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Abstract

A robust single-leg capacity control method based on adjustable regret is proposed

to address the practical needs largely overlooked by previous studies for both smooth

control of conservatism and adaptability to changing environments. Only the lower

and upper bounds on demand are needed, and a performance guarantee is provided.

Joint reduction finds one extreme scenario for each fare class, and a linear program of

modest size is formulated, providing nested booking limit policies that are provably

optimal among all online policies. Closed-form solutions are found for continuous

problems, and their effectiveness is shown by simulation study.

Keywords: revenue management, adjustable regret, robust optimization, game

theory, competitive analysis

1. Introduction

Revenue management (RM) is a highly successful practice of management sci-

ence, with wide applications in industries such as air travel, hospitality, and car

rentals. To maximize revenues from heterogeneous customers arriving stochastically

over a time period, sales of products provided from unreplenishable resources must be

strategically controlled. Uncertainty in revenues due to demand fluctuations require

certain criteria and assumptions for revenue comparison and optimization. Classical

RM models assume risk neutrality and exact demand distributions, and maximize
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expected revenues, on which Talluri et al. (2004) provides a comprehensive overview.

As application of RM deepens, it is gradually realized that the assumptions in

classical models can be unrealistic in practice. The risk neutrality assumption is

questioned by Feng and Xiao (1999) and Lancaster (2003), and Barz (2007) observes

risk reduction efforts from managers for infrequent decisions. Meanwhile, accurate

demand distributions may be hard to obtain. Vinod (2021b) points out that even in

a stable business environment with plenty of historical data, demand forecasts can

still be quite inaccurate at the itinerary level most crucial for airline RM. Things

get worse in a new or unstable business environment (Lan et al. 2011) when historic

data are scarce or do not have much relevance or predictive power.

To apply RM without such assumptions, a rich set of robust RM models have

been developed recently under alternative specifications of demand uncertainty. Dis-

tributional vagueness within a continuum is employed in Birbil et al. (2009), Rus-

mevichientong and Topaloglu (2012), and Sierag and van der Mei (2016), while Lan

et al. (2008), Ball and Queyranne (2009), Perakis and Roels (2010), Lan et al. (2011),

and Ma et al. (2021) are distribution-free in that no distributions or probabilities are

required at all, instead, an uncertainty set is used to specify the possible realizations

of demand, e.g., within some lower and upper bounds. Such uncertainty sets can be

estimated by expert judgments (Perakis and Roels 2010), or by numerical methods

(Sierag and van der Mei 2016) from historical data.

These robust models cover a rich set of RM tasks under various settings. Some

study single-leg capacity control (e.g. Lan et al. 2008 and Ball and Queyranne 2009),

some study joint decisions of capacity control and overbooking (Lan et al. 2011), and

others study network RM problems (Perakis and Roels 2010). They require less input

information than their classical counterpart, and provide conservative solutions that

sacrifice some revenues to guard against downside risks with a performance guarantee.
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The reader is referred to Gönsch (2017) for a systemic survey on robust RM models,

and to Perakis and Roels (2008) and Kouvelis and Yu (2013) for general literature

on robust decision-making and decision criteria.

However, as a seasoned practitioner observes in Vinod (2021b), conservatism and

inflexibility are the two main reasons preventing robust RMmodels from being widely

adopted by airlines. The conservatism raises concern about missed revenue opportu-

nities, resulting in significant revenue gaps between robust and classical methods. In

a tumultuous time of the global COVID-19 pandemic, when classical methods do not

work due to the volatile nature and unpredictability of future outbreaks, it calls for

an adaptive robust RM approach that takes corrective actions on key performance

indicators (KPIs) monitored in real-time. This adaptive approach to master uncer-

tainty has similarities to the sales and operations workflow (Palmatier and Crum

2003) with continuous demand management for peak performance.

Yet the robust RM models in the literature only recommend stable controls that

can not readily provide adaptability. Admittedly, there are some interesting results

on dynamical recalibration of the policy on the fly in Lan et al. (2008), but it does not

allow for controlled response to real time KPIs or to a more optimistic outlook from

textual data analysis by artificial intelligence. Therefore, those robust RM methods

have never been a real priority for airlines and RM software providers (Vinod 2021b).

This paper sets out to develop an adaptive robust RM method by working with a

new decision criterion. Three robust decision criteria are commonly seen in the RM

literature so for: the maximin, the absolute regret (or Savage), and the relative regret

(or competitive ratio), which do not have any adaptivity built in them and their level

of conservatism can not be fine-tuned. The maximin criteria are considered the most

conservative for revenue maximization, and Perakis and Roels (2010) further observes

that the absolute regret criteria are less conservative than the relative regret criteria.
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A crude way to be adaptive is to switch between these criteria, which is very coarse-

grained, providing only three distinct levels of conservatism and revenue, and quite

limited in its adaptive range. Fortunately, the adjustable regret minimization (ARM)

criterion proposed in Lan (2021) presents a viable alternative for the purpose at hand,

which has a control parameter to interpolate between these criteria for fine-tuned

control, and extrapolate beyond them to provide a much wider adaptive range.

An adaptive robust RM method for the classical single-leg capacity control prob-

lem can address these practical issues: (i) accurate data may not be available for

new or unstable business environments; (ii) decision-makers are not necessarily risk-

neutral, e.g., they may be concerned about downside risks or worst-case results in the

short run; (iii) the ability to fine-tune the level of conservatism can help reduce the

revenue gap between robust and classical methods; (vi) adaptive robust RM meth-

ods are needed to respond in real-time to an ever-changing environment. The new

method is analytically appealing in many ways. The extreme scenarios are identified

by a new technique of joint reduction to greatly simplify the problem. Then a simple

linear program is formulated, with the optimal solution in closed-form, providing a

nested booking limit policy that is provably optimal among all online policies. The

policy gets more aggressive as the ARM control parameter increases, giving a clear

direction of change. The more general analysis here provides alternative proofs for

some of the results in Lan et al. (2008).

