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1 Introduction

In many countries, affirmative action policies take the form of reserved seats or positions

for which only eligible candidates compete. For instance, in India, beneficiary groups are

entitled to their proportion of reserved seats in government jobs and publicly funded insti-

tutions (Sönmez and Yenmez (2022)). However, the policy-prescribed percentage of seats

can rarely be met in practice because of the indivisible nature of positions. The fractional

seats that arise in literal calculation need to be adjusted to yield whole numbers. The ques-

tion then arises what the ideal whole number counterparts of an affirmative action policy

prescribed fractional seats are.

Achieving policy-prescribed proportions is even more challenging when positions are het-

erogeneous. For instance, a university’s faculty positions (say assistant professors) are listed

under various departments. Each faculty position simultaneously represents two units, a

department and the university. If both the departments and the university adhere to the

affirmative action policy, both must reserve the prescribed percentage of seats. In this paper,

we ask, how many seats should the departments and the university reserve in such cases?

We term this problem as the problem of reservations in two dimensions.

An ideal solution to the problem of reservations in two dimensions should ensure that in

each period, as well as over time, the seat allocations stay “close” to the prescribed fractional

seats both (i) at the department level, and (ii) at the university level. However, delivering

this is not easy. In fact the solutions seen in practice in India fail to do so. Not surprisingly,

these solutions are met with several petitions and protests leading to subsequent and frequent

changes in the law. The noteworthy debates from Indian courts to public arenas that inspired

us to write this paper are summarized in Section 2.

The problem with existing solutions is that they do not account for the interdependence

of the departments and the university in calculating reserved seats. That is, each solution

either operates at the department level or the university level, but not at both simultaneously.

The debate in India revolves around whether the individual departments should follow the
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solution or the university as a whole should follow it. If the departments follow the solution,

it fails to deliver the benefit of reservations at the university level. Whereas if the university

as a whole follows the solution, the reserved positions could get allocated to merely a few

departments in the university. The existing solutions and their various shortcomings are

formally documented in Section 4.

The aim of this paper is twofold. The first objective is to comprehensively evaluate

existing solutions in light of staying within the quota property and the multi-period con-

siderations. We do so theoretically in Section 4 and empirically in Section 6. The second

objective is to check whether a solution exists that satisfactorily deals with the problem

of reservations in two dimensions. That is a solution that stays “close” to the prescribed

fractional seats both (i) at the department level and (ii) at the university level.

Reservations in two dimensions give rise to matrix problems, with input data as a fair

share table X. Its entries xij signify the fraction of seats beneficiary j is entitled in de-

partment i as per the affirmative action policy. The rows represent the first subdivision

of the university into departments. The columns accommodate several beneficiaries and

therefore present a second subdivision. The university is assumed to be broken down, ei-

ther way, providing department sizes as row sums and overall (university-level) beneficiary

claims as column sums. The task is to find a two-way apportionment, with seat allocations

(whole numbers, not fractions!) x̄ij summing row-wise to the pre-specified row sums, while

remaining “as near as may be” to the fractional seats xij.

The fair share table would be the ideal seat allocations if only the seats were divisible.

Therefore, it is natural to consider integral seat allocations with entries that are rounded to

an adjacent integer of entries of the fair share table as an ideal solution. That is, ideal seat

allocations x̄ij would consist of entries xij of the fair share table rounded up or down to the

nearest integer. This is one of the most appealing and natural apportionment ideas, known

as staying within the quota (see Balinski and Young (2010)). The problem of reservations

in two dimensions can therefore be viewed as a rounding problem of translating a matrix of
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fair shares to a matrix of seat allocations obtained by rounding the fair shares up or down.

Such matrix problems are not unique to the implementation of affirmative action policies.

Implementation of random and therefore fractional assignments solves such problems in the

presence of a rich bihierarchical structure on the set of constraints (Budish et al. (2013),

Pycia and Ünver (2015), and Akbarpour and Nikzad (2020)). Biproportional apportionment

methods introduced by Balinski and Demange (1989a,b) deal with such problems while trans-

lating electoral votes into parliamentary seats. Controlled rounding procedures introduced

by Cox and Ernst (1982) also deal with matrix problems in maintaining anonymity of census

data. What is unique about the problem we analyze in the affirmative action context is

their multi-period aspect. For example, a department with only one new faculty position

every year must reserve the position for a different beneficiary group each year. In such

cases, to ensure that each beneficiary group gets its prescribed percentage of positions over

time, the beneficiary groups must take turns claiming positions. Matrix problems with such

multi-period considerations are unique to reservations in two dimensions.

Our first results that deal with the problem of reservations in two dimensions without

the multi-period considerations are straightforward. The rounding problem has an elegant

solution, called controlled rounding, that stays within quota and is simple enough to be

implemented by hand. The technique was introduced by Cox (1987) to make slight pertur-

bations in two-dimensional census data to ensure the confidentiality of aggregate statistics

while maintaining a good approximation of the original data. Adaptation of Cox’s controlled

rounding technique to our problem is summarized in Appendix A. In addition to providing a

solution that stays within quota, Cox’s controlled rounding procedure provides an unbiased

lottery solution, that is, entries of the fair share matrix are rounded up or down so that

ex-ante positive and negative deviations from the fair shares balance to yield no deviation

from the fair shares.

The main theoretical contributions of our article address the multi-period problem of

reservations in two dimensions and are presented in Section 5.2. We show that there does

4



not exist a solution for the problem of reservations in two dimensions that stays within

quota at both the university and the department level simultaneously (Proposition 2). We

give an even stronger result: There does not exist a solution for which the reservation table

deviates from the fair share table bounded by a finite number (Proposition 3). These results

justify the struggle in figuring out a solution in real-life practice, as discussed in Section 2.

Since the two constraints that staying within quota property imposes cannot be satisfied

simultaneously, we ask: can these constraints be satisfied approximately? By approximately,

we mean, the probability of violating that constraint exponentially decreases with the size

of the constraint. The answer is affirmative.

The main results of the article stated in Theorem 1 and Theorem 2, show that there exists

an unbiased solution that stays within quota at the department level and approximately

stays within quota at the university level. The proof of Theorem 1 involves constructing a

lottery solution that stays within quota at the department level and is unbiased at both the

department and the university levels. An overview of the proof is presented in Section 5.2.

The essential technique is to design a procedure that takes the fractions of reservations

and generates a roster that lists the number of positions reserved for every number of total

positions. For a roster, staying within quota constraints regulates the cumulative number of

positions for each category. Since there could be many rosters that would stay within quota,

the procedure generates a random roster by assigning each solution roster a probability. Our

solution to the problem of reservation in two dimensions assigns a roster to each department

adhering to the probabilities dictated by the procedure.

The procedure of constructing a random roster is built around a network flow algorithm

that takes a flow network as input and randomly constructs another flow network with fewer

fractional flows as its output. By iterative application of this algorithm, a flow network

with integral flows is generated. The random flow network has the following two properties:

the expected value of each flow after the next iteration is the same as its current value,

and each constraint (imposed by the stay within quota property) remains satisfied. Since
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each flow network with integral flows can be mapped to a roster, this procedure generates

a random roster. We next show that the approximation errors are small in Theorem 2. We

do so by applying the multiplicative form of Chernoff concentration bounds to our solution

to prove that, in addition to staying within quota at the department level, the solution

approximately stays within quota at the university level. Moreover, we show that our bounds

on the approximation errors are tight.

Lastly, in Section 6, we present an empirical case study of a two-dimensional reservations

problem from India using recruitment advertisement data. The objective is twofold. The first

objective is to document the shortcomings of existing procedures empirically. In particular,

we highlight the severity of the problem by documenting the instances and magnitude of

violations. Our second objective is to quantify the performance of our proposed solutions.

We do so by running simulations on the recruitment data, thus creating reservation tables

per the procedures advocated in this article and comparing the outcomes with existing

(advertised) solutions.

1.1 Contributions with respect to the Related Literature

A considerable number of recent studies have offered practical alternatives for better

implementation of nationwide affirmative action policies (see Abdulkadiroğlu and Sönmez

(2003), Kojima (2012), Hafalir et al. (2013), Ehlers et al. (2014), Echenique and Yenmez

(2015), Aygün and Turhan (2017), Dur et al. (2019), Aygun and Bó (2021), Sönmez and

Yenmez (2022); Sönmez and Yenmez (2019) among others). Ours is another paper in this

class. While the focus of the contemporary market design literature has been the design and

analysis of assignment mechanisms given reserved seats and quotas, our paper (also Evren

and Khanna (2022)) looks at another practical issue in implementation of affirmative action

schemes: proportional distribution of indivisible seats.

Proportional distribution of indivisible objects among a group of claimants in proportion

to their claims, known as the apportionment problem, is the center point of the seminal
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work of Young (1995) and Balinski and Young (2010). The two-dimensional version, the

biproportional apportionment problem, gives rise to similar matrix problems as ours but

has been investigated in the context of translating electoral votes into parliamentary seats

(Gassner (1988), Balinski and Demange (1989a), Balinski and Demange (1989b), Maier et al.

(2010), Lari et al. (2014)).1 In that context, the multi-period constraints do not feature. The

multi-period considerations make a reservation in two dimensions a unique apportionment

problem that demands a new search for methods ensuring proportional representation.

Lastly, our paper is related to the literature on rounding techniques. The controlled

rounding procedure introduced in Cox (1987) suffices to solve the problem of reservations

in two dimensions for a particular case of the model (see Proposition 1). For the general

case, our rounding approach is similar to the ones developed in the literature on approxima-

tion algorithms from computer science (Ageev and Sviridenko (2004), Gandhi et al. (2006)

and others). These techniques are not new to market designers. The literature on the im-

plementation of random and, therefore, fractional assignments solve such problems in the

presence of a rich bihierarchical structure on the set of constraints (Budish et al. (2013),

Pycia and Ünver (2015), and Akbarpour and Nikzad (2020)). In particular, Budish et al.

(2013) and Akbarpour and Nikzad (2020) build implementation methods for random alloca-

tion mechanisms based on techniques from deterministic and randomized rounding developed

in Edmonds (2003) and Gandhi et al. (2006). In addition to following a bihierarchical struc-

ture, our constraints also extend in the time dimension to accommodate the multi-period

considerations. It is this multi-period aspect of our problem that renders existing solutions

inadequate. A rounding procedure for a multi-period model with a bihierarchical constraint

structure (upper and lower quotas at the department level and approximate constraints at

the university level) is a theoretical contribution of our paper (Theorem 1 and Theorem 2).

