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Abstract

While industry investors commonly view gold as a hedging asset, aca-
demic studies often find the opposite. We show that gold is a prominent
hedging asset via three different approaches: a state-space model, predic-
tive regressions, and principal component analyses. We find that, ceteris
paribus, gold prices increase with expected stock market return µt and
expected dividend growth rate gt. In bad times, µt rises while gt declines.
It thus may seem that gold prices fall in bad times and that gold prices
insignificantly or even negatively predict stock returns. However, after
addressing the omitted-variable-bias introduced by gt, we find that gold
prices significantly and positively predict stock returns.
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1 Introduction

Most industry investors believe that gold is a hedging asset, meaning two things. First,

gold prices should rise in bad times (i.e., when expected stock market return goes up

- when risk-aversion goes up as in habits model (Campbell and Cochrane (1999)) or

when uncertainty goes up as in long-run risk (Bansal and Yaron (2004)) and time-varying

disaster-risk (Wachter (2013)) models). Second, therefore, gold prices should positively

predict stock market returns. However, academic studies often find the opposite. For

instance, Huang and Kilic (2019) find that gold is a risky asset whose prices fall in higher-

uncertainty times; Hou, Tang, and Zhang (2020) show that gold prices fall during political

uncertainties; Erb and Harvey (2013) fail to find a relation between gold prices and future

stock market returns.

We show that gold is indeed a prominent hedging asset, after accounting for an "omitted-

variable-bias (OVB)"or "error-in-variable" associated with expected economic fundamen-

tal. We reach this conclusion via three different approaches: a state-space model, predic-

tive regressions, and principal component analysis.

Consider first a parsimonious state-space model. To infer underlying states, we aggre-

gate information in the world’s two most important commodities - gold and oil.1 Specifi-

cally, we estimate a model and find (roughly) the following coefficients:

log Gt = const + 1
40

µt + 1
4

gt + ϵG
t (1.1)

log Ot = const − 1
40

µt + 1
4

gt + ϵO
t (1.2)

rt+1 = µt + εr,t+1 (1.3)

∆dt+1 = gt + εd,t+1 (1.4)

1Gold and crude oil have a total market capitalization of respectively 14 and 3 trillion USD. CBOE
computes and releases implied volatility index for gold and crude oil since around 2010.
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Here log Gt and log Ot represent log real gold and oil prices detrended by log real

dividends. Cointegration tests suggest that the detrended commodity prices are station-

ary processes. We model detrended commodity prices as linear functions in underlying

states µt (expected stock market return) and gt (expected stock market dividend growth)

(both annualized in percentage), plus arbitrary pricing errors, which turn out to be small.

We assume that both states follow an AR(1) process with correlated shocks. We estimate

the model via maximum likelihood, using Kalman Filter to construct the likelihood, as

in Van Binsbergen and Koijen (2010). Given our relatively short sample 1975-2022, we

obtain deseasoned dividend data from Robert Shiller’s website and estimate the model

monthly. The objective is to leverage observed gold prices, oil prices, dividend growth

rates, and stock returns collectively as observations to infer underlying states and explore

the relation between commodity prices and these states.

Our estimation indicates that a 1% increase in expected stock return leads to a 2.5% in-

crease (decrease) in gold (oil) price. Furthermore, a 1% rise in expected dividend growth

rates is associated with a substantial 25% increase in both gold and oil prices. These

patterns are statistically significant and align logically: gold and oil, serving as essential

industrial production inputs, see their prices influenced positively by anticipated divi-

dend growth. However, as investment assets, commodities are different in nature: gold

is identified as a hedging asset, while oil a risky asset. Consequently, we observe distinct

price behaviors: gold prices rise with expected stock market returns, whereas oil prices

react inversely.

Our punchline is that gold prices indeed strongly rise with expected stock return, but

only ceteris paribus, i.e., only after we correct the OVB introduced by expected economic

fundamentals. The OVB helps explain many of the literature results. Suppose we want to

study the relation between gold price and expected stock returns. To this end, we directly
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run future stock returns onto current gold price without controls (as in the literature):

rt+1 = const + β1 log Gt + ε̃t+1︸︷︷︸ (1.5)

= const + β1(
1
40

µt + 1
4

gt) −β1
1
4

gt + εr,t+1︸ ︷︷ ︸ . (1.6)

Then a gt loading would slip into OLS error ε̃t+1, which would be correlated with the

regressor log Gt, leading to biased coefficients on the regressor log Gt. To give a more

intuitive explanation of the OVB, note that µt and gt shocks are negatively correlated. In

bad times, µt rises (i.e., future returns rt+1 tend to rise) and gt falls. If the impact of gt

is strong enough, gold prices may fall rather than rise at such times (Huang and Kilic

(2019)’s finding). It thus may appear that gold prices negatively or not predict future

stock returns (Erb and Harvey (2013)’s finding), despite that the true predictive coefficient

is positive β1 = 40.