The rest of the paper is organized as follows. Section 2 introduces the problem

and outlines the new adaptive approach. Reduction of the scenarios under nested

booking policies are included in section 3. Derivation of the optimal solution are

presented in 4. Section 5 provides computational results. Conclusions with future

research suggestions are given in section 6.
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2. Problem Specification

As a cornerstone problem in RM, single-leg capacity control has its origin in

airlines but quickly spreads to other industries. It involves selling products that

require a unit of a single resource, such as the limited capacity in the main cabin of a

flight leg. The products or fares are offered at different prices with different features

or restrictions, such as cancellation options and luggage limits, to cater to different

customer segments. Ideally, price-insensitive customers would be dissuaded to buy

lower fares by the restrictions, so that customers are well segmented by the design.

This study limits itself to independent demand, with each product corresponding

to exactly one disjoint customer segment. The capacity, products, and prices are

determined long in advance, from factors such as business strategy, market segments,

and competitor price points.

Capacity control in airlines takes place as fare requests arrive one by one at a

booking process, which opens a certain length of time before and closes at the flight’s

departure, when an empty seat on the flight has no more value. The challenge

to maximize revenue lies in making an irrevocable decision upon the arrival of a

request whether to satisfy it with the capacity on hand or to reject it and preserve

that capacity for uncertain future requests. Unlike classical models, there is no

distributional information on demand, instead, it is only assumed to know the lower

and upper bounds on the number of units demanded in each fare, which defines an

uncertainty set Ω with all possible request sequences satisfying these bounds.

To develop an adaptive robust RM method that works with such uncertainty sets,

the ARM criterion is adopted along the competitive analysis of online algorithms (see

Albers 2003 for a survey). An online algorithm in this context implements a booking

policy, which tells what to do under all possible situations in a booking process. In
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competitive analysis, an online algorithm π is evaluated relative to an offline optimal

algorithm Υ that knows in advance (with hindsight) the entire sequence of requests

I ∈ Ω to its advantage. Let R(I; )̇ denote the objective function value of an algorithm

on input I, and let R∗(I) = R(I; Υ) for the offline optimal revenue from I. There are

two common metrics of relative performance: absolute regret, which is the difference

R∗(I) − R(I; π), and relative regret, which is 1 − R(I; π)/R∗(I). As these metrics

do not allow adaptability, the ARM criterion introduces an adjustable regret metric

M(I; π) = βR∗(I) − R(I; π) that is parameterized by β ≥ 0. The guarantee of

performance by an algorithm π is the worst-case metric maxI∈Ω M(I; π). Like the

other relative criteria, it chooses a π from a feasible set Π to minimize the regret

guarantee:

min
π∈Π

max
I∈Ω

M(I; π), (1)

The β parameter in (1) plays a crucial role in moderating aggressiveness and

making it adaptive. As β increases, the benchmark becomes more demanding in

a more favorable scenario I indicated by a bigger R∗(I), and an algorithm that

best conforms to such requirement will be recommended. This intuition is reflected

in Lan (2021) with an observation: the ARM criterion degenerates into the most

conservative maximin criterion with β = 0; as beta increases to the competitive ratio

(between 0 and 1), it is equivalent to the more aggressive relative regret criterion; and

when β reaches 1, the even more aggressive absolute regret criterion is recovered; as β

approaches ∞, it becomes the most aggressive maximax criterion. That observation

also shows that β may be seen as an interpolation parameter, with a bigger β for a

more aggressive criterion. The interplay between β, expected revenue, and overall

risk has been studied for one-way trading in Lan (2021) by simulation, and section

5 provides some simulation results in RM.
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This study focuses on determining optimal algorithms for both continuous and

discrete problems. In continuous (discrete) problems, the capacity, the demands, and

the accepted requests can be any positive real (integral) numbers, while a request in a

fare class may be split and partially accepted as necessary. Although the continuous

case is less realistic, it admits closed-form solutions, while the discrete case requires

solving a mixed integer linear program.

Allowing request splitting simplifies the analysis with multiunit requests (as in

batch arrivals), but group bookings cannot be guaranteed by splitting. The analysis

of the more intuitive discrete problems is fully presented first, while the results carry

over to continuous problems via a limit process. Splitting of requests in discrete

problems breaks up a multiunit request into multiple requests that demand one unit

of capacity in a fare class. The analysis with unit requests carries through as long

as each multiunit request demands a nonnegative and finite amount. In the rest of

the paper, it is assumed, without loss of generality, that input sequences consist of

unit requests.

3. Scenario Reduction

The scenario reduction is inspired by the idea of elimination of dominated strate-

gies in game theory, but it is based on a new concept of joint dominance between

sets of strategies. The problem in (1) may be viewed as a sequential zero-sum game

between a manager and an imaginary adversary who chooses a scenario I from Ω

after observing the algorithm chosen by the manager. In such a game, a scenario

I dominates another I ′ if there is M(I; π) ≥ M(I ′; π) for all π ∈ Π. It can be

generalized to two sets of strategies:

Definition 1. (Joint Dominance and Reduction) A set Ω2 jointly dominates Ω1
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if for any π ∈ Π, a scenario I2 ∈ Ω2 can be found for any I1 ∈ Ω1, such that

M(I1; π) ≤ M(I2; π) (or I2 dominates I1 under π). If additionally there is Ω2 ⊂ Ω1,

then Ω2 is a joint reduction of Ω1.

Some comments may be helpful. At the core of joint dominance is a mapping

Fπ : Ω1 → Ω2 for each π ∈ Π such that ∀I ∈ Ω1 : M(I; π) ≤ M(Fπ(I); π).

The dominance of one strategy over another is recovered with singleton sets. Joint

reduction ensures that

∀π ∈ Π : max
I∈Ω1

M(I; π) = max
I∈Ω2

M(I; π), (2)

while for joint dominance there is ∀π ∈ Π : maxI∈Ω1 M(I; π) ≤ maxI∈Ω2 M(I; π).

Under joint dominance, all strategies in Ω1 \ Ω2 can be eliminated from Ω, without

changing the game value in (1), since Ω \ (Ω1 \ Ω2) is a joint reduction of Ω. Both

joint dominance and reduction are transitive relationships. One can start with Ω

and use joint reduction recursively to simplify the problem.

