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1 Introduction

As stressed by world leaders during the recent UN Climate Change Conference of the Parties

(COP26) in Glasgow, one of the more pressing issues in the international policy agenda is fighting

higher global surface temperatures (global warming; GW hereafter). A proper design of climate

policy requires a deep understanding of the relationship between between global carbon dioxide

(CO2) emission and GW prior to assessing the impact of the latter phenomenon on economic

activity. This is by all means a long-standing issue in climate change science and economics.

(see e.g. Hansen et al. 1981, Hsiang and Kopp 2018, and Castle and Hendry 2020)1 2

For example, a traditional research question in this literature has been the size of the so-

called transient climate response (TCR), defined as the change in global mean temperature at the

time of doubling of atmospheric concentration increasing at a rate of 1 percent per year (see e.g.

Montamat and Stock 2020). As explained in Myhre et al. (2013), the radioactive forcing arising

from an increase in CO2 is proportional to the growth rate of CO2 emissions or the acceleration

rate of CO2 concentrations. Thus, this establishes a linear relationship between temperature

changes and the the first (second) difference of (logged) CO2 emissions (concentrations). There

is a plethora of studies estimating this causal relationship through time series techniques (e.g.

testing for Granger causality; see Stips et al. 2016 and the references therein). Typically long

time series of the change in average temperatures across a large number of weather stations are

regressed on their lagged values and those of the growth rate of CO2 emissions to check whether

the coefficients of the latter are statistically significant. The goal of this paper is to revisit this

Granger-causality analysis by focusing on time series of the entire distributions of temperatures

across a wide range of stable weather stations around the world and its main characteristics

(moments, quantiles, etc.) rather than focus exclusively on their averages, as is customary in

this literature. This novel approach is relevant since, though the average temperature might not

display any discernible growth pattern as CO2 changes, the lower or upper tails might exhibit a

clear increase. In other words, even when the average temperature exhibits some growth, having

a wide angle picture of the trending behavior of the whole distribution will help in designing

effective policies preventing CO2 emissions and concentrations.

This issue can be clarified by means of the following example. Suppose that data is available

on two stationary variables (after suitable transformations, such as first or second differences):

1When sunlight reaches Earth, its surface absorbs some of the light’s energy and re-radiates it as infrared
waves. These waves travel up into the atmosphere and will escape back into space if unimpeded. For example,
unlike oxygen and nitrogen which do not interfere with infrared waves in the atmosphere because molecules are
picky about the range of wavelengths that they interact with, CO2 and other greenhouse gases absorb energy at
a variety of wavelengths whose ranges do overlap with that of infrared energy. As CO2 soaks up this infrared
energy, it vibrates and re-emits the infrared energy back in all directions. About half of that energy goes out into
space, and about half of it returns to Earth as heat, contributing to GW through the ”greenhouse effect”.

2The greenhouse effect was first discovered by Fourier (1824), experimentally verified by Foote (1856) and
Tyndall (1863), and quantified by Arrhenius (1896).

1



{Xit} which represents temperatures measured at i = 1, 2, ...N weather stations over t = 1, 2, ...T

periods, and {Zt} which captures aggregate CO2 emissions over the same sample period. Typi-

cally, if researchers are interested in estimating the heterogeneous effects of Zt on GW at different

parts of the temperatures distribution, they would use average temperatures across stations, i.e.

Xt = N−1
∑N

i=1Xit to run the following quantile regression (QR): Xt = α(τ) + β(τ)Zt + ut(τ),

with quantiles 0 < τ < 1, such that α(τ) + β(τ)Zt denotes the conditional quantile of Xt given

Zt. Although this represents a step forward with respect to a standard linear regression model,

this standard QR estimation procedure throws away all the information on the distribution

of temperatures across different stations. An alternative procedure could be to run QR for

each unit (weather station) and then average across units for each quantile. However, this is a

doubtful statistical procedure since the average of quantiles is not equal to the quantile of the

averages. As a result, a simple way to enrich this model would be to consider a factor structure

for the panel data on temperatures with Xit = λ′i(τ)ft(τ) + uit(τ), where ft(τ) and λi(τ) are a

r(τ)×1 vector of factors and loadings, respectively, which may differ at each τ . Having obtained

consistent estimates of the quantile-dependent objects, a natural OLS regression to run for each

factor, ft(τ) would be the following:

fjt(τ) = βjZt + εjt, for j = 1, . . . , r(τ), (1)

which provides estimates of the effects of CO2 on the conditional quantile of the corresponding

factor at a given τ . Note that, if instead of {Zt} we were to consider its lagged values, a test

on the joint statistical significance of its coefficients provides a test of the null hypothesis on

Granger-causality of CO2 on the quantiles of the factors.

To obtain the above-mentioned quantile-dependent objects, we rely on a novel methodol-

ogy of Quantile Factor models (QFM in short) recently proposed by Chen et al. (2021) (CDG

henceforth). This approach extends the theory of approximate factor models (AFM), designed

to extract common factors at the mean of the distribution of large panel datasets (see Cham-

berlain and Rothschild 1983), to their quantiles. As is well known, AFM imply that a panel

{Xit} of N variables (units), each with T observations, has the representation Xit = λ′ift + εit,

where λi = [λi1, .., λir]
′ and ft = [ft1, .., ftr]

′ are r × 1 vectors of factor loadings and common

factors, respectively, with r � N , and where {εit} are zero-mean weakly dependent idiosyncratic

disturbances which are uncorrelated with the factors. The availability of fairly straightforward

estimation procedures for AFM, e.g. via Principal Components Analysis (PCA) or similar meth-

ods, has led to their widespread use in many fields of economics (see Bai and Ng 2008 and Stock

and Watson 2011 for overviews).3

In line with the generalization of linear regression to QR models, CDG (2021) argue that the

3More recently, PCA has also been used to model interactive fixed-effects models in linear and non-linear
models (see Bai 2009 and Chen et al. 2018), common correlated effects (see Pesaran 2006), and for predictive
analytics in Big Data (see Athey and Imbens 2019).
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standard regression interpretation of static AFM as linear conditional mean models of Xit given

ft (i.e. E(Xit|ft) = λ′ift), prevents capturing hidden factors that may shift specific characteristics

(moments or quantiles). The insight is that neither the loadings λi nor the factors ft are allowed

to vary across the distributional characteristics of each unit in the panel.

As an illustration of the above-mentioned limitations of AFM, consider the factor structure in

a standard location-scale shift (LSS) model with the following Data Generating Process (DGP):

Xit = αif1t + ηif2tεit, with f1t 6= f2t (both are scalars), ηi, f2t > 0 and E(εit) = 0´. The first

factor (f1t) shifts location, whereas the second factor (f2t) shifts the scale and therefore governs

the volatility of shocks to Xit.
4 Such a DGP can be rewritten in QR format as Xit = λ′i(τ)ft +

uit(τ), with 0 < τ < 1, λi(τ) = [αi, ηiQε(τ)]′, where Qε(τ) represents the quantile function of

εit, ft = [f1t, f2t]
′, uit(τ) = ηif2t[εit − Qε(τ)], and the conditional quantile Quit(τ)[τ |ft] = 0.5 It

is easy to check that PCA will only extract the location-shifting factor f1t in this model, but it

fails to capture the scale-shifting factor f2t.