We show that the magnitude of the OVB is determined by a variance decomposition

of gold prices into expected dividend growth effect, expected return effect, and their co-

variance. We find that the OVB is almost 100%, implying that observing any coefficient

when regressing future returns on gold prices is not too surprising. When we control for

several gt proxies on the RHS, the unbiased coefficient β1 = 40 is indeed recovered.

The OVB is a lesser concern for risky assets like crude oil. In this case, the influences of

µt and gt align in the same direction, leading to a clear drop in oil prices during economic

downturns.2 Consequently, oil prices significantly negatively forecast stock returns, con-

sistent with established literature findings (Chen, Roll, and Ross (1986), Jones and Kaul

(1996), Driesprong, Jacobsen, and Maat (2008), Huang, Masulis, and Stoll (1996), Sim and

Zhou (2015), Ready (2018), Christoffersen and Pan (2018)).

To support our state-space model estimates, we further conduct OLS predictive regres-

2This is also consistent with the following fact: annualized realized volatility of returns on holding gold
and oil are respectively 14% and 36%. The two forces µt, gt tend to drive gold (oil) prices in the opposite
(same) direction, making oil prices much more volatile. Out state-space model reproduces these statistics.
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sions in the following way. We take the difference between the two log commodity prices

(logG/O hereafter) to cancel gt loadings and reinforce µt loadings, thus obtaining a return

predictor. We take the sum of the two log commodity prices (logGO hereafter) to cancel µt

loadings and reinforce gt loadings, thus obtaining a dividend growth rate predictor. We

confirm these predictive relations in the data, with OLS coefficients strongly supporting

state-space model estimates.

Specifically, we show that in the 1975-2022 sample, a one standard deviation increase

in logG/O respectively significantly predicts a 6.6%, 7.3%, 7.2%, and 5.2% annualized in-

crease in U.S. stock market excess returns over the following trading day, week, month,

and year. Predictability is not consumed by any known predictors in the literature. On the

contrary, in pairwise bivariate predictive regression tests, logG/O consumes all the other

known predictors including the gold-platinum price ratio of Huang and Kilic (2019), ex-

cept Baker and Wurgler (2006) sentiment index. During the same period, a one standard

deviation increase in logGO respectively significantly predicts a 1.6%, 1.6%, and 1.5% an-

nualized increase in U.S. dividend growth rates over the following month, quarter, and

year.3 The predictability holds in-sample and out-of-sample.

If, as our analyses suggest, logG/O and logGO are proxies respectively for expected

return (countercyclical) and expected dividend growth (procyclical), then they should re-

spectively carry negative and positive risk premiums in the cross-section of stock returns.

We show this is indeed the case using Fama-French size/book-to-market 100 portfolios

as test assets. Our results are robust under univariate and bivariate joint tests, under

Fama-Macbeth and panel regressions.

Our state-space model studies the relation between commodity prices and stock mar-

ket statistics µt, gt. The model is not without restrictions. Recognizing this fact, we esti-

mate an extended state-space model that incorporates constraints imposed by the price-

3If we only use the post-1986 sample, then the dividend growth rate predictability exists from a 1-month
to a 5-year horizon. There seems to be a structural break around 1986.
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dividend ratio (PD). Building on existing literature suggesting that PD is mainly driven

by long-term discount rate news (Cochrane (2008), Cochrane (2011)), we introduce a slow-

moving discount rate process, denoted θt, in addition to the already exisiting relatively

fast-moving discount rate, µt, and expected dividend growth, gt. Commodity prices are

linear in the three states, along with pricing errors. Each of the processes follows an AR(1)

with correlated shocks. We then use the Campbell-Shiller identity to derive a precise re-

lation between the log PD ratio and the three underlying states, as in Van Binsbergen

and Koijen (2010), and estimate model parameters under such restrictions. An additional

benefit of this framework is that it allows us to study how commodity prices respond to

discount rate news at different frequencies.