A demand scenario is a sequence of booking requests for a unit of a product. The

uncertainty set Ω contains a combinatorial number of all the sequences that observe

the demand bounds. Let L = (L1, · · · , Lm) ≥ 0 and U = (U1, · · · , Um) ≥ L for the

lower and upper bounds on requests for the fare products. The profile of a sequence

I is the m-dimensional vector (I[j], j = 1, · · · ,m), where I[j] is the total number of

class j requests in sequence I. The notation I(t) represents the class of tth request in

sequence I, for t = 1, · · · , |I|, with I(1 : t) for the subsequence of the first t requests.

The uncertainty set is explicitly defined as Ω = {I : Li ≤ I[i] ≤ Ui, i = 1, · · · ,m}.

The size of Ω can be reduced under standard nested booking limit (SNBL) policies,

which are proved later to be optimal among all online policies. Let n denote the

total capacity of the resource (seats, rooms, etc.) and let m denote the number
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of fare classes (products) with fare prices f1 > f2 > · · · > fm > 0. A record

a(t) = (a1(t), · · · , am(t)) is maintained to track the number of accepted requests for

each fare class after the first t requests are processed. A SNBL policy b = (b1, · · · , bm)

has m nested booking limits b1 ≥ b2 ≥ · · · ≥ bm ≥ 0 such that bi limits the total

number of requests accepted for classes i to m: ∀τ : bi ≥
∑m

j=i aj(τ), i = 1, · · · ,m.

The policy is open to fare class k at (τ +1)th request if the affected limits have room:

m∑
j=i

aj(τ) < bi, i = 1, · · · , k, (3)

and closed to it otherwise. Due to the nested nature in (3), if a SNBL policy is closed

to a fare class, then it is closed to all lower fare classes. The critical class C(I; b) is

the highest fare class that is closed after processing all requests in I by b:

C(I; b) = max{c ≤ m+ 1 :
m∑
i=j

ai(|I|) < bj, j = 1, · · · , c− 1}, (4)

where |I| is the total number of requests in I. If the policy is open to all fare classes,

then C(I; b) = m + 1 (the virtual class with bm+1 = 0, fm+1 = 0). The decision for

I(t+ 1) is to accept if I(t+ 1) > C(I(1 : t), b) and reject otherwise, with the record

update given by ai(t+1) = ai(t)+1{i = I(t+1) > C(I(1 : t), b)}, where 1{·} is the

indicator function.

An alternative way to describe a SNBL policy is to use bucket sizes, denoted by

a vector x defined by xi = bi − bi+1 for i = 1..m, where a virtual fare class m + 1 is

introduced with bm+1 = 0, fm+1 = 0 for convenience. Note that either of these vectors

is sufficient to characterize a SNBL policy. The protection levels commonly used in

single-leg RM are easily derived from the booking limits (see Talluri et al. 2004). The

number of seats protected for classes 1 to k (k = 1, · · · ,m− 1) is equal to n− bk+1,
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which must never be sold to the lower fares classes k+1 tom. Let a(·) be the booking

record for policy b on input I, then there is R(I; b) =
∑m

i=1 fiai(|I|). A knapsack

problem finds R∗(I) = max{
∑m

i=1 fiyi :
∑m

i=1 yi ≤ n, I[i] ≥ yi ≥ 0, i = 1, · · · ,m}.

The set of SNBL policies can be slightly reduced without any side effects. Note

if xi > Ui (or bi > bi+1 + Ui), then bi can never be reached in (3) since ai(τ) ≤ Ui as

long as I ∈ Ω. A new policy b′ can be defined by b′i = bi+1+Ui and b′j = bj for j ̸= i so

that x′
i = Ui, and (3) makes it clear that b′ always make the same booking decisions

as b. Therefore, the restriction x ≤ U is enforced on policies for consideration:

B(n) =

{
x :

m∑
i=1

xi ≤ n, 0 ≤ x ≤ U

}
. (5)

The first step of reduction is to consider the low-before-high (LBH) sequences,

where a lower fare request always arrives before a higher one. For a sequence I,

let LBH(I) denote the rearrangement of all requests in I into LBH order. There is

R∗(I) = R∗(LBH(I)) as the profiles of I and LBH(I) are the same (to define the

same knapsack problem), and Lan et al. (2008) prove for any SNBL policy b there

is always R(I; b) ≥ R(LBH(I); b). Therefore, there is M(LBH(I); b) ≥ M(I; b) for

any b ∈ B(n), which leads to

Proposition 1 (LBH Reduction). The LBH subset defined by LBH(Ω) = {LBH(I) :

I ∈ Ω} is a joint reduction of Ω with SNBL policies.

From the standpoint of ARM, all non-LBH sequences can be ignored due to

Proposition 1. This yields a substantial scenario reduction, yet the total number

of sequences can still be prohibitive, which can be further reduced by considering

critical classes.
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Proposition 2 (Permutation Invariance). The critical class is permutation invari-

ant, so that C(I; b) = C(LBH(I); b) for any input sequence I and SNBL policy b.

Proof. Let I ′ only differ from I by a swap of two requests in I at position s and

s + 1: I ′(s) = I(s + 1) and I ′(s + 1) = I(s). Assume I(s) < I(s + 1), otherwise,

simply switch I ′ and I to satisfy it. It suffices to show C(I; b) = C(I ′; b), as any

permutation can be generated by many such swaps at different positions.

Let aj(t) (a
′
j(t)) be the booking records for processing sequence I (I ′). Note that

as I and I ′ are the same before request s, there is aj(s−1) = a′j(s−1), j = 1, · · · ,m.

It is clear from (3) that it is impossible to reject I(s) and then accept I(s + 1) as

I(s) < I(s+ 1), so there are only three possible cases of outcomes to consider.

Case 1: both I(s) and I(s+ 1) are accepted. The record update is

aj(s+ 1) = aj(s− 1) + 1{j ∈ {I(s), I(s+ 1)}}, j = 1, · · · ,m,

with a(s + 1) satisfying (3). Accepting I ′(s) and I ′(s + 1) will result in a′(s) ≤

a′(s+1) = a(s+1). Therefore both a′(s) and a′(s+1) satisfy (3), which means both

I ′(s) and I ′(s+1) will be accepted. As a′(s+1) = a(s+1) and I(t) = I ′(t), t > s+1,

the same decisions will be made for both sequences afterward.

