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1 Introduction

Decentralized finance (DeFi) is an umbrella term for a variety of financial service protocols and ap-

plications (e.g., decentralized exchanges, lending platforms, asset management) on blockchain. They

are anonymous permissionless financial arrangements that aim to replace traditional intermediaries by

running smart contracts – immutable, deterministic computer programs – on a blockchain. Thus, they

are different from traditional financial arrangements that rely on intermediaries run by third parties. By

automating the execution of contracts, DeFi protocols have potential to avoid incentive problems associ-

ated with human discretion (e.g., fraud, censorship, racial and cultural bias), expand access to financial

services and complement the traditional financial sector. The growth of decentralized finance has been

substantial since the “DeFi Summer” in 2020. According to data aggregator DeFiLlama, the total value

locked (TVL) of DeFi has reached 230 billion U.S. dollars as of April 2022, up from less than one billion

two years ago. As DeFi grows in scale and scope and becomes more connected to the real economy,

its vulnerabilities might undermine both crypto and formal financial sector stability (Aramonte, Huang,

and Schrimpf (2021)).

While policy makers and regulators have raised concerns about the financial stability implications

of DeFi (FSB 2022; IOSCO 2022)1, formal economic analysis on this issue is still very limited. In this

paper, we examine DeFi lending protocols – an important component of the DeFi eco-system, and the

sources and implications of their instability. For example, DeFi lending is much more volatile relative

to traditional lending.2 In addition, Aramonte et al. (2022) argue that DeFi lending generates “pro-

cyclicality” – the comovement between crypto prices and lending activities, as shown in Figure 1. We

develop a dynamic adverse selection model to capture these key features of DeFi lending, explore its

inherent fragility and its relationship to crypto asset price dynamics.

In Figure 2 we show a stylized structure of lending protocols. Anonymous lenders deposit their

crypto assets (e.g., stablecoins denoted as $) via a lending smart contract to the lending pool of the

corresponding crypto asset. Anonymous borrowers can borrow the crypto asset from its lending pool by

pledging any crypto collateral accepted by the protocol via a borrowing smart contract. The collateral

composition of a lending pool is unobservable, indicating that borrowers are better informed about the

collateral quality than the lenders. Collateral assets are valued based on price feeds provided by an
1URLs of reports: https://g20.org/wp-content/uploads/2022/02/FSB-Report-on-Assessment-of-Risks-to-Financial-

Stability-from-Crypto-assets_.pdf and https://www.iosco.org/library/pubdocs/pdf/IOSCOPD699.pdf
2For instance, the coefficients of variation for the total values of Aave v2 loans and deposits are respectively 73 and 65

in 2021. The corresponding statistics for the US demand deposits and C&I loans are respectively 10.4 and 2.7.
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Figure 1: Crypto price boom-bust cycle and pro-cyclicality in DeFi lending

Source: Aramonte et al. (2022)

oracle which can be either on-chain or off-chain. Since crypto assets are volatile, overcollateralized is a

key feature of DeFi borrowing. The rules for setting key parameters (e.g., interest rates and haircuts)

are pre-programmed in the smart contracts. The protocol is governed by holders of governance tokens

in a decentralized fashion. DeFi lending is typically short-term since all lending and borrowing can be

terminated at any minute.
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DeFi differs from traditional centralized finance (TradFi) in several unique aspects. In TradFi,

borrowers can be identified and standard assets are available as collateral. Furthermore, loan contracts

can be flexible, with loan officers modifying terms according to the latest hard and soft information.

These features help improve loan quality and enforce loan repayments in TradFi, but are not applicable

to DeFi lending which is based on a public blockchain. In the DeFi environment, agents are anonymous,

credit checks or other borrower-specific evaluations are not feasible. Some intertemporal and/or non-

linear features of a loan contract cannot be implemented. For instance, reputational schemes become

less effective (individuals can always walk away from a contract without future consequences). If loan

size is used to screen borrower types, users may find it optimal to submit multiple transactions from

different addresses. In addition, only tokenized assets can be pledged as a collateral. So far, these

assets tend to have a very high price volatility and often are bundled into an opaque asset pool. Since

a smart contract is used to replace human judgment, all terms (e.g., loan rate formulas, haircuts) need

to be pre-programmed and can only be contingent on a small set of quantifiable real-time information.

Moreover, contract terms cannot be contingent on soft information. As a result, DeFi lending typically

involves a linear, non-recourse debt contract, featuring over-collateralization on a pool of crypto assets

as the only risk control. While borrowers can choose to pledge any acceptable collateral assets, lenders

cannot control or easily monitor the composition of the underlying collateral pool, implying that DeFi

lending is subject to information asymmetry between borrowers and lenders.3 Last but not least, there

are so far no meaningful regulation and oversight of DeFi lending.

Motivated by these empirical observations, we develop a dynamic model of DeFi lending protocol

that has the following ingredients. Borrowing is decentralized, over-collateralized, backed by various

risky crypto assets, and the rule for haircuts is pre-specified. In addition, borrowers in each market are

better informed about the value of the collateral asset. We uncover a price-liquidity feedback effect as

the crypto market outcome in any given period depends on agents’ expectations about crypto market

conditions in future periods. Higher expectation about future crypto asset prices improves DeFi lending

and supports higher crypto prices today, leading to multiple self-fulfilling equilibria which give rise to the

fragility of DeFi lending. There exist “sentiment” equilibria in which sunspots generate fluctuations in

crypto asset prices and DeFi lending volume. Assets of lower average quality are used more as collaterals

during periods of negative sentiments. In addition, rigid smart contracts make crypto asset prices and
3Borrowers can also have an information advantage relative to the lending protocol when the smart contract relies on

an inaccurate price oracle. In the Appendix, we discuss some exploit incidents during the Terra collapse in May 2022 and

other price exploits due to inflated on-chain collateral prices.
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DeFi lending sensitive to fundamental shocks.

Our work is the first economic paper to develop a dynamic, equilibrium model for studying decen-

tralized lending protocols such as Aave and Compound. While there is a young and growing literature

on decentralized finance, there is limited work on DeFi lending platforms. Most existing DeFi papers

study decentralized exchanges to understand how automated market makers (e.g., Uniswap) function

differently from a traditional exchange (e.g., see Aoyagi and Itoy (2021), Capponi and Jia (2021), Lehar

and Parlour (2021), Park (2021)). There are also papers investigating the structure of decentralized

stablecoins such as Dai issued by the MakerDAO (e.g., d’Avernas, Bourany, and Vandeweyer (2021), Li

and Mayer (2021), Kozhan and Viswanath-Natraj (2021)). Lehar and Parlour (2022) study empirically

the impact of collateral liquidations on asset prices. For a general overview of DeFi architecture and

applications, see Harvey et al. (2021) and Schar (2021). Chiu, Kahn, and Koeppl (2022) study the value

propositions and limitations of DeFi. Vulnerabilities that make DeFi lending protocols fragile (e.g., price

oracle exploits by borrowers) are studied in the recent computer science literature. These computer sci-

ence papers focus mainly on the efficiency of design features of these protocols (e.g, see Gudgeon et al.

(2020), Perez et al. (2021), Qin et al. (2020), Qin et al. (2021)).

Our model is related to existing theoretical works on collateralized borrowing in a general equilibrium

setting such as Geanakoplos (1997), Geanakoplos and Zame (2002), Geanakoplos (2003), and Fostel and

Geanakoplos (2012). Building on Ozdenoren, Yuan, and Zhang (2021), our model captures some essential

institutional feature of DeFi lending to study the joint determination of lending activities and collateral

asset prices, which help us understand how information frictions and smart contract rigidity contribute

to the vulnerabilities of crypto prices and DeFi lending.

This paper is organized as follows. In Section 2, we provide a brief description of features and frictions

of lending protocol using Aave as an example to motivate the model assumptions. We describe the model

setup in Section 3 and derive the equilibrium lending market in Section 4. In Section 5, we establish

the inherent fragility of DeFi lending and discuss how flexible contract design can improve stability and

efficiency. Section 6 concludes. In the Online Appendix, we report some evidence to support the case

that our model can be useful for understanding the relationship between DeFi lending, crypto prices and

market sentiment.
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2 Lending Protocols: Features and Frictions

To motivate our model setup, we now describe some key features and frictions of DeFi protocols based

on Aave, the largest DeFi lending protocol.

Key players. The Aave eco-system consists of different players. Depositors can deposit a crypto

asset into the corresponding pool of the Aave protocol and collect interest over time. Borrowers can

borrow these funds from the pool by pledging any acceptable crypto assets as collateral to back the

borrow position. A borrower repays the loan in the same asset borrowed. There is no fixed time period

to pay back the loan. Partial or full repayments can be made anytime. As long as the position is safe, the

loan can continue for an undefined period. However, as time passes, the accrued interest of an unrepaid

loan will grow, which might result in the deposited assets becoming more likely to be liquidated. In

the eco-system, there are also AAVE token holders. Like “shareholders”, they act as residual claimants

and vote when necessary to modify the protocol. The daily operations are governed by smart contracts

stored on a blockchain that run when predetermined conditions are met.

Loan rate and liquidation threshold. The loan and the deposit rates are set based on the current

supply and demand in the pool according to formulas specified in the smart contracts. In particular, as

the utilization rate of the deposits in a pool goes up (i.e., a larger fraction of deposits are borrowed),

both rates will rise in a deterministic fashion. The Loan to Value (LTV) ratio defines the maximum

amount that can be borrowed with a specific collateral. For example, at LTV = .75, for every 1 ETH

worth of collateral, borrowers will be able to borrow 0.75 ETH worth of funds. The protocol also defines

a liquidation threshold, called the health factor. When the health factor is below 1, a loan is considered

undercollateralized and can be liquidated by collateral liquidators. The collateral assets are valued based

on price feed provided by Chainlink’s decentralized oracles.

Risky collateral. Aave currently accepts over 20 different crypto assets as collateral including

WETH, WBTC, USDC and UNI. Most non-stablecoin collateral assets have very volatile market value.

As shown in table 3 in the Appendix, the prices of stablecoins such as USDC and DAI (top panel),

are not so volatile and they are typically loaned out by lenders. Other crypto assets, which are used

as collaterals to back the borrowings, are extremely volatile relative to collateral assets commonly used

in traditional finance (bottom panel). For example, ETH, which accounts for about 50% of use non-

stablecoin deposits in Aave, has a daily volatility of 5.69%. The maximum daily price drop was over

26% during the sample period. The most volatile one is CRV, the governance token for the decentralized

exchange and automated market maker protocol Curve DAO. For CRV the maximum price change

within a day was over 40%. For risk management purposes, Aave has imposed very high haircuts on
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these crypto assets. For example, the haircuts for YFI and SNX are respectively 60% and 85%.4

Collateral pool. Loans are backed by a pool of collateral assets. While the borrower can pledge any

one of the acceptable assets as a collateral, the lenders cannot control or easily monitor the quality of the

underlying collateral pool. As a result, DeFi lending is subject to asymmetric information: borrowers

can freely modify the underlying collateral mix without notifying the lenders. Naturally, borrowers and

lenders have asymmetric incentives to spend effort acquiring information about the collateral pledged

(e.g., monitor new information, conduct data analytics).

Pre-specified loan terms. Aave lending pools follow pre-specified rules to set loan rates and

haircuts. As a smart contract is isolated from the outside world, it cannot be contingent on all available

real-time information. While asset prices are periodically queried from an oracle (Chainlink), the loan

terms do not depend on other soft information (e.g., regulatory changes, projections, statements of future

plans, rumors, market commentary) as they cannot be readily quantified and fed into the contract.