We filter a short-term discount rate, a long-term discount rate, and an expected divi-

dend growth rate from the model. Consistent with our own and literature findings, we

find that logG/O is very informative about the short-term discount rate, log PD ratio is

very informative about the long-term discount rate, and logGO is most informative about

the expected dividend growth. We show that the filtered processes serve as robust predic-

tors for short-run returns, long-run returns, and dividend growth rates, respectively.

We confirm our main findings: ceteris paribus, gold prices strongly rise with short-

term discount rate and expected dividend growth; ceteris paribus, oil prices strongly fall

with short-term discount rate and rise with expected dividend growth. However, we do

not find a clear relation between gold or oil prices and the long-term discount rate. Addi-

tionally, we find that there seems to be a structural break around 1986, with all observed

relations strengthening statistically post-1986.

Finally, to generate richer evidence, we perform principal component analysis (PCA)

on a large cross-section of commodity prices including gold, crude oil, silver, copper, and

platinum. We find that the first PC, which accounts for 72% of all commodity price vari-

ations, can be largely interpreted as expected dividend growth. The second PC, which
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accounts for another 8%, is basically short-horizon expected stock return. Commodities’

loadings on the PCs are consistent with our previous findings. The fifth PC, essentially a

long-term expected return measure, only accounts for 2% of the variation, implying that

commodity prices are not particularly responsive to long-term discount rates. The third

and fourth PCs, which likely capture commodity-market-specific information, are elusive

to interpret.

1.1 Literature

The literature on oil prices and stock markets is large. Chen, Roll, and Ross (1986) find that

oil price risk is not separately rewarded in the stock market beyond traditional risk mea-

sures. Jones and Kaul (1996) find that the reaction of U.S. stock prices to oil shocks can be

completely accounted for by expected cash-flow effects, not discount rates. Driesprong,

Jacobsen, and Maat (2008) find that changes in oil prices strongly predict future stock mar-

ket returns in many countries. Other studies include Huang, Masulis, and Stoll (1996),

Sim and Zhou (2015), Ready (2018), Christoffersen and Pan (2018), and Gao, Hitzemann,

Shaliastovich, and Xu (2022), etc. The typical literature finding is that oil price negatively

predicts stock returns, and positively predicts cash flow growth, consistent with our find-

ings. However, we are the first to show that oil prices predict stock returns at even a

one-day horizon, after we use gold prices to cancel its cash flow growth loadings.

The literature on gold prices and stock markets is smaller. The nature of gold as an

investment has been a debate. Jermann (2021) shows that gold price is negatively driven

by real interest rate. Barro and Misra (2016) and Baur and Smales (2020) argue that gold

is a hedge against uncertainty. On the contrary, Huang and Kilic (2019) argue that gold

is a risky asset whose prices fall in uncertain times. Hou, Tang, and Zhang (2020) show

that gold prices fall during political uncertainties. Erb and Harvey (2013) fail to find

a relation between gold prices and stock market returns. Cheng, Tang, and Yan (2021)
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study hedging pressure in commodity option markets. Bakshi, Gao, and Zhang (2023)

develop a model to price gold futures and options.

We reconcile divergent views on gold by emphasizing the necessity of considering

economic fundamentals when evaluating the nature of gold and commodity assets more

broadly. Failure to account for this factor can introduce significant error-in-variable bias.

Our state-space model and PCA both indicate that expected economic fundamentals play

a substantial role in influencing commodity price fluctuations.

Our paper is also related to the return and cash flow growth predictability literature,

a key empirical issue and a ground to differentiate asset pricing models. Empirical stud-

ies include Cochrane (2008), Cochrane (2011), and Van Binsbergen and Koijen (2010), etc.

Theories include Campbell and Cochrane (1999), Bansal and Yaron (2004), and Wachter

(2013), etc. Our paper echoes Van Binsbergen and Koijen (2010), which find that both re-

turns and cash flow growth are predictable, though not necessarily by the price-dividend

ratio. They find that dividend growth rates are predictable by moving average terms of

past dividend growth rates. We show that commodity prices also contain information

that predicts dividend growth rates.

2 Cointegration Between log Commodity Prices and log Dividends

We obtain the longest monthly gold and WTI crude oil spot price data from Jan 1975 to

Dec 2022 from Macrotrends.4 We obtain monthly dividend and price-dividend ratio data

from Robert Shiller’s website,5 and monthly stock market return data from Ken French’s

website. We aim to conduct return and dividend growth predictive regressions, and need

4The U.S. administration fully deregulated crude oil prices in 1981. The U.S. abandoned the gold stan-
dard in 1971.