Case 2: I(s) is accepted but I(s+ 1) is rejected. The record updated is

aj(s+ 1) = aj(s) = aj(s− 1) + 1{j = I(s)}, j = 1, · · · ,m.

Consider two subcases. Subcase 2.1: I ′(s) is rejected. Then a′j(s) = a′j(s − 1) =

aj(s− 1), j = 1, · · · ,m, and it is clear that I ′(s + 1) will be accepted just like I(s),

since (3) is identical for both. The new records will be a′(s + 1) = a(s + 1), and

the same decisions will be made for both sequences afterward. Subcase 2.2: I ′(s)
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is accepted. Note that Case 1 does not require the assumption of I(s) < I(s + 1),

thus the reasoning applies backward, which means the acceptance of both I ′(s) and

I ′(s+1) implies the acceptance of both I(s) and I(s+1) as well. Therefore, I ′(s+1)

must be rejected in this subcase, and the record update is

a′j(s+ 1) = a′j(s) = a′j(s− 1) + 1{j = I ′(s)}, j = 1, · · · ,m.

Note the differences between a′(s+ 1) and a(s+ 1) are

a′j(s+ 1) =


aj(s+ 1) + 1 if j = I(s+ 1),

aj(s+ 1)− 1 if j = I(s),

aj(s+ 1) otherwise,

which immediately implies

m∑
j=i

a′j(s+ 1) =
m∑
j=i

aj(s+ 1), i = 1, · · · , I(s).

The rejection of I ′(s+1) by (3) requires that there exists i ∈ {1, · · · , I ′(s+1) = I(s)}

such that

bi =
m∑
j=i

a′j(s) =
m∑
j=i

a′j(s+ 1) =
m∑
j=i

aj(s+ 1).

Therefore, all future requests with fare lower than I(s) are rejected, and the accep-

tance condition (3) for requests with higher fares in the future will always be the

same for both a′(t) and a(t). In other words, the future decisions must be identical,

ending up with C(I; b) = C(I ′; b) ≥ I(S).

Case 3: both I(s) and I(s+1) are rejected. The updated records are aj(s+1) =
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aj(s − 1), j = 1, · · · ,m, and it is clear that both I ′(s) and I ′(s + 1) must also be

rejected. Since a′(s + 1) = a(s + 1) and I(t) = I ′(t), t > s + 1, the same decisions

will be made for both sequences afterward.

In all cases, there is C(I; b) = C(I; b′).

The step sets are defined for further reduction on the input sequences. Let

LBH[P ] denote the LBH sequence with profile P .

Definition 2 (Step Set). The step set Dj, j = 1, · · · ,m + 1 contains a series of

LBH sequences Dj
d = LBH[P j

d ], d = 0, · · · ,
∑j−1

k=1(U [k] − L[k]) whose profiles P j
d

are stepwise incremental: P j
0 = (L[1], · · · , L[j − 1], U [j], · · · , U [m]), and P j

d+1[i] =

P j
d [i] + 1{i = k(d+ 1)}, i = 1, · · · ,m, where the increment class function

k(d) = min{k :
k∑

i=1

(U [i]− L[i]) ≥ d}. (6)

Intuitively, the step set starts from Dj
0, then repeatedly add a request of the

highest fare class allowed by the upper bounds to have the next sequence in the

series, until reaching LBH[U ]. The set size |Dj| = 1 +
∑j−1

i=1 (U [i]− L[i]) is linear in

the demand spread U [i] − L[i]. In the special case of j = 1, there is |D1| = 1 as∑0
k=1(U [k]−L[k]) is an empty sum that evaluates to 0, with D1

0 = LBH[U ]. It turns

out that any sequence is dominated by a step sequence under a given policy.

Proposition 3 (Step Map). Any sequence I ∈ Ω is dominated by a step sequence

D
C(I;b)
d(I;b) under a policy b ∈ B(n), with both sequences having the same critical class

under b, where d(I; b) = 1{β > 1}
∑C(I;b)−1

i=1 (I[i]− L[i]).

Proof. The proof constructs a finite series of sequences sharing the same critical

class and increasing in metric M(·; b), with the series starting from I and ending

with D
C(I;b)
d(I;b) . Let c = C(I; b) for short.
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If I[k] < U [k] for some k ≥ c, let I ′ be obtained by appending a request of class k

to the end of I. By definition of C(I; b), the appended request will be rejected by b,

resulting in: 1. online revenue will not change, 2. offline revenue may increase, and

3. the critical class will not change. Therefore, the metric increases and I ′ dominates

I under policy b. Append enough fare class k requests until there are U [k] requests

for all k = c, · · · ,m, then rearrange it in LBH order without affecting the critical

class (Proposition 2). Let Î denote the final sequence rearranged in LBH order.

Note that for any sequence J with C(J ; b) = c, the requests of classes 1 to c− 1

in J must all be taken by the optimal knapsack problem for R∗(J), for the following

reasons. As no requests of classes 1 to c− 1 are rejected, the booking record satisfies

ai(|J |) = J [i] for all i < c. Meanwhile, the definition of critical class requires by

(3) that
∑m

j=i aj(|J |) < bi for all i < c, which implies
∑c−1

j=1 J [j] < n, therefore all

requests in J [i], i < c must be accepted to have the maximal R∗(J). With this,

consider two cases to further work on Î.

Case 1: β ∈ [0, 1]. If Î ̸= Dc
0, then there is a k < c such that Î[k] > L[k].

Take one class k request away from Î to get Î ′, which maintains C(Î ′; b) = c. There

is R(Î ′; b) = R(Î; b) − fk as the removed request was originally accepted. And

R∗(Î ′) = R∗(Î) − fk must hold as C(Î ′; b) = C(Î; b). Therefore, the metrics satisfy

M(Î ′; b) ≥ M(Î; b) + fk(1 − β), which means Î ′ dominates Î under policy b. Keep

doing this until Dc
0 is obtained. Therefore, I is dominated by Dc

0 under policy b,

while maintaining C(Dc
0; b) = c.

