. More precisely, procedure 1 is considered to better forecast the collection of
(VaRα , ESα) than procedure 2 if

1
T

T∑
t=1

S(var1t , es
1
t ,Yt ) <

1
T

T∑
t=1

S(var2t , es
2
t ,Yt ), 17.

where (varit , es
i
t ) are the forecasts generated by the ith procedure at time t, i = 1, 2, and Yt is the

realized loss at time t, t = 1, . . . , T.
The coelicitability of (VaRα , ESα) does not lead to a reliable method for evaluating forecasts

for ESα in the following sense: Even if procedure 1 better forecasts the collection (VaRα , ESα)
than procedure 2 in the sense of Equation 17, procedure 1 may provide a much worse forecast of
ESα than procedure 2; this is illustrated in Example 5 and Example 6 in Section 6.2.

6. BACKTESTING OF A RISK MEASURE

There are three approaches for backtesting a risk measure: (a) The direct backtest tests if the point
estimate or point forecast of the risk measurement under a model is equal to the unknown true risk
measurement. (b) The indirect backtest can be classified into two kinds: the first kind of indirect
backtest examines if the entire loss distribution, the entire tail loss distribution, or a collection
of statistics including the risk measure of interest under a model is equal to the corresponding
quantities under the true underlying unknown model, and the second kind of indirect backtest is
based on the coelicitability of a collection of risk measures. (c) The forecast evaluation approach
is based on the elicitability of the risk measure.

We also show the following in the subsections: (a) VaR and MS can be backtested by all three
approaches. (b) There have been no direct backtesting methods for ES, and ES cannot be back-
tested based on elicitability. (c) ES cannot be reliably backtested by the two kinds of indirect back-
testing methods proposed in the literature. The first kind of indirect backtesting for ES is a partial
backtesting in the sense that if an indirect backtesting for ES is not rejected, it will imply that the
point forecast for ES will not be rejected; however, if an indirect backtesting for ES is rejected, it
will be unclear whether the point forecast for ES should be rejected. The second kind of indirect
backtests, which are based on the coelicitability of (VaRα , ESα), cannot answer the question of
whether the ESα forecasted under a bank’s model is more accurate than that forecasted under a
benchmark model.

6.1. The Direct Backtesting Approach

The direct backtesting approach is to test whether the risk measurement calculated under a model
is equal to the unknown true value of risk measurement. It concerns whether the point estimate or
point forecast of the risk measure is acceptable or not. For example, suppose a bank reports that
the VaR99% of its trading book is 1 billion. The direct backtesting approach answers the question
of whether the single number 1 billion is acceptable or not.

More precisely, suppose the loss of a bank on the tth day is Lt, t = 1, 2, . . . , T. On each day t −
1, the bank forecasts the risk measurement ρ of Lt based on the information available on day t− 1,
which is denoted as Ft−1. Let Gt|t − 1 denote the bank’s model of the conditional distribution of Lt
given Ft−1, and let ρGt|t−1 (Lt ) denote the risk measurement of Lt under the model Gt|t − 1. Suppose
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the unknown true conditional distribution of Lt givenFt−1 is Ft|t − 1 and the true risk measurement
is denoted as ρFt|t−1 (Lt ). Then, the direct backtesting of the risk measure ρ is to test

H0 : ρGt|t−1 (Lt ) = ρFt|t−1 (Lt ), ∀t = 1, . . . ,T ; H1 : otherwise. 18.

For ρ = VaRα = q−
α , the null hypothesis in Equation 18 is equivalent to that It := 1{Lt>VaRα (Lt )},

t = 1, . . . , T, are i.i.d. Bernoulli(1 − α) random variables (Christoffersen 1998, lemma 1). Based
on such observations, Kupiec (1995) proposes the proportion of failure test for backtesting VaR,
which is closely related to the traffic light approach of backtesting VaR adopted in the Basel
Accord (Basel Comm. Bank. Superv. 1996, 2006). Christoffersen (1998) proposes conditional cov-
erage and independence tests for VaR within a first-orderMarkov process model. For more recent
development on the backtesting of VaR, readers are directed to Lopez (1999a,b), Engle & Man-
ganelli (2004), Christoffersen & Pelletier (2004), Haas (2005), Campbell (2006), Christoffersen
(2010), Berkowitz et al. (2011), Gaglianone et al. (2011), and Holzmann & Eulert (2014).