5It is known that dividends have strong seasonality. As Professor Robert Shiller puts it, his monthly
dividend data are computed from the S&P four-quarter totals for the quarter since 1926, with linear inter-
polation to monthly figures. I am not aware of any other acceptable way to deseason the original dividend
data.
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evidence that predictors are stationary. Neither gold nor oil prices are stationary pro-

cesses.6 We search for cointegration relations between log commodity prices and log div-

idends in three steps.

First, Table 1 performs Johansen (1988) rank tests. The main message is that we can-

not reject the null that there is no cointegration relation between log commodity prices

themselves. But we can reject the null that there is no cointegration relation between log

commodity prices and log dividends. Second, we then search for cointegration relations

as guided by the Johansen (1988) rank test using a Stock and Watson (1993) dynamic least

square (DLS) estimation. Table 2 shows the estimated cointegration relations are7:

log Gt ≡ log Gt − 0.62 log Dt

log Ot ≡ log Ot − 0.16 log Dt

log Gt/Ot ≡ log Gt − log Ot − 0.46 log Dt

log Gt · Ot ≡ log Gt + log Ot − 0.78 log Dt.

We will call these detrended commodity prices. In all that follows, when we use com-

modity prices, we always refer to detrended commodity prices. Third, we then confirm

whether those coefficients truly imply cointegration using a one-sided augmented Dickey

and Fuller (1979) unit root test. Table 3 shows that we can reject that log Ot, log Gt/Ot, and

log Gt · Ot contain a unit root at the 5% confidence level. We can reject that log Gt contains

a unit root at the 10% confidence level.

6In fact, any asset that investors can hold for a long time cannot have stationary prices. Otherwise, one
can immediately create an arbitrage strategy by buying low and selling high using limit orders. Gold and
oil ETFs allow investors to hold for a long time.

7When constructing the regressors, we use real gold price, real oil price, and real dividends. Oil and
gold prices are conceivably related to inflation. We want to get rid of the influence of inflation.
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3 Gold-Oil Price Ratio as a Robust Short-Horizon Return Predictor

Table 3 summarizes our predictor log G/O and many other return predictors in the liter-

ature. Table 4 shows that log G/O significantly positively predicts returns at all horizons

within five years. The R-squared peaks at roughly 1-year horizon. Tables 5, 6, and 7 report

univariate overlapping return predictive regressions results for various predictors. Tables

8, 9, 10, and 11 report bivariate overlapping return predictive regression results where we

pair log G/O separately with each known predictor in the literature.8 The main finding

is that log G/O can consume the predictive power of many other predictors at short hori-

zons, such as the gold-platinum price ratio of Huang and Kilic (2019) and the implied

cost of capital (ICC) of Li, Ng, and Swaminathan (2013). It also survives short-horizon

predictors such as the VRP and other known medium- and long-horizon predictors.

We find that the only known predictors not consumed by log G/O at short horizons

are the sentiment indexes of Baker and Wurgler (2006) and Huang, Jiang, Tu, and Zhou

(2015). We find log G/O and the BW index are not significantly correlated. Rather, they

have independent predictive power. We construct a three-factor model with log G/O, BW

sentiment index, and risk-neutral skewness. Table 13 shows that the 3-factor model has

strong explanatory power for future returns. The R-squared reaches an amazing 50% at a

1-year horizon, and all three statistically significantly forecast returns at such horizons.

Table 12 shows that log G/O is strongly correlated with the gold-platinum price ratio

of Huang and Kilic (2019), the sentiment index of Huang, Jiang, Tu, and Zhou (2015), and

the implied cost of capital (ICC) of Li, Ng, and Swaminathan (2013). Moreover, log G/O

also positively correlates with the VRP and risk-neutral higher-order moments.

Table 14 shows that, in the 1986-2022 sample9, log G/O significantly predicts returns

8We add a time fixed effect on the RHS when regressing returns onto PD because PD has an upward
trend during our sample 1975-2022.

9Daily oil price data was available only since 1986.
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even at one-day to two-week horizons. We find log G/O together with the BW sentiment

index stand out as the only two variables that can statistically significantly predict returns

at a 1-day horizon. Overall, the evidence in this section suggests that log G/O is a very

strong discount rate proxy primarily at relatively short horizons, e.g., less than one year,

although we are uncertain whether this short-term discount rate is driven by investors’

risk preferences (sentiments) or risk perceptions (tail risks). And it does not carry too

much predictive power beyond that horizon. The next section analyzes why this is the

case.