Case 2: β > 1. If Î /∈ Dc, then there exist classes i and k that satisfy i <

k < c, Î[k] > L[k], and Î[i] < U [k]. Take one class k request away and add one

class i request to Î while maintaining the LBH order to get a new Î ′. There is

R(Î ′; b) = R(Î; b) + fi − fk as all requests of any class j < c are accepted. And

R∗(Î ′) = R∗(Î) + fi − fk must also hold, since there is C(Î ′; b) = C(Î; b) with i < k.
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Therefore, the metrics satisfy M(Î ′; b) = M(Î; b) + (β − 1)(fi − fk), which means

Î ′ dominates Î under policy b. Keep doing this until having Î ′ ∈ Dc, and since∑c−1
i=1 Î

′[i] = d(I; b) is maintained, the final sequence must be Dc
d(I;b).

Note that when β ≤ 1, Proposition 3 implies that the set D∗
0 = {Di

0 : i =

1, · · · ,m + 1 is a joint reduction of Ω. For β > 1, however, it can only ensure that

the set D =
⋃m+1

i=1 Di is a joint reduction of Ω, for which a final reduction is possible.

As C(Dc
d; b) ≥ c for any policy b ∈ B(n) and C(Dc

d+1; b) ≤ C(Dc
d; b), let Ď

c(b) = {I ∈

Dc : C(I; b) = c} and ďc(b) = |Ďc(b)|. Clearly there is Ďc(b) = {Dc
d : 0 ≤ d < ďc(b)}.

Proposition 4. For any policy b ∈ B(n), the critical class C(Dj
d; b) = 1 for d ≥ ďj(b)

and the step change of online revenues ∆R(Dj
d; b) = R(Dj

d; b)−R(Dj
d−1; b) satisfies

∆R(Dj
d; b) = 1{d ≤ ďj(b)}fk(d). (7)

Proof. For d ≤ ďj(b), as k(d) < j = C(Dc
d−1; b), the added request of class k(d) is

accepted by b, giving ∆R(Dc
d; b) = fk(d). Note that at d = ďj(b), there is C(Dc

d; b) < j

as a result of accepting the added request of class k(d), which means k(d) ≥ C(Dc
d; b)

from (4). But since Dd
j [k] = Uk ≥ xk = bk − bk+1, k = 1..k(d)− 1, all booking limits

from k(d) up to 1 must be reached, which gives C(Dc
d; b) = 1 at d = ďj(b) and beyond.

Thus all added requests for d > ďc(b) are rejected, resulting in ∆R(Dc
d; b) = 0.

Let Ḡj
d ≡ βR∗(Dj

d)−R+
j (D

j
d) be a surrogate independent of b for M(Dj

d, b), where

R+
j (D

j
d) =

∑j−1
i=1 fiD

j
d[i]. A joint reduction by critical classes to m + 1 scenarios is

always possible.

Theorem 1 (Reduction by Critical Classes). Given a policy b ∈ B(n), any I ∈ Ω

can be mapped to a step sequence Dc
d(c,β) that dominates I under b, where c = C(I; b)
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is the critical class and

d(c, β) ≡ min argmax
d∈0..|Dj |−1

Ḡc
d

= max{d : Ḡc
d > Ḡc

d−1}, (8)

is non-decreasing in β and does not depend on b. The mapping establishes set D(β) =

{Dc
d(c,β) : c = 1, · · · ,m+ 1} as a joint reduction of Ω.

Proof. It can be easily verified for β ∈ [0, 1] that d(c, β) = 0 and D(β) = D∗
0, so the

proof only considers β > 1. The case of |Dc| = 1 is also simple, so suppose |Dc| > 1,

implying c > 1 as |D1| = 1.

Let ∆Ḡc
d ≡ Ḡc

d− Ḡc
d−1, and ∆R∗(Dc

d) ≡ R∗(Dc
d)−R∗(Dc

d−1). Then with (6) there

is ∆R+
j (D

c
d) ≡ R+

j (D
c
d)−R+

c (D
c
d−1) = fk(d), and

∆Ḡc
d = β∆R∗(Dc

d)− fk(d).

Let Dd
c (−t) denote the tth last request in Dd

c , then there is

R∗(Dc
d) =

n∑
t=1

fDc
d(−t),

where Dc
d(−t) = m + 1 is assumed for convenience if t > |Dc

d|. If k(d) ≥ Dd
c (−n),

the added request of class k(d) will not increase revenue, resulting in ∆R∗(Dd
c ) = 0

and ∆Ḡc
d = −fk(d+1) < 0 from then on, which means k(d) < Dd

c (−n) at d = d(c, β).

Therefore, d(c, β) satisfies k(d) < Dj
d(−n), which means the added request of class

k(d) is accepted by the offline optimal policy and the request Dj
d(−n) is “crammed
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out”, giving ∆R∗(Dj
d) = fk(d) − fDj

d(−n) > 0. Clearly there is

∆Ḡj
d = (β − 1)fk(d) − βfDj

d(−n),

which decreases in d, as k(d) increases in d, while Dj
d(−n) decreases in d. Therefore,

the solution in (8) is correct. As ∆Ḡj
d increases in β, it is clear that d(c, β) increases

in β.

Let ∆M(Dc
d; b) ≡ M(Dc

d; b) −M(Dc
d−1; b) = β∆R∗(Dc

d) −∆R(Dc
d; b) = ∆Ḡc

d +

∆R+
c (D

c
d)−∆R(Dd

c ; b), Since ∆R+
c (D

c
d) = fk(d), Proposition 4 provides

∆M(Dc
d; b) = ∆Ḡc

d + 1{d > ďc(b)}fk(d)

which means that M(Dc
d; b)− Ḡc

d is a constant if d ≤ ďc(b).

As Dc
d(I;b) dominates I under b with C(Dc

d(I;b); b) = C(I; b) = c by Proposition 3,

there is d(I; b) ≤ ďc(b). Consider two cases. Case 1: d(c, β) ≤ ďc(b). As M(Dc
d; b)−

Ḡj
d is constant for d = 0, · · · , ďc(b), there is d(c, β) = min argmaxd∈0..d̄c(b) M(Dc

d; b),

implying that Dc
d(c,β) dominates Dc

d(I;b) under b. Case 2: d(c, β) > ďc(b). There is

∆M(Dc
d; b) ≥ ∆Ḡj

d > 0 for d ≤ d(c, β), and again Dc
d(c,β) dominates Dc

d(I;b) under b.