Decentralized governance. Like many other DeFi protocols, Aave has released the governance

to the user community by setting up a decentralized autonomous organization or DAO. Holders of the

AAVE token can vote on matters such as adjustments of interest rate functions, addition or removal of

assets, and modification of risk parameters such as margin requirements. To implement such changes

to the protocol, token holders need to make proposals, discuss with the community, and obtain enough

support in a vote. This process helps protect the system against censorship and collusion. However,

decentralized governance by a large group of token holders is both time and resource costly. Hence it

is not possible to update the protocol or the smart contract terms very frequently. As a result, relative

to a centralized organization, a DeFi protocol may be slower to make necessary adjustments to respond

to certain unexpected external changes (e.g., changes in market sentiments) in a timely manner. This

problem is well documented. For instance, a risk assessment report of Aave in April 2021 pointed out

that “As market conditions change, the optimal parameters and suggestions will need to dynamically

shift as well. Our results suggest that monitoring and adjustment of protocol parameters is crucial for

reducing risk to lenders and slashing in the safety module.” 5 In practice, Since the setup of Aave

v2 in late 2020 until May 2022, the risk parameters have been updated only 13 times (see Table 2 in
4More recently, Aave has started to accept real world asset (RWA) as collateral, allowing businesses to fi-

nance their tokenized real estate bridge loans, trade receivables, cargo & freight forwarding invoices, branded

inventory financing, and revenue based financing (https://medium.com/centrifuge/rwa-market-the-aave-market-for-

real-world-assets-goes-live-48976b984dde). Aave also plans to accept non-fungible tokens (NFTs) as collateral

(https://twitter.com/StaniKulechov/status/1400638828264710144). Being non-standardized, NFTs are likely to be subject

to even high informational frictions. Popular DeFi lending platforms for NFTs include NFTfi, Arcade, and Nexo.
5Source: https://gauntlet.network/reports/aave
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the Appendix for some of the key changes). All were conducted after Aave DAO elected Gauntlet, a

centralized entity, to provide dynamic risk parameters recommendations.

These features of Aave are common among the DeFi lending protocols, highlight three key frictions in

the DeFi lending. First, there is lack of commitment from DeFi borrowers and hence the borrowings have

to be (over-)collateralized. Second, There is potentially information asymmetry between DeFi borrowers

and lenders because lenders cannot control collateral mix in the collateral pool. Third, DeFi contracts

are rigid and based on quantifiable information on blockchain.

3 The Model Setup

The economy is set in discrete time and lasts forever.6 There are many infinitely-lived borrowers with

identical preferences. There is a fixed set of crypto assets. Each borrower can hold at most one unit.

There are also potential lenders who live for a single period and are replaced every period. The lending

protocol intermediates DeFi lending via a smart contract. All agents can consume/produce a numeraire

good at the end of each period with a constant per unit utility/cost.

Gains from Trade A borrower needs funding that can be provided by lenders. There are gains from

trade as the value per-unit of funding to a borrower is z > 1, while the per-unit cost of providing funding

by lenders is normalized to one. In the DeFi setting, borrowers are anonymous and cannot commit to

paying their debt. To overcome the commitment problem, loans must be backed by collateral. DeFi

lending relies on a smart contract to implement a collateralized loan. The DeFi intermediary determines

the terms of the smart contract. Collateral is locked into the smart contract and released to the borrower

if and only if a repayment is received.7

In DeFi lending protocals such as Aave, borrowers predominantly borrow stablecoins such as USDT

and USDC using risky collaterals such as ETH, BTC, YFI, YNX. They use stablecoins to fund various

transactions due to their status of medium of exchange and unit of account in DeFi. We can interpret z as

the value accrued to the borrowers when using the stablecoins borrowed from the lenders for purchasing

assets or converting them into fiat.8

6In reality, interest payment on the borrowing in the lending protocols is continuously compounded and can be termi-

nated at any time. Therefore, we can interpret that each time period in our model is relatively short.
7Chiu, Kahn, and Koeppl (2022) study how a smart contract helps mitigate commitment problems in decentralized

lending.
8It is straight-forward to introduce governance tokens issued by the intermediary. Governance token holders then

provide insurance to lenders by acting as residual claimants. Given risk neutrality, the equilibrium outcome remains the
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Crypto Asset’s Properties and Information Environment We assume that all crypto assets are

ex-ante identical and pay random dividend δ̃ at each period and survive to the next period with prob-

ability s̃. The dividend δ captures both pecuniary payoff that the asset generates (e.g., staking returns

to the holder), and other private benefits that accrue from holding the crypto asset (e.g., governance

right). At the beginning of a period, each asset receives an iid quality shock that determines its current

and future period payoffs. Specifically, with probability 1 − λ, the quality of an asset is high (H) and

probability λ it is low (L). The distribution of (δ̃, s̃) is FQ if asset quality is Q ∈ {H,L} . We assume

FH first-order stochastically dominates FL and denote expectation with respect to FQ with EQ.

To simplify the analysis we make further assumptions on the distributions. We assume that a high-

quality asset pays dividend δ > 0 at the end of the period and survives to the next period with probability

s = 1. A low-quality asset does not pay any dividends today (δ = 0) and it survives to the next period

with probability s ∈ [0, 1] which is drawn from a distribution F before the end of the period. Here, 1− s

captures whether the quality shock has persistent effects on the dividend flow of the crypto asset.

We assume that the crypto asset pays positive dividend in some states. The main role of this

assumption is to eliminate non-monetary equilibrium. In our model the asset has collateral service and

can have positive price even if it does not pay any dividend. However, there can also be an equilibrium

where the asset is worthless because current lenders believe future lenders will not accept the asset

the asset as collateral. Positive dividend eliminates the latter equilibrium. As we show later, in our

model multiple monetary equilibria emerge when there is asymmetric information about the asset payoff

(which includes the asset’s dividend and price). Existence of multiplicity does not necessarily require

asymmetric information about the dividend. Asymmetric information could be about survival probability

of the asset, or dividend, or both which is the case we present here.9

At the beginning of each period, the borrower of a crypto asset privately learns the asset’s quality

(i.e., whether it is high or low). After observing the quality shock, the borrower decides whether and how

much to borrow from the platform. The borrower then receives the private return from the loan (which

is z times the loan size), and observes the realization of (δ̃, s̃). Given the information, the borrower

decides whether to repay the loan or default. The asset’s quality and the state (δ̃, s̃) are both publicly

revealed at the end of each period. In the next period, some low-type assets do not survive and are

replaced by new ones that are ex-ante identical. In the main model, we assume that borrowers receive

same.
9Our results do not depend on the asymmetric information on the common value component of the dividends. In the

Appendix, we explore an alternative setup where there is asymmetric information concerning borrowers’ private valuation.

The main results hold.
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private information every period. In the Appendix, we consider the more general case where private

information arrives only infrequently with probability χ, which can capture the degree of information

imperfection.

Asset Price At the end of each period, agents meet in a centralized market to trade the assets by

transferring the numeraire good. At this point, the private information is revealed publicly. The end-

of-period ex-dividend price of a crypto asset that will survive to the next period is denoted as ϕt. The

pre-dividend price is thus Φt = δ + ϕt for a good asset and sϕt for a bad asset with survival probability

s. In the centralized market, each borrower can acquire at most one unit of crypto asset to the next

period.10

Smart Contract As discussed in the introduction, DeFi lending is anonymous and collateralized via

a smart contract. The smart contract is a debt contract that specifies, at each time t, the haircut and

interest rate (h,Rt) set by the lending protocol. The haircut defines the debt limit per unit of collateral

according to:

Dt ≡ Φt(1− h) (1)

where Φt = δ + ϕt.

In reality, the floating loan interest rate in the smart contract is a function of the utilization ratio i.e.

the ratio of demand and supply for funding, and the collateral specific haircut is infrequently updated.

To capture the economic impact of these features, we assume in our main model that the smart contract

specifies a flexible market clearing interest rate and a fixed haircut. We investigate the flexible haircut

case in an extension.

DeFi Lending & Borrowers In each period, if the borrower borrows ℓt units of funding, the face

value of the debt is Rtℓt. After observing the asset quality, the borrower raises funding from a DeFi

protocol by executing the lending contract. Given (Rt, Dt), a type Q = H,L borrower chooses how much

collateral at to pledge and how much loan ℓt to borrow from the pool:

max
at,ℓt

zℓt − EQ min{ℓtRt, at(δ̃ + s̃ϕt)}

subject to a collateral constraint

ℓtRt ≤ atDt

10The dynamic structure of the model is based on Lagos and Wright (2005).
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where Dt is the debt limit pinned down by (1). By borrowing ℓt and pledging at, the borrower obtains

zℓt from the loan but needs to either repay ℓtRt or lose the collateral value at(δ̃ + s̃ϕt). The collateral

value discounted by the haircut needs to be sufficiently high to cover the loan repayment. Note that,

without loss of generality, we can assume that the collateral constraint is binding: ℓtRt = atDt.11 So

the solution for the borrowing decision is given by

ait ∈ arg max
at∈[0,1]

at[zDt/Rt − EQ min{Dt, δ̃ + s̃ϕt}]. (2)

Hence, it is optimal to set at ∈ {0, 1}. When the term inside the square bracket is positive, the borrower

pledges at = 1 to borrow ℓt = Dt/Rt and promises to repay Dt. Default happens whenever Dt > δ̃+ s̃ϕt.

When the term inside the square bracket is non-positive, the borrower does not borrow: at = ℓt = 0.

Since EH min{Dt, δ + ϕt} = Dt ≥ EL min{Dt, s̃ϕt}, we have aLt ≥ aHt and ℓLt ≥ ℓHt. That is, the

low-type borrowers have higher incentives to borrow than the high-type. When both types borrow, we

have a pooling outcome. When only the low-type borrows, we have a separating outcome.

DeFi Lending & Lenders The intermediary has no initial funding. It obtains funding qt from the

lenders to finance loans to borrowers. When the loan matures, the intermediary passes the cash flows –

either the repayment of the borrowers or the resale value of the collateral (in case of a default) – to the

lenders, after collecting an intermediation fee (discussed below). Note that the borrower’s borrowing

decision, ai,t where i ∈ {L,H}, is quality dependent, meaning that lenders face adverse selection in DeFi

lending. Since lenders are not able to distinguish between low and high quality borrowers at the time

of lending, the choice of funding size qt does not depend on the underlying asset quality. Of course, in

equilibrium, lenders take into account the expected quality of the collateral mix backing the loan.

We assume that lending market is competitive. That is, given {ai,t}i∈{L,H}, Dt, and ϕt, funding

supply qt satisfies the following zero profit condition:

qt =
1

1 + f

{
1

aL,tλ+ aH,t (1− λ)
[aL,tλEL min {Dt, s̃ϕt}+ aH,t (1− λ)min {Dt, δ + ϕt}]

}
(3)

where f < z − 1 is a fixed fee charged by the intermediary per unit of loan.12

When aL,t = aH,t = 1 (both types are borrowing) or when aL,t = 1, aH,t = 0 and the realized type

is L,the funding supply is fully utilized and the funding market clears. In the separating case, if the
11To see this, suppose (ℓ∗, a∗) is optimal and ℓ∗R < a∗D. Since the objective function is (weakly) decreasing in a,

lowering a (weakly) increases the objective. The increase is strict if asLϕ < ℓR for some sL ∈ [s, s̄].
12When the loan matures the intermediary takes qf either from the repayment or from the resale value of the collateral.