1See Pukelsheim (2017) for detailed results and insights on proportional apportionment problems.
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2 Motivating Debate from India

The 1950 Constitution of India provides a clear basis for positive discrimination in favor

of disadvantaged groups, in the form of reservation policies. India’s reservation policies

mandate exclusive access to a fixed percentage of government jobs and seats in publicly

funded institutions to the members of Scheduled Castes (SC, 15%), Scheduled Tribes (ST,

7.5%), Other Backward Classes (OBC, 27%) and Economically Weaker Sections (EWS,

10%). For transparency, the number of reserved seats for each category are explicitly and

publicly advertised in advance of any admissions or recruitment cycle.

The procedures used to calculate the number of reserved seats in various settings are also

explicit and public. However, they have nowhere been more contentious than in the case of

universities. Unlike other government jobs, the eligibility and selection criteria change with

the department for the same faculty position in a university (say, assistant professor). Thus

the faculty positions in different departments are not interchangeable across a university.

Each faculty position, therefore, simultaneously represents two units, a department, and

the university, where each unit is subject to the reservation policy. This feature of faculty

positions led to complications that made all three arms of the Indian government – the

executive, the judiciary, and the legislative – intervene.

The Executive. In August 2006, the University Grants Commission (UGC) issued Guide-

lines for Strict Implementation of Reservation Policy of the Government in Universities to

all government educational institutions in India.23 Through these guidelines, the UGC pro-

hibited the practice of treating department as the unit for application of the reservation

scheme, that is, for calculating the proportion of seats to be reserved (see clause 6(c) in the

guidelines). Instead, UGC mandated university as the unit for reservation. That is, the

2UGC is a statutory autonomous organization responsible for the implementation of the policy of the
Central Government in the matter of admissions as well as recruitment to the teaching and non-teaching
posts in central universities, state universities and institutions which are deemed to be universities.

3Document last accessed on 30 December 2022 at https://www.ugc.ac.in/pdfnews/7633178_

English.pdf
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positions in a university shall be clubbed together across departments as three separate cat-

egories: professors, associate professors (or readers), and assistant professors (or lecturers),

for the application of the rule of reservation (see clause 8(a)(v) in the guidelines). However,

UGC’s order was challenged in court.

The Judiciary. In April 2017, the Allahabad High Court allowed a petition demanding

reservations in faculty positions treating the department as the unit and quashed clauses 6(c)

and 8(a)(v) of the UGC Guidelines of 2006.4 The court argued that treating the university

as the unit “would be not only impracticable, unworkable but also unfair and unreasonable”

for the following two reasons stated in the judgment:

Merely because Assistant Professor, Reader, Associate Professor,

and Professor of each subject or the department are placed on the

same pay-scale, but their services are neither transferable nor they

are in competition with each other. It is for this reason also that

clubbing of the posts for the same level treating the University as

a ‘Unit’ would be completely unworkable and impractical. It would be

violative of Article 14 and 16 of the Constitution.

If the University is taken as a ‘Unit’ for every level of teach-

ing and applying the roster, it could result in some depart-

ments/subjects having all reserved candidates and some having only

unreserved candidates. Such proposition again would be discrimina-

tory and unreasonable. This, again, would be violative of Article 14

and 16 of the Constitution.

Following the court order, universities advertised vacancies with a sharp fall in the number

of reserved positions. This is apparent in the case of Banaras Hindu University, presented in

Table 1, where the number of unreserved seats increased from 1188 under the government’s

quashed solution to 1562 under the court’s proposed solution.5 The reason was that many

departments had a small number of faculty positions (fewer than six). Given that each

department followed the same fixed sequence in which categories take turns in claiming a

4Judgement last accessed on 30 December 2022 at https://indiankanoon.org/doc/177500970/
5Last accessed on 30 December 2022 at https://indianexpress.com/article/explained/

hrd-ministry-ordinance-teacher-quota-university-prakash-javadekar-5616157/
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Table 1: NUMBER OF RESERVED POSITIONS IN BANARAS HINDU UNIVERSITY

University as a Unit Department as a Unit

(Government’s Solution) (Court’s Solution)

Position General SC ST OBC Total General SC ST OBC Total

Professor 197 38 18 0 253 250 3 0 0 253

Associate Professor 410 79 39 0 528 500 25 3 0 528

Assistant Professor 581 172 86 310 1149 812 91 26 220 1149

Total 1188 289 143 310 1930 1562 119 29 220 1930

Notes: Data shared in government’s Special Leave Petition filed in the Supreme Court of India.

position, the court’s solution led to a small number of positions for the reserved categories

at the university level.6 This sparked a series of teachers’ unions-led protests across India.

The Legislative. The protests compelled the government to file a petition in the Supreme

Court against the Allahabad High Court verdict. “How can the post of professor of Anatomy

be compared with the professor of Geography? Are you clubbing oranges with apples?”

questioned the Supreme Court rejecting the appeal and terming the Allahabad high court

judgment as “logical”.7 Facing a huge aggrieved vote bank, three days prior to announce-

ment of Lok Sabha election, in March 2019, the government promulgated an ordinance that

considered the university as the unit. This ordinance is now an Act of Parliament and,

therefore the law in India.8

Today, the university is the unit for application of the reservation scheme. The court’s

objection that “it could result in some departments/subjects having all reserved candidates

and some having only unreserved candidates” inspired us to write this paper.

6See Figure 17 and Figure 18 for the sequence in which the beneficiary groups take turns in claiming a
position in India.

7Last accessed on 30 December 2022 at https://main.sci.gov.in/supremecourt/2019/5495/5495_

2019_Order_27-Feb-2019.pdf
8Last accessed on 30 December 2022 at http://egazette.nic.in/WriteReadData/2019/206575.pdf
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3 Model and the Primitives

In this section, we formulate the problem of reservation in two dimensions. Since our

primary application is the reservation of teaching positions in Indian universities, the termi-

nology used is appropriate for that application.

3.1 Model

A problem of reservation in two dimensions in period t ∈ {1, 2, . . . , T} is a quadru-

ple Λt = (D, C,α, (qs)ts=1). D and C are finite sets of departments and categories where

m := |D| ≥ 2 and n := |C| ≥ 2. The reservation scheme is defined by a vector of fractions

α = [αj]j∈C. For each category j ∈ C, αj ∈ (0, 1) fraction of vacancies are to be reserved

so that
∑

j∈C αj = 1. qs = [qsi ]i∈D represents the vector of vacancies associated with the

departments in period s ∈ {1, 2, . . . , t}. Let Qt
i :=

∑
s≤t q

s
i denote period-t cumulative

sum of vacancies in department i.

A period-t fair share table for problem Λt is a two-way table

X t =
(xt

ij)m×n (xt
i,n+1)m×1

(xt
m+1,j)1×n (xt

m+1,n+1)1×1

with rows indexed by i ∈ D ∪ {m + 1} and columns by j ∈ C ∪ {n + 1}, such that internal

entries xt
ij = αjQ

t
i for all i ∈ D and j ∈ C, row total entries xt

i,n+1 = Qt
i for all i ∈ D,

column total entries xt
m+1,j = αj

∑
i∈D Qt

i for all j ∈ C, and grand total entry xt
m+1,n+1 =∑

i∈D Qt
i. Fair shares specify the fraction of seats a category is entitled to receive as per

the reservation scheme until period t. The internal entry xt
ij represents the period-t fair

share for category j in department i. The period-t fair share for a category cj in

the university is denoted by column total entry xt
m+1,j. The grand total entry xt

m+1,n+1

represents the cumulative sum of vacancies at the university.

For instance, consider a problem Λ2 = ({d1, d2}, {c1, c2},α = [0.1, 0.9], (q1,q2) =

([9, 8], [17, 7])). Figure 1 illustrates its period-1 and period-2 fair share tables. There are
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two departments D = {d1, d2}, corresponding to rows in the tables, and two categories

C = {c1, c2}, corresponding to columns. The reservation scheme reserves 10% positions in

the university for members of category c1. In period-1, department d1 has 9 and department

d2 has 8 positions, represented by the column 3 of X1. In period-2, department d1 has

17 and department d2 has 7 positions. Therefore, period-2 cumulative sums of vacancies

in departments d1 and d2 are 26 and 15, represented by the column 3 of X2. The first

column of table X1 (X2) represents the period-1 (period-2) fair shares associated with the

category c1 and the second column represents the period-1 (period-2) fair shares associated

with category c2. The first row of X1 (X2) represents the period-1 (period-2) fair shares

associated with the department d1 and the second row represents the period-1 (period-2)

fair shares associated with department d2.

Figure 1: FAIR SHARE TABLES

X1 =
0.9 8.1 9
0.8 7.2 8
1.7 15.3 17

(a) PERIOD-1 FAIR SHARE TABLE

X2 =
2.6 23.4 26
1.5 13.5 15
4.1 36.9 41

(b) PERIOD-2 FAIR SHARE TABLE

A two-way table is additive if entries add along the rows and columns to all corre-

sponding totals. A period-t reservation table for the problem Λt is a (m + 1) × (n + 1)

non-negative integer two-way table X̄ t = (x̄t
ij), with rows indexed by i ∈ D ∪ {m + 1} and

columns by j ∈ C ∪ {n+ 1}, such that X̄ t is additive and x̄t
i,n+1 = xt

i,n+1 for all i ∈ D. The

internal entry x̄t
ij represents the period-t reservation for category j in department

i. The period-t reservation for a category j in the university is denoted by column

total entry x̄t
m+1,j. We denote by X̄ the set of reservation tables.

A period-t sequence of fair share tables for the problem Λt is a sequence of two-

way tables Y t = (X1, . . . , X t), where table Xs is the period-s fair share table for all s ∈

{1, 2, . . . , t}. We denote by Y t the set of all period-t sequences of fair share tables. Given a

sequence of tables Y t, if Y t = (Y t−1, X t), then we say that Y t follows Y t−1.

12



3.2 Deterministic Solutions and Properties

A deterministic solution R : ∪Ts=1Ys → X̄ maps each sequence of fair share tables to

a reservation table such that, for any Y t ∈ ∪Ts=1Ys,

1. R(Y t) is a period-t reservation table, and

2. R(Y t) ≥ R(Y t−1) for all Y t that follow Y t−1.9

Part 2 of definition incorporates the idea that reservations are irreversible. We denote by

RT the set of deterministic solutions for reservation problems of length T .