Therefore, in both cases Dc
d(c,β) dominates I under b.

All the results on scenario reduction so far are for discrete problems that permit

multiunit requests with splitting, which can be readily extended to continuous prob-

lems. The key is to approximate a continuous problem with a discrete problem with

multiunit requests, where a discrete unit is redefined to be a fractional amount of

1/N (N is a big integer). A continuous amount a in the continuous problem is con-

verted to ⌈aN⌉ units in the discrete problem. Then a limiting process with N → ∞

will bring the approximation to perfection, with all results carried over to continuous
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problems that allow request splitting.

4. Optimal Policy

The problem (1) is first considered with Π = B(n) to formulate a linear program

that enjoys closed-form solutions. Then the SNBL policies inB(n) are proved optimal

among online algorithms. The effect of β on the solution is also studied.

According to (2), Theorem 1 greatly reduces the complexity of regret guarantee

∀b ∈ B(n) : Z(b) ≡ max
I∈Ω

M(I; b) = max
j∈1..m+1

M(Dj
d(j,β); b). (9)

A major difficulty to formulate a linear program out of (9) lies in the online revenue

R(Dj
d(j,β), b) being a nonlinear function of b or x, which is involved in M(Dj

d(j,β); b).

To circumvent, a linear approximation of the online revenue is defined as

R̄j(d, x) ≡ R+
j (D

j
d) +

m∑
i=j

fixi, (10)

which is an upper bound for R(Dj
d, b), but can replace it in (9).

Proposition 5 (Linearized Regret). The regret guarantee Z(b) for b ∈ B(n) or its

equivalent x can be computed with R̄j(d, x) by

Z(b) = max
j∈1..m+1

βR∗(Dj
d(j,β))− R̄j(d(j, β), x). (11)

Proof. Consider two cases: Case 1: ďj(b) > d(j, β). There is C(Dj
d(j,β); b) = j, which

implies R̄j(d(j, β), x) = R(Dj
d(j,β), b). Case 2: d(j, β) ≥ ďj(b). Then C(Dj

d(j,β); b) = 1

by Proposition 4 so that Dj
d(j,β) is dominated by D1

0 under b by Proposition 3. This

dominance means that replacing R(Dj
d(j,β), b) by its upper bound R̄j(d(j, β), x) will
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not affect Z(b), since D1
0 always shows up in (11) by reason of d(1, β) = 0, and there

is always R(D1
0, b) = R̄1(0, x) from Case 1 with 1 = ď1(b) > d(1, β) = 0.

Based on Proposition 5, a linear program for the ARM (LPARM) problem (1)

with Π = B(n) is formulated with bucket sizes x, and its regret guarantee z.

LPARM : min z

s.t. z +
m∑
i=j

fixi ≥ Ḡj
d(j,β) j = 1, · · · ,m+ 1 (12)

m∑
i=1

xi ≤ n (13)

0 ≤ xj ≤ Uj j = 1, · · · ,m (14)

whereas for discrete problems, an integral constraint on x must be included. Note

that constraint (12) degenerates to z ≥ Ḡj
d(j,β) for j = m + 1. It is assumed that∑

L ≤ n (if
∑

L ≥ n then it is never optimal to accept more than n−
∑

L+Lm < Lm

requests in fare class m, thus reducing Lm to the level n−
∑

L+ Lm will not affect

the problem.

Proposition 6 (Auxiliary LP). The value of Ḡj
d(j,β) for j = 1, · · · ,m + 1 can be
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found by an auxiliary LP as follows:

LPAUX : Ḡj
d(j,β) = max β

m∑
i=1

fixi −
m∑
i=1

fiyi (15)

s.t.

m∑
i=1

xi ≤ n (16)

xi ≤ yi ≥ Li i = 1, · · · , j − 1 (17)

0 ≤ x ≤ U, 0 ≤ y ≤ U, (18)

and Ḡj
d(j,β) decreases in j but the decrement is bounded above by fjUj:

0 ≤ Ḡj
d(j,β) − Ḡj+1

d(j+1,β) ≤ fjUj j = 1, · · · ,m. (19)

Proof. Only discrete problems are dealt with here, as the results can be carried over

to continuous problems by the limit process discussed earlier.

Since any step sequence Dj
d defines a feasible solution to the auxiliary LP by x̄ =

argmax{
∑m

i=1 xifi :
∑

i xi ≤ n, xi ≤ Dj
d[i], i = 1, · · · ,m}, ȳ = 1{i < j}max(Li, x̄i), i =

1, · · · ,m) with Ḡj
d being its objective value, it suffices to show that there exists an

optimal solution x∗
i , y

∗
i , i = 1, · · · ,m such that P ∗ = (y∗1, · · · , y∗j−1, Uj, · · · , Um) is a

profile for a step sequence Dj
d∗ with Ḡj

d∗ being the objective value. From the objec-

tive (15), y∗i must be as small as possible given x∗
i (so y∗i = 1{i < j}max(Li, x

∗
i ), i =

1, · · · ,m), and x∗ must be the offline optimal booking decision given y∗ (so x∗
k = P ∗[k]

if
∑k

i=1 P
∗[i] ≤ n and x∗

k = (n−
∑k

i=1 P
∗[i])+ otherwise).

Consider two cases: β ≤ 1 and β > 1. Case 1: β ≤ 1. If there is y∗i > Li for

some i < j (implying y∗i = x∗
i ), then the modified solution y′k = 1{k ̸= i}y∗k + 1{k =

i}Lk, x
′
k = 1{k ̸= i}x∗

k + 1{k = i}Lk, k = 1, · · · ,m will not deteriorate the objective

value. Let y∗ = y′, x∗ = x′ and keep modifying until all y∗k = Lk, k < j and its P ∗
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becomes the profile of Dj
0. Case 2: β > 1. Let k̄ = min{k ≤ j : y∗k < Uk}. If

k̄ ≥ j − 1, then y∗k = Uk, k < j − 1 and clearly LBH(P ∗) belongs to Dj. If k̄ < j − 1,

and suppose there is a y∗
k̇
> Li for some k̇ > k̄ (implying x∗

k = y∗k, k ∈ {k̄, k̇}), then

let y′
k̄
= y∗

k̄
+ 1, y′

k̇
= y∗

k̇
− 1, and y′k = y∗k for k /∈ {k̄, k̇}, and let x′ = x∗ + (y′ − y∗).