The remaining amount goes to the lender. The assumption of f < z − 1 ensures that the net gain from loans is positive.
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realized type is H then there is no demand for funding. In this case, we assume the intermediary returns

the funding supply to the lenders without charging a fee.

The intermediary’s payoff is given by

f [λaL,t + (1− λ) aH,t]qt. (4)

In section 5.5, we consider the case where the intermediary flexibly chooses the haircut. In that case,

the intermediary chooses ht to maximize (4) taking (ai,t)i∈{L,H} and ϕt as given.

Determination of the Crypto Asset Price The price of a crypto asset at the end of period t, ϕt,,

is given by:

ϕt = β {λ (ELs̃)ϕt+1 + (1− λ) (δ + ϕt+1)}︸ ︷︷ ︸
Fundamental Value

(5)

+β

 λ (aL,t+1EL (zDt+1/Rt+1 −min{Dt+1, s̃ϕt+1)}))

+ (1− λ) aH,t+1 (zDt+1/Rt+1 −min{Dt+1, δ + ϕt+1})

︸ ︷︷ ︸
Collateral Value

where β is the discount factor such that 0 < β < 1/z. The continuation value of the asset, is simply the

sum of two terms: the fundamental value of the asset which is the discounted value of future dividend

and asset resale price, and the collateral value. Importantly, the collateral value of the asset depends

on endogenous variables, (ai,t+1)i∈{L,H}, Dt+1, Rt+1 and ϕt+1, which in turn depend on the extent of

asymmetric information in future DeFi lending markets.

Timing The time-line is summarized in Figure (3). In the beginning of each period, the smart contract

specifies the debt limit Dt (or equivalently the haircut h) and the loan interest rate. Next, borrower

receives private information about the quality of the asset and decides whether to borrow by pledging

collateral to the smart contract and lenders supply funding subject to zero profit condition. After this

stage, the borrower’s type is revealed, and the borrower either repays the loan or defaults and loses the

collateral. If the asset survives then its price is determined, consumption takes place and the borrower

works to acquire assets for the next period.

Equilibrium Definition Given haircut h and fee f , an equilibrium consists of asset prices {ϕt,}∞t=0,

debt thresholds {Dt}∞t=0, loan rates {Rt}∞t=0, funding size {qt}∞t=0 and collateral quantities {aLt, aHt}∞t=0

such that

12



Figure 3: Timeline
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1. borrowers’ loan decisions are optimal (condition 2),

2. lenders earn zero profit (condition 3),

3. funding supply equals funding demand, i.e. qt = Dt/Rt, and

4. the asset pricing equation is satisfied (condition 5).

4 Equilibrium in Lending Market

We begin the analysis by describing the equilibrium in the DeFi lending market for a given asset price

ϕ.13 To study the borrowers’ decision, we first define the degree of information insensitivity as the ratio

of the expected value of the debt contract for types L and H, i.e., ζ (ϕ;h) = EL min {D, s̃ϕ} /D ∈ (0, 1]

where D = (δ + ϕ)(1− h). As this ratio increases, the expected values of the debt under the low versus

high types become closer, and the adverse selection problem becomes less severe.

There are two cases depending on whether the high-type borrowers are active. In the pooling case,

condition (3) implies that the equilibrium funding supplied by lenders is

qP =
1

1 + f
[λEL min{D, s̃ϕ}+ (1− λ)D].

Interest rate is pinned down by qP = D/RP , that is,

RP =
D(1 + f)

λEL [min{D, s̃ϕ}] + (1− λ)D
.

In the separating case, the funding from lenders is given by

qS =
1

1 + f
EL min{D, s̃ϕ}.

13In this section we drop the time subscript t from all the variables to ease the notation.
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and the interest rate pinned down by qS = D/RS , that is,

RS =
D(1 + f)

EL [min{D, s̃ϕ}]
.

Define ζ ≡ 1 − z−1−f
zλ . The next proposition characterizes the equilibrium in the DeFi lending market

for a given asset price ϕ.

Proposition 1. Given asset price ϕ, if the degree of information insensitivity ζ (ϕ;h) > ζ, then borrow-

ers’ equilibrium funding obtained from DeFi lending is q = qP , interest rate is R = RP and collateral

choices for H type borrower and L type borrower are aL = aH = 1. If the degree of information in-

sensitivity ζ (ϕ;h) < ζ, then borrowers’ equilibrium funding from DeFi lending is q = qS, interest rate

is R = RS, and collateral choices for H type borrower and L type borrower are aL = 1 and aH = 0.

The former condition, for a pooling equilibrium, is easier to satisfy when asset price ϕ, haircut h or

productivity from borrowers’ private investment z is higher.

Proposition 1 implies that, given asset price ϕ, there is a unique equilibrium in DeFi lending. It is a

pooling (separating) outcome when the debt contract is sufficiently informationally insensitive (sensitive).

In particular, when the degree of information insensitivity ζ (ϕ;h) is above the threshold ζ, the adverse

selection problem is not too severe and both types borrow. In this case, the loan size is the pooling

quantity q = qP . When the degree of information insensitivity is below the threshold, the adverse

selection problem is severe and only the low type borrows. In this case, the loan size is the separating

amount q = qS . Furthermore, the loan rate in a pooling equilibrium is lower than that in a separating

equilibrium.

Note ζ (ϕ;h) = EL min{1, s̃ϕ
(δ+ϕ)(1−h)}. As a result, the debt contract becomes informationally less

sensitive for a high ϕ and for a high h. The above proposition also indicates that in addition to the

parameter λ that characterizes type heterogeneity, the net gains from trade, z/(1+f), is also an important

determinant of adverse selection: a lower z/(1+f) leads to a higher ζ. In particular, even if there is very

little asymmetric information about the quality of the debt contract (i.e., when ζ (ϕ;h) is slightly below

1), as z/(1+ f) approaches 1 (so that ζ is close 1), the DeFi lending will be in a separating equilibrium.

In other words, when net gains from trade is low, even a slight amount of asymmetric information results

in adverse selection problem.

14



5 Multiple Equilibria in Dynamic DeFi Lending

The analysis in the previous section takes the asset price as given. In this section, we characterize

the stationary equilibrium where asset prices are endogenously determined. We demonstrate that DeFi

lending is fragile in the sense that it exhibits dynamic multiplicity in prices. Specifically, we show that

there might be multiple equilibria in the DeFi lending market justified by different crypto asset prices.

The multiple asset prices are in turn justified by the different equilibria in DeFi lending. Since we are

focusing on stationary equilibria, we drop the time subscripts.

5.1 Characterization of Stationary Equilibria

5.1.1 Pooling equilibrium

In a stationary pooling equilibrium, all borrowers borrow (aL = aH = 1). This equilibrium exists when

there is an asset price ϕP satisfying the equation

ϕP = β
[
(z − 1− f)qP

]
+ β(1− λ)δ + β(λELs̃+ (1− λ))ϕP . (6)

The loan size is given by

qP =
1

1 + f

(
λEL

[
min{DP , s̃ϕP }

]
+ (1− λ)DP

)
,

where DP =
(
δ + ϕP

)
(1−h). In addition, it has to satisfy the high-type borrowers’ incentive constraint

to pool:

ζ
(
ϕP ;h

)
= EL min{1, s̃ϕP

(δ + ϕP )(1− h)
} ≥ ζ. (7)

5.1.2 Separating Equilibrium

In a separating equilibrium, only the low-type borrowers borrow (i.e., aH = 0, aL = 1). This equilibrium

exists when there is an asset price ϕS satisfying the equation

ϕS = β
(
λ(z − 1− f)qS + (1− λ)δ + (λELs̃+ (1− λ))ϕS

)
. (8)

The loan size is given by
DS

R
= qS =

1

1 + f
EL

[
min{DS , s̃ϕS}

]
,

where DS =
(
δ + ϕS

)
(1− h). In addition, pooling violates the high-type’s incentive constraint:

ζ
(
ϕP ;h

)
< ζ. (9)

15



5.2 Existence and Uniqueness

We first focus on the asset pricing equations (6) and (8).

Lemma 1. Equation (6) has a unique solution ϕP and equation (8) has a unique solution ϕS . Also,

ϕP ≥ ϕS .

Lemma 1 implies that there exists at most one pooling and one separating stationary equilibrium.

If they co-exist, the price in the pooling equilibrium is higher than that in the separating equilibrium.

It is also easy to show that both prices are higher than the fundamental price of the asset in autarky,

ϕ = β(1−λ)δ
1−β(λE(sL)+(1−λ)) . This means that the introduction of DeFi lending raises the equilibrium asset

price above its fundamental level. Lemma 1 implies that ζ(ϕP ;h) ≥ ζ(ϕS ;h). Hence, we have the

following proposition.

Proposition 2. There always exists at least one stationary equilibrium:

- it is a unique pooling equilibrium when ζ < ζ(ϕS ;h),

- it is a unique separating equilibrium when ζ > ζ(ϕP ;h),

- a pooling equilibrium and a separating equilibrium coexist when ζ ∈ [ζ(ϕS ;h), ζ(ϕP ;h)].

In the next section, we examine the conditions under which the multiplicity arises.

5.3 Haircut and Multiplicity

In Proposition 2, multiplicity arises due to a dynamic price feedback effect described in Figure 4. When

the collateral asset price is high, the degree of information insensitivity of the debt contract, ζ(ϕP ;h),

is above the threshold ζ. Hence, the adverse selection problem is mild and the high-type borrowers are

willing to pool with the low type. In turn, if agents anticipate a pooling equilibrium in future periods,

the expected liquidity value of the asset in the next period is large, hence the asset price today is high.

Conversely, when the asset price is low, the degree of information insensitivity of the debt contract,

ζ(ϕS ;h), is below the threshold ζ. Therefore, the adverse selection problem is severe and the high type

retains the asset and chooses not to borrow. In turn, if agents anticipate a separating equilibrium in

future periods, the liquidity value of the asset is limited thus the asset price today is low. As a result,

the asset prices are self-fulfilling in this economy.

The haircut is a key parameter controlling the degree of information sensitivity. Setting a lower hair-

cut makes the debt contract informationally more sensitive, magnifying the adverse selection problem.
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Figure 4: Dynamic Feedback Loop
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Defining two thresholds

κP ≡ ζ

βz[(1− λ) + ζλ]

κS ≡ ζ

β[(1− λ) + ζλz]
< κP ,

we have the following result.

Proposition 3. Suppose the expected survival probability of the crypto asset satisfies ELs̃ ∈ (κP , κS).

There exists a threshold for haircut such that when the haircut h is below this threshold, there are

multiple equilibria.

5.3.1 An Illustrative Example

We now use an example to illustrate the effects of h on the equilibrium outcome. The full analysis is

given in the Appendix. Suppose s̃ is drawn from a two-point distribution such that s = 1 with probability

π, and s = 0 with probability 1 − π. Consider the separating equilibrium. When s = 0, a low-type

borrower always defaults. When s = 1, the low-type defaults if DS =
(
δ + ϕS

)
(1− h) > ϕS and repays

if DS ≤ ϕS . We can rewrite this condition to show that there exists a threshold level hSsuch that when

s = 1, the low-type defaults if h < hS and repays if h ≥ hS . In the former case, the low type always

defaults so the face value of the loan and consequently the loan size do not depend on the haircut. In

the latter case, the low type repays the loan in the good state (i.e., s = 1), hence the loan size depends

on the face value of the debt. Since the face value of debt declines as the haircut increases, the loan size

decreases in h.
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We define ζS (h) ≡ ζ(ϕS (h) ;h). That is, we obtain ζS (h) by substituting the price ϕS as a function

of haircut given fixed values for all other exogenous variables. We define ζP (h) similarly. Using (9), a

separating equilibrium exists if ζS (h) ≤ ζ. The threshold ζS (h) is strictly increasing in h for h < hS .