To overcome this shortcoming, CDG (2021) propose QFM (whose definition is provided in

Section 2), and their estimation procedure, called Quantile Factor Analysis or QFA in short

(see Section 3). QFA allows to estimate the space spanned by f1t and f2t in the previous DGP

and, in general, the loadings, factors and the number of factors (i.e. λi(τ), ft(τ) and r(τ) for

τ ∈ (0, 1)), which could all vary across quantiles.6 Hence, as argued earlier, QFM could be

thought of as capturing the same type of flexible generalization that QR techniques represent

for linear regression models.7

The QFA estimation procedure relies on the minimization of the standard check function

in QR (instead of the quadratic loss function used in AFM) to estimate jointly the common

factors ft(τ) and the loadings λi(τ) at a given quantile τ , once the number of factors has been

selected by a consistent criterion. CDG (2021) derive the average rates of convergence of the

objects of interest and establish their asymptotic normality based on smoothed QR (see e.g.,

Galvao and Kato 2016). Lastly, it is noteworthy that, given that QFA estimation captures

all quantile-shifting factors (including those affecting the means of observed variables), these

asymptotic results provide a natural way to differentiate AFM from QFM. This is specially

relevant in the presence of outliers where AFM may not work well, whereas in contrast QFM

will render valid estimation and inference. The insight is similar to that underlying the use of

robust least median regression when outliers abound as in Huber (1981). This issue is relevant

in our dataset of temperatures consisting of the annual changes of temperatures recorded at 441

4Notice that the simplifying assumption of a known number of factors in this specific example is later relaxed.
5Throughout the paper we use QW [τ |Z] to denote the conditional quantile of W given Z.
6Note that in this particular DGP, since f1t can be consistently estimated by PCA, it is also feasible to estimate

f2t by applying PCA to the squared residuals stemming from subtracting the factor structure at the mean from
the original variables. However, in practice the DGP is unknown and therefore QFA is needed.

7Related to CDG (2021), Ando and Bai (2020) use a similar setup with an unobservable factor structure which
is also allowed to be quantile dependent; yet, their assumptions are more restrictive since all the moments of the
idiosyncratic errors are required to exist.

3



weather stations from 1917 to 2018. Figure 1 displays the fraction of outliers in each year of the

sample, corresponding to those observations that exceed three standard deviations, which ranges

between 2 and 11 percent and it is increasing over the sample period. Hence, as a byproduct of

the analysis, we will illustrate the advantages of using QFA in the presence of outliers through

several Monte-Carlo simulations.

In parallel with QFA, use is made of the of the statistical procedure proposed by Gadea

and Gonzalo (2020) to test for the presence of deterministic and/or stochastic trends in a wide

range of moments of the unconditional distribution of temperatures across a large number of

weather stations over a long period. Using the time series of distributions at a given frequency

as a functional analysis object, these authors design simple tests of this kind of trends at given

unconditional quantiles, e.g. the 25th, 50th or 75th percentiles. This allows us to select the

specification and the filtering of the variables in a bivariate Granger-causality regression where

the dependent variable (selected factors at each quantile) and the CO2 regressor should be

stationary. Our combination of both statistical techniques allows us to extract factors at all

relevant quantiles of the distribution of the change in temperatures to then test whether changes

in CO2 Granger cause these factors. Hence, the difference between both approaches is that the

findings in Gadea and Gonzalo (2020) refer to a steeper change in temperatures in those locations

where it is colder (e.g. in the Artic) whereas, by retrieving those factors which are common to all

low temperatures around the world, our QFA approach implies that the growth (acceleration)

rate in CO2 emissions (concentrations) has a global effect on those temperatures.

In relation to the literature on this topic, our main contributions in this paper are threefold

(i) we provide Monte Carlo evidence showing that QFA behaves much better than other standard

procedures, such as PCA, in retrieving the right number of factors where the observational data

at hand exhibits big outliers, as in the case of temperature changes; (ii) we propose a new

method for implementing quantile Granger-causality tests based on using the QFA factors as

dependent variables that complements the standard mean (PC factors) causality tests in the

literature, and (iii) we find that changes in CO2 emissions have higher predictive power at low

than at high quantiles of the distribution of changes in temperature.

It is noteworthy that, in principle, the results in (iii) above are different from those reported

by Gadea and Gonzalo (2020) about the the presence of upward sloping trends in the former

unconditional quantiles but not in the latter. In effect, they find that lower temperatures in

some specific areas of the world (like the Artic region) have grown at a higher pace than high

temperatures. By contrast, our main finding is that the growth rate in CO2 emissions has a

higher predictive power during time periods where the temperature is decreasing (or increasing

very little) but little or no effect during periods with large positive changes. In other words,

higher growth/acceleration in CO2 emissions/concentrations is bound to help to increase the

temperature in periods where this goes down, without any discernible Granger-causality effect
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on large positive changes. However, our finding of a non-uniform climate sensitivity to CO2

go in line with the heterogeneous GW results documented by Gadea and Gonzalo (2020). The

latter suggests that CO2 has stronger warming effects in cold regions, whereas our current results

indicate that periods with negative temperature increments (irrespective of the region) are more

sensitive to the warming effects of CO2. We conjecture that, one possibility behind this non-

uniform climate sensitivity could be the fact that, only when the increments in temperature are

high (upper quantiles of the conditional distribution of changes in temperature), then tropical

cloud formation increases. This has two effects. On the one hand, clouds does not allow the

arrival of short-wave sun’s rays, which would lead to cooling. On the other hand, they do not

allow the exit of the long-wave sun’s rays that the earth emits when it warms up. Uncertainty

arises because it not yet known which of the two effects is the dominating one (see Kamae

et al. 2016). Hence, in the absence of panel data on tropical cloud formation over the period

under consideration in this study, this phenomenon makes it difficult to detect the effects of

the growth (acceleration) rate of CO2 emissions (concentrations) on large (positive) changes in

temperatures.

The rest of the paper is organized as follows. Section 2 defines QFM. In Section 3, we

introduce the QFA estimator and its computational algorithm, establish the average rates of

convergence of the quantile-dependent factors and factor loadings, propose a consistent selec-

tion criterion to choose the number of factors at each quantile, and finally run a Monte Carlo

simulation results to highlight the advantages of using QFA instead of PCA in finite samples

with big outliers. Section 4 considers an empirical application of causality analysis to estimate

the effect of CO2 emissions and concentrations on GW using a large panel dataset on the annual

distributions of temperatures over the last century. Finally, Section 5 concludes.

2 Quantile Factor Model

To motivate our empirical analysis, this section reviews the basic concepts and tools underlying

CDG’s (2021) QFM approach.