For instance, Figure 2 illustrates two possible deterministic solutions for the problem

depicted in Figure 1.

Figure 2: TWO DETERMINISTIC SOLUTIONS

X1 =
0.9 8.1 9
0.8 7.2 8
1.7 15.3 17

(a) PERIOD-1 FAIR SHARE TABLE

X2 =
2.6 23.4 26
1.5 13.5 15
4.1 36.9 41

(b) PERIOD-2 FAIR SHARE TABLE

R1(Y
1) =

1 8 9
1 7 8
2 15 17

(c) PERIOD-1 RESERVATION TABLE

R1(Y
2) =

3 23 26
1 14 15
4 37 41

(d) PERIOD-2 RESERVATION TABLE

R2(Y
1) =

0 9 9
0 8 8
0 17 17

(e) PERIOD-1 RESERVATION TABLE

R2(Y
2) =

3 23 26
1 14 15
4 37 41

(f) PERIOD-2 RESERVATION TABLE

We denote by R(yt) and xt the internal and totals entries of R(Y t) and X t, respectively.

The ideal solution would be the fair share table if we were allowed to reserve fractional

seats. Therefore, it is natural to consider integral seat allocations with entries rounded to

an adjacent integer of the fair share table entries as an ideal solution. We next formulate

this idea.

9The relation “is greater than or equal to”, denoted “≥”, compares tables entry-wise; that is, X ≥ X ′

if, for all (1 ≤ i ≤ m+ 1, 1 ≤ j ≤ n+ 1), xij ≥ x′
ij .
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A deterministic solution R stays within quota if, for any Y t,

1. R stays within department quota: each internal entry R(yt) = ⌈xt⌉ or ⌊xt⌋, and

2. R stays within university quota: each total entry R(yt) = ⌈xt⌉ or ⌊xt⌋.

Our property formulates the idea that a deterministic solution should not deviate from its

cumulative fair share by more than one seat. In this way, everyone gets either the ceiling of

its cumulative fair share or the floor of its cumulative fair share.10 There are two dimension

of staying within quota: (1) each internal entry R(ytij) (1 ≤ i ≤ m, 1 ≤ j ≤ n) is either xt
ij

rounded up or rounded down and (2) each total entry R(ytm+1,j) (1 ≤ j ≤ n) is either xt
m+1,j

round up or rounded down. If a solution satisfies the former one for any problem, we say that

it stays within department quota. If a solution satisfies the later one for any problem, we say

that it stays within university quota. For instance, in Figure 2, the solution R1 stays within

both department and university quota; however, the solution R2 stays within department

quota only.

3.3 Lottery Solutions and Properties

Randomization is the most natural and common mechanism to use in resource allocation

problems when in doubt which of two or more agents should get an indivisible object. We

next introduce a function to adapt this idea.

A lottery solution is a probability distribution ϕ over the set of deterministic solutions,

where ϕ(R) denotes the probability of solution R. We denote by φT the set of lottery

solutions for reservation problems of length T .

For any sequence of fair share tables Y t, a lottery solution ϕ induces a period-t ex-

pected reservation table Eϕ(Y
t) :=

∑
R ϕ(R)R(Y t). The internal entry (i, j) in this table

represents the expected fraction of seats that category j receives at department i under ϕ.

10For any x ∈ R, ⌊x⌋ and ⌈x⌉ are the largest integer no larger than x, i.e., floor of x, and the smallest
integer no smaller than x, i.e., ceiling of x, respectively.
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The column total entry (m + 1, j) represents the expected fraction of seats that category j

receives in the university under ϕ.

Our next two properties make sure that in expectation a lottery solution always achieves

the fair shares as well as in implementation it picks a reservation table that is as close as to

fair shares for each departments in every period.

Definition 1. A lottery solution ϕ is unbiased if, for any Y t ∈ ∪Ts=1Ys,

Eϕ(Y
t) = X t.

This property formulates the idea that a lottery solution should implement the fair share

tables in an expected sense; that is, for any Y t,
∑

R ϕ(R)R(Y t) = X t. An unbiased lottery

solution promotes ex-ante “fairness”. Such solutions, on the other hand, may result in an

“unfair” outcome ex-post, in which one category receives all seats, while others receive none.

In other words, the ex-post outcome can differ greatly from the fair share tables. To avoid

this, we next extend the staying within quota property to lottery solutions.

Definition 2. A lottery solution ϕ stays within quota if, for any R such that ϕ(R) > 0,

1. R stays within department quota, and

2. R stays within university quota.

We study lottery solutions ϕ that only pick deterministic solutions that stay within quota.

There are two dimension of staying within quota. We say that a lottery solution stays within

department quota if it only gives positive probabilities to deterministic solutions that stays

within department quota. We say that a lottery solution stays within university quota if it

only gives positive probabilities to deterministic solutions that stays within university quota.
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4 Solutions from India and their Shortcomings

There are two solutions seen in practice in India, the Government’s solution and the

Court’s solution. Both solutions use a tool called roster to determine the number of positions

to be reserved. Formally, a roster σ : {1, 2, . . . } → C is an ordered list over the set of

categories C. A roster assigns each position a category so that for any number of total

positions, the number of positions to be reserved are clearly laid out. Since only a few seats

might arise every period, the objective of maintaining a roster is to ensure that, over a period

of time, each category gets its affirmative action policy prescribed percentage of seats.

Maintaining rosters is central to implementation of reservations in India.11 It makes uni-

form and transparent implementation of the reservation policy across various government

departments possible. However, maintaining rosters for educational institutions raises ad-

ditional complications. Does each department in a university maintain its own roster? Or

does the university as a whole maintain a roster? These questions gave rise to two solutions

in India.

Before illustrating the solutions, we first introduce an example that makes the solutions

easier to comprehend. The example will also be sufficient to demonstrate the various short-

comings of the two solutions.12

Example 1. Consider a problem Λ3 = ({d1, d2, d3, d4}, {c1, c2},α = [1/3, 2/3], (q1,q2,q3) =

([2, 1, 2, 1], [2, 1, 2, 1], [2, 1, 2, 1])). Figure 3 illustrates its period-1, period-2, and period-3 fair

share tables. The reservation scheme reserves 1/3 of the positions in the university for mem-

bers of category c1. Each period, department d1, d2, d3, and d4 have 2, 1, 2, and 1 positions,

respectively. Therefore, period-2 cumulative sums of vacancies in departments are 4, 2, 4,

and 2, respectively. And, period-3 cumulative sums of vacancies in departments are 6, 3, 6,

11See Figure 17 and Figure 18 for the rosters prescribed by Government of India.
12An example with two categories and two department is also sufficient to demonstrate the shortcomings.

Example 1 is constructed so that it not only illustrates the shortcomings of the both solutions, but it also
demonstrates the differences between the Court’s and the Government’s solutions.
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and 3, respectively. The roster is

σ(k) =


c1, if k is a multiple of 3

c2, otherwise

Figure 3: FAIR SHARE TABLES

X1 =

2/3 4/3 2
1/3 2/3 1
2/3 4/3 2
1/3 2/3 1
2 4 6

(a) PERIOD-1 FAIR SHARE TABLE

X2 =

4/3 8/3 4
2/3 4/3 2
4/3 8/3 4
2/3 4/3 2
4 8 12

(b) PERIOD-2 FAIR SHARE TABLE

X3 =

2 4 6
1 2 3
2 4 6
1 2 3
6 12 18

(c) PERIOD-3 FAIR SHARE TABLE

We will see that the choice of the roster in Example 1 is not the source of the shortcomings

of the Government’s and Court’s solutions. The source of problem is that they do not account

for interdependence of the departments and the university in calculating reserved seats.

4.1 Government’s Solution and its Shortcomings

The Government’s solution treats the university as the unit. That is, positions across all

departments are pooled together and the roster is maintained at the university level.

For the problem in Example 1, in period-1, department d1 has two positions: The number

of positions reserved for department d1 is determined by the 1st and 2nd positions in the

roster (i.e., σ(1) = c2, σ(2) = c2). Department d2 has one position: The number of positions

reserved for department d2 is determined by the 3th position in the roster (i.e., σ(3) = c1).
13

Department d3 has two positions: The number of positions reserved for department d3

is determined by the 4th and 5th positions in the roster (i.e., σ(4) = c2, σ(5) = c2).

Department d4 has one position: The number of positions reserved for department d4 is

determined by the 6th position in the roster (i.e., σ(6) = c1). The period-1 reservation table

is illustrated by RG(Y
1) in Figure 4.

13When pooling positions across departments, a fixed order over departments is required to apply to the
roster. In India, the alphabetic order over departments is used.
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In period-2, department d1 has two positions: The number of positions reserved for

department d1 is determined by the 7th and 8th positions in the roster (i.e., σ(7) = c2, σ(8) =

c2). Department d2 has one position: The number of positions reserved for department d2

is determined by the 9th positions in the roster (i.e., σ(9) = c1). Department d3 has two

positions: The number of positions reserved for department d3 is determined by the 10th and

11th positions in the roster (i.e., σ(10) = c2, σ(11) = c2). Department d4 has one position:

The number of positions reserved for department d4 is determined by the 12th position in the

roster (i.e., σ(12) = c1). The period-2 reservation table is illustrated by RG(Y
2) in Figure 4.

We apply this solution for the next period. The period-3 reservation table is illustrated by

RG(Y
3) in Figure 4.