The reason is that the high type never defaults, so the expected value of the contract under the high type

declines as h increases. The low type, on the other, always defaults and the expected value of the contract

under the low type is independent of h. Hence, the information sensitivity of the contract decreases as

h increases and it becomes harder to support a separating equilibrium. For h ≥ hS , ζS (h) = π and a

separating equilibrium exists whenever π < ζ. That is, once the haircut is large enough, increasing it

further does not affect the information sensitivity of the contract. The reason is that, in this case, the

high type always pays the face value and the low type pays the face value only in the good state. As

the haircut increases, the face value decreases but the value of the contract declines at the same rate for

both types so its information sensitivity remains constant.

We analyze the pooling equilibrium similarly, and find a threshold hP < hS such that when s = 1,

the low-type defaults if h < hP and repays if h ≥ hP . A pooling equilibrium exists if ζP (h) ≥ ζ. The

threshold ζP (h) is strictly increasing in h and ζP (h) > ζS (h) for h < hP . For h ≥ hP , ζP (h) = π and

a pooling equilibrium exists whenever π > ζ.

Putting these facts together we see that whenever h < hS , we have ζS (h) < ζP (h). Hence when

ζ is in this range the two equilibria coexist. When the haircut exceeds hS , there can only be a unique

equilibrium depending on whether ζ is above or below π.

Figure 5 plots the effects of h on the asset price, the loan size, the debt limit and the degree of

information insensitivity of the contract. The red and blue curves indicate respectively the separating

and pooling equilibria, assuming their existence. The parameter values used are z = 1.1, λ = 0.5,

β = 0.9, δ = 1, π = 0.92, f = 0, which satisfy the condition ELs̃ ∈ (κP , κS) in Proposition 3. The

bottom right plot compares the degrees of information insensitivity to the threshold ζ which is captured

by the horizontal dash line. When h is close to zero, the dash line appears above the red curve and below

the blue curve, confirming the multiplicity result in Proposition 3. The other three plots also confirm

the earlier result that the asset price, loan size and debt limit are higher in a pooling equilibrium. In

this example, multiplicity can be ruled out and pooling can be supported by setting h > ĥ = 7.1% where

ζ = ζS(ĥ). 14

14When h > ĥ,separating equilibrium cannot be sustained and hence in Fgure 5 red lines depicting separating equibriums

become red dotted lines in this region.
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Figure 5: Effects of Haircut h
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5.4 Sentiment Equilibrium

In the middle region where multiple self-fulfilling equilibria coexist, it is possible to construct sentiment

equilibria where agents’ expectations depend on non-fundamental sunspot states (Asriyan, Fuchs, and

Green (2017)). Suppose that there are K sentiment states indexed from 1 to K. We let σkk′ be the

Markov transition probability from sentiment state k to k′.

In the presence of sentiments we modify the model as follows. Let ϕk be the price of the asset, Rk be

the loan rate, and Dk =
(
δ + ϕk

)
(1− h) be the debt limit in sentiment state k. Quantities of collateral

akL, a
k
H chosen by each type must be optimal given the price and rate at each sentiment state k. The

loan size chosen by the lender in sentiment state k is given by:
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qk = λEL

[
min{Dk, sϕk}

]
+ (1− λ)Dk

The price of crypto asset in sentiment state k is given by:

ϕk = β{
K∑

k′=1

σkk′{λ
∫ s̄

s

sLϕ
k′
dF (sL) + (1− λ)

(
δ + ϕk′

)
+ λ

(
ak

′

L

∫ s̄

s

(
zDk′

/Rk′
−min{Dk′

, sLϕ
k′
)}
)
dF (sL)

)
+ (1− λ) ak

′

H

(
zDk′

/Rk′
−Dk′

)
}.

We want to construct a non-trivial sentiment equilibrium such that the economy supports a pooling

outcome in states k = 1, ..., k̄ and a separating outcome in states k = k̄ + 1, ...,K. By continuity, one

can obtain the following result.

Proposition 4. Suppose E(s) ∈ (κP , κS) and haircut is not too big. Then for σkk large enough, there

exists a non-trivial sentiment equilibrium.

To demonstrate non-trivial sentiment equilibrium and examine equilibrium properties, we provide the

following two numerical examples. In both examples we assume s̃ is drawn from a two-point distribution

such that s = 1 with probability π, and s = 0 with probability 1− π.

Example 1. Suppose K = 3 and k̄ = 1. The economy stays in the same state with probability σ

and moves to the next state with probability 1 − σ where the next state from 1 is 2, from 2 is 3 and

from 3 is 1. We can interpret the three states as follows:

• k = 1: Boom state

– a1L = a1H = 1, q1 = λπmin{(δ + ϕ1)(1− h), ϕ1}+ (1− λ)(δ + ϕ1)(1− h)

• k = 2: Crash state

– a2L = 1, a2H = 0, q2 = πmin{(δ + ϕ2)(1− h), ϕ2}

• k = 3: Recovery state

– a3L = 1, a3H = 0, q3 = πmin{(δ + ϕ3)(1− h), ϕ3}

The asset prices are then given by

ϕk =βσk1

[
(z − 1)q1 + (1− λ)δ + (λπ + (1− λ))ϕ1

]
+βσk2

[
λ(z − 1)q2 + (1− λ)δ + (λπ + (1− λ))ϕ2

]
+βσk3

[
λ(z − 1)q3 + (1− λ)δ + (λπ + (1− λ))ϕ3

]
20



Figure 6 below plots the effects of sentiment states on asset prices and total lending. When σ = 0.95,

the sentiment state is sufficiently persistent so that the above sentiment equilibrium exists. As shown,

the sentiment dynamics drive the endogenous asset price cycle: The asset price declines when the

economy enters the crash state, jumps up when the economy moves from the crash state to the recovery

state, and jumps up further when the economy returns to the boom state. Note that the total lending,(
λakL + (1− λ)akH

)
qk is “pro-cyclical” in the sense that it is positively correlated with the asset price.

Figure 6: Sentiment Equilibrium Example 1
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Next, we show a similar pro-cyclical pattern of lending and asset prices in an example where there

are more (than three) states and a state moves to an up or a down state with an equal probability. In

this example, equilibrium lending and asset prices are more volatile.

Example 2. Let K = 10. If the economy is in state k in a given period, in the next period sentiment

stays the same with probability σ. From states k ∈ {2, . . . ,K − 1} economy moves to state k − 1 with

probability (1− σ) /2 and to state k + 1 with probability (1− σ) /2. From state 1 economy moves to
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state 2 with probability 1 − σ. From state K economy moves to state K − 1 with probability 1 − σ.

Figure 7 plots a simulation for 5000 periods when σ = 0.95 and k̄ = 6.

Figure 7: Sentiment Equilibrium Example 2
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5.5 Uniqueness under Flexible Design of Debt limit

We have shown that DeFi lending subject to a rigid haircut can lead to multiplicity when the debt

contract is too informationally sensitive. We now show that a flexible contract design supports a unique

equilibrium and generates higher social surplus from lending compared to the case with a rigid haircut.

Under flexible design, the smart contract is no longer subject to the constraint (1). Instead, in each

period, the contract designer can choose any feasible debt contract, y(D, δ̃ + s̃ϕt) = min(D, δ̃ + s̃ϕt) for

0 ≤ D ≤ δ + ϕt. Let ẑ denote the marginal value of obtaining funding from lenders deducting the
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intermediation fee f to the intermediary,

ẑ =
z

1 + f
.

Recall from (4) that intermediary maximizes the expected loan size times the intermediation fee:

f [λ+ (1− λ) aH,t]qt

(
y(D, δ̃ + s̃ϕt)

)
The loan size is:

qt

(
y(D, δ̃ + s̃ϕt)

)
=

1

1 + f

[λEL + aH,t (1− λ)EH ] y(D, δ̃ + s̃ϕt)

λ+ aH,t (1− λ)
(10)

where

aH,t =

1 if ẑ [λEL + (1− λ)EH ] y(D, δ̃ + s̃ϕt) ≥ EHy(D, δ̃ + s̃ϕt)

0 otherwise
. (11)

Equivalently the intermediary maximizes

[λEL + aH,t (1− λ)EH ] y(D, δ̃ + s̃ϕt) (12)

subject to (11).In words, the intermediary takes the price ϕt as given and sets the debt threshold D to

maximize the expected loan size taking into account the impact if the contract on the funding that the

lenders are willing to supply under the separating and the pooling cases. The value of the asset to the

borrower is:

Vt = max
0≤D≤δ+ϕt

λ
[
ẑqt

(
y(D, δ̃ + s̃ϕt)

)
− ELy(D, δ̃ + s̃ϕt) + EL

(
δ̃ + s̃ϕt

)]
(13)

+ (1− λ)
[
aH,t

{
ẑqt

(
y(D, δ̃ + s̃ϕt)

)
− EHy(D, δ̃ + s̃ϕt)

}
+ EH

(
δ̃ + s̃ϕt

)]
Given the optimal design, the asset price at the end of the previous period equals

ϕt−1 = βVt. (14)

An equilibrium under flexible design of smart contracts is D, Vt, and ϕt such that (i) D maximizes 12

taking ϕt as given and, (ii) Vt, and ϕt satisfy (13) and (14).

We also make the same simplifying assumptions on the distribution of
(
δ̃, s̃

)
that we make in the

rigid haircut case. That is, we assume

EHy(D, δ̃ + s̃ϕt) = y(D, δ + ϕt);

and

ELy(D, δ̃ + s̃ϕt) =

∫ s̄

s

y(D, sLϕt)dF (sL) .

23



The following proposition compares the outcomes under flexible contract design with those under a

DeFi lending contract subject to the rigid haircut rule (1).

Proposition 5. Under flexible optimal debt limit,

(i) there exists a unique stationary equilibrium.

(ii) given any end-of-period price ϕt, the asset price in the previous period and the lending volume

are higher than those under the rigid DeFi contract,

(iii) the stationary equilibrium Pareto dominates the one under DeFi.

The proposition shows that the equilibrium under flexible contract design is unique and generates

more social surplus. For example, when ϕt is high (which makes the debt contract informationally less

sensitive), the designer can increase Dt to raise the surplus from lending, inducing a higher lending

volume. In contrast, when ϕt is low (which makes the contract informationally more sensitive), the

designer may choose to lower Dt to maintain a pooling outcome to induce a higher lending volume.15

This flexibility in adjusting Dt implies that, given any end-of-period price ϕt, the price of asset in the

previous period and the loan size are weakly greater than those under the rigid DeFi contract. Therefore,

the steady state price and loan size are also weakly greater than those under DeFi. The borrower is

better off under flexible contract design while lenders are not worse off. The stationary equilibrium

therefore Pareto dominates the one under DeFi.

The above result suggests that the rigid haircut rule (1) imposed by the DeFi smart contract generates

financial instability in the form of multiple equilibria, and potential sentiment driven equilibria (e.g.

Asriyan, Fuchs, and Green (2017)), and lowers welfare. Can a DeFi smart contract be pre-programmed

to replicate the flexible contract design? This can be challenging in practice. First, flexible contract

cannot be implemented using simple linear hair-cut rules that are typically en-coded in DeFi contracts.