As MSα = VaR(1 + α)/2, the backtesting of MS is exactly the same as that of VaR. In contrast,
there have been no direct backtesting methods for ES in the existing literature. The reason might
be simple: The null hypothesis for direct backtesting of ES is that ESGt|t−1

α (Lt ) = ESFt|t−1
α (Lt ). It

might be difficult (if not impossible) to find a statistic whose distribution is known under the
null hypothesis. In contrast, the distribution of the indicator random variable It = 1{Lt>VaRα (Lt )}
is known under the null hypothesis for direct backtesting of VaR, and hence It can be used to
construct a test statistic for direct backtesting of VaR.

6.2. The Indirect Backtesting Approach

There are two kinds of indirect backtesting approaches. The first kind of indirect backtesting
approach concerns whether the bank’s model of the entire loss distribution is the same as the
unknown true loss distribution. More precisely, the indirect backtesting approach is to test

H0 : Gt|t−1(x) = Ft|t−1(x), ∀x ∈ R, ∀t = 1, . . . ,T ; H1 : otherwise. 19.

If the null hypothesis6 is not rejected, then it will imply that ρGt|t−1 (Lt ) = ρFt|t−1 (Lt )—i.e., the risk
measurement will not be rejected.However, if the null hypothesis is rejected, then it will be unclear
whether the point forecast ρGt|t−1 (Lt ) should be rejected or not. Therefore, this kind of indirect
backtesting approach can only serve as a partial backtesting of a particular risk measure. For ex-
ample, suppose a bank reports that the ES99% of its trading book is 1 billion. Using the indirect
backtesting approach, one can test the bank’s model of the entire loss distribution. If the test is not
rejected, then it will imply that the number 1 billion is acceptable; however, if the test is rejected,
then it will be unclear if the number 1 billion should be accepted or rejected.

Strictly speaking, this indirect backtesting approach should not be regarded as an approach for
backtesting a particular riskmeasure, because the backtesting has nothing to do with any particular
risk measure, although the test has partial implication on the acceptability of the point forecast of
a particular risk measure.

This kind of indirect backtesting approach has been proposed for backtesting ES in the
literature. Berkowitz (2001) proposes likelihood ratio tests based on censored Gaussian like-
lihood for the test in Equation 19. Kerkhof & Melenberg (2004) propose a functional delta
method for testing the hypothesis in Equation 19. Acerbi & Székely (2014) propose three
indirect tests for backtesting ESα . The first two tests are to test the entire tail loss distribution
under the assumption that VaRα has already been tested and that L1, . . . , LT are independent:

6Hereafter, in all the hypothesis testing problems in this section,H1 is taken to be not H0.
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H0 : Gt|t−1,α (x) = Ft|t−1,α (x), ∀x ∈ R, ∀t = 1, . . . ,T , where Gt|t − 1, α and Ft|t − 1, α are the α-tail
distribution of Gt|t − 1 and Ft|t − 1, respectively (see Example 2 for the definition of the α-tail
distribution). The third test is the same as the test in Equation 19. All three tests proposed require
that one know how to simulate random samples with distribution Gt|t − 1(·) in order to simulate
the test statistic and to calculate the p-value of the test. Costanzino & Curran (2015) propose an
approach to indirectly backtest ESα by testing the following: H0 :

∫ 1
α
1{Lt≤VaRp(Lt )}dp, t = 1, . . . ,T ,

are i.i.d., and VaRFt|t−1
p (Lt ) = VaRGt|t−1

p (Lt ),∀p ∈ [α, 1), t = 1, . . . ,T. This approach does not
need to simulate random samples under the null hypothesis in order to calculate the p-value.
McNeil & Frey (2000) assume that the loss process {Lt, t = 1, . . . , T } follows the dynamics
Lt = mt + stZt, where mt and st are, respectively, the conditional mean and conditional standard
deviation, and Zt is a strict white noise. Under this assumption, they propose to backtest ESα by
testing the following hypothesis: H0 : m

Gt|t−1
t = mt , s

Gt|t−1
t = st , VaR

Gt|t−1
α (Lt ) = VaRFt|t−1

α (Lt ), and
ESGt|t−1

α (Lt ) = ESFt|t−1
α (Lt ), ∀t. This test is an indirect test for ESα because if the null hypothesis is

rejected, it is not clear if the claim ESGt|t−1
α (Lt ) = ESFt|t−1

α (Lt ),∀t, should be rejected or not.
The second kind of indirect backtest includes those based on the coelicitability of a collection of

risk measures. For example, let (VaRBen
α (Lt ), ESBen

α (Lt )), t= 1, . . . ,T, be the (VaRα , ESα) forecasted
under a benchmark model such as a standard model specified by the regulator. Fissler et al. (2016)
propose the two indirect backtests for ESα based on S(·, ·, ·), which is the forecasting objective
function defined in Equation 16 withG1(x) = x andG2(x) = ex/(1 + ex). The two tests are indirect
backtests for ESα because no matter whether these tests are rejected or not, we do now know
whether ESGt|t−1

α is more accurate than ESBen
α (Lt ). In fact, these tests are not able to find out which

model gives a more accurate forecast for ESα , as is shown in Example 5.