Let {Xit} be a panel of N observed variables (units), each with T observations. Then, Xit,

with i = 1, 2, .., N and t = 1, 2, ..., T , has the following QFM structure at some τ ∈ (0, 1):

QXit [τ |ft(τ)] = λ′i(τ)ft(τ),

where the common factors ft(τ) are gathered in a r(τ) × 1 vector of unobservable random

variables, λi(τ) is a r(τ)× 1 vector of non-random factor loadings with r(τ)� N . Note that in

the QFM defined above, the factors, the loadings, and the number of factors are all allowed to

be quantile-dependent.
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Alternatively, the above equation implies that

Xit = λ′i(τ)ft(τ) + uit(τ), (2)

where the quantile-dependent idiosyncratic error uit(τ) is assumed to satisfy the following quan-

tile restrictions:

P [uit(τ) ≤ 0|ft(τ)] = τ.

As mentioned in the Introduction, LSS models provide nice illustrations of potential DGPs

with the previous QFM representation. In particular, recall the example given above, i.e. Xit =

α′if1t + (η′if2t)εit, where {εit} are zero-mean i.i.d errors independent of {f1t} and {f2t}, with

cumulative distribution function (CDF) Fε such that the median of εit is 0, i.e., Qε(0.5) = 0,

αi, f1t ∈ Rr1 , ηi, f2t ∈ Rr2 , and η′if2t > 0. Then, when f1t and f2t do not share common elements,

this model has a QFM representation in form of (2) with λi(τ) = [α′i, η
′
iQε(τ)]′, ft(τ) = [f ′1t, f

′
2t]

for τ 6= 0.5, and λi(τ) = αi, ft(τ) = f1t for τ = 0.5. Note that in such a case, the loadings are

quantile-dependent objects while the factors are not.

Another example is provided by a LSS model where different factors affect the first, second

and third moments of the data, i.e. Xit = αif1t + f2tεit + cif3tε
3
it, where εit is a standard

normal random variable whose CDF is denoted as Φ(·). Let f2t, f3t, ci be positive, then Xit

has an equivalent representation in form of (2), with λi(τ) = [αi,Φ
−1(τ), ciΦ

−1(τ)3]′, ft(τ) =

(f1t, f2t, f3t)
′ for τ 6= 0.5, and λi(τ) = αi, ft(τ) = f1t for τ = 0.5. In particular, if ci = 1 for all

i and noticing that the mapping τ 7→ Φ−1(τ)3 is strictly increasing, then we have for τ 6= 0.5,

QXit [τ |ft(τ)] = αif1t + Φ−1(τ) · [f2t + f3tΦ
−1(τ)2], so that there exists a QFM representation as

in (2) with λi(τ) = [αi,Φ
−1(τ)]′ and ft(τ) = [f1t, f2t + f3tΦ

−1(τ)2]′ for τ 6= 0.5. Notice that in

this case, the second factor in ft(τ), f2t + f3tΦ
−1(τ)2, is quantile dependent even for τ 6= 0.5.

Finally, note that applying PCA to the data in the two previous DGPs only yield consistent

estimates of the factors shifting the means but will fail to capture those other extra factors

shifting quantiles, other than the means, or their corresponding quantile-varying loadings. In

the sequel, QFA is therefore proposed as a new estimation procedure of all the quantile-dependent

objects in QFM.

3 QFA Estimators and their Asymptotic Properties

To simplify the notations, we suppress hereafter the dependence of ft(τ), λi(τ), r(τ) and uit(τ)

on τ , so that the QFM in (2) is rewritten as:

Xit = λ′ift + uit, P [uit ≤ 0|ft] = τ, (3)
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where λi, ft ∈ Rr. Suppose that we have a sample of observations {Xit} generated by (3) for

i = 1, . . . , N, and t = 1, . . . , T , where the true values of {ft} are {f0t} and the true values of

{λi} are {λ0i}. We take a fixed-effects approach by treating {λ0i} and {f0t} as parameters to

be estimated, and our asymptotic analysis is conditional on {f0t}. In Section 3.1, we consider

the estimation of {λ0i} and {f0t} while r is assumed to be known, while the estimation of r at

each quantile is discussed in Section 3.3.

3.1 Estimating Quantile Factors and Loadings

It is well known in the literature on factor models that {λ0i} and {f0t} cannot be separately

identified without imposing normalizations (see Bai and Ng 2002). Without loss of generality,

we choose the following normalizations:

1

T

T∑
t=1

ftf
′
t = Ir,

1

N

N∑
i=1

λiλ
′
i is diagonal with non-increasing diagonal elements. (4)

Let M = (N + T )r, θ = (λ′1, . . . , λ
′
N , f

′
1, . . . , f

′
T )′, and θ0 = (λ′01, . . . , λ

′
0N , f

′
01, . . . , f

′
0T )′

denotes the vector of true parameters, where we also suppress the dependence of θ and θ0 on M

to save notation. Let A,F ⊂ Rr and define:

Θr =
{
θ ∈ RM : λi ∈ A, ft ∈ F for all i, t, {λi} and {ft} satisfy the normalizations in (4)

}
.

Further, define:

MNT (θ) =
1

NT

N∑
i=1

T∑
t=1

ρτ (Xit − λ′ift),

where ρτ (u) = (τ − 1{u ≤ 0})u is the check function. The QFA estimator of θ0 is defined as:

θ̂ = (λ̂′1, . . . , λ̂
′
N , f̂

′
1, . . . , f̂

′
T )′ = arg min

θ∈Θr
MNT (θ).

It is obvious that the way in which our estimator is related to the PCA estimator studied by

Bai and Ng (2002) and Bai (2003) is analogous to how QR is related to standard least-squares

regressions. However, unlike Bai (2003)’s PCA estimator, our estimator θ̂ does not yield an

analytical closed form. This makes it difficult not only to find a computational algorithm that

would yield the estimator, but also the analysis of its asymptotic properties. In the sequel, we

briefly review CDG´s (2021) computational algorithm, called iterative quantile regression (IQR,

hereafter), that can effectively find the stationary points of the object function. In parallel,

CDG’s (2021) Theorem 1 shows that θ̂ achieves the same convergence rate as the PCA estimators

for AFM.

To describe the algorithm, let Λ = (λ1, . . . , λN )′, F = (f1, . . . , fT )′, and define the following
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averages:

Mi,T (λ, F ) =
1

T

T∑
t=1

ρτ (Xit − λ′ft) and Mt,N (Λ, f) =
1

N

N∑
i=1

ρτ (Xit − λ′if).

Note that we have MNT (θ) = N−1
∑N

i=1 Mi,T (λi, F ) = T−1
∑T

t=1 Mt,N (Λ, ft). The main dif-

ficulty in finding the global minimum of MNT is that this object function is not convex in θ.

However, for given F , Mi,T (λ, F ) happens to be convex in λ for each i and likewise, for given Λ,

Mt,N (Λ, f) is also convex in f for each t. Thus, both optimization problems can be efficiently

solved by various linear programming methods (see Chapter 6 of Koenker 2005). Based on this

observation, CDG (2021) propose the following iterative procedure:

Iterative quantile regression (IQR):

Step 1: Choose random starting parameters: F (0).