Second, the optimal debt threshold depends on information that may not be readily available on-chain

(e.g., z, λ). Alternatively, the lending protocol can replace the algorithm by a human risk manager who

can adjust risk parameters in real time according to the latest information. Relying fully on a trusted

third party, however, can be controversial for a DeFi protocol. Our results highlight the difficulty in

achieving stability and efficiency in a decentralized environment subject to informational frictions.

5.5.1 A Simple Example

In the example with a two-point distribution, the optimal flexible debt limit depends on parameter

values. As shown in the Appendix, when π < ζ, the pooling equilibrium does not exist. It is thus
15Notice that, depending on parameter values, the designer may also choose to raise Dt to induce a separating equilibrium.
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optimal for the intermediary to set DS
t = ϕt to support a separating equilibrium. When π ≥ ζ, the

pooling equilibrium exists and dominates the separating one. The intermediary’s optimal choice is to

set

DP
t = min

{
πϕt

ζ
, δ + ϕt

}
.

Therefore, when the debt limit is flexible, there exists a unique stationary equilibrium. The implied

haircut is not a fixed number but a non-linear function:

ht =

0 , if π < ζ,

max
{
1− πϕt

ζ(δ+ϕt)
, 0
}

, if π ≥ ζ.

6 Conclusion

In this paper, we study the sources of vulnerability in DeFi lending related to a few fundamental fea-

tures of DeFi lending (collateral with uncertain quality, oracle problem, and rigid contract terms). We

demonstrate the inherent instability of DeFi lending due to a price-liquidity feedback exacerbated by

informational frictions, leading to self-fulfilling sentiment driven cycles. Stability requires flexible and

state-contingent smart contracts. To achieve that, the smart contract may take a complex form and

require a reliable oracle to feed real-time hard and soft information from the off-chain world. Alterna-

tively, DeFi lending may need to re-introduce human intervention to provide real-time risk management

– an arrangement that forces the decentralized protocol to rely on a trusted third party. Our finding

highlights DeFi protocols’ difficulty to achieve efficiency and stability while maintaining a high degree

of decentralization.
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A Appendix

A.1 Proof of Proposition 1

Condition (2) implies that, in a pooling equilibrium, the high-type borrower is willing to borrow if and

only if

zqP ≥ Emin{D, δ + ϕ},

which is equivalent to

EyL(sL, ϕ)/EyH(ϕ) ≥ ζ.

If EyL(sL, ϕ)/EyH(ϕ) > ζ then it is optimal for the intermediary to set R = RP . To see this, note

that at this rate lenders provide loan qP and, by assumption, the high type borrower indeed chooses

to borrow. This is clearly optimal because setting a higher rate lowers total lending and at a lower

rate lenders do not break even. If EyL(sL, ϕ)/EyH(ϕ) < ζ then the intermediary’s problem is solved by

setting R = RS . In this case, if the intermediary lowers the rate sufficiently below RP then the high

type would borrow. However, at that rate lenders would make negative profit.

Since EyL(sL, ϕ)/EyH(ϕ) = Emin{1, sLϕ
(δ+ϕ)(1−h)}, a higher ϕ or h make the condition for the pooling

outcome easier to satisfy.
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A.2 Proof of Proposition 2

First, we define functions

q̂S(ϕ) =
1

1 + f
E [min{(1− h)(ϕ+ δ), sLϕ}] ,

q̂P (ϕ) =
1

1 + f
E [λmin{(1− h)(ϕ+ δ), sLϕ}+ (1− λ)(1− h)(ϕ+ δ)] .

Note that their difference is

q̂P (ϕ)− q̂S(ϕ)

=
1− λ

1 + f
[(1− λ)(1− h)(ϕ+ δ)− Emin{(1− λ)(1− h)(ϕ+ δ), sLϕ}]

≥0,

and 0 < q̂S′(ϕ) < q̂P ′(ϕ) < 1. Similarly, we define functions

ϕ̂P (ϕ) = β
[
(z − 1− f)q̂P (ϕ)

]
+ β(1− λ)δ + β(λE(sL) + (1− λ))ϕ,

ϕ̂S(ϕ) = βλ(z − 1− f)q̂S(ϕ) + β(1− λ)δ + β(λE(sL) + (1− λ))ϕ,

which have the following properties:

ϕ̂P (0) = β(1− λ)δ + β
(z − 1− f)(1− λ)(1− h)δ

1 + f
> β(1− λ)δ = ϕ̂S(0),

ϕ̂P ′(ϕ) > ϕ̂S′(ϕ) > 0,

ϕ̂P ′(ϕ) = β
[
(z − 1− f)q̂P ′(ϕ)

]
+ β(λE(sL) + (1− λ)) < 1,

ϕ̂S′(ϕ) = βλ(z − 1− f)q̂S′(ϕ) + β(λE(sL) + (1− λ)) < 1,

and the difference between the two functions is

ϕ̂P (ϕ)− ϕ̂S(ϕ)

=β(1− λ)(z − 1− f)q̂P (ϕ) + βλ(z − 1− f)(q̂P (ϕ)− q̂S(ϕ)) > 0.

The above properties imply that both functions have a unique fixed point and that ϕP > ϕS .

A.3 Proof of Proposition 3

Separating equilibrium
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Consider first a separating equilibrium where a borrower chooses aL = 1 and aH = 0:

Debt limit:

DS =
(
δ + ϕS

)
(1− h)

Loan size:

ℓL = qS = E
[
min{DS , sϕS}

]
Asset price:

ϕS = β
(
λ
[
zqS − Emin{DS , sϕS}

]
+ (1− λ)δ + (λE(s) + (1− λ))ϕS

)
Existence of separating equilibrium:

ELy

EHy
=

Emin{DS , sϕS}
(δ + ϕS) (1− h)

< ζ

We now look at the limiting case as h → 0:

Debt limit:

DS =
(
δ + ϕS

)
Loan size:

qS = E(s)ϕS

Asset price:

ϕS =
β(1− λ)δ

1− β[λzE(s) + (1− λ)]

Existence of separating equilibrium:

ELy

EHy
=

Emin{DS , sϕS}
(δ + ϕS) (1− h)

=
E(s)ϕS

(δ + ϕS)
< ζ

Hence, a separating equilibrium exists when

E(s) <
ζ

β[(1− λ) + ζλz]
≡ κS .

Pooling equilibrium

We now consider a pooling equilibrium where aL = 1 and aH = 1:

Debt limit:

DP =
(
δ + ϕP

)
(1− h)
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Loan size:

ℓL = ℓH = qP = λE
[
min{DP , sϕP }

]
+ (1− λ)DP

Asset price:

ϕP = β
[
zqP − λEmin{DP , sϕP } − (1− λ)DP

]
+ β(1− λ)δ + β(λE(s) + (1− λ))ϕP

Existence of pooling equilibrium:

ELy

EHy
=

Emin{DP , sϕP }
(δ + ϕP ) (1− h)

> ζ

As h → 0, we have

Debt limit:

DP =
(
δ + ϕP

)
Loan size:

ℓL = ℓH = qP = λE(s)ϕP + (1− λ)(δ + ϕP )

Asset price:

ϕP =
βz(1− λ)δ

1− βz[λE(s) + (1− λ)]

Existence of pooling equilibrium:

ELy

EHy
=

Emin{DS , sϕS}
(δ + ϕS) (1− h)

=
E(s)ϕP

(δ + ϕP )
> ζ

Hence a pooling equilibrium exists when

E(s) >
ζ

βz[(1− λ) + ζλ]
≡ κP < κS

Therefore, when E(s) ∈ (κP , κS), there are multiple equilibria in the neighborhood of h = 0.
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A.4 Two-point Distribution Example

A.4.1 Separating Equilibrium

Suppose sL = 1 w.p. π, and sL = 0 w.p. 1− π.

In a separating equilibrium:

Debt limit:

DS =
(
δ + ϕS

)
(1− h)

Loan size:

ℓL = qS = E
[
min{DS , sϕS}

]
= πmin{DS , ϕS}

There are two cases.

Case (i) DS > ϕS

This is true when

δ
1− h

h
> ϕS .

We then have

qS = πϕS ,

ϕS =
β(1− λ)δ

1− β[λzπ + (1− λ)]
.

The existence of separating equilibrium requires

ζS(h) =
πϕS

(δ + ϕS) (1− h)
< ζ.

We define a threshold

hS ≡ δ

ϕS + δ
=

1− β[λzπ + (1− λ)]

1− βλzπ
.

When the haircut is lower than the threshold h, the low type borrowers default even when sL = 1.

In this case, the loan size is equal to the expected value of the asset, πϕS , which does not depend on the

haircut. Hence, the asset price is also independent of h. An increase in h, however, makes it harder to

support a separating equilibrium as the contract becomes less information sensitive.

Case (ii) DS < ϕS

This is true when

δ
1− h

h
< ϕS .
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We then have

qS = π(δ + ϕS)(1− h)

ϕS =
β(λ(z − 1)π(1− h) + (1− λ))δ

1− β[λ(z − 1)π(1− h) + (1− λ) + λπ]
.

The existence of separating equilibrium requires

ζS(h) = π < ζ.

When the haircut is higher than the threshold h, the low type pays back the loan to retain the collateral

when sL = 1. In this case, the loan size is equal to the πD. Hence, the asset price is decreasing in h.

A separating equilibrium exists whenever π < ζ as h does not affect the information sensitivity of the

contract.

A.4.2 Pooling Equilibrium

In a pooling equilibrium:

Debt limit:

DP =
(
δ + ϕP

)
(1− h)

Loan size:

qP = λE
[
min{DP , sϕP }

]
+ (1− λ)DP = λπmin{DP , ϕP }+ (1− λ)DP

There are two cases.

Case (i) DP > ϕP

This is true when

δ
1− h

h
> ϕP .

We then have

qP = λπϕP + (1− λ)DP

ϕP =
β(1− λ)δ[(z − 1)(1− h) + 1]

1− β[λ(z − 1)π + (z − 1)(1− λ)(1− h) + λπ + 1− λ]

The existence of separating equilibrium requires

ζP (h) =
πϕP

(δ + ϕP ) (1− h)
> ζ.

We can again define a threshold
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hP ≡ 1− β[λ(z − 1)π + (z − 1)(1− λ) + λπ + 1− λ]

1− zβλπ − β(z − 1)(1− λ)
< hS

such that this case holds when h < hP .

Case (ii) DP < ϕP

This is true when

δ
1− h

h
< ϕP .

We then have

qP = λπDP + (1− λ)DP

ϕP = βδ
(z − 1)(λπ + 1− λ)(1− h) + (1− λ)

1− β[(z − 1)(λπ + 1− λ)(1− h) + λπ + 1− λ]

The existence of pooling equilibrium requires

ζP (h) = π > ζ.

A.5 Proof of Uniqueness Under a Flexible Smart Contract

Denote the debt contract y(D, δ̃+ s̃ϕ) = min(D, δ̃+ s̃ϕ). We prove the result for the main model where

EHy(D, δ̃ + s̃ϕ) = y(D, δ + ϕ);

and

ELy(D, δ̃ + s̃ϕ) =

∫ s̄

s

y(D, sϕ)dF (s) .

The arguments, however, generalize to the more general case with some modifications.

Denote D∗ ≤ δ+ϕ the maximum face value so that the incentive constraint of the high type borrower

is satisfied

ẑ
[
λELy(D, δ̃ + s̃ϕ) + (1− λ)EHy(D, δ̃ + s̃ϕ)

]
≥ EHy(D, δ̃ + s̃ϕ)

in which case there is a pooling equilibrium.

In the baseline model, the intermediary takes haircut as given and maximizes revenue from trading

securities. Maximizing revenue is the same as maximizing trade volume of the deposit contract because

the fee per volume is taken as given.