Figure 4: COURT’S AND GOVERNMENT’S SOLUTION

X1 =

2/3 4/3 2
1/3 2/3 1
2/3 4/3 2
1/3 2/3 1
2 4 6

(a) PERIOD-1 FAIR SHARE TABLE

X2 =

4/3 8/3 4
2/3 4/3 2
4/3 8/3 4
2/3 4/3 2
4 8 12

(b) PERIOD-2 FAIR SHARE TABLE

X3 =

2 4 6
1 2 3
2 4 6
1 2 3
6 12 18

(c) PERIOD-3 FAIR SHARE TABLE

RG(Y
1) =

0 2 2
1 0 1
0 2 2
1 0 1
2 4 6

(d) PERIOD-1 RESERVATION TABLE

RG(Y
2) =

0 4 4
2 0 2
0 4 4
2 0 2
4 8 12

(e) PERIOD-2 RESERVATION TABLE

RG(Y
3) =

0 6 6
3 0 3
0 6 6
3 0 3
6 12 18

(f) PERIOD-3 RESERVATION TABLE

RC(Y
1) =

0 2 2
0 1 1
0 2 2
0 1 1
0 6 6

(g) PERIOD-1 RESERVATION TABLE

RC(Y
2) =

1 3 4
0 2 2
1 3 4
0 2 2
2 10 12

(h) PERIOD-2 RESERVATION TABLE

RC(Y
3) =

2 4 6
1 2 3
2 4 6
1 2 3
6 12 18

(i) PERIOD-3 RESERVATION TABLE

Period-3 reservation for category c1 in department d1 and department d3 is 0, however, the

fair share is 2 positions. Moreover, period-3 reservation for category c1 in department d2 and

department d4 is 3, however, the fair share is 1 position. Therefore, the Government’s solution
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RG does not stay within department quota. Moreover, in Example 1, if the departments had

the same number of positions for the next periods, department d1 and department d3 would

not reserve any seats for category c1, and department d2 and department d4 would not reserve

any seats for category c2.

Two shortcomings of the Government’s solution RG are revealed by Example 1:

1. The Government’s solution RG does not stay within quota.

2. The Government’s solution RG allows for large deviations in seat allocations from fair

shares at the department level.

Essentially, Example 1 shows that treating university as the unit can lead to outcomes

that fail to follow the reservation policy at the department level.14

4.2 Court’s Solution and its Shortcomings

The Court’s solution treats department as the unit. That is, positions are not pooled

across departments. Instead, each department independently maintains a roster.

For the problem in Example 1, in period-1, department d1 has two positions: The number

of positions reserved for department d1 is determined by the 1st and 2nd positions in its

roster (i.e., σ(1) = c2, σ(2) = c2). Department d2 has one position: The number of positions

reserved for department d2 is determined by the 1st position in its roster (i.e., σ(1) = c2).

Department d3 has two positions: The number of positions reserved for department d3 is

determined by the 1st and 2nd positions in its roster (i.e., σ(1) = c2, σ(2) = c2). Department

d4 has one position: The number of positions reserved for department d4 is determined by

the 1st position in its roster (i.e., σ(1) = c2). The period-1 reservation table is illustrated by

RC(Y
1) in Figure 4.

In period-2, department d1 has two positions: The number of positions reserved for

department d1 is determined by the 3th and 4th positions in its roster (i.e., σ(3) = c1, σ(4) =

14In fact, in Proposition 3, we show that for any solution that stays within university quota, the deviations
in seat allocations from fair shares at the department level can not be limited by a fixed number.
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c2). Department d2 has one position: The number of positions reserved for department d2

is determined by the 2nd positions in its roster (i.e., σ(2) = c1). Department d3 has two

positions: The number of positions reserved for department d3 is determined by the 3th and

4th positions in its roster (i.e., σ(3) = c1, σ(4) = c2). Department d4 has one position:

The number of positions reserved for department d4 is determined by the 2nd position in its

roster (i.e., σ(2) = c1). The period-2 reservation table is illustrated by RC(Y
2) in Figure 4.

We apply this solution for the next period. The period-3 reservation table is illustrated by

RC(Y
3) in Figure 4.

Period-1 reservation for category c1 in the university is 0, however, the fair share is 2

positions. Moreover, period-2 reservation for category c1 in the university is 2, however, the

fair share is 4 positions. Therefore, the Court’s solution RC does not stay within university

quota. Moreover, in Example 1, if there were 4 more departments d5, d6, d7, and d8, with the

same number of positions as department d1, d2, d3, and d4, respectively, period-1 reservation

for category c1 in the university would still be 0. And, period-2 reservation for category c1

in the university would still be 4 while the fair share was 8 positions.

Two shortcomings of the Court’s solution RC are revealed by Example 1:

1. The Court’s solution RC does not stay within quota.

2. The Court’s solution RC allows for large deviations in seat allocations from fair shares

at the university level.

Essentially, Example 1 shows that treating department as the unit can lead to outcomes

that fail to follow the reservation policy at the university level.
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5 Theoretical Results

5.1 Single Period Results

One way to approach the problem of reservation in two dimensions is to ignore the time

dimension, that is, the problem can be treated as an independent problem in each period.15

In that case, a lottery solution that is unbiased and stays within quota always exists.

Proposition 1. There exists a lottery solution ϕ ∈ φ1 that is unbiased and stays within

quota.

The proof, presented in Appendix A, uses an adaptation of the Cox (1987) controlled

rounding procedure to construct a unbiased lottery solution that stays within quota. By

Proposition 1, any period-1 fair share table is implemented by a lottery solution that only

gives positive probability to period-1 reservation tables that do not deviate from fair shares

by more than one seat. The following corollary directly follows Proposition 1.

Corollary 1. There exists a deterministic solution R ∈ R1 that stays within quota.

Corollary 1 implies that for any problem of length T = 1, there always exists a reservation

table that stays within quota. That is, there is a satisfactory solution to the problem of

reservation in two dimensions if in each period the problem is treated independently.

5.2 Multi Period Results

Treating each period’s problem independently can lead to adverse outcomes over time.

In particular, since integer seat allocations differ from the fair share tables in every period,

accumulation of these differences can result in large deviation from fair shares over time. We

next show this issue in an example.

15This is analogous to biproportional apportionment problems. In some proportional electoral systems
with more than one constituency the number of seats must be allocated to parties within territorial con-
stituencies, as well as, the number of seats that each party has to receive at a national level.
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Example 2. Consider a problem depicted in the following fair share table, with two de-

partments d1, d2 having 2 and 7 positions, respectively, and two categories c1, c2, and the

reservation scheme vector α = [0.1, 0.9].

The following deterministic solution stays within quota, but it does not give any positions

to category c1.

X =
0.2 1.8 2
0.7 6.3 7
0.9 8.1 9

(a) FAIR SHARE TABLE

R(X) =
0 2 2
0 7 7
0 9 9

(b) RESERVATION TABLE

Example 2 suggests that not reserving any seats is a solution that stays within quota. For

instance, a university can repeatedly apply this solution to each period’s problem and does

not reserve a single seat.

In general case, a lottery solution ϕ that treats each period’s problem independently

rounds up or rounds down each fair share with some probabilities. Therefore, in the range of

the lottery solution ϕ, there exists an outcome that rounds down a particular entry in every

period. That is, the lottery solution ϕ can result in seat allocations with sizeable deviations

from fair shares.

We next examine how our single period results extend to the multi-period problem. We

first show that for every problem, a deterministic solution that stays within quota does not

always exists.

Proposition 2. There does not exist a deterministic solution R ∈ RT that stays within

quota for T > 1.

Proposition 2 implies that for every problem of length T > 1, unlike single period,

solutions deviate from fair shares by more than one seat. It also implies that it is impossible

to both stay within university quota and stay within department quota. We next generalize

staying within quota property to allow for some differences in fair shares and seat allocations.
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A bias of a deterministic solution R at Y t is a two-way table bias(R(Y t)), with each

entry bias(R(yt)) := R(yt)− xt. The bias of a solution is the difference between the solution

and the fair share table. With this definition, a solution stays within quota if, for any Y t,

each entry |bias(R(yt))| < 1, that is, for any problem, the bias of the solution is always less

than 1 in absolute value. Our next property allows a solution to deviate from fair shares up

to a constant number.

Definition 3. A deterministic solution R ∈ RT has a finite bias if there exists a constant

b > 0 such that, for any Y t ∈ ∪Ts=1Ys,

|bias(R(yt))| < b.

One might be tempted to think that there would be solutions that allow for larger devia-

tions in seat allocations from fair shares at the department level but stays within university

quota. We show that such solutions do not exist.

Proposition 3. There does not exist a deterministic solution R ∈ RT that has a finite bias

and stays within university quota for T > 1.

The proof is in Appendix A. Proposition 2 is a corollary of Proposition 3. By Proposition 2

we learn that any procedure that stays within university quota cannot stay within department

quota. By Proposition 3 we learn that any procedure that stays within university quota can

lead to departments to grow in size over time without reserving a single seat.

Proposition 2 and Proposition 3 have a stronger implication: there is no deterministic

solution to the problem of reservation in two dimensions that stays within quota. This

negative result provides yet another reason to use lottery solutions to address the problem

of reservation in two dimensions.

We next present the main existence result: the set of lottery solutions that are unbiased

and stay within department quota is non-empty.
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Theorem 1. There exists a lottery solution ϕ that is unbiased and stays within department

quota.

A formal proof of Theorem 1 is presented in Appendix A. The proof utilizes a network

flow to construct a lottery over rosters. Each department is then assigned a roster drawn

independently from the constructed lottery. This two-step procedure induces a lottery solu-

tion, denoted ϕ∗ and defined formally in Appendix A. The lottery solution is shown to be

unbiased and stays within department quota, that is, each category gets (i) ex-ante its fair

share, and (ii) ex-post its fair share either rounded up or down in every department.16

Theorem 1 implies that there is a lottery solution that ensures that each department

sticks to the reservation scheme while the university, as a whole, respects the fair shares in

an expected sense. By Proposition 3, however, we know that such solutions can result in

biases greater than one at the university level. To show that our lottery solution limits the

probability of these occurrences, we modify the staying within university quota property.

We denote the outcome of a lottery solution ϕ at a sequence of fair share tables Y t by the

random variable Zt and its entries by ztij. The deviation of the outcome of lottery solution

ϕ for a category j ∈ C in the university is ztm+1,j − xt
m+1,j. This random variable measures

the deviation of the seat allocation at the university level from its fair share.

Definition 4. A lottery solution ϕ approximately stays within university quota if,

for any Y t, for any category j ∈ C and for any b > 0, we have

Pr(ztm+1,j − xt
m+1,j ≥ b) ≤ e

− b2

3xt
m+1,j ,

Pr(ztm+1,j − xt
m+1,j ≤ −b) ≤ e

− b2

2xt
m+1,j .

We establish probabilistic concentration bounds on the deviations for our lottery solution

16One can show that the set of lottery solutions that are unbiased and stay within university quota is also
non-empty. However, staying within the department quota property better suits our applications because
one goal of affirmative policies is to increase diversity in all sub-units (departments and university as a
whole), and the smallest sub-units in our setup are departments.