Step 2: Given F (l−1), solve λ
(l−1)
i = arg minλMi,T (λ, F (l−1)) for i = 1, . . . , N ; given Λ(l−1), solve

f
(l)
t = arg minf Mt,N (Λ(l−1), f) for t = 1, . . . , T .

Step 3: For l = 1, . . . , L, iterate the second step until MNT (θ(L)) is close to MNT (θ(L−1)), where

θ(l) = (vech(Λ(l))′, vech(F (l))′)′.

Step 4: Normalize Λ(L) and F (L) so that they satisfy the normalizations in (4).

To see the connection between the IQR algorithm and the PCA estimator of Bai (2003),

suppose that r = 1, and replace the check function in the IQR algorithm by the least-squares

loss function. Then, it is easy to show that the second step of the algorithm above yields

Λ(l−1) = (X ′F (l−1))/‖F (l−1)‖2 and F (l) = (XΛ(l−1))/‖Λ(l−1)‖2 = XX ′F (l−1)/Cl−1, where X

is the T × N matrix with elements {Xit}, Cl = ‖F (l)‖2 · ‖Λ(l)‖2, and ‖ · ‖ is the Frobenius

norm of a matrix, i.e. the square root of the sum of squares of its elements. Thus, with proper

normalizations at each step, the iterative procedure is equivalent to the well-known power method

of Hotelling (1933), and the sequence F (0), F (1), . . . will converge to the eigenvector associated

with the largest eigenvalue of XX ′. In the more general case r > 1, by replacing the check

function in the IQR algorithm by the least-squares loss function and normalize F (l−1),Λ(l−1)

to satisfy (4) at step 2, it can be shown that this iterative procedure is similar to the method

of orthogonal iteration (see Section 7.3.2 of Golub and Van Loan 2013) for calculating the

eigenvectors associated with the r largest eigenvalues of XX ′, which is the PCA estimator of

Bai (2003). Therefore, the IQR algorithm and its corresponding QFA estimator can be viewed

as an extension of PCA to QFM.

Then, consistency of the QFA estimators can be proved under the following set of assumptions

outlined in CDG (2021),

Assumption 1. (i) A and F are compact sets and θ0 ∈ Θr. In particular, N−1
∑N

i=1 λ0iλ
′
0i =

diag(σN1, . . . , σNr) with σN1 ≥ σN2 · · · ≥ σNr, and σNj → σj as N → ∞ for j = 1, . . . , r with

∞ > σ1 > σ2 · · · > σr > 0.
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(ii) The conditional density function of uit given {f0t}, denoted as fit, is continuous, and satisfies

that: for any compact set C ⊂ R and any u ∈ C, there exists a positive constant f > 0 (depending

on C) such that fit(u) ≥ f for all i, t.

(iii) Given {f0t, 1 ≤ t ≤ T}, {uit, 1 ≤ i ≤ N, 1 ≤ t ≤ T} is independent across i and t.

Assumptions 1 (i) is the standard strong factors assumption in the literature (see Assump-

tion B of Bai 2003) which allows to order the factors. Assumptions 1 (ii) and (iii) are similar

to (C1) and (C2) in Ando and Bai (2020), except that moments of uit are not required to exist.

Also notice that Assumption (iii), which allows for both cross-sectional and time series het-

eroskedasticity, requires the idiosyncratic errors to be mutually independent. This assumption

looks restrictive in principle but Monte Carlo simulations in CDG (2021) show that it can be

relaxed to allow for mild cross-sectional and serial dependence in the error terms.

Write Λ̂ = (λ̂1, . . . , λ̂N )′, Λ0 = (λ01, . . . , λ0N )′, F̂ = (f̂1, . . . , f̂T )′, F0 = (f01, . . . , f0T )′, and

let LNT = min{
√
N,
√
T}. Then, under Assumption 1, CDG (2021) derive the average rate of

convergence of Λ̂ and F̂ as N,T →∞, which are given by:

‖Λ̂− Λ0‖/
√
N = OP (1/LNT ) and ‖F̂ − F0‖/

√
T = OP (1/LNT ).

3.2 Asymptotic Distribution of QFA Estimators

To obtain the asymptotic distributions of the QFA estimators, CDG (2021) address the difficul-

ties raised by the non-smoothness of the indicator functions by proposing a similar estimator of

θ0, denoted as θ̃, which relies on the following smoothed quantile regressions (SQR):

θ̃ = (λ̃′1, . . . , λ̃
′
N , f̃

′
1, . . . , f̃

′
T )′ = arg min

θ∈Θr
SNT (θ),

where

SNT (θ) =
1

NT

N∑
i=1

T∑
t=1

[
τ −K

(
Xit − λ′ift

h

)]
(Xit − λ′ift),

K(z) = 1−
∫ z
−1 k(z)dz, k(z) is a continuous function with support [−1, 1], and h is a bandwidth

parameter that goes to 0 as N,T diverge.

Then, define

Φi = lim
T→∞

1

T

T∑
t=1

fit(0)f0tf
′
0t and Ψt = lim

N→∞

1

N

N∑
i=1

fit(0)λ0iλ
′
0i

for all i, t, and adopt the following assumption, also borrowed from CDG (2021):

Assumption 2. Let m ≥ 8 be a positive integer,

(i) Φi > 0 and Ψt > 0 for all i, t.
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(ii) λ0i is an interior point of A and f0t is an interior point of F for all i, t.

(iii) k(z) is symmetric around 0 and twice continuously differentiable.
∫ 1
−1 k(z)dz = 1,

∫ 1
−1 z

jk(z)dz =

0 for j = 1, . . . ,m− 1 and
∫ 1
−1 z

mk(z)dz 6= 0.

(iv) fit is m+2 times continuously differentiable. Let f
(j)
it (u) = (∂/∂u)jfit(u) for j = 1, . . . ,m+2.

For any compact set C ⊂ R and any u ∈ C, there exists −∞ < l < l̄ <∞ such that l ≤ f
(j)
it (u) ≤ l̄

and f ≤ fit(u) ≤ l̄ for j = 1, . . . ,m+ 2 and for all i, t.

(v) As N,T →∞, N ∝ T , h ∝ T−c and m−1 < c < 1/6.

The above conditions are standard in SQR, with the exception of (v). For example, this

condition slightly differs from the one adopted by Galvao and Kato (2016) who assume that

m−1 < c < 1/3 (or m ≥ 4) because the incidental parameters (λi and ft) in QFM enter the

model interactively, while there are no interactive fixed-effects in the panel quantile models

considered by these authors .

Then, under Assumptions 1 and 2, CDG (2021) show that:

√
T (λ̃i − λ0i)

d→ N (0, τ(1− τ)Φ−2
i ) and

√
N(f̃t − f0t)

d→ N (0, τ(1− τ)Ψ−1
t ΣΛΨ−1

t )

for each i and t, where ΣΛ = diag(σ1, . . . , σr).