When the intermediary designs the smart deposit contract flexbly, the intermediary still aims to

maximize the expected trading volume. Specifically, the intermediary chooses D, or equivalently haircut,
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to maximize expected trade volume [λEL + aH,t (1− λ)EH ] min(D, δ̃+ s̃ϕ) taking ϕ as given. Note that

the intermediary’s payoff is increasing in D as long as the equilibrium does not switch from pooling to

separating. Hence, if the intermediary chooses a contract that leads to a pooling outcome, then D = D∗,

and if the intermediary chooses a contract that leads to a separating outcome, then D = δ + ϕ.

Next we look at the two cases:

Pooling case:

If D∗ < ϕ, we can denote s∗ = D∗/ϕ. In this case, all terms in the incentive constraint for the high type

are proportional to the asset price ϕ, which drops out of the constraint. So, the high type’s incentive

constraint is satisfied iff

ẑ [λEL min(s∗, s) + (1− λ)s∗] ≥ s∗

Let F(ŝ) ≡ ẑ [λEL min(ŝ, s) + (1− λ)ŝ] − ŝ and note the high type’s incentive constraint is satisfied iff

F(ŝ) ≥ 0. F(ŝ) has the following properties:

F(0) ≥ 0

F ′(0) = ẑ − 1 > 0

F ′′(ŝ) = −ẑλf(ŝ) < 0

So F(ŝ) is concave and strictly positive when ŝ is close to 0. Suppose the information friction is severe

enough so that F(1) = ẑ(λELs+ (1− λ))− 1 < 0, or equivalently ELs <
1−(1−λ)ẑ

λẑ = 1+ 1
λẑ − 1

λ < 1. In

this case, there exists a unique threshold 0 < s∗ < 1 such that F(s∗) = 0. Since the asset price ϕ drops

out, threshold s∗ does not depend on ϕ.

Taking next period asset price ϕ as given, the asset price in the current period under pooling equi-

librium is

ϕP (ϕ) = β [(ẑ − 1) (λEL min(s∗, s) + (1− λ) s∗)ϕ+ λϕELs+ (1− λ)(δ + ϕ)] (A.1)

which has the following property

∂ϕP (ϕ)

∂ϕ
= β [(ẑ − 1) (λEL min(s∗, s) + (1− λ) s∗) + λELs+ (1− λ)] < 1

ϕP (0) = β(1− λ)δ.

So, ϕP (ϕ) is a straight line with slope ∂ϕP (ϕ)
∂ϕ and intercept ϕP (0) = β(1− λ)δ. Hence there is a unique

steady state price satisfying ϕP (ϕ) = ϕ.
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Suppose information friction is not so severe so that F(1) > 0, or equivalently, 1 > ELs > 1+ 1
λẑ −

1
λ .

In this case, the face value of the debt is D∗ ≥ ϕ. Let d∗ (ϕ) = D∗ − ϕ. There are two possibilities:

either high type’s incentive constraint is binding and there is d∗ (ϕ) ≤ δ that satisfies:

ẑ [λϕELs+ (1− λ)(d∗ (ϕ) + ϕ)] = d∗ (ϕ) + ϕ

or the high-type’s incentive constraint is slack for all D. In the former case

d∗ (ϕ) =
ẑ [λELs+ (1− λ)]− 1

1− ẑ(1− λ)
ϕ.

In the latter case d∗ (ϕ) = δ. If ẑ[λELs+(1−λ)]−1
1−ẑ(1−λ) ϕ < δ,

ϕP (ϕ) = β

[
λẑ

1− ẑ(1− λ)
λELsϕ+ (1− λ)(δ + ϕ)

]
(A.2)

ϕP (0) = β(1− λ)δ

∂ϕP (ϕ)

∂ϕ
= β

(
λẑ

1− ẑ(1− λ)
λELs+ 1− λ

)
ϕP (ϕ) is a straight line with slope ∂ϕP (ϕ)

∂ϕ and intercept ϕP (0).

If ẑ[λELs+(1−λ)]
1−ẑ(1−λ) ϕ > δ,

ϕP (ϕ) = βẑ [λELsϕ+ (1− λ) (δ + ϕ)]

= βẑ [(1− λ) δ + (λELs+ 1− λ)ϕ]

ϕP (0) = βẑ (1− λ) δ

∂ϕP (ϕ)

∂ϕ
= βẑ(λELs+ 1− λ) < 1

By comparing the slopes of ϕP (ϕ) when ẑ[λELs+(1−λ)]
1−ẑ(1−λ) ϕ is below and above δ, we can see that ϕP (ϕ) is

concave with slope less than 1 when ẑ[λELs+(1−λ)]
1−ẑ(1−λ) ϕ > δ.

Note that when D∗ ≥ ϕ in a pooling equilibrium or ELs > 1+ 1
λẑ−

1
λ , the value of a pooling contract is

always greater than that of a separating contract. This is because the intermediary designs the contract

optimally to maximize the expected trade volume. The expected value of a loan to a low type is the

same in a separating equilibrium and a pooling equilibrium when D∗ ≥ ϕ. So the intermediary strictly

prefers designing a pooling contract as the revenue from the pooling contract strictly dominates that of

a separating contract.

Hence when ELs > 1 + 1
λẑ − 1

λ , we can focus on the pooling equilibrium. From the analysis above,

ϕP (ϕ) is concave with slope less than 1 when ẑ[λELs+(1−λ)]
1−ẑ(1−λ) ϕ > δ. Hence, in this part of the parameter

space there exists a unique equilibrium where the loan is traded in a pooling equilibrium.
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Separating case:

As argued above, when analyzing the optimal contract in a separating equilibrium, we can focus on the

parameter space where

ELs < 1 +
1

λẑ
− 1

λ
. (A.3)

If the optimal contract supports a separating equilibrium, the intermediary would set D = δ + ϕ

to maximize the loan size to the low type. In the special parametrization of the model, any face value

between ϕ and δ + ϕ generates the same revenue from borrowing because a low quality asset does not

pay any dividend. More generally, low quality assets could pay positive dividend. So the maximum face

value D = δ + ϕ is a more robust form of debt design in the separating case.

Given the face value D = δ + ϕ, the incentive constraint for the high type not to borrow is

δ + ϕ ≥ ẑELsϕ (A.4)

Note that condition (A.3) implies that

ẑELs < 1 + (ẑ − 1) (1− 1

λ
) < 1.

The condition for the existence of a separating equilibrium,(A.4), always holds.

In a separating equilibrium, the asset price is

ϕS(ϕ) = β [(ẑ − 1)λELsϕ+ λELsϕ+ (1− λ)(δ + ϕ)] (A.5)

which has the following property

ϕS(0) = β(1− λ)δ

∂ϕS(ϕ)

∂ϕ
= β (ẑλELs+ 1− λ)

So in this case, ϕS(ϕ) is a straight line with slope ∂ϕS(ϕ)
∂ϕ and intercept ϕS(0) = β(1− λ)δ.

Then, when the intermediary designs the contract optimally to maximize the expected trade volume,

the asset price taking the next-period price ϕ as given is

ϕ′(ϕ) = max{ϕP (ϕ), ϕS(ϕ)}

where ϕP (ϕ) satisfies (A.1) and ϕS(ϕ) satisfies (A.5). Notice that ϕS(ϕ) and ϕP (ϕ) are two straight

lines that have a common positive intercept ϕS(0) = ϕP (0) = β(1 − λ)δ. So the intermediary chooses

the pooling contract if and only if

ϕ (1− β [(ẑ − 1) (λEL min(s∗, s) + (1− λ) s∗) + λELs+ (1− λ)]) = β (1− λ) δ
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ϕ (1− β [(ẑ − 1)λELs+ λELs+ (1− λ)]) = β (1− λ) δ

λELy(D, δ̃ + s̃ϕS)

[λEL + (1− λ)EH ] y(D, δ̃ + s̃ϕP )

λ

∫ s̄

s

min(D, sϕS)dF (s)

[λEL min(s∗, s) + (1− λ) s∗]ϕP ≥ ϕSλELs

[λEL min(s∗, s) + (1− λ) s∗]
1− β [(ẑ − 1) (λEL min(s∗, s) + (1− λ) s∗) + λELs+ (1− λ)]

≥ λELs

1− β [(ẑ − 1)λELs+ λELs+ (1− λ)]

x

1− β(ẑ − 1)x− βy

1− β (λELs+ (1− λ)) > 0

the slope of ϕP (ϕ) exceeds that of ϕS(ϕ), or

λEL min(s∗, s) + (1− λ) s∗ − λELs > 0. (A.6)

In either case, the equilibrium is unique.

To summarize the equilibrium characterization, when ELs < 1 + 1
λẑ − 1

λ , the equilibrium contract is

a pooling one with face value D = s∗ϕ < ϕ with s∗ being the unique solution to

ẑ [λEL min(s∗, s) + (1− λ)s∗] = s∗

when condition (A.6) holds. Otherwise, the equilibrium contract is a separating one with face value

D = δ + ϕ.

When ELs > 1+ 1
λẑ −

1
λ , the equilibrium contract is a pooling one with face value D = d∗ +ϕ where

d∗ = min

{
δ,
ẑ [λELs+ (1− λ)]− 1

1− ẑ(1− λ)
ϕ

}
.

A.6 Optimal Flexible Debt Limit (Two-point Distribution Example)

Suppose the intermediary can set Dt as a function of ϕt to maximize

f [λℓLt + (1− λ)ℓHt]

Separating equilibrium

In a separating equilibrium, ℓHt = 0 and

ℓLt = πmin{DS , ϕt}
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So the optimal debt limit is

DS = ϕt.

Given this debt policy, the loan size is qt = πϕt and the asset price in the previous period is given by

ϕS
t−1 = β (λ(z − 1)πϕt + (1− λ)δ + (λπ + (1− λ))ϕt)

= β[λ(z − 1)π + (λπ + (1− λ))]ϕt + β(1− λ)δ

The function ϕS
t−1(ϕt) is linear with an intercept ϕS

t−1(0) = β(1− λ) and slope

ϕS′
t−1(ϕt) = β[λ(z − 1)π + (λπ + (1− λ))] < 1

implying a unique fixed point

ϕS =
β(1− λ)δ

1− β[λ(z − 1)π + (λπ + (1− λ))]
.

Pooling equilibrium

In a pooling equilibrium,

ℓL = ℓH = qP = λE
[
min{DP , sϕt}

]
+ (1− λ)DP

the optimal debt limit is the maximum value that satisfies

Emin{DP , sϕt}
min{DP , δ + ϕt}

=
πmin{DP , ϕt}
min{DP , δ + ϕt}

> ζ

For DP < δ + ϕt:

The solution solves

πmin{1, ϕt

DP
} = ζ.

Note that there is a solution exists only when π ≥ ζ. When π ≥ ζ, the optimal debt limit is given by

DP =
πϕt

ζ
.

The condition DP < δ + ϕt is violated when

DP =
πϕt

ζ
≥ δ + ϕt.

This happens when

ϕt ≥
ζδ

π − ζ
.
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In that case, the optimal debt limit is DP = δ + ϕt.

Overall, the optimal debt limit to support a pooling outcome is

DP = min

{
πϕt

ζ
, δ + ϕt

}
.