Then x′, y′ is feasible and improves the objective value by (β − 1)(fk̄ − fk̇, which

contradicts the optimality of x∗, y∗, therefore, no such k̇ can exist, and y∗k = Lk for

all k > k̄, which means LBH(P ∗) belongs to Dj.

In both cases there is a Dj
b∗ = LBH(P ∗) ∈ Dj, and the corresponding objective

value is clearly Ḡj
d∗ , with R∗(Dj

d∗) =
∑m

i=1 fix
∗
i and R+(Dj

d∗) =
∑m

i=1 fiy
∗
i (note that

y∗i = 0, i ≥ j). Therefore, it must be true that Ḡj
d∗ = Ḡj

d(j,β).

To show that Ḡj
d(j,β) is non-increasing in j, note that the auxiliary LP model has

more constraints as j increases, therefore Ḡj
d(j,β) decreases as j increases. Let x

∗, y∗ be

an optimal solution to the model for j, let y′j = Uj, and y′k = y∗k for k ̸= j, then x∗, y′

is a feasible solution to the model for j+1, which gives Ḡj
d(j,β)−fjUj ≤ Ḡj+1

d(j+1,β).

The LPAUX model and the bounds on Ḡj
d(j,β) − Ḡj+1

d(j+1,β) are crucial for solving

the continuous problems in closed-form and studying the properties of the solutions.

Theorem 2 (Closed-form Optimal Policy). The LPARM model for continuous prob-

lems can be solved in closed-form as follows:

x∗
i =


g+i , i < ū

n−
∑ū−1

j=1 g
+
j , i = ū

0, i > ū

(20)

z∗ = Ḡū
d(ū,β) − xūfū (21)
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where g+j ≡ (Ḡj
d(j,β) − Ḡj+1

d(j+1,β))/fj, j = 1..m and

ū ≡ max{i ∈ {1, · · · ,m} :
i−1∑
j=1

g+j < n}. (22)

Proof. Clearly x∗, z∗ is a feasible solution. Consider the dual problem with yj for

(12), v for (13), and wj for (14):

max
m+1∑
j=1

Ḡj
d(j,β)yj − nv −

m∑
i=1

Uiwi (23)

s.t.
m+1∑
i=1

yi = 1 (24)

fj

j∑
i=1

yi ≤ v + wj j = 1, · · · ,m (25)

y, v, w ≥ 0 (26)

Let v∗ = fū, w
∗ = 0, y∗i = (f−1

i − f−1
i−1)v

∗, i = 1..ū (let f0 = ∞ for convenience), and

y∗i = 0, i > ū. Clearly v∗, w∗, y∗ is a dual feasible solution with a dual objective value

of Ḡū
d(ū,β) − (n −

∑ū−1
j=1 g

+
j )v

∗ = z∗, which is identical to the objective of the primal

objective for the solution x∗, z∗. Therefore, x∗, z∗ must be an optimal solution.

Closed-form solutions make it possible to study the effect of β on optimal policies,

which can help with conservatism control and being adaptive to real-time KPIs or

environment changes.

Theorem 3 (Increasing Aggressiveness). For continuous problems, as β increases,

the optimal policy becomes more aggressive by (1) increasing reserved seats
∑i

j=1 x
∗
j

for higher fares for i = 1, · · · ,m if β ≤ 1, or (2) increasing reserved revenue potential∑i
j=1 fjx

∗
j for higher fares for i = 1, · · · ,m if β > 1.
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Proof. By applying the Envelope Theorem to LPAUX for Ḡj
d(j,β), there is

∂Ḡj
d(j,β)

∂β
= R∗

j , (27)

where R∗
j = R∗(Dj

d(j,β)).

For β ≤ 1, it suffices to show ∂bi/∂β ≥ 0 for i = 1, · · · ,m. From the definition

of g+j , it is clear that for i < ū,

∂bi
∂β

=
i∑

j=1

∂g+j
∂β

=
i∑

j=1

R∗
j −R∗

j+1

fj
. (28)

Clearly ∂bi/∂β ≥ 0 if {R∗
j : j = 1, · · · , i+1} is a decreasing sequence, i.e., R∗

j ≥ R∗
j+1

for j = 1, · · · , i, which is indeed the case when β ≤ 1.

For β > 1, it suffices to show ∂
∑i

j=1 fjxj/∂β ≥ 0 for j = 1, · · · ,m. From the

definition of g+j , it is clear that for i < ū,

∂bi
∂β

=
i∑

j=1

∂fjg
+
j

∂β
=

i∑
j=1

R∗
j −R∗

j+1 = R∗
1 −R∗

i+1 ≥ 0. (29)

Clearly, form (1) implies and thus is stronger than form (2). When β > 1 form

(1) can be violated in this counter-example with three fares: L = (0, 0, 0), U =

(5, 5, 5), f = (100, 49, 24), n = 10 and β = 1.2.

Theorem 3 gives a clear direction of policy adjustment with β, which may work

with “displacement rate”, a very important KPI according to Vinod (2021a). It

is the ratio of spill (passengers rejected by the policy) to unconstrained demand

by booking class. If higher displacement rates are observed for higher fare classes,
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then the policy is obviously not protecting enough seats for the higher fare requests

and losing potential revenues, which serves as a signal to take corrective action by

increasing β.

Theorem 4 (Optimality of SNBL Policies). For both the continuous and discrete

m-fare capacity control problems with demand bounds, if the adversary can observe

the booking decisions and manipulate future booking requests, then no algorithm can

provide a regret guarantee strictly less than an optimal SNBL policy.