4 Regression Evidence: Expected Returns vs. Expected Dividend Growth

This section provides regression-based evidence of how log G/O is a discount rate proxy.

Suppose we have an equilibrium model that prices gold and oil as investment assets.

Under reasonable cointegration assumptions and log-linearization, the model will imply

the following two pricing equations:

log Gt − cG log Dt = aG + βG
µ µt + βG

g gt + ϵG
t (4.1)

log Ot − cO log Dt = aO + βO
µ µt + βO

g gt + ϵO
t , (4.2)

where Gt and Ot are gold and oil prices, Dt is the dividend of the aggregate stock market,

µt ≡ Et[rM
t+1] is the expected return of the aggregate stock market, gt ≡ Et[∆dt+1] is the ex-

pected dividend growth of the aggregate stock market, and ϵi
t is a stationary process that

captures the portion of the commodity price left unexplained, where i=Gold or Oil.10 In

Section 2, we’ve estimated that cG = 0.62 and cO = 0.16. In all that follows, for simplicity,

we always use log Gt and log Ot to denote log prices already detrended by log dividends.

For now, assume the pricing errors on the RHS are relatively unimportant and have small

variance.
10One can think about µt and gt as proxies for underlying economic states, which drive the pricing of

commodity assets in equilibrium.
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Our goal is to determine the values of the coefficients βi
µ, βi

g, keeping in mind that

the coefficients reflect investors’ preferences for the commodities, the commodities’ roles

in producing dividends, or the persistence of the processes µt and gt themselves. In the

remainder of this section, we will show regression-based evidence that supports the fol-

lowing parameterization (where µt and gt are annualized in percentage):

log Gt = const + 1
40

µt + 1
4

gt + ϵG
t (4.3)

log Ot = const − 1
40

µt + 1
4

gt + ϵO
t , (4.4)

for ϵG
t and ϵO

t with small-variance. We now present evidence. First, we take the difference

of the two equations to get:

µt = const + 20 log Gt/Ot + ϵt, (4.5)

for some small-variance ϵt, which implies that if we run future returns (over a short pe-

riod, say, less than 1-year) onto log G/O, the slope coefficients should be roughly equal

to 20 and should be statistically significant. Table 4 confirms this. On the contrary, if

we run dividend growth onto the same regressor, the coefficient should be insignificant.

And R-squared should be small. Table 16 confirms this. We then take the sum of the two

equations to get:

gt = const + 2 log Gt · Ot + ϵt, (4.6)

for some small-variance ϵt, which implies that if we run future dividend growth (over a

short period, say, less than 1-year) onto log G · O, the slope coefficients should be roughly

equal to 2 and should be statistically significant. Table 16 confirms this. On the contrary, if

we run returns onto the same regressor, then the coefficient should be small and insignifi-

cant. R-squared should also be small. Table 4 confirms this.

Second, if we run future returns (over a short period, say, less than 1-year) onto log G

11
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and log O simultaneously, then the least-square implies that slope coefficients on the two

should be respectively equal to 20 and -20 and should be both statistically significant, be-

cause such coefficients not only cancel the gt term but also match the µt term (see equation

(4.5)). Table 15 confirms this. If we run future dividend growth (over a short period, say,

less than 1-year) onto log G and log O simultaneously, the slope coefficients on the two

should be respectively equal to 2 and 2 and should be both statistically significant (see

equation (4.6)). Table 19 shows this is the case, though not precisely.

Third, using equations (4.3) and (4.4), we can derive other regression models. For

instance, we can derive:

µt = const + 40 log Gt − 20 log Gt · Ot + ϵt (4.7)

µt = const − 40 log Ot + 20 log Gt · Ot + ϵt, (4.8)

for some small-variance ϵt. These are the correctly specified regression models to study

how gold and oil price respectively predicts returns. That is, we need to control for ex-

pected cash flow growth gt, as proxied by log G · O, in return predictive regressions. Table

20 shows the regression results, which again support our conjecture. Note that the above

three conjectures should hold irrespective of how µt and gt are correlated. And they did

hold in the data.

Suppose we do not control for gt and run future returns onto log Gt or log Ot directly. In

that case, "omitted variable bias" or "attenuation bias" will typically bias slope coefficients

toward zero, leading to insignificance. The bias depends on the correlation between µt

and gt. To formally study the bias, we estimate a state-space model in the next section.