Given this debt policy, the loan size is

qt = λπϕt + (1− λ)min

{
πϕt

ζ
, δ + ϕt

}
,

and the asset price in the previous period is given by

ϕP
t−1 = β(z − 1)λπϕt + β(z − 1)(1− λ)min

{
πϕt

ζ
, δ + ϕt

}
+ β(1− λ)δ + β(λπ + (1− λ))ϕt

The function ϕP
t−1(ϕt) is linear with an intercept ϕP

t−1(0) = β(1− λ) and slope

ϕP ′
t−1(ϕt) =

ϕS′
t−1(ϕt) + β(z − 1)(1− λ)πζ , for ϕt< ζδ

π−ζ

ϕS′
t−1(ϕt) + β(z − 1)(1− λ) < 1 , for ϕt ≥ ζδ

π−ζ

implying a unique fixed point.

Optimal debt limit

When π < ζ, the pooling equilibrium is not feasible. The optimal debt limit is

DS
t = ϕt.

When π ≥ ζ, the pooling equilibrium is feasible and dominates the separating equilibrium. The

optimal debt limit is

DP
t = min

{
πϕt

ζ
, δ + ϕt

}
.

A.7 Private Information Parameter χ < 1

We have considered the case where there is private information in each period. We now introduce a

parameter, χ, to control the degree of information imperfection. With probability 1 − χ, there is no

private information in the sense that there are no low-quality assets (denoted by state 0). All the

equilibrium conditions remain the same except that the asset prices satisfy

ϕt = βχ

{
λ

[∫ s̄

s

(zℓL,t+1 −min{ℓL,t+1Rt+1, aL,t+1sLϕt+1)}+ sLϕt+1) dF (sL)

]
+χ (1− λ) [zℓH,t+1 −min{ℓH,t+1Rt+1, aH,t+1(δ + ϕt+1)}+ δ + ϕt+1]}

+ β(1− χ)
[
zℓ0t+1 −min{ℓ0t+1R

0
t+1, a

0
t+1(δ + ϕt+1)}+ δ + ϕt+1

]
.
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where a0 = 1, ℓ0t = q0t = 1
1+f (δ + ϕt)(1− h) and R0

t = (δ + ϕt)(1− h)/q0t . By continuity, all results hold

when χ is sufficiently close to 1.

A.8 An Alternative Setup with Unobservable Private Valuation

We briefly consider an alternative setup where the private information is related to borrowers’ private

valuation of the asset, instead of the asset’s common value. We show that the main results hold.

Suppose with probability 1 − ε, the state is good (s = 1) and the asset pays dividend δ. With

probability ε, the state is bad (s = 0), it does not pay any dividends. In addition, the borrower has

unobservable private valuation. A type i = H,L borrower, if holding an asset, receives a private value

vi(s) before the asset market opens and after the loan is settled. The type i is determined before the

loan is made and the information is private. With probability λ, the borrower is of type i = L, and

the private valuation is vL(1) = v in the good state and vL(0) = 0 in the bad state. With probability

1− λ, the borrower’s type is i = H and the private valuation is vH(1) = vH(0) = v. After observing the

private information, the borrower borrows from the platform. After observing the realization of δ, the

borrower decides whether to repay or to default. After the loan is settled, the borrower, if holding the

asset, receives the private valuation. At the end of the period, the asset is traded at δ+ϕ in the good

state and at ϕ in the bad state.

The debt limit is given by D = (δ + ϕ)(1 − h). We assume that v > δ. As a result, all borrowers

repay in the good state. Low type borrower defaults in the bad state when D > ϕ. Our analysis will

focus on the case of D ≥ ϕ as it is suboptimal to set D < ϕ.

In the separating equilibrium, the loan size is

qS = DS − ε(DS − ϕS)

and the asset price is

ϕS = β
λ(z − 1)(1− h)(1− ε)δ + (1− ε)δ + (1− ελ)v

1− β − βλ(z − 1)(1− h(1− ε))
.

The separating equilibrium exists when

(1− ε)DS + εϕS

DS
< ζ.

In the pooling equilibrium, the loan size is
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qP = DP + λε(ϕP −DP )

and the asset price is

ϕP =β
(z − 1)δ(1− h)(1− ελ) + β(1− ε)δ + β(1− ελ)v

1− β − β(z − 1)(1− h(1− ελ))
.

The pooling equilibrium exists when

(1− ε)DP + εϕP

DP
> ζ.

Hence we can reproduce the main multiplicity result.

Proposition 6. For h not too large, ϕP > ϕS and multiplicity exists when

1− εδ

δ + ϕP
> ζ > 1− εδ

δ + ϕS
.

B More Details about Aave Lending Protocol

According to DeFiLlama, there are 1485 DeFi protocols running on different blockchains (e.g., Ethereum,

Terra, BSC, Avalanche, Fantom, Solana) as of April 2022. The TVL of these protocols are 237 billion

USD with lending protocols accounting for about 20%. (Figure 8).16 Table 1 reports some basic statistics

about the three main lending protocols: Compound operating on Ethereum, Venus on the BSC and Aave

on multiple chains. Operating on multiple blockchains, Aave is the largest among the three in terms of

TVL, deposits and borrows, and market capitalization of its governance tokens. Below, we give a brief

overview of some key features of the Aave lending protocol. More details can be found in the appendix.

B.1 Tokens

Aave issues two types of tokens: (i) aTokens, issued to lenders so they can collect interest on deposits,

and (ii) AAVE tokens, which are the native token of Aave.17 aTokens are interest-bearing tokens that

are minted upon deposit and and burned at withdraw. The aTokens’ value is pegged to the value of the

corresponding deposited asset at a 1:1 ratio, and can be safely stored, transferred or traded. Withdrawals
16Collateralized debt position (CDP), e.g., MakerDAO, accounts for 8% of the TVL. Both lending and CDP protocols

support collateralized lending. The key difference is that a lending protocol lends out assets deposited by lenders while a

CDP lends out assets (e.g., stablecoins) minted by the protocol.
17One may interpret aTokens as bank deposits and AAVE tokens as bank equity shares.
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Table 1: Major decentralized lending Platforms (April 17, 2022)

Aave Compound Venus

Total value locked (USD) 13.35 B 6.35 B 1.51 B

Blockchain Multi Ethereum BSC

Total deposits (USD) 15.37 B 9.51 B 1.51 B

Total borrows (USD) 5.93 B 3.21 B 0.82 B

Governance Token AAVE COMP XVS

Market Cap (USD) 2.38 B 0.99 B 0.13 B
Data Source: DefiLlamma; Aavewatch; Compound.finance; Venus.io; Glassnode.

Figure 8: Composition of TVL of all DeFi Protocols on all Chains (April 2022)

Dexes
29%

Lending
22%Bridge

11%

Yield
9%

Liquid Staking
9%

CDP
8%

Others
12%

Data Source: DefiLlamma.

of the deposited assets burns the aTokens. AAVE tokens are used to vote and influence the governance

of the protocol. AAVE holders can also lock (known as “staking”) the tokens to provide insurance to the

protocol/depositors and earn staking rewards and fees from the protocol (more details below).

B.2 Deposits and loans

By depositing a certain amount of an asset into the protocol, a depositor mints and receives the same

amount of corresponding aTokens. All interest collected by these aTokens are distributed directly to the

depositor.
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Borrowers can borrow these funds with collateral backing the borrow position. A borrower repays

the loan in the same asset borrowed. There is no fixed time period to pay back the loan. Partial or full

repayments can be made anytime. As long as the position is safe, the loan can continue for an undefined

period. However, as time passes, the accrued interest of an unrepaid loan will grow, which might result

in the deposited assets becoming more likely to be liquidated.

Every borrowing position can be opened with a stable or variable rate. The loan rate follows the

model:

Rate =

 R0 +
U

Uoptimal
Rslope1 , if U ≤ Uoptimal

R0 +Rslope1 +
U−Uoptimal

1−Uoptimal
Rslope2 , if U > Uoptimal

where U = Total Borrows/Total Liquidity is the share of the liquidity borrowed.18

The variable rate is the rate based on the current supply and demand in Aave. Stable rates act

as a fixed rate.19 The current model parameters for stable and variable interest rates are given in Figure

9. Figure 10 shows Dai’s rate schedule as an example.

The deposit rate is given by

Deposit Ratet = Ut(SBt × St + V Bt × Vt)(1−Rt)

where SBt is the share of stable borrows, St is average stable rate, V Bt is the share of variable borrows,

Vt is average variable rate, Rt is the reserve factor (a fraction of interests allocated to mitigate shortfall

events discussed below). The Loan to Value (LTV ) ratio defines the maximum amount that can be

borrowed with a specific collateral. It’s expressed in percentage: at LTV = 75%, for every 1 ETH worth

of collateral, borrowers will be able to borrow 0.75 ETH worth of the corresponding currency of the loan.

The current risk parameters are given in Figure 11.

B.3 Collateral and Liquidation

The liquidation threshold (LQ) is the percentage at which a loan is defined as undercollateralized.

For example, a LQ of 80% means that if the value rises above 80% of the collateral, the loan is under-

collateralised and could be liquidated. The LQ of a borrower’s position is the weighted average of those
18Total ”liquidity” refers to the total deposits of a loanable asset.
19The stable rate for new loans varies over time. However, once the stable loan is taken, borrowers will not experience

interest rate volatility. There is one caveat though: if the protocol is in dire need of liquidity, then some stable rate loans

might undergo a procedure called rebalancing. In particular, it will happen if the average borrow rate is lower than 25%

APY and the utilization rate is over 95%.
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Figure 9: Current Rate Parameters

Stable Rate 

Variable Rate Rebalance if U > 95% + 

Average APY < 25% 

Average 

Uoptlmal Base Slope 1 Slope 2 Market Slope ll Slope 2 

Rate 

BUSD 80% °" 4% 100% 

DAI 80% °" 4% 75" 4% 2% 75" 

sUSD 80% °" 4% 100% 

TUSD 80% 0% 4% 7S" 4% 2% 75" 

USDC 90% °" 4% 60% 4% 2% 60% 

USDT 90% °" 4% 60% 4% 2% 60% 

AAVE 

BAT 45% 0% 7% 300% 3% 10% 300% 

ENJ 45% 0% 7% 300% 

ETH 65% 0% 8% 100% 3% 10% 100% 

KNC 65% 0% 8% 300% 3% 10% 300% 

LINK 45% 0% 7% 300% 3% 10% 300% 

MANA 4S% 0% 8% 300% 3% 10% 300% 

MKR 45% 0% 7% 300% 3% 10% 300% 

REN 45% 0% 7% 300% 

SNX 80% 3% 12% 100% 

UNI 45% °" 7" 300% 

WBTC 65% 0% 8% 100% 3% 10% 100% 

YFI 45% 0% 7% 300% 

ZRX 45% I 0% 7% 300% 3% 10% 300% 

Table Source: Aave.com

of the collateral assets:

LQ =

∑
i Collateral i in ETH ∗ LQi

Total Borrows in ETH

The difference between the LTV and the LQ is a safety cushion for borrowers. The values of assets

are based on price feed provided by Chainlink’s decentralized oracles. The LQ is also called the health

factor (Hf). When Hf < 1, a loan is considered undercollateralized and can be liquidated. When the

health factor of a position is below 1, liquidators repay part or all of the outstanding borrowed amount

on behalf of the borrower, while receiving an equivalent amount of collateral in return plus a liquidation

“bonus” (see Figure 11).20 When the liquidation is completed successfully, the health factor of the
20Example: Bob deposits 5 ETH and 4 ETH worth of YFI, and borrows 5 ETH worth of DAI. If Bob’s Health Factor

drops below 1 his loan will be eligible for liquidation. A liquidator can repay up to 50% of a single borrowed amount = 2.5

ETH worth of DAI. In return, the liquidator can claim a single collateral, as the liquidation bonus is higher for YFI (15%)
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Figure 10: Stable vs Variable Rates for Dai

Figure Source: Aave.com

position is increased, bringing the health factor above 1.