Example 5. Assume that the true distribution of a bank’s loss random variable L is N(μ, σ 2).
Let�μ, σ denote the distribution function of L. E[S(x1, x2,L)] can be calculated analytically. Let
μ = −1.5, σ = 1.0, and α = 0.975 (see Basel Comm. Bank. Superv. 2013). Then the true value
of (VaRα (L), ESα(L)) is (VaRα , ESα) = (0.460, 0.838). Suppose the forecasts given by a bank’s
model are (VaRα , x·ESα) and those given by a benchmark model (preferred by the regulator)
are (x·VaRα , ESα), where 0 < x < 1; hence, the bank’s model always underforecasts ESα but
the benchmark model always truthfully forecasts ESα . Therefore, the bank’s model should be
rejected. However, these tests will conclude that the bank’s model is better than the benchmark
model because the forecasting error of the bank’s model, E[S(VaRα , x·ESα ,L)], is always smaller
than that of the benchmark model, E[S(x·VaRα , ESα ,L)], for any x� (0.55, 1.0). In other words,
even if the bank’s model underforecasts the ESα by as much as 45%, it will still be wrongly
considered to be better than the benchmark model that truthfully forecasts ESα . This is mainly
due to the fact that coelicitability does not imply elicitability, and some rather strange behavior
of the forecasting objective function S defined in Equation 16.This is illustrated by Kou&Peng
(2016, figure 1).

Another drawback of these backtests is that the performance of the backtests further deterio-
rates when the scale of the loss random variable increases, because the termG2(−x2) in Equation 16
goes to zero as x2 goes to infinity. The consequence is that larger banks can more easily under-
report ES than smaller banks if such backtests are used for backtesting ESα . This is illustrated in
Example 6.

Example 6. Suppose there is a larger bank whose loss random variable is 15 times the loss
L in Example 5. Thus, the loss random variable of this larger bank has a normal distribution
N(μ, σ 2) with μ = −1.5 × 15, σ = 15.0. Let α = 0.975. Note the true value of (VaRα , ESα) is
(VaRα , ESα) = (0.460, 0.838) × 15. Suppose the forecasts given by a bank’s model are (VaRα ,
x·ESα) and those given by a benchmark model (preferred by the regulator) are (x·VaRα , ESα).
Again, the backtests make the wrong conclusion on which model better forecasts ESα when
x � (0.55, 1.0). In addition, Kou & Peng (2016, figure 2) show that the forecasting error for
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the bank’s model almost remains unchanged when x � (0.55, 1.0), which is due to the fact
that when ESα is large enough, the term E[ 1

1−αG2(−x · ESα )1{VaRα<L}(L− VaRα ) +G2(−x ·
ESα )(VaRα − xESα ) − G2(−x · ESα )] in the expected forecasting error will be so small that the
expected forecasting error will not change much when x varies. In other words, when the scale
of the loss random variable L is large enough, the expected forecasting error E[S(VaRα , x·ESα ,
L)] becomes insensitive to the value of x. This counterexample happens, again, mainly due to
some strange behavior of the forecasting objective function S defined in Equation 16.

6.3. The Backtesting Approach Based on the Elicitability of a Risk Measure

The backtesting approach based on the forecast evaluation framework and elicitability has been
proposed to backtest VaR. This approach requires a benchmark model because the elicitabil-
ity concerns the comparison of multiple models rather than the validation of a single model.
Lopez (1999a) proposes to define the forecasting error for VaRα under the model Gt|t − 1 as∑T

t=1 S(VaR
Gt|t−1
α (Lt ),Lt ), where S(·, ·) is a forecast objective function (loss function). Since VaRα is

elicitable with respect toD1 ∩ {F | q−
α (F ) = q+

α (F )}, S can be defined as Sα(x, y) = (1{x ≥ y} − α)(x−
y). Then, the forecasting error is compared with a benchmark forecasting error calculated under
a benchmark model to backtest VaRα .