3.3 Selecting the Number of Factors at Quantiles

While the number of quantile-dependent factors r(τ) has been so far assumed to be known

at each τ , CDG (2021) propose a rank-minimization criterion to select the correct number of

factors at each quantile with probability approaching one. This criterion selects the number of

factors by rank minimization. Suppressing once again the dependence of the quantile-dependent

objects on τ , including r(τ), to ease notation, the criterion works as follows.

Let k be a positive integer larger than r, and Ak and Fk be compact subsets of Rk. In

particular, let us assume that [λ′0i 01×(k−r)]
′ ∈ Ak for all i.

Let λki , f
k
t ∈ Rk for all i, t and write θk = (λk

′
1 , . . . , λ

k′
N , f

k′
1 , . . . , f

k′
T )′, Λk = (λk1, . . . , λ

k
N )′,

F k = (fk1 , . . . , f
k
T )′. Consider the normalizations for factors and loadings discussed above, define

Λ̂k = (λ̂k1, . . . , λ̂
k
N )′ and write

(Λ̂k)′Λ̂k/N = diag
(
σ̂kN,1, . . . , σ̂

k
N,k

)
.

The rank minimization criterion to estimate the number of factors r is defined as:

r̂rank =
k∑
j=1

1{σ̂kN,j > PNT },
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where PNT is a sequence that goes to 0 as N,T → ∞. In other words, r̂rank is equal to the

number of diagonal elements of (Λ̂k)′Λ̂k/N that are larger than the threshold PNT . Note that

it can can be interpreted as a rank estimator of (Λ̂k)′Λ̂k/N since this average converges to a

matrix with rank r, where PNT can be viewed as a cutoff value to choose the asymptotic rank

of (Λ̂k)′Λ̂k/N . In particular, CDG (2021) find that the choice

PNT = σ̂kN,1 ·
(

1

L2
NT

)1/3

works well as long as min{N,T} is 100. This is also the value used in our empirical application

below.

Then, under Assumption 1, CDG (2021) show that:

P [r̂rank = r]→ 1 as N,T →∞ if k > r, PNT → 0 and PNTL
2
NT →∞.

3.4 Relative Performance of PCA and QFA in a DGP with Outliers

As pointed out in the discussion of Assumption 1 above, the consistency of the QFA estimator

does not require the moments of the idiosyncratic errors to exist. Thus, at τ = 0.5, QFA can

be viewed as a robust QR alternative to the PCA estimators commonly used in practice. By

the same token, our estimator of the number of factors should also be more robust to outliers

and heavy tails than the IC-based method of Bai and Ng (2002). In this subsection we confirm

these two claims by means of Monte Carlo simulations.

In particular, the following DGP is considered:

Xit =
3∑
j=1

λjifjt + uit,

where f1t = 0.8f1,t−1 + ε1t, f2t = 0.5f2,t−1 + ε2t, f3t = 0.2f3,t−1 + ε3t, λji, εjt are all independent

draws from N (0, 1), and uit ∼ i.i.d Bit · N (0, 1) + (1 − Bit) · Cauchy(0, 1), where Bit are i.i.d

Bernoulli random variables with means equal to 0.98 and Cauchy(0, 1) denotes the standard

Cauchy distribution. In this way, approximately 2% of the idiosyncratic errors are generated as

outliers.

We consider four estimators of the number of factors r: two estimators based on PCp1, ICp1

of Bai and Ng (2002), the Eigenvalue Ratio (ER) estimator proposed by Ahn and Horenstein

(2013) and CDG’s (2021) rank-minimization estimator with PNT chosen as in section 3.3. We

set k = 8 for all four estimators, and consider N,T ∈ {50, 100, 200, 500}.
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Table 1 reports the following fractions:

[proportion of r̂ < 3 , proportion of r̂ = 3 , proportion of r̂ > 3 ]

for each estimator having run 1000 replications.

It becomes evident from Table 1 that PCp1 and ICp1 almost always overestimate the number

factors, while the ER estimator tends to underestimate them, though to a lesser extent than

what PCp1 and ICp1 overestimate them. By contrast, the rank-minimization estimator selects

accurately the right number of factors as long as min{N,T} ≥ 100.

Next, to compare the PCA and QFA estimators of the common factors in the previous DGP,

we assume that r = 3 is known. We first get the PCA estimator (denoted as F̂PCA), and then

obtain the QFA estimator at τ = 0.5 (denoted F̂ 0.5
QFA) using the IQR algorithm. Next, we regress

each of the true factors on F̂PCA and F̂ 0.5
QFA separately, and report the average (adjusted) R2

from 1000 replications in Table 2 as an indicator of how well the space of the true factors is

spanned by the estimated factors. As shown in the first three columns of Table 2, while the PCA

estimators are not very successful in capturing the true common factors, the QFA estimators

approximate them very satisfactorily, even when N,T are not too large.

Thus, this simulation exercise provides strong evidence about the substantial gains that can

be achieved by using QFA rather than PCA in those cases where the idiosyncratic error terms

in AFM exhibit heavy tails and outliers.

4 Climate Change and CO2 Emissions

As stressed in the Introduction, QFA provides a useful tool for causal analysis regarding the

effects of CO2 on GW. Specifically, we focus on applying our proposed QFA methodology to

investigate how CO2 emissions affect changes in temperatures. Our dataset (coined Climate

for short) includes annual changes in temperature from 441 stations from 1917 to 2018 (N =

441, T = 102), drawn from the Climate Research Unit at the University of East Anglia, where

information about global temperatures across different stations in the Northern and Southern

Hemisphere is collected. Annual global CO2 emissions and concentration (akin to cumulative

emissions but excluding natural sinks) are downloaded from Our World in Data.

4.1 Testing for Trends in Climate Data

Gadea and Gonzalo (2020) provide a novel methodology to test for the existence of trends in the

unconditional distributional characteristics (moments, quantiles, etc.) of global temperatures.

Treating temperatures as a functional stochastic process, their distributional characteristics
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can be thought of as time series objects to which one could apply existing methods in time

series literature. For example, the proposed robust linear trend-test is based in the statistical

significance of the β coefficient in the following least-squares regression:

Ct = α+ βt+ ut, t = 1, .....T, (5)

where Ct denotes the distributional characteristic of interest (e.g. a given quantile).The asymp-

totic properties of the OLS estimator in the previous equation depend on the summability order

of the unknown trend component, δ ≥ 0, defined as follows. Let Ct = h(t) + vt, where vt is an

I(0) process and h(t) is the unknown trend polynomial process of order k, then its summability

order becomes ST = 1
T 1+δ

∑T
t=1 h(t) where δ is chosen such that ST is O(1), and so δ = k. Thus,

the OLS estimated coefficient in (5) is given by

β̂ =

∑
tCt − T t̄C̄∑
t2 − T t̄2

, (6)

where
∑
tCt = T

5
2

+0.5δ 1
T

∑
( tT )( Ct

T 0.5(1+δ) ) and
∑
t2 = T 3 1

T

∑
( tT )2, so that

T 0.5(1−k)β̂ = Op(1), (7)

implying consistency if δ = k = 0. However, if Ct is regressed on a polynomial of order s it

holds that

β̂ ≈
1√
T

∑
( ct
T 0.5(1+k) )( tT )s

1
T

∑
( tT )2s

T 1+s+0.5k

T 1+2s
. (8)

Then it is easy to show that

T s−0.5kβ̂ = Op(1). (9)

Thus, a necessary condition for consistency in the estimation of the trend slope is k < 2s.