24



ϕ∗ and show that ϕ∗ approximately stays within university quota.

Theorem 2. The lottery solution ϕ∗ is unbiased, stays within department quota, and ap-

proximately stays within university quota.

Theorem 2 follows from a Chernoff-type concentration bound. We establish the proba-

bility bounds in a fashion similar to Gandhi et al. (2006). By this property, the probability

of deviating from university quota by a value greater than b decays exponentially with b2.

Therefore, there is a procedure that ensures that each department obeys the reservation

scheme, while the university as a whole approximately follows the reservation scheme.

We next show that the bounds in Definition 4 are tight (up to a multiplicative constant

in the exponent) and thus rules out any improvement of the deviation of the seat allocation

at the university level from its fair share.

Proposition 4. Consider a lottery solution that is unbiased, stays within department quota

and limits the probability of deviation of the seat allocation at university level in following

way: for any Y t, for any category j ∈ C and for any b > 0, the lottery satisfies

Pr(ztm+1,j − xt
m+1,j ≥ b) ≤ f(xt

m+1,j, b) ,

Pr(ztm+1,j − xt
m+1,j ≤ −b) ≤ f(xt

m+1,j, b) .

Then, there exists a constant k > 0 such that for any b > 0,

lim
xt
m+1,j→∞

e
− b2

xt
m+1,j

k

f(xt
m+1,j, b)

= 0 .

Proposition 4 shows that there exists a constant k > 0 such that any lottery that is

unbiased and stays within department quota can approximately stay within university quota

(in the sense of Definition 4) with a probabilistic guarantee no better than e
− b2

xt
m+1,j

k
. A proof

of Proposition 4 is presented in Appendix A.
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6 Empirical Study of Reservation in Two Dimensions

Here we present a comprehensive evaluation of recruitment advertisements to highlight

the severity of shortcomings in the existing solutions and to reflect the benefits of adopting

our proposed solutions. Specifically, we evaluate the general quality of the advertised two-

way apportionments with respect to the instances and magnitude of quota violations, and

present the advantage our proposed solution exhibits.

Our data comprises 60 advertisements released in the following five recruitment settings

where two-dimensional reservation problems are seen in practice.

1. Assistant Professors of University of Delhi

2. Officers of Indian Administrative Services

3. Officers of Indian Forest Services

4. Officers of Indian Police Services

5. Assistants of Reserve Bank of India

In the preceding sections we presented and analyzed the problem in the context of a

university. Therefore, we will continue to use the same terminology for all advertisements.

The term departments refers to departments in a university for the assistant professors

advertisements. However, for other advertisements the departments correspond to the states

(in India) where an officer or an assistant shall be recruited. Similarly, the term university

corresponds to the country (India) in the latter advertisements.

An overview of the recruitment advertisement data is presented in Table 2. The ad-

vertisements provide a variety of two-dimensional reservation problems with the number of

departments varying from 8 to 50; the number of vacancies in a department varying from 1

to 30; and the number of vacancies in the university varying from 21 to 1000. The advan-

tage of using data from different institutions is that the variety of procedures used at these

institutions help highlight the robustness of shortcomings we discussed in Section 4.
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Table 2: OVERVIEW OF RECRUITMENT ADVERTISEMENTS

Departments Dept. Vacancies Total Vacancies

Institution Ads Avg. Min-Max Avg. Min-Max Avg. Min-Max

University of Delhi 23 19.7 8-50 4.2 1-10 94.8 21-405

Indian Administrative Services 15 24.7 24-26 9.47 5-15 148.9 87-180

Indian Forest Services 7 25.1 24-26 3.6 3-4 95.4 78-110

Indian Police Services 8 25.3 24-26 12.8 10-16 150.1 148-153

Reserve Bank of India 7 17 17-17 23.7 13-30 648.1 500-1000

6.1 Single Period Analysis

First consider the problem of reservations as a single period problem. Thus in this

subsection each advertisement is treated as an independent single period two-dimensional

reservations problem. In line with our theoretical analysis, we use the department and

university quota violations in judging the quality of solutions advertised.

Table 3 shows that the instances of both the department quota and the university quota

violations are pervasive in the advertised solutions of all the institutions. The percentage of

instances of violations, obtained by dividing the number of violations that occurred by the

maximum number of violations possible, is an informative summary measure. Based on this

measure, the probability that a typical category would witness a department quota violation

in a typical department ranges from 0.08 in University of Delhi to 0.59 in Reserve Bank of

India. The probability that a typical category would witness a university quota violation

ranges from 0.18 in India Forest Services to 0.93 in Reserve Bank of India.

In order to provide a complete picture of the severity of shortcomings, we present the

magnitude of bias (in cases of quota violation) in Table 3. The magnitude of bias is the

absolute value of bias as defined in Section 5.2. At the department level, this measure shows

that, in case of quota violation, the average deviation from fair shares for a typical category

ranges from 1.3 in University of Delhi to 4.1 in Reserve Bank of India. At the university

level, this measure shows that, in case of quota violation, the average deviation from fair
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Table 3: SINGLE PERIOD QUOTA VIOLATIONS – STATISTICS

Instances of Violations Magnitude of Bias

Avg. Min-Max Total Percentage Avg. Min-Max

University of Delhi

Department Quota 6.8 0-24 156 8% 1.3 1-4

University Quota 2.6 1-5 60 59.4% 2.7 1-13

Indian Administrative Services

Department Quota 28.9 2-48 434 29.2% 1.8 1-6.5

University Quota 1.9 0-4 28 46.7% 3.9 1-6.9

Indian Forest Services

Department Quota 17.6 8-24 123 17.5% 1.5 1-2.9

University Quota 0.7 0-2 5 17.9% 1.4 1.3-1.5

Indian Police Services

Department Quota 32.8 27-38 262 32.5% 1.8 1-5.1

University Quota 2.9 1-4 23 71.9% 2.3 1.2-5.3

Reserve Bank of India

Department Quota 40.1 34-49 281 59% 4.1 1-35.8

University Quota 3.7 3-4 26 92.9% 20.8 2.5-60.6

shares for a typical category ranges from 1.4 in Indian Forest Services to 20.8 in Reserve

Bank of India.

As a single period problem, the two-dimensional reservations problem has been shown

to admit an elegant solution called controlled rounding that stays within quota (see section

Section 5.1). If each reservation problem were to be treated independently, adopting con-

trolled rounding procedure for making reservation tables would lead no quota violations.

Therefore making it possible to achieve simultaneously the prescribed percentage of reserva-

tions at both the department and the university level in single period problems (as shown

in Proposition 1).
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6.2 Multi Period Analysis

In Section 2, with emphasis on maintaining rosters, the intent of India’s policymakers is

clear. In the face of the indivisibility of seats, their policies aim to achieve the prescribed

percentage of reservations not in a single period but over time. Therefore, analysis of the

recruitment data is incomplete without checking whether the quota and biases cancel out

and consequently disappear over time. For this purpose we need to look at sequences of

consecutive advertisements that share the same set of departments and the same reservation

policy. There are seven such sequences in our data.

Results from the last period of these seven sequences of consecutive advertisements in

Table 4 show that the single period violations are not cancelling over time, rather they

are adding up. Both the instances of violations and the magnitude of bias are now higher

than the numbers reported in Table 3 for single period problems. The probability that a

typical category would witness a department quota violation in a typical department ranges

from 0.36 in Indian Forest Services to 0.88 in Reserve Bank of India. The probability that a

typical category would witness a university quota violation ranges from 0.50 in Indian Forest

Services to 1 in Reserve Bank of India. At the department level, in case of quota violation,

the average deviation from fair shares for a typical category ranges from 1.8 in Indian Forest

Services to 11.7 in Reserve Bank of India. At the university level, in case of quota violation,

the average deviation from fair shares for a typical category ranges from 1.5 in Indian Forest

Services to 83.2 in Reserve Bank of India.

The findings suggest that the problem worsens with time in that there are more instances

of violations and larger deviations from policy prescribed percentage of reservations. This

is not surprising given the negative results presented in Proposition 2 and Proposition 3.

However, the scope of improvement is clear. Theorem 1 and Theorem 2 show that there exists

an unbiased solution that stays within quota at the department level and approximately stays

within quota at the university level. A comparison of this proposed solution with the existing

solution is the point of our next simulation exercise. For this exercise we will consider the
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Table 4: MULTI PERIOD QUOTA VIOLATIONS – STATISTICS

Instances of Violations Magnitude of Bias

Total Percentage Avg. Min-Max

Indian Administrative Services: 2005 to 2013

Department Quota 76 79.2% 3.5 1-14.1

University Quota 4 100% 16.6 5.2-28

Indian Administrative Services: 2014 to 2018

Department Quota 79 75.9% 4.1 1-18.1

University Quota 2 50% 4 3.5-4.4

Indian Forest Services: 2011 to 2013

Department Quota 35 36.5% 1.8 1-3.1

University Quota 2 50% 1.5 1.2-1.8

Indian Forest Services: 2015 to 2018

Department Quota 54 51.9% 2.8 1.1-6.9

University Quota 3 75% 3.1 2-4.9

Indian Police Services: 2010 to 2011

Department Quota 45 46.9% 2.2 1-4.2

University Quota 4 100% 2.6 1.7-3.5

Indian Police Services: 2014 to 2018

Department Quota 73 70.2% 3.4 1.1-12.6

University Quota 3 75% 5 2-7.7

Reserve Bank of India: 2012 to 2017

Department Quota 60 88.2% 11.7 1-35.5

University Quota 4 100% 83.2 10-166.4

longest sequence of consecutive advertisements in our data: the advertisement of Indian

Administrative Services from 2005 to 2013.

The objective of the simulation exercise is to compare the evolution of bias over time

under the existing solution with the solution proposed in this paper. For this purpose, we

simulate a set of 50 advertisements adhering to the proposed solution and plot the bias at

each time period in Figure 6. The top-left panel shows that, for the proposed solution’s

advertisements, the department bias stays well within the [−1, 1] interval, that is, there are

no quota violations at the department level. In contrast, under the existing (advertised)

solution presented in the top-right panel, the bias accumulates over time at the department
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level. The bottom-left panel shows that though the university violations occur under the

proposed solution, the bias does not add up over time. The significance is apparent when one

compares it to the evolution of bias under the existing solution presented in the bottom-right

panel.