Equations (4.3) and (4.4) are our main insights, which show that each of the log gold

and oil prices contains a component that reflects cash flow expectation and a component

that reflects discount rate. Gold and oil are valuable production inputs; thus, it is unsur-

prising that both prices rise with expected dividend growth. As investment assets, how-

12
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ever, they are different. As conventional wisdom suggests, gold is a hedging asset (i.e.,

investors’ preference for gold increases when discount rate goes up), while oil is a risky

asset (i.e., investors’ preference for oil decreases when discount rate goes up). As a result,

log gold price rises while log oil price falls with expected return. When taking the differ-

ence, cash flow components cancel while discount rate components strengthen, leaving

log G/O as an unambiguously positive return predictor (See Figure 2 bottom panel for

a graphical illustration). When taking the sum, discount rate components cancel while

cash flow components strengthen, leaving log GO as an unambiguously positive cash flow

growth predictor (See Figure 2 top panel for a graphical illustration).

Our evidence so far is based on deseasoned monthly dividend data obtained from

Robert Shiller’s website. Table 18 performs dividend growth predictive regressions us-

ing quarterly dividend data directly obtained from CRSP. We see that log GO continues

to predict dividend growth rates. Thus, it’s unlikely that the deseasoning procedure in-

troduces fake dividend growth predictability. The very low R-squared is not surprising,

given LHS variables contain strong seasonality. Figure 3 repeats the exercise in Figure

2. We see that the patterns observed under monthly data continue to hold quarterly. We

work with monthly data mainly because commodity prices contain substantial variation

(information) at the monthly frequency that will get lost under lower frequency.

4.1 Out-of-Sample Predictability

We have been looking only at in-sample evidence. To assess out-of-sample predictability,

we follow Welch and Goyal (2008) and compute OOS R-squared for return predictability

by log G/O as

R2
OOS,R = 1 −

∑T −1
t=0 (rt+1 − µ̂t)2∑T −1
t=0 (rt+1 − r̄t)2 , (4.9)

13

Electronic copy available at: https://ssrn.com/abstract=4615771



where µ̂t is the filtered value of the expected return using data only up until time t to

estimate OLS model parameters. The denominator r̄t is the historical mean of returns up

until time t. Similarly, we compute OOS R-squared for dividend growth predictability by

log GO as

R2
OOS,Div = 1 −

∑T −1
t=0 (∆dt+1 − ĝt)2∑T −1

t=0 (∆dt+1 − ∆̄dt)2
. (4.10)

We start our OOS computations at the beginning of 2000. Using the data between Jan

1975 and Dec 1999 to compute the parameters, we compute the expected return (dividend

growth) for Jan 2000. We compare this prediction with realized return (dividend growth).

We then use the data between Jan 1975 and Jan 2000 to compute the parameters and then

compute predictions for Feb 2000. We proceed in this way up until Dec 2022. For daily

return predictability, we repeat this rolling-window process on a daily basis, with the first

trading day of 2000 as the breakpoint.

We find that the OOS R-squared is 3.04% for monthly return predictability, 5.00% for

monthly dividend growth rate predictability, and 0.025% for daily return predictability.

4.2 Cross-Sectional Evidence

If, as we analyze above, log G/O and log G · O are proxies respectively for the discount

rate and expected dividend growth, then they should be priced respectively negatively

and positively in the cross-section of stock returns. Table 21 shows that this is the case

using Fama-French size/book-to-market 100 portfolios as test assets. Panel A and Panel

B respectively estimate the market price of risk for ∆ log G/O and ∆ log G · O using Fama-

Macbeth regressions and panel regressions, where we use AR(1) innovations as unex-

pected shocks to the factors. The results are highly consistent. Whether estimating λ∆ log G/O

and λ∆ log G·O separately or jointly, we always find that λ∆ log G/O < 0 and λ∆ log G·O > 0.

Figure 4 left panel depicts the realized sample-time-series-average return to each port-
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folio against the portfolio’s exposure to ∆ log G/O estimated using the full sample. As

shown, portfolios’ exposures to ∆ log G/O are mostly negative, as they should be if ∆ log G/O

is negatively priced (or is countercyclical). Since portfolios largely have negative expo-

sures to ∆ log G/O and positive average returns, a fitted line that is forced to pass through

the origin must have a negative slope (i.e., λ∆ log G/O < 0). The right panel depicts the

realized average return to each portfolio against the