As a result, if k = 1, then s ≥ 1, and if k = 0, s ≥ 1. In such cases, it is easy to show that

tβ=0 → N(0, 1).

Gadea and Gonzalo (2020) apply the trend-test to two different data sets: i) daily tempera-

tures in Central England for the period 1772-2017, and ii) global temperatures across different

stations in the Northern and Southern Hemispheres for the period 1880-2015. The latter dataset

in the one more closely related to ours though they only have have available 241 stations. Since

the number of units needs to be larger for QFA to be valid, our dataset is shorter (1917-2018)

in exchange for almost doubling the number of stations (441). At any rate, both applications in
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Gadea and Gonzalo (2020) lead to similar results. First, a linear trend component is detected in

most of the distributional characteristics, suggesting the existence of GW. Second, the dynamics

of GW is heterogeneous across the different unconditional quantiles: the slope of the trend in

the lower quantiles is steeper than those in the mean, median, and upper quantiles.

In line with this approach, we first use the above-mentioned tests to study the statistical

properties of temperatures in our dataset. The evidence reported in Table 3 suggests the presence

of linear trends in the levels of the temperature data, consistent with the findings in Gadea and

Gonzalo (2020). Additionally, we apply a standard ADF test to each individual station and

each distributional characteristic, including a constant and a linear trend component in the test

equation. The results in Table 4 show that the null of unit root is widely rejected (with the

exception of three stations) for almost all distributional characteristics (except for max, q75,

and q99). Based on this evidence it is possible to assert that the temperature levels are trend-

stationary process or, equivalently, that their annual changes are integrated of order zero, I(0),

with a drift. Thus, first differences (rather than the levels) of the temperatures are taken in the

QFA application to achieve stationarity which recall is a key requirement to extract both PCA

and QFA factors.

4.2 Quantile Factor Analysis

QFA is used to estimate the quantile factors for the changes of the temperature data in its

standardized format. Note that the lower quantiles capture large negative changes in temper-

ature (the smallest values) while the upper quantiles refer to the larger positive changes (the

highest values). The number of factors are selected according to the rank-minimization criterion

explained in section 3.3 for a fine grid of quantile levels, τ , ranging from 0.01 to 0.99. As pointed

out in the previous section, the number of factors varies across quantiles in the sense that it

decreases as we move away from the median. In particular, the number of factors are: 1 (at τ =

0.01, 0.05, 0.95, and 0.99), 2 (at τ = 0.1 and 0.9), 4 (at τ = 0.25 and 0.75), and 6 (at τ = 0.5).

For illustrative purposes, in Figure 2 the estimated factors for the quantiles 0.05 and 0.95 are

plotted to shown that they are fairly different. In addition, PCA is used to estimate the factors

at the mean, with the number of factors selected according to the PCp1 criterion of Bai and Ng

(2002). The PCp1 selects 8 factors, which is the maximum number imposed in the algorithm.

To compare the QFA factors (denoted as F̂ τQFA) and the PCA factors (denoted as F̂PCA),

we regress each element of F̂ τQFA on the 8 F̂PCA and compute the R2 in these regressions as a

measure of correlation.8 The results are shown in the upper panel of Table 6. It becomes clear

that for the quantiles at the center of the distribution (τ = 0.25, 0.5, and 0.75) the estimated

factors are highly correlated with the PCA factors, with all the R2s above 0.90. By contrast,

the QFA factors at the upper and lower quantiles (e.g. τ = 0.01, 0.05, 0.95, and 0.99) exhibit

8We choose the number of PCA factors estimated by PCp1 in these regressions to play conservative.
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much lower correlations with the PCA factors, with R2s around 0.6. Thus, there seems to be

room for using QFA in this application.

4.3 Global warming Granger-causality

Bivariate tests are implemented in this section in order to establish Granger causality from

CO2 emissions to the QFA estimated factors from the changes in temperature. We consider

two different but related time series of CO2 emissions: the annual global CO2 emissions (a flow

variable) and the global CO2 concentration levels in the atmosphere (a stock variable). As seen

in Figure 3, logged CO2 emissions is not an I(0) variable and exhibits an increasing pattern that

seems to be steeper after 1950. The growth rate of CO2 emissions, in turn, has a fairly constant

drift, though its variance looks higher during 1917-1958. Regarding CO2 concentrations, Figure

4 shows that, as expected, both the levels and first differences of its (logged) series are not I(0),

while the second difference seems to behave similarly to the growth rate of emissions.9 In line

with the visual analysis, the ADF-tests previously reported in Table 5 reject the presence of a

unit root both in growth rate of CO2 emissions and the acceleration rate of CO2 concentrations.

Since it is conventional to use Granger-causality tests for variables that are I(0), the QFA

factors at each relevant quantile are located in the left-hand side of the equation, while in the

right hand side includes p own lags of the QFA factors and q lags of either the growth rate

of CO2 emissions (∆log(CO2)emi) or the second difference of the logged CO2 concentrations,

(∆2log(CO2)cum). The specific equations that we estimate are given by:

F̂ τQFA,t = α(τ) +

p∑
i=1

βi × F̂ τQFA,t−i +

q∑
j=1

γj ×∆log(CO2)emi,t−j + ut, (10)

or

F̂ τQFA,t = α(τ) +

p∑
i=1

βi × F̂ τQFA,t−i +

q∑
j=1

γj ×∆2log(CO2)cum,t−j + ut, (11)

where the lag lengths p and q in (10) and (11) have been selected according to the AIC criterion.

Note that that similar arguments to those used in Bai and Ng (2006) (Theorem 2) can be

used to justify replacing the true quantile factors by the QFA estimated ones in (10) and (11). As

discussed by these authors, when applying PCA to estimate an AFM, the condition
√
T/N → 0

is required for the above substitution to be valid. Given the rate of convergence of the QFA

factors in section 3.1, a similar condition holds here, which is easily verified in our finite sample

since
√

102/441 = 0.023. Thus, the test looks at the joint significance of the γj coefficients,

9The correlation coefficient between the first difference of the logged CO2 emissions and the second difference
of the logged CO2 concentrations is around 0.98.
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j = 1, ...., q, by means of an F-statistic.