Figure 6: BIASES OF PROPOSED AND EXISTING SOLUTIONS

(a) DEPARTMENT BIAS OVER TIME
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Note: Box plots show medians, quartiles, and adjacent values of bias distributions over time.
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7 Conclusion

This paper has offered an analysis of two-dimensional reservation problems using the

theory of apportionment and rounding problems. We have theoretically and empirically

documented the shortcomings of existing solutions and proposed a solution with demonstra-

ble advantages over the existing solutions. From a broader perspective, even though our

search for quality solutions is limited to the staying within quota property, the analysis here

can be viewed as illustrative of the substantial scope for improvement in existing procedures

for two-dimensional reservation problems.

Two-dimensional reservation problems are open to several alternative approaches that

deserve extra work. A particular one that deserves mention is the error minimization ap-

proach that has yielded a class of methods to solve biproportional apportionment problems

(Ricca et al. (2012), and Serafini and Simeone (2012)). These methods take a fractional

matrix as the target (fair share table in our case) and solve a constrained optimization prob-

lem where the objective corresponds to a measure of the error between the solution and the

target matrix. Such an approach may pave the way to a richer study of defining and finding

appealing solutions to two-dimensional reservation problems.

Our problem also suggests possible extensions in the theory of apportionment. The

multi-period considerations introduced in this paper could be worth exploring in the classic

biproportional apportionment problem context of translating electoral votes into parliamen-

tary seats.
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Appendices for Online Publication

A Proofs

Proof of Theorem 1

The proof is constructive and has two parts. We first define the Roster-Finding Algo-

rithm, which takes a reservation scheme vector as inputs and generates a random roster as an

output, that is, a lottery over rosters.We then assign the random roster to each department

independently. The random roster is constructed such that if every department follows it,

the induced solution stays within the department quota. We denote this solution as our

lottery solution ϕ∗. We, lastly, show that the lottery solution ϕ∗ is unbiased.

Proof of Theorem 1. Let C be the set of categories and α = [αj]j∈C be the reservation scheme.

Let P represent the given reservation scheme as a k×n two-way table, where the rows denote

the index of the seats and the columns denote the categories. The internal entry pij equals

to αj for every (i, j). Let assume that for each column, entries sum up to an integer (if there

is a common multiplier for fractions in the reservation scheme vector, then such k exists).17

The output of the algorithm will be an integral table that define how a department reserves

its positions over time, i.e., a roster. We next construct a set of constraints that bounds the

elements of the table P .

For each constraints K, let pK and p̄K be the floor and ceiling of the constraint. That is,

pK = ⌊
∑

(i,j)∈K pij⌋ and p̄K = ⌈
∑

(i,j)∈K pij⌉. We will consider tables P ′ that satisfying, for

each K,

pK ≤
∑

(i,j)∈K

p′ij ≤ p̄K .

We have three types of constraints. Internal constraints make sure that each internal

17The generalization to non-integer sums is made by constructing an extended table P ′ in a way that
is equivalent to P except the last row. The last row of P ′ is generated by taking 1- fractional part of the
column totals (similar to how the extended table is created in the algorithm given for proof of Proposition 1).
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entry can be either 1 or 0. Row sums are required to be one since every position is assigned

to exactly one category. Column constraints make sure that difference between cumulative

some of positions given to a category and cumulative fair shares is less than one.

Let KI be the internal constraints, i.e., 0 ≤ p′ij ≤ 1 for every (i, j). Let kij := {(i, j)}

denote such constraint. Let KR be the set of row constraints, i.e.,
∑

j∈C p
′
ij = 1 for every i.

Let Ri := {(i, j)|j ∈ C} denote such constraint. Let KC be the set of column constraints, i.e.,

⌊
∑

i≤l pij⌋ ≤
∑

i≤l p
′
ij ≤ ⌈

∑
i≤l pij⌉ for every 2 ≤ l ≤ n and j ∈ C. Let Clj := {(i, j)|i ≤ l}

denote such constraint.

We next create a flow network. The set of vertices consists of the source, the sink,

vertices for each k ∈ KI , each R ∈ KR, and for each C ∈ KC . The following rule governs the

placement of directed edges:

1. A directed edge from source Cnj for every j ∈ C.

2. A directed edge from Clj to klj and Cl−1j for every l ≥ 3 and j ∈ C.

3. A directed edge from C2j to k2j and k1j for every j ∈ C.

4. A directed edge from kij to Ri for every (i, j).

5. A directed edge from Ri to sink for every i.

Note that the constraint structure for KC ∪ KI and KR ∪ KI are hierarchical. A set

of constraints K is hierarchical if, for every pair of constraints K ′ and K ′′, we have that

K ′ ⊂ K ′′ or K ′′ ⊂ K ′ or K ′ ∩K ′′ = ∅.

We next associate flow with each edge. Notice that there is only one incoming edge for

each vertex K ∈ KC∪KI . And, there is only one outgoing edge for each vertex K ∈ KR∪KI .

Observe that it is because of the hierarchical sets of constraints. Therefore, it is sufficient

to associate incoming flows for each vertex K ∈ KC ∪KI and outgoing flows for each vertex

K ∈ KR ∪KI . For each vertex K ∈ KC ∪KI , the incoming flow is equal to
∑

(i,j)∈K pij. For

each vertex K ∈ KR ∪ KI , the outgoing flow is equal to
∑

(i,j)∈K pij. Furthermore, the flow
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association ensures that the amount of incoming flow is equal to the amount of outgoing

flow for each vertex.

Notice that we map table P with the constraint structures to a flow network. In addition,

the mapping is injective. As long as the constraints are still satisfied after the transformation,

every transformation in the flow network can be mapped back to table P .

Definition 5. We call the pair of tables (P 1, P 2) a decomposition of table P , if

1. there exists β ∈ (0, 1) such that P = βP 1 + (1− β)P 2,

2. for each constraint K, pK ≤
∑

(i,j)∈K plij ≤ p̄K for l = 1, 2, and

3. table P 1 and P 2 have more number of integral entries than table P .

The following constructive algorithm has two parts. We first find a cycle of fractional

edges in the network flow. We then alter the flow of edges in two different ways until one

edge becomes integral. It will provide us a decomposition of table P .

Roster-Finding Algorithm

Repeat the following as long as the flow network contains a fractional edge:

Step 1: Choose any edge that has fractional flow. Since the total inflow equals

to total outflow for each vertex, there will an adjacent edge that has fractional

flow. Continue to add new edges with fractional flows until a cycle is formed.

Step 2: Modify the flows in the cycle in two ways to create P 1 and P 2:

1. First way: the flow of each forward edge is increased and the flow of each

backward edge is decreased at the same rate until at least one flow reaches

an integer value. Record the amount of adjustment as d−. Map back the

resulting flow network to a two way table. Denote the table as P 1.

2. Second way: the flow of each forward edge is decreased and the flow of each

backward edge is increased at the same rate until at least one flow reaches

an integer value. Record the amount of adjustment as d+. Map back the

resulting flow network to a two way table. Denote the table as P 2.
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3. Set β = d−
d−+d+

.

4. The pair of tables (P 1, P 2) is a decomposition of table P , where P = βP 1 +

(1− β)P 2.

The algorithm creates a lottery over integral two-way tables that share the same con-

straint structure as table P .18 Assume that P̄ is an integral table constructed by the algo-

rithm, and its compound probability is γ. We construct a roster by each of these integral

tables as follows. For each internal entry of table P̄ , if p̄ij = 1 then assign σ(i) = cj. We

next assign probability γ to roster σ. Thus, we obtain a random roster.

Notice that the expected number seats for each category j in the first q seats equals

to qαj for q = 1, 2, . . . . We next create the induced lottery solution ϕ∗ for the problem of

reservation in two dimensions as follows. We assign the random roster to each department.

Each department then reserves positions according to the roster realized from the lottery.

For example, if roster σ is realized for department i then, the number of positions reserved in

department i in period-1 is determined by σ(1), . . . , σ(q1i ). The number of positions reserved

in department i in period 2 is determined by σ(q1i + 1), . . . , σ(q1i + q2i ).

We next show that the lottery solution ϕ∗ is unbiased. Given the lottery solution ϕ∗ and

a a sequence of fair share tables Y t = (X1, . . . , X t), we denote the outcome of the lottery

solution by the random variable Zt. We know that the expected number of positions reserved

to category j in department i until period-t is E(ztij) =
∑

s≤t q
s
iαj. Moreover, the internal

entry xt
ij of fair share table X t also equals to

∑
s≤t q

s
iαj. Thus, the lottery solution ϕ∗ is

unbiased.

This proves the theorem.

An example for Theorem 1

To make the Roster-Finding Algorithm easier to understand and show the whole proce-

dure that constructs the lottery solution ϕ∗, we show an example.

18Moreover, the expected table equals to table P .
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Consider a university where there are two categories C = {c1, c2} and the reservation

scheme is α = (α1, α2) = (1/3, 2/3). Suppose we wish to implement the reservation scheme

in a problem of reservation in two dimensions. We represent the given reservation scheme as

a two-way table P , where the rows denote the index of the positions and the columns denote

the categories. Each internal entry pij = αj. The output of the algorithm will be an integral

table that define how a department reserves its positions over time, i.e., a roster.

There are three positions for easy illustration.19 However, this method works for more

general (total 3k positions, where k = 1, 2, . . . ) cases. The example table P is

P =

1/3 2/3 1
1/3 2/3 1
1/3 2/3 1
1 2 3

Figure 7 illustrates the constraint structure. Column constraints are C31 = {k11, k21, k31},

C21 = {k11, k21}, C32 = {k12, k22, k32}, and C22 = {k12, k22}, and row constraints are R1 =

{k11, k12}, R2 = {k21, k22}, and R3 = {k31, k32}.

The two-way table P with the constraints is then represented as a network flow. Start-

ing from the source, the flows first pass through the sets in column constraints, which are

arranged in descending order of set-inclusion. That is, for example, C31 ⊃ C21 ⊃ k11. This

explains the flow network on the left side of Figure 8, where the numbers on the edges

represent the flows. The flows then proceed along the directed edges that represent the set-

inclusion tree, eventually reaching the singleton sets. That is, for example, k11 ⊂ R1. This

explains the flow network on the right side of Figure 8.