In contrast, ES cannot be backtested by this approach because it is not elicitable, and therefore,
no function S can be used to define the forecasting error.

7. BASEL ACCORD RISK MEASURES

The Basel Accord risk measures are special cases of both the class of multiple-scenario-based dis-
tortion risk measures represented in Equation 11 and the class of natural risk statistics represented
in Equation 9.

Basel II uses a 99.9% VaR for setting capital requirements for banking books of financial insti-
tutions (Gordy 2003). The Basel II capital charge for the trading book on the tth day is specified
as ρt := st max{ 1

st
VaRt−1(Lt−1), 1

60

∑60
i=1 VaRt−i(Lt−i )}, where Lt − i is the 10-day trading book loss

starting from day t− i, st ≥ 3 is a constant that is specified by the regulator based on the backtesting
result of the institution’s VaR model, and VaRt − i(Lt − i) is the VaR of the trading book loss at 99%
confidence level calculated on day t− i. It is based on the information available up to and including
day t − i and corresponds to the calculation of VaR under the ith model, i = 1, . . . , 60. Define the
61st model under which L = 0 with probability one. Then, the Basel II risk measure is a special
case of the class of risk measures considered in Equation 12. It incorporates 61 models and two
priors: One prior is w̃ = (1/s, 0, . . . , 0, 1 − 1/s), and the other is w̃ = (1/60, 1/60, . . . , 1/60, 0). It
is also a special case of the natural risk statistics in Equation 9. The Basel 2.5 risk measure (Basel
Comm. Bank. Superv. 2009) mitigates the procyclicality of the Basel II risk measure by incorpo-
rating the stressed VaR calculated under stressed market conditions such as financial crisis. The
Basel 2.5 risk measure can also be written in the form of Equations 9 and 12.

The new Basel III Accord (Basel Comm. Bank. Superv. 2019) moves from VaR to ES. The new
Basel III capital charge for the market risk includes two parts, one for modelable risk factors and
the other for nonmodelable risk factors. Neglecting the part for nonmodelable risk factors, the
capital charge for the market risk on the tth day is specified as

ρt := s · max

⎧⎨⎩1
s

⎡⎣ρESt−1(Lt−1) + (1 − ρ )
B∑
j=1

ESt−1, j (Lt−1)

⎤⎦,

1
60

60∑
i=1

⎡⎣ρESt−i(Lt−i ) + (1 − ρ )
B∑
j=1

ESt−i, j (Lt−i )

⎤⎦⎫⎬⎭, 20.
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where s= 1.5 or a larger number; ρ = 0.5; B is the number of risk factor categories, such as interest
rate risk, equity risk, foreign exchange risk, commodity risk, and credit spread risk; ESt − i(Lt − i)
is the ES at 97.5% confidence level of the loss under a stressed scenario calculated on day t − i;
and ESt − i, j(Lt − i) is the ES at 97.5% confidence level of the loss under the same stressed scenario
calculated on day t − i, with the additional hypothetical assumption that all the risk factors except
the jth category of risk factors remain unchanged during the 10-day period. It is clear that the
Basel III capital charge involves the calculation of ES under 60(1 + B) different scenarios, and it
is a special case of the multiple-scenario-based distortion risk measure formulated in Equation 11
and a special case of natural risk statistics in Equation 9.

The major argument for the change from VaRα to ESα was that ESα better captures tail risk
than VaRα because ESα measures the mean size of loss beyond VaRα , as VaRα itself does not carry
information as to the size of loss in cases when the loss does exceed VaRα . However, ESα is not
the only risk measure that captures tail risk beyond VaRα ; in particular,MSα also captures the size
and likelihood of loss beyond VaRα by the median of loss beyond VaRα . The example given after
Equation 3 shows that ESα does not carry more information about the tail distribution than MSα ,
simply because the mean of a distribution does not carry more information than the median of the
same distribution. In addition, ESα may be smaller (i.e., less conservative) than MSα , as mean may
be smaller than median. For example, if the tail loss distribution is a Weibull distribution with a
shape parameter larger than 3.44, then ESα is smaller than MSα (see, e.g., Von Hippel 2005).

In summary, despite lacking some mathematical convenience of subadditivity, MSα may be
preferable than ESα as an external risk measure due to statistical and economic considerations:
(a) MSα also captures tail risk beyond VaRα , (b) MSα is elicitable but ESα is not, (c) MSα can be
effectively backtested but ESα cannot, (d) MSα is statistically robust but ESα is not, and (e) the
acceptance set induced by MSα is surplus invariant but that induced by ESα is not.
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