Table 7 reports the p-values of the Granger-causality tests when the growth rate of CO2

emissions and the acceleration rate of CO2 concentrations are considered as regressors. Our

findings indicate that the growth rate of CO2 emissions strongly Granger causes the QFA factors

at the lower quantiles (τ = 0.01, 0.05), with p-values below 0.001. Quantile factors closely related

to the mean according to Table 6 (τ from 0.1 to 0.9) are also Granger caused by the growth rate

of CO2 emissions in line with a broad literature using standard Granger-causality methods with

climate and CO2 data. (see e.g. Stips (2016)). As expected, the results look similar when using

the second differences of the CO2 concentrations since concentration is a stock while emission is

a flow. A strong finding using both series of CO2 is that Granger non-causality is not rejected

at the extreme upper quantiles, that is, for τ = 0.95 and 0.99.

To check the robustness of these findings, we make a comparison between the results obtained

for the median (τ = 0.5) and the 8 PCA mean factors selected with the PCp1 criterion. As noted

in Section 4.2, both sets of factors are highly correlated. Additionally, we test Granger causality

from the CO2 to the first difference of the mean curve as it is commonly estimated in the

literature. Table 8 shows the p-values for these Granger-causality tests. In agreement with the

results for the median, Granger-causality is detected for the first difference of the mean curve,

as well as for some of the PCA factors.

From the physical science of climate change, CO2 emissions and concentrations lead to

GW. The previous results for the lower quantiles of the conditional distribution of temperature

changes illustrate the non-uniformity in the causes of GW. From the climatology point of view,

we have not found yet clear strong reasons behind this lack of uniform climate sensitivity.

One possibility is that when the increments in temperature are high (upper quantiles of the

conditional increment temperature distribution) the probability of clouds formation increases

and it is well known (see Kamae et al. 2016) that clouds augment the uncertainty around

climate sensitivity due to the different feedback effects on temperature. This would make it

difficult to detect Granger-causality in the upper part of the conditional distribution of those

changes. Unfortunately, the literature on this topic has made use of a a few historical tropical

cloud formations which prevents incorporating them into our analysis.

Finally, in spite of addressing a different research question related to GW, our results seem

to be in line with the evidence reported in Gadea and Gonzalo (2020) where GW is also found

to be non-uniform: lower temperatures increase much more than the medium and higher ones.

The lower unconditional quantiles in their study correspond to the Arctic region. However, an

increase of CO2 concentrations will have unforeseen consequences (that is, whatever happens in

the Poles does not remain there): ice melting, sea level increases, floods, migrations, extreme

events, etc. All this is increased even more by its own feedback effects caused by the reduction

in the surface albedo (less solar energy is reflected out to space) and by the release of more
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greenhouse gasses (CO2, and Methane) from the permafrost melting. In this respect, we highlight

that non-uniform climate sensitivity is not regionally located but affects all the regions around

the Globe. In particular, the growth rate of CO2 emissions affects (positively) the periods where

the temperature decreases or does not increase much. To mitigate this warming problem, CO2

emissions should be reduced until a a situation of net-zero emission is reached. In order to be

efficient, mitigation policies should take the asymmetries documented in this paper into account.

5 Conclusions

In this paper we test for Granger-causality of CO2 emissions/concentration on annual changes in

temperature from 441 weather stations over the period 1917-2018 in the Northern and Southern

hemispheres. Using the QFA methodology proposed by CDG (2021) to retrieve common factors

and their number from those climate changes at different quantiles, we apply Granger-causality

tests of different CO2 measures on those factors. The specification of the corresponding dynamic

predictive equations is helped by the methodology proposed by Gadea and Gonzalo (2020) to

detect deterministic and stochastic trends in different moments/quantiles of the distribution of

changes in temperature. We further show that QFA is a much more robust estimation method

that PCR in the presence of outliers, as is the case in our sample.

Our main finding is that CO2 Granger causes factors at the lower quantiles of the distribution

of changes in temperature (i.e. the more negative changes) much more strongly than those at

the middle and upper quantiles. We stress that this novel result is not captured by the use the

PCA factors (or the mean) since they capture common features of all temperatures whereas QFA

factors capture common features at each quantile. Further research should go in the direction

of discovering the climatology reasons for this asymmetric climate sensitivity. As pointed out

earlier, one potential reason could be the different cloud feedback effects on temperatures which

are only present when changes in the latter are large and positive.
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A Tables

Table 1: AFM with Outliers in the Idiosyncratic Errors: Estimating the Number of Factors

N T PCp1 of BN ICp1 of BN Eigenvalue Ratio Rank Estimator

50 50 [0.00 0.04 0.96] [0.00 0.14 0.86] [0.26 0.30 0.44] [0.47 0.53 0.00]

50 100 [0.00 0.02 0.98] [0.00 0.05 0.95] [0.33 0.19 0.48] [0.40 0.60 0.00]

50 200 [0.00 0.00 1.00] [0.00 0.01 0.99] [0.41 0.12 0.47] [0.33 0.67 0.00]

50 500 [0.00 0.00 1.00] [0.00 0.00 1.00] [0.56 0.07 0.37] [0.29 0.71 0.00]

100 50 [0.00 0.02 0.98] [0.00 0.05 0.95] [0.34 0.18 0.48] [0.39 0.61 0.00]

100 100 [0.00 0.00 1.00] [0.00 0.01 0.99] [0.41 0.13 0.46] [0.10 0.90 0.00]

100 200 [0.00 0.00 1.00] [0.00 0.00 1.00] [0.48 0.07 0.45] [0.06 0.94 0.00]

100 500 [0.00 0.00 1.00] [0.00 0.00 1.00] [0.65 0.05 0.30] [0.02 0.98 0.00]

200 50 [0.00 0.00 1.00] [0.00 0.01 0.99] [0.45 0.10 0.45] [0.37 0.63 0.00]

200 100 [0.00 0.00 1.00] [0.00 0.00 1.00] [0.48 0.08 0.44] [0.10 0.90 0.00]

200 200 [0.00 0.00 1.00] [0.00 0.00 1.00] [0.63 0.06 0.31] [0.00 1.00 0.00]

200 500 [0.00 0.00 1.00] [0.00 0.00 1.00] [0.76 0.08 0.16] [0.00 1.00 0.00]

500 50 [0.00 0.00 1.00] [0.00 0.00 1.00] [0.57 0.08 0.35] [0.36 0.64 0.00]

500 100 [0.00 0.00 1.00] [0.00 0.00 1.00] [0.68 0.06 0.26] [0.05 0.95 0.00]

500 200 [0.00 0.00 1.00] [0.00 0.00 1.00] [0.76 0.08 0.16] [0.00 1.00 0.00]

500 500 [0.00 0.00 1.00] [0.00 0.00 1.00] [0.80 0.10 0.10] [0.00 1.00 0.00]

Note: The DGP considered in this Table is: Xit =
∑3
j=1 λjifjt + uit, where f1t = 0.8f1,t−1 + ε1t,

f2t = 0.5f2,t−1 + ε2t, f3t = 0.2f3,t−1 + ε3t, λji, εjt ∼ i.i.d N (0, 1), uit ∼ i.i.d Bit · N (0, 1) +

(1 − Bit) · Cauchy(0, 1) where Bit ∼ i.i.d Bernoulli(0.98). For each estimation method, the