In the flow network, note that the flow associated with each edge reflects the totals

of elements in the corresponding set. And, the flow arriving at each vertex equals the

flow leaving that vertex. Now we are ready to present the algorithm. The algorithm will

conserve these two properties while constructively find new flow network with fewer fractional

19Using the common multiple of the fractions in the reservation scheme, three in our case, also helps to
understand.
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Figure 7: CONSTRAINT STRUCTURE OF THE EXAMPLE P

P =

1/3 2/3 1

1/3 2/3 1

1/3 2/3 1

1 2 3

k11 k21

k31

k12
k22

k32

(a) INTERNAL CONSTRAINTS

P =

1/3 2/3 1

1/3 2/3 1

1/3 2/3 1

1 2 3

C31

C21

C32

C22

(b) COLUMN CONSTRAINTS

P =

1/3 2/3 1

1/3 2/3 1

1/3 2/3 1

1 2 3

R1R2

R3

(c) ROW CONSTRAINTS

elements.

We first identify a cycle of edges with fractional flows. Choosing any fractional edge, say

(C31, k31), we find another fractional edge that is neighbor to k31. If a vertex has a fractional

edge then it has to have another fractional edge: since total inflow equals to outflow for

every vertices(except source and sink), we would have a contradiction. We continue to add

new fractional edges until we form a cycle. In our example, the cycle of fractional edges is

C31 →1/3 k31 →1/3 R3 ←2/3 k32 ←2/3 C32 →4/3 C22 . . .←2/3 C31. We illustrates this cycle in

Figure 9 with dashed lines.

Next, we alter the cycle’s edge flows. We first increase the flow of each forward edge

while decreasing the flow of each backward edge at the same time until at least one flow

reaches an integer value. A table P1 is created as a result of the resulting network flow. In

the example, flows along all forward edges increase from 2/3 to 1, 1/3 to 2/3, and 4/3 to 5/3,
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Figure 8: FLOW NETWORK REPRESENTATION OF THE EXAMPLE P
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while flows along all backward edges decrease from 1/3 to 0 and 2/3 to 1/3. The adjustment

is d+ = 1/3. Next, the flows of the edges in the cycle are readjusted in the opposite direction,

increasing those with backward edges and lowering those with forward edges in an analogous

way, resulting in a new table P2. In the example, flows along all forward edges decrease from

2/3 to 1/3, 1/3 to 0, and 4/3 to 1, while flows along all backward edges increase from 1/3

to 2/3 and 2/3 to 1. The adjustment is d− = 1/3.

Now, we can decompose P into these two tables, i.e., P = d−
d−+d+

P1+
d+

d−+d+
P2 =

1
2
P1+

1
2
P2.

The algorithm picks P1 with probability 0.5 and P2 with probability 0.5. We reiterate the

decomposition process until no fractions left.

At each iteration, at least one fraction in P is converted to an integer, while all current

integers remain constant. Each fraction must appear in at least one iteration. As a result,

the process must converge to an integer table in less iterations than the initial number of

fractions in table P .

Since only the fractions along one cycle in the flow network are modified in each iteration,

the expected change at this iteration for entries not on this cycle is 0, i.e., the expected
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Figure 9: AN EXAMPLE OF CYCLE WITH FRACTIONAL EDGES
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change in corresponding entries in P is 0. For those fractional edges that are modified, the

probabilities are picked so that the expected adjustment in each iteration is 0.

Fractional edges that are adjusted multiple times will have a variety of intermediate

adjustment probabilities, but because our procedure keeps the expected change at 0 in each

iteration, the compound probabilities will also keep the expected change at 0.

Proof of Theorem 2

Here, we prove that lottery solution ϕ∗ in Theorem 1 approximately stays university

quota. In words, the lottery solution ϕ∗ is designed in such a way such that it hardly

ever round up (or round down) most of the entries in each column of X t. We show the

approximately staying university quota property by proving two lemmas. We first show that

entries of each column of Zt are “independent”. We next prove the approximately staying

university quota by applying Chernoff concentration bounds.
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Lemma 1. For any subset of S ⊂ {1, 2, . . . ,m} and any j ∈ {1, 2, . . . , n}, we have

Pr
[∧
i∈S

ztij = ⌈xt
ij⌉

]
=

∏
i∈S

Pr
[
ztij = ⌈xt

ij⌉
]
,

Pr
[∧
i∈S

ztij = ⌊xt
ij⌋

]
=

∏
i∈S

Pr
[
ztij = ⌊xt

ij⌋
]
.

Proof. Notice that the random roster is assigned to each department independently. Conse-

quently, for any pair (i, i′), random variables ztij and zti′j become independent, which proves

the lemma.

Lemma 2. For any subset of S ⊂ {1, 2, . . . ,m} and any j ∈ {1, 2, . . . , n} with
∑

i∈S x
t
ij = µ,

and for any ϵ > 0 , we have

Pr
[∑

i∈S

ztij − µ > ϵµ
]
≤ e−µ ϵ2

3 ,

Pr
[∑

i∈S

ztij − µ < −ϵµ
]
≤ e−µ ϵ2

2 .

Proof. We begin by recalling a result of Chernoff et al. (1952), which demonstrates that

the independence property has the following large deviations result. Chernoff bounds are

well-known concentration inequalities that limit the deviation of a weighted sum of Bernoulli

random variables from their mean. We now use the multiplicative form of Chernoff concen-

tration bound.

Theorem 3. Chernoff bound: Let A1, A2, . . . , Am be m independent random variables taking

values in {0, 1}. Let µ =
∑m

i=1E[Ai]. Then, for any ϵ ≥ 0,

Pr
[ m∑

i=1

Ai ≥ (1 + ϵ)µ
]
≤ e−µ ϵ2

3 ,
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Pr
[ m∑

i=1

Ai ≤ (1− ϵ)µ
]
≤ e−µ ϵ2

2 .

The random variable ztij can take two values, either ⌈xt
ij⌉ or ⌊xt

ij⌋. If we subtract the fix

number ⌊xt
ij⌋ from ztij, then we obtain a Bernoulli distribution. Lemma 1 says that the set of

random variables in each column of Zt are independent, which means Chernoff concentration

bounds hold for each column of Zt.

Proof of Theorem 2. We can now prove Theorem 2. In Lemma 2, if we choose S = {1, . . . ,m},

then
∑m

i=1 x
t
ij = xt

m+1,j. This fact along with Lemma 2 yields our result for Theorem 2.

Proof of Proposition 4

Proof. For any xt
m+1,j := µ > 0 and any constant b := ϵµ, we construct a problem instance.

For the rest of the proof we fix category j, µ, and ϵ. This instance contains n departments,

m categories. The vacancies are as follows: qsi = 0 vacancies for all s < t and qti = 1 for

any i ∈ D. Choose a constant ϵ, ϵ̄ ∈ (0, 1) such that ϵ ∈ (ϵ, ϵ̄). Choose α ∈ (0, 1/(1 + ϵ̄))

such that µ/α is an integer. Let m = µ/α. For category j, α fraction of vacancies are to be

reserved. Note that, by definition, xt
ij = α for all i ∈ D.

Consider a lottery solution that is unbiased and stays within department quota. Let

ztij denote the the outcome of such lottery for category j in department i. Note that, by

definition of such lottery, Pr(ztij = 1) = α and Pr(ztij = 0) = 1− α must fold for all i ∈ D.

And, by definition, the random variable ztm+1,j =
∑m

i=1 z
t
i,j is a sum of independent Bernoulli

trials. Hence, ztm+1,j has a binomial distribution. That is,

Pr(ztm+1,j = c) =

(
m

c

)
αc(1− α)m−c

.
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Let Bα(m,λ) be the (upper) tail of the binomial distribution from λm to m. That is,

Bα(m,λ) =
m∑

c=λm

(
m

c

)
αc(1− α)m−c

where λm is an integer and α < λ < 1. When λ = (1+ ϵ)α, by definition, the probability of

ztm+1,j is at least b+ xt
m+1,j = (1 + ϵ)µ is

B := Pr(ztm+1,j ≥ (1 + ϵ)µ) = Bα(m, (1 + ϵ)α).

The goal is to show that B is at least e−µϵ2l, where l > 0 is a constant independent of µ

and ϵ. This would imply that f(µ, ϵµ) ≥ e−µϵ2l. Hence, setting k to be any constant larger

than l would prove the proposition.

To show lower bounds on the tail distribution, we use the following lemma.

Lemma 3. Ahle (2017). When λ ≥ 0.5,

Bα(m,λ) ≥ 1√
2m

e−mH(λ;α)

where H(λ;α) = λ log λ
α
+ (1− λ) log 1−λ

1−α
.

Applying this lemma for m = µ/α and λ = (1 + ϵ)α implies:

B ≥ 1√
2µ/α

e−
µ
α
H((1+ϵ)α;α)

=
1√
2µ/α

e−
µ
α
[(1+ϵ)α log(1+ϵ)+(1−(1+ϵ)α) log

1−(1+ϵ)α
1−α

]

=
1√
2µ/α

e−µ[(1+ϵ) log(1+ϵ)+
1−(1+ϵ)α

α
log(1−αϵ/(1−α))]

≥ 1√
2µ/α

e−µ[(1+ϵ)ϵ+
1−(1+ϵ)α

1−α
ϵ)] (1)

=
1√
2µ/α

e−µϵ2(1+ 1
ϵ
+

1−(1+ϵ)α
(1−α)ϵ

) (2)
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where (1) holds since log(1 + ϵ) < ϵ and log(1− αϵ/(1− α)) < − αϵ
1−α

for all ϵ ∈ (0, 1).

The proof is complete when we observe that the right-hand side of (2) is larger than

e−µϵ2l for any l ≥ 1 + 2/ϵ and sufficiently large µ.20

Proof of Proposition 1

In this section, we present the complete proof of Proposition 1. The proof is an adaptation

of the procedure of Cox (1987).21

Proof. We present a constructive proof of Proposition 1 using following algorithm. The

rounding algorithm takes a fair share table as input and generates a (random) reservation

table as output. To make the algorithm easier to understand, after each step we demonstrate

the algorithm on an example depicted in Figure 10.

Rounding Algorithm

Step 1: Given a fair share table X, we construct an extended table V by adding

an extra row to table X. The last row of V is generated by taking 1 - fraction

part of the column totals of table X.

In our example, shown in Figure 10, table V is equivalent to table X except

the last row. Adding this extra row makes the column totals integers.