B.4 Infrequent Updates on the Risk Parameters in Smart Contracts

Table 2: Historical AAVE V1 Risk Parameter Changes

Date Asset LTV Liquidation threshold Liquidation Bonus Comment

10/21/20 MKR 50% 65% 10% Decreased volatility

10/21/20 TUSD 75% 80% 5% Following reivew of smart contract

7/22/20 LEND 50% 65% 10% LEND cannot be borrowed

due to migration incoming

7/16/20 LEND 50% 65% 10% Improved risk parameter

7/16/20 SNX 15% 40% 10% New Collateral

7/16/20 ENJ 55% 65% 10% New Asset

7/16/20 REN 50% 65% 10% New Asset

6/19/20 TUSD 1% 80% 5% Unaudited update

than ETH (5%) the liquidator chooses to claim YFI. The liquidator claims 2.5 + 0.375 ETH worth of YFI for repaying

2.5 ETH worth of DAI.
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Figure 11: Current Risk Parameters

Table Source: Aave.com

B.5 Shortfall Event

The primary mechanism for securing the Aave Protocol is the incentivization of AAVE holders (stakers)

to lock tokens into a Smart Contract-based component called the Safety Module (SM). The locked

AAVE will be used as a mitigation tool in case of a Shortfall Event (i.e., when there is a deficit). In the

instance of a Shortfall Event, part of the locked AAVE are auctioned on the market to be sold against

the assets needed to mitigate the occurred deficit. To contribute to the safety of the protocol and receive

incentives, AAVE holders will deposit their tokens into the SM. In return, they receive rewards (periodic

issuance of AAVE known as Safety Incentives (SI)) and fees generated from the protocol (see reserve

factor above).

B.6 Recovery Issuance

In case the SM is not able to cover all of the deficit incurred, an ad-hoc Recovery Issuance event is

triggered where new AAVE is issued and sold in an open auction.
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Figure 12: Aave v2 TVL and Users Over time
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Figure 13: Asset Compositions in Aave v2
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B.7 Some Basic Statistics

Figures 12-14 show some basic statistics describing the Aave lending protocol. In April 2022, Aave

supports the lending of 31 tokens and the total market size is about 11 billion USD. As shown in Figure

12 (a), the total value locked in Aave has increased substantially from mid 2020 to mid 2021, and has gone

through a few ups and downs since then. The numbers of active lenders and borrowers, reported in panel

(b), have also fluctuated over time. Figure 13 shows the average compositions of deposits and borrows.

Aave does not show explicitly which deposited crypto assets are used as collaterals. These graphs

however suggest that stablecoins such as USDC and USDT are borrowed disproportionately relative to

their deposits. Stablecoins account for over 75% of loans. At the same time, the frequencies of borrowing

assets like ETH and BTC (WETH and WBTC in the figures) are lower than those of depositing them,

suggesting that they are mostly used as collaterals. It is also observed that the leverage of these loans

is relatively high since the distribution of the health factors is skewed towards the left in Figure 14 (a),

with 40% with a health factor below 1.21 Liquidations happen frequently as a result of the volatile

collateral prices and high leverage. Panel (b) shows the time series of collateral liquidations.
21In practice, a position with health factor below one may not be liquidated immediately due to the execution costs

involved.
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C Volatility of Collateral Value

Table 3: The Volatility of Collateral Value (January 2021 - April 2022)

Daily Volatility Largest daily increase Largest daily decrease

Stable Coins

DAI 0.32% 1.26% -1.33%

TUSD 0.39% 2.97% -2.01%

USDC 0.34% 1.94% -1.57%

Other Coins

AAVE 7.15% 31.33% -33.47%

BAT 7.48% 47.60% -31.05%

BAL 6.62% 22.65% -31.03%

CRV 8.89% 51.18% -43.16%

ENJ 8.96% 56.46% -35.61%

ETH 5.19% 24.53% -26.30%

KNC 7.19% 30.57% -31.98%

LINK 6.66% 30.38% -35.65%

MANA 10.92% 151.66% -29.79%

MKR 7.10% 51.31% -24.24%

REN 8.05% 44.84% -35.82%

SNX 7.36% 25.22% -36.24%

UNI 7.14% 45.32% -32.94%

WBTC 4.01% 19.04% -13.75%

WETH 5.21% 25.96% -26.12%

XSUSHI 7.65% 33.19% -29.54%

YFI 6.82% 46.00% -36.35%

ZRX 7.57% 56.02% -36.31%

Other Benchmarks

Stock Market (SPY ETF) 1.00% 2.68% -3.70%

Treasury (BATS ETF) 0.35% 1.25% -1.72%

AAA Bond (QLTA ETF) 0.41% 1.11% -1.33%

Gold (GLD ETF) 0.89% 2.74% -3.42%

Source: CoinGecko.
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D Price Exploits

We discuss some evidence where borrowers pledged inflated collateral assets to obtain loans from lending

protocols which later suffered big financial losses due to the bad debt.

As discussed in the Introduction, borrowers can have information advantage relative to the lending

protocol when the smart contract relies on an inaccurate price feeds. For example, during the Terra

collapse in May 2022, as a result of the extreme volatility in the price of LUNA tokens, the price feed

used by DeFi smart contracts for the LUNA token was significantly higher than the actual market value

of the token. Attackers exploited the price discrepancy to borrow loans collateralized on inflated LUNA

from the Venus Protocol, the biggest lending platform on BSC, leading to a loss of about $11.2 million

to the protocol. The protocol later increased the haircut of LUNA from 45% to 100%. Similar exploits

have depleted the entire lending pool of Avalanche lending protocol Blizz Finance, which has lost about

$8.28 million due to this incident.

Similar price exploits can also happen when price oracles are based on on-chain AMMs that are

subject to liquidity problems or price manipulation. At times, token prices on DEX can deviate sub-

stantially from those on CEX. There are multiple incidents indicating that borrowers exploit lending

protocols by borrowing against over-valued collateral assets. For instance, on May 18, 2021, the Venus

Protocol faced a massive collateral liquidation. This incident occurred because a large sum of XVS was

collateralized at a high price (possibly after price manipulation causing price to shoot up from $80 to

$145 in three hours) to borrow 4,100 BTC and nearly 10,000 ETH from the lending protocol. When the

price of XVS dropped four hours later, the loans became undercollateralized, resulting in $200 million

in liquidations and more than $100 million in bad debts, with the borrowers profiting from this exploit.

In this particular episode, borrowers were able to exploit their information advantage of the overpricing

of XVS while lenders were unable to exclude XVS being used as a collateral. Similar exploits happened

to Ethereum-based lending protocols Cheese Bank (with $3.3 million loss in November 2020), Vesper

Finance (with $3 millions loss in November 2021), and Inverse Finance (with $15.6 million loss in April

2022).

E Some Empirical evidence (for Online Appendix)

Here we report some evidence to support the case that our model can be useful for understanding the

relationship between DeFi lending, crypto prices and market sentiment.
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E.1 Effects of DeFi Lending on ETH Price

Our model predicts that DeFi lending should be positively correlated with crypto prices due to the

price-liquidity feedback loop. Since the Ethereum blockchain is the main platform for DeFi, we use

WETH TVL data from DeFiLlama to test this hypothesis. The sample is from 2018 January to 2022

March. Figure 15 shows that lending accounts for about 23% of DeFi TVL. We run an OLS

log(ETHP ) = α0 + α1log(LTCP ) + α2BURN + α3DEFI + α4LEND,

where ETHP is the price of ETH, LTCP is the price of Litecoin (LTC), BURN is the amount of ETH

burned since the London Fork as a percentage of ETH supply, DEFI is the fraction of WETH locked

into DeFi protocols, and LEND is the fraction of WETH locked into DeFi lending. Since Litecoin has

limited use in DeFi, we use its price to capture non-DeFi factors that can influence the price of ETH.

As expected, results in Table 2 suggests that the prices of ETH and LTC are highly correlated. Also,

unsurprisingly, by removing tokens from the circulating supply, BURN has a positive effect on the ETH

price. Finally, after controlling for the general effects of DeFi on the price of ETH, TVL in DeFi lending

is still positively correlated with the price of ETH, consistent with the prediction of our model.

Figure 15: Composition of WETH TVL in DeFi (March 2022)
Composition of WETH TVL in DeFi, 2022 March
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Data Source: DefiLlamma.

E.2 Collateral Composition and Market Sentiment

Our model predicts that good market sentiment can help mitigate adverse selection, improving the quality

of the collateral pool. We use the Aave platform data to examine the relationship between collateral
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Table 4: DeFi Lending and Crypto Prices

Estimate Std. Err. T-Stat p

Intercept 1.0845 0.07905 13.72 1.6765e-40

Log(LTCP) 1.0545 0.017673 59.665 0

BURN 0.42739 0.027956 15.288 3.1158e-49

DEFI 4.9181 0.92868 5.2957 1.3566e-07

LEND 36.438 2.5999 14.015 4.3029e-42

No. obs. : 1546

R2 0.925 Adj. R2 0.925

composition and market sentiment. The market sentiment are measured by the “Crypto Fear & Greed

Index” (FGI) for Bitcoin and other large cryptocurrencies.22 The construction of the Index is based

on measures of market volatility, market momentum/volume, social media, surveys, token dominance

and Google Trends data. The Index is supposed to measure the emotions and sentiments from different

sources, with a value of 0 indicating “Extreme Fear” while a value of 100 indicating “Extreme Greed”.

Since Aave does not provide collateral data, we need to use outstanding deposits of collateralizable tokens

as a proxy. Basing on their internal risk assessment, Aave assigns risk ratings to each token ranging

from C+ to A+. We use these risk parameters to measure the quality of these assets. Figure 16 shows

how the composition changes over time. Note that tokens have different USD prices. Hence, changing

prices will affect their (nominal) shares in the pool. To remove the effects of token price changes on the

composition, we fix their prices at the median level over the sample period (Jan 2021- April 2022). So

the results derived below capture only variations in token quantities and not in their prices.

We study how sentiment is related to the overall quality of the collateral pool proxied by the weighted

average of the ratings of all outstanding collateralizable deposits.23 We run an OLS regressing log(Rating)

on a dummy and log(FGI) as follows

Log(Rating) = α0 + α1Dummy + α2log(FGI)

where Dummy=1 for days after April 26 (the date when Aave provided incentives to users who bor-
22The Index is developed by the “Alternative.me” website since early 2018 (https://alternative.me/crypto/fear-and-

greed-index/).
23We convert ratings into numerical values as follows: Rating = 6 for “A”, = 5 for “A-”, ..., =1 for “C+”.
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Figure 16: Composition of Collateralizable Asset Mix
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Figure Source: Dune Analytics

row/lend certain tokens). We report the result in Table 4. Both variables are significant, suggesting

that the average rating of the collateral mix goes up when the sentiment captured by the FGI is high,

as predicted by our model.

Table 5: Sentiment and Collateral Rating

Estimate Std. Err. T-Stat p

Intercept 1.4469 0.010123 142.93 0

Dummy 0.058287 0.0029707 19.62 4.2179e-64

Log(FGI) 0.01467 0.0022778 6.4405 2.7814e-10

No. obs. : 507

R2 0.464 Adj. R2 0.461
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Figure 17: Effects of FG Index on Average Risk Rating
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Blue (red) markers denote the sample period with (without) incentives
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