[proportion of r̂ < 3 , proportion of r̂ = 3 , proportion of r̂ > 3 ] is reported from 1000 replications.
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Table 2: AFM with Outliers in the Idiosyncratic Errors:
Estimation of the Factors

Regress F on F̂PCA Regress F on F̂ 0.5
QFA

N T f1 f2 f3 f1 f2 f3

50 50 0.939 0.810 0.686 0.987 0.975 0.968
50 100 0.931 0.718 0.578 0.987 0.975 0.968
50 200 0.890 0.589 0.412 0.987 0.975 0.968
50 500 0.807 0.405 0.252 0.988 0.975 0.968

100 50 0.928 0.738 0.595 0.993 0.986 0.984
100 100 0.921 0.630 0.441 0.994 0.988 0.984
100 200 0.857 0.479 0.285 0.994 0.988 0.985
100 500 0.713 0.294 0.138 0.994 0.988 0.984

200 50 0.890 0.657 0.513 0.997 0.994 0.992
200 100 0.858 0.514 0.333 0.997 0.994 0.993
200 200 0.779 0.358 0.178 0.997 0.994 0.992
200 500 0.530 0.131 0.051 0.997 0.994 0.992

500 50 0.819 0.501 0.371 0.998 0.997 0.996
500 100 0.725 0.327 0.196 0.999 0.998 0.997
500 200 0.546 0.165 0.062 0.999 0.998 0.997
500 500 0.273 0.036 0.018 0.999 0.998 0.997

Note: The DGP considered in this Table is: Xit =
∑3
j=1 λjifjt+

uit, where f1t = 0.8f1,t−1 + ε1t, f2t = 0.5f2,t−1 + ε2t, f3t =
0.2f3,t−1 + ε3t, λji, εjt ∼ i.i.d N (0, 1), uit ∼ i.i.d Bit · N (0, 1) +
(1 − Bit) · Cauchy(0, 1) where Bit ∼ i.i.d Bernoulli(0.98). For
each estimation method, we report the average R2 in the regres-
sion of (each of) the true factors on the estimated factors by
PCA and QFA (assuming the number of factors to be known).
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Table 3: Gadea-Gonzalo Trend test (1916-
2018).

Characteristic Test-statistic p-value

mean 0.0134 0.0000
sd -0.0026 0.0000
min 0.0676 0.0027
max 0.0184 0.0000
iqr 0.0004 0.5970
kur -0.0026 0.0156
skw 0.0010 0.0001
q01 0.0222 0.0000
q05 0.0194 0.0000
q10 0.0136 0.0000
q25 0.0125 0.0000
q50 0.0143 0.0000
q75 0.0129 0.0000
q90 0.0148 0.0000
q95 0.0106 0.0000
q99 0.0108 0.1030

Note: Annual distributional characteristics
are estimated using the cross-sectional distri-
bution at each year (1916-2018). OLS esti-
mates and HAC tβ=0 standard errors from re-
gression Ct = α+ βt+ ut.
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Table 4: ADF unit root tests.

ADF test by stations

Percentage of rejections 99.32 %
Number of rejections 3

ADF test by characteristics
Characteristics Test-statistic p-value

mean -5.5723 0.0001
sd -8.6852 0.0000
min -3.6772 0.0285
max -2.5997 0.2815
iqr -9.1764 0.0000
kur -8.4206 0.0000
skw -9.6469 0.0000
q01 -5.2689 0.0020
q05 -8.3412 0.0000
q10 -7.1825 0.0000
q25 -7.2190 0.0000
q50 -6.5730 0.0000
q75 -2.1098 0.5338
q90 -8.3862 0.0000
q95 -7.4222 0.0000
q99 -3.0563 0.1227

Note: Annual distributional characteristics estimated us-
ing the cross-sectional distribution at each year (1916-2018).
ADF-test equations include intercept and trend. Lag-
selection conducted using SBIC criterion.

Table 5: ADF unit root tests for CO2 emis-
sions/concentrations time series.

Transformation Test-statistic p-value

Logged CO2 emissions:
Levels -1.898 0.6485
First differences -10.231 0.0000

Logged CO2 concentration:
Levels -2.089 0.5454
First differences -2.163 0.5042
Second differences -10.615 0.0000

Note: ADF-test equations include intercept and trend. Lag-
selection conducted using SBIC criterion.
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Table 6: Comparison of F̂QFA and F̂PCA

Elements of F̂ τQFA
Dataset τ 1 2 3 4 5 6

Climate 0.01 0.599
0.05 0.623
0.10 0.759 0.848
0.25 0.939 0.961 0.965 0.941
0.50 0.995 0.995 0.992 0.988 0.980 0.970
0.75 0.950 0.961 0.966 0.933
0.90 0.755 0.905
0.95 0.629
0.99 0.567

Note: This Table reports the R2 of regressing each element of F̂QFA
on F̂PCA. For F̂QFA, the numbers of estimated factors is obtained

using the rank-minimization criterion while, for F̂PCA, the numbers of
estimated factors are 8 for all datasets.
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Table 7: P-values of Granger non-causality tests for the QFA factors

Elements of F̂ τQFA
Regressor τ 1 2 3 4 5 6

0.01 0.000

0.05 0.000

0.10 0.199 0.008

0.25 0.531 0.052 0.056 0.967

∆ log(CO2)emi 0.50 0.819 0.000 0.124 0.120 0.694 0.012

0.75 0.737 0.021 0.004 0.542

0.90 0.478 0.010

0.95 0.888

0.99 0.137

0.01 0.000

0.05 0.000

0.10 0.000 0.013

0.25 0.438 0.009 0.101 0.809

∆2 log(CO2)cum 0.50 0.663 0.000 0.002 0.081 0.459 0.115

0.75 0.000 0.024 0.003 0.639

0.90 0.466 0.286

0.95 0.804

0.99 0.578

Note: This Table reports the p-values of Granger non-causality tests, where each

of the QFA factors is regressed on their own lags and the lags of the corresponding

regressor. The lag lengths are chosen according to AIC setting 12 as the maximum

number of lags.
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Table 8: P-values of Granger non-causality tests using
the mean curve estimate and PCA factors

Regressor

Elements of F̂PCA ∆ log(CO2)emi ∆2 log(CO2)cum

1 0.948 0.897

2 0.038 0.012

3 0.290 0.394

4 0.526 0.548

5 0.362 0.226

6 0.068 0.552

7 0.213 0.225

8 0.796 0.044

∆ Mean 0.007 0.013

Note: This Table reports the p-values of Granger non-

causality tests, where each of the PCA factors and the dirst

difference of the mean curve are regressed on their own lags

and the lags of the corresponding regressor. The lag lengths

are chosen according to AIC setting 12 as the maximum num-

ber of lags.
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B Figures

Figure 1: Proportion of outliers in temperature changes

Figure 2: Estimated quantile factors at q25 and q75.
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Figure 3: CO2 emissions in levels and first differences.
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Figure 4: CO2 concentrations in levels, first differences and second differences.
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