Figure 10: STEP 1 OF PROCEDURE

X =

0.5 0.5 1 2
0.25 0.25 0.5 1
0.75 0.75 1.5 3
1.5 1.5 3 6

(a) FAIR SHARE TABLE

V =

0.5 0.5 1 2
0.25 0.25 0.5 1
0.75 0.75 1.5 3
0.5 0.5 0 1
2 2 3 7

(b) EXTENDED TABLE

20The proof is symmetric for the lower tail since Pr(ztm+1,j ≤ (1− ϵ)µ) = B1−α(m, (1− ϵ)α)
21An alternative proof utilizes network flow approach, very similar to the one in proof Theorem 1. How-

ever, for its simplicity and ease of use by hand, we show a modified version of the procedure of Cox (1987).
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We focus on the internal entries of table V . The procedure involves iterative

adjustment of the fractions in table V until all fractions have been replaced by

integers.

Step 2: If table V contains no fractions, then skip to Step 8.

Step 3: Choose any fraction vij in table V . At (i, j) begin an alternating row-

column (or column-row) path of fractions. A cycle will be formed (all edges

Figure 11: STEP 3 OF PROCEDURE

V=

0.5 0.5 1 2
0.25 0.25 0.5 1
0.75 0.75 1.5 3
0.5 0.5 0 1
2 2 3 7

fractions).

In our example, shown in Figure 11, the cycle of fractions is (i1, j1) →

(i1, j2)→ (i2, j2)→ (i2, j3)→ (i3, j3)→ (i3, j2)→ (i4, j2)→ (i4, j1)→ (i1, j1).

Step 4: Modify the cycle. First, raise the odd edges and reduce the even edges

at the same rate until at least one edge reaches an integer value. The resulting

table then gives rise to a table V1.

In our example, the odd edges rise by 0.5 and even edges reduce by 0.5 (d+ =

0.5). The resulting table V1 is shown in Figure 12.

Step 5: Next, readjust the edges in the cycle in the reverse direction, raising

even edges and reducing odd edges in an analogous manner, which gives rises to

another table V2.

In our example, the even edges rise by 0.25 and odd edges reduce by 0.25

(d− = 0.25). The resulting table V2 is shown in Figure 12.

Step 6: Select either V1 or V2 with probabilities p1 =
d−

d−+d+
and d+

d−+d+
, respec-

tively.

In our example, table V is decomposed into table V1 and table V2 where
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Figure 12: STEP 6 OF PROCEDURE

V1 =

1 0 1 2
0.25 0.75 0 1
0.75 0.25 2 3
0 1 0 1
2 2 3 7

V2 =

0.25 0.75 1 2
0.25 0 0.75 1
0.75 1 1.25 3
0.75 0.25 0 1
2 2 3 7

V = 1
3
V1 +

2
3
V2. There are few fraction elements in both tables.

Step 7: Reiterate Step 6 until no fractional elements left.

Step 8: Delete the last row of the table and report it as the outcome of the

algorithm.

The algorithm must end in finite steps (at most the number of fractions in share table

V ) and, at the end we must have an integer table.

Lemma 4. The outcome of the Rounding Algorithm stays within quota.

Proof. In Step 4 and 5, after each adjustment the row and column sums remains the same.

Moreover, after adjustments every element vij in table V always remains less than or equal

to ⌈vij⌉ and greater than or equal to ⌊vij⌋. Therefore, the outcome of the algorithm will stay

within quota.

Lemma 5. The Rounding Algorithm satisfies the following property: For any iteration and

for any entry of the table,

E(vij|V ) = vij

Proof. Note that in Step 4, vij raises by d+ and in Step 5, it reduces by d−. In Step 6,

the probabilities of raising and decreasing are assigned as d−
d−+d+

and d+
d−+d+

. Therefore, the

expected adjustment will be d+
d−

d−+d+
+ d−

d+
d−+d+

= 0.

In words, Lemma 5 proves that entries of the fair share table X are rounded up or down

so that ex-ante positive and negative biases balance to yield zero bias.

Lemma 4 and Lemma 5 prove Proposition 1.
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Proof of Proposition 2 and Proposition 3

Since Proposition 2 is a special case of Proposition 3, we prove the latter. We prove the

proposition by contradiction.

Proof. Suppose a deterministic solution R stays within university quota. We show an exam-

ple of a problem of reservation in two dimensions that the solution R can not have a finite

bias. That is, for any constant b > 0, there exist a Y t and an internal entry yt such that

|bias(R(yt))| > b.

Example 3. Consider a problem with three departments d1, d2, and d3, two categories c1, c2,

the reservation scheme vector α = [0.5, 0.5]. The departments d1, d2, and d3 have q1 =

[0, 0, 1] positions in period-1 and q2 = [1, 0, 0] positions in period-2.

Notice that staying within university quota is equivalent to reserving exactly k positions for

c1 and c2 in every 2k cumulative sum of vacancies in the university, where k = 1, 2, 3, . . . . In

period-1, department d3 can reserve positions to either categories. Without loss of generality,

we assume that it reserves 1 position for c1. In period-2, since there are 2 cumulative sum

of vacancies in the university, there should be exactly 1 position reserved for c1. Department

d1 should reserve 1 position for category c2. The period-1 and period-2 reservation tables are

shown in Figure 13.

Figure 13: PERIOD-1 AND PERIOD-2 RESERVATION TABLES

X1 =

0 0 0
0 0 0
0.5 0.5 1
0.5 0.5 1

(a) PERIOD-1 FAIR SHARE TABLE

X2 =

0.5 0.5 1
0 0 0
0.5 0.5 1
1 1 2

(b) PERIOD-2 FAIR SHARE TABLE

R(Y 1) =

0 0 0
0 0 0
1 0 1
1 0 1

(c) PERIOD-1 RESERVATION TABLE

R(Y 2) =

0 1 1
0 0 0
1 0 1
1 1 2

(d) PERIOD-2 RESERVATION TABLE
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If departments have q3 = [0, 0, 1] positions in period-3, department d3 can reserve its

position to either categories. These two cases are show in Figure 15.

Figure 14: TWO CASES FOR PERIOD-3 RESERVATION TABLES

X3 =

0.5 0.5 1
0 0 0
1 1 2
1.5 1.5 3

(a) PERIOD-3 FAIR SHARE TABLE

R1(Y
3) =

0 1 1
0 0 0
2 0 2
2 1 3

(b) PERIOD-3 RESERVATION TABLE

R2(Y
3) =

0 1 1
0 0 0
1 1 2
1 2 3

(c) PERIOD-3 RESERVATION TABLE

Case 1: We assume that the solution is R = R1. If the departments have q4 = [1, 0, 0]

positions in period-4, department d1 should reserve 1 position for category c2. Otherwise, the

solution R would violate staying within university quota property. Period-4 fair share table

and the period-4 reservation table are illustrated by X4
1 and R1(X

4
1 ) in Figure 15.

Case 2: We assume that the solution is R = R2. If the departments have q4 = [0, 1, 0]

positions in period-4, department d2 should reserve 1 position for category c1. Otherwise, the

solution R would violate staying within university quota property. Period-4 fair share table

and the period-4 reservation table are illustrated by X4
2 and R2(X

4
2 ) in Figure 15.

Figure 15: TWO CASES FOR PERIOD-4 RESERVATION TABLES

X4
1 =

1 1 2
0 0 0
1 1 2
2 2 4

(a) CASE 1: PERIOD-4 FAIR SHARE TABLE

R1(X
4
1 ) =

0 2 2
0 0 0
2 0 2
2 2 4

(b) CASE 1: PERIOD-4 RESERVATION TABLE

X4
2 =

0.5 0.5 1
0.5 0.5 1
1 1 2
2 2 4

(c) CASE 2: PERIOD-5 FAIR SHARE TABLE

R2(X
4
2 ) =

0 1 1
1 0 1
1 1 2
2 2 4

(d) CASE 2: PERIOD-4 RESERVATION TABLE

If departments have q5 = [0, 0, 1] positions in period-3, department d3 can reserve its

position to either categories. These two cases are show in Figure 16.

In Example 3 for each case, period-5 reservation for category c1 in department d1 is 0 and
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Figure 16: TWO CASES FOR PERIOD-5 RESERVATION TABLES

X5
1 =

1 1 2
0 0 0
1.5 1.5 3
2.5 2.5 5

(a) PERIOD-5 FAIR SHARE TABLE

R1.1(Y
5
1 ) =

0 2 2
0 0 0
3 0 3
3 2 5

(b) PERIOD-5 RESERVATION TABLE

R1.2(Y
5
1 ) =

0 2 2
0 0 0
2 1 3
2 3 5

(c) PERIOD-5 RESERVATION TABLE

X5
2 =

0.5 0.5 1
0.5 0.5 1
1.5 1.5 3
2.5 2.5 5

(d) PERIOD-5 FAIR SHARE TABLE

R2.1(Y
5
2 ) =

0 1 1
1 0 1
2 1 3
3 2 5

(e) PERIOD-5 RESERVATION TABLE

R2.2(Y
5
2 ) =

0 1 1
1 0 1
1 2 3
2 3 5

(f) PERIOD-5 RESERVATION TABLE

period-5 reservation for category c2 in department d2 is 0. We can extend these example for

more periods analogously. The idea is following. In each period, the university has only one

position. Department d3 has always one position in odd periods and in the following period

either department d1 or department d2 has one position according to these following cases.

• Case I: If department d3 reserves 1 position to category c1, department d1 has one

position in the next period.

• Case II: If department d3 reserves 1 position to category c2, department d2 has one

position in the next period.

In case I, department d1 should reserve 1 position for category c2, otherwise, solution

would violate staying university quota property. In case II, department d2 should reserve 1

position for category c1, otherwise, solution would violate staying university quota property.

Example 3 shows that if a solution stays within university quota, departments can grow in

size without giving a seat to one category, i.e., the solution violates finite bias.22

This proves the proposition.

22An example for any number of categories and departments can be constructed in a similar way. Exam-
ple 3 is constructed so that it not only illustrates the failure, but it also demonstrates any solution can fail
to have finite bias in all categories.
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B Tables and Figures

Figure 17: 200-point Roster prescribed by Government of India

Source: https://dopt.gov.in/sites/default/files/ewsf28fT.PDF
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Figure 18: 13-point Roster prescribed by Government of India

Source: https://dopt.gov.in/sites/default/files/ewsf28fT.PDF
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