Proof. Consider an arbitrary online algorithm, which does not have to be a SNBL

policy. Let z∗ be the regret guarantee by an optimal SNBL policy found by LPARM

(with integrity constraints in case of discrete problems). The adversary can start

with j = m, and go through the following steps:

1. Send in Uj requests, observe x
+
j , the number of requests accepted, and calculate

z+j = βR∗(Dj
d(j,β))− (R+

j (D
j
d(j,β)) +

∑m
i=j fix

+
i ).

2. If z+j ≥ z∗, then send in the rest of Dj
d(j,β) and STOP.

3. Let j = j − 1, and GOTO step 1 if j > 0.

This procedure must end with some j > 0 and z+j ≥ z∗, where z+j is the best

regret with all future requests in Dj
d(j,β) accepted. If it stops with j = 0, a feasible

solution x̄ = x+, z̄ = maxmj=1 z
+
j is obtained with z̄ < z∗, which contradicts z∗ being

the optimal objective of LPARM.

This shows that SNBL policies are surprisingly powerful when it comes to regret

guarantees. Note that all online algorithms are considered, static or dynamic, deter-

ministic or randomized. Deterministic algorithms always yield the same output for

the same input, whereas “randomized” algorithms make some choices based on the

draw of a random number. Note that for discrete problems with an adversary agnos-

tic to the randomized booking decisions, randomization can help achieve the regret
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guarantee given Theorem (2) after relaxing the integrity constraint. The scheme in

Lan et al. (2008) can be readily employed to randomize among a set of discrete SNBL

policies and achieve on average a better guarantee.

It is possible to implement dynamic policies that recalibrate the booking limits

in the booking process to achieve better guarantees, while static policies maintain

constant booking limits throughout the booking horizon. Dynamic policies can be

helpful in practice when the scenario is not worst-case, otherwise they can not im-

prove on the regret guarantee. A dynamic policy can be derived as a series of “static”

policies at each point of recalibration, in the same way as shown in Lan et al. (2008).

5. Simulation Study

The major interest is to find out if the control parameter β can be used to

adapt to different environments, and if less conservative policies can be obtained

by adjusting β. Three environments are set up with the demand in all fare classes

simultaneously weak, medium, or strong, by having different levels of mean demand,

while keeping the same variances to minimize their influences. Each environment

is driven by a beta distribution: for a fare class i = 1, · · · ,m a random sample

Vi ∈ [0, 1] is independently drawn from it, with the number of class i requests given

by Li + (Ui − Li)Vi. Three distributions are chosen: Beta(23/16, 69/16) for weak

case, Beta(4, 4) for medium case, and Beta(69/16, 23/16) for strong case, with the

same standard variation of 1/6 and 0.25, 0.5, 0.75 as their respective mean. Each

environment generates 10000 demand scenarios, which are fed to the LPARM policies

whose β values are βi = i/30, i = 1, · · · , 90 to estimate average revenues and the 99%

confidence intervals. These numerical results faciliate finding a best β with maximal

average revenue, the policy of which may be less conservative and comparable in
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Figure 1: Average revenues with 99% confidence intervals in blue dotted lines closely wrapping the
revenue curves, and the booking limits of LPARM policies for β ∈ (0, 3].

average revenues to the popular EMSR policies of EMSRa (Belobaba 1989) and

EMSRb (Belobaba 1992).

The example is adapted from Talluri et al. 2004, §2.2.3.4, with f = (1050, 567, 527, 350), n =

124. The demand is independent across fare classes with mean µ = (17.3, 45.1, 73.6, 19.8),

and the arrivals are LBH. The bounds are given by L = 0.4µ, U = 1.6µ, assuming

that the demand for all fare classes has the same coefficient of variation of 0.2, and

the bounds are three standard deviations from the mean.

The upper plot in Figure 1 shows that as demand gets stronger, the best β∗ (in the

second column of Table 1) to maximize the average revenue indeed gets bigger, while

the lower plot shows the booking limits get more aggressive as β increases, protecting

more seats for higher fares. Table 1 also provides a comparison of revenues, which

shows that with the ideal β∗ value, a less conservative policy can be obtained to
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Demand Best β∗ Average revenue ± Standard deviation
β = β∗ β = 1 EMSRa EMSRb

Weak
0.433 60930±75 59035±82 60932±75 60922±75
gap % 0.00% 3.11% 0.00% 0.02%

Medium
1.033 72463±29 72459±28 73392±36 73337±38
gap % 1.27% 1.27% 0.00% 0.08%

Strong
1.600 75797±29 73964±9 77336±28 77159±34
gap % 1.99% 4.36% 0.00% 0.23%

Table 1: The best β∗, average revenues for LPARM at β = β∗ and β = 1 (for absolute regret),
EMSRa, EMSRb, and the percentage gap from the highest revenue of the four entries.

achieve up to 3% improvement in average revenues over the absolute regret (β = 1)

policy, and a less than 2% revenue gap from the EMSR policies. These revenue

differences are quite reliable as common random numbers are used and the standard

deviations are around 0.1% of the revenues.

6. Conclusion

This paper develops an adaptive robust method for the classical single-leg ca-

pacity control problem with the practically desirable ability to fine-tune the level of

conservatism and respond to changing environments. A new technique of joint re-

duction based on the concept of joint dominance is employed to reduce the scenarios

to very few extreme ones, which may depend on the ARM parameter β. A linear

program LPARM is formulated based on these extreme scenarios, and the optimal

solution is obtained in closed-form. The SNBL policy recommended by LPARM is

proved optimal among all online policies. The closed-form optimal policy becomes

more aggressive as the β parameter increases, giving a clear direction of policy change

by adjusting β. The simulation study shows that as the environment has a more opti-

mistic outlook on demand, the β parameter should increase to take the opportunity.

It also finds that less conservative policies with more revenues can be found when β
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is chosen properly. The average revenues of such policies can be very close to those

of the EMSR policies.

From a research perspective, the adaptive robust optimization with competitive

analysis of online algorithms is very promising in RM. Some directions for further

reasearch can be seen. As this paper only considers capacity control, it is natural

to extend it to consider joint decisions with overbooking. The interface between an

adaptive robust model and the KPIs monitored in real-time is another interesting

direction. How to develop a robust adaptive method for the network RM problem

remains a challenging future research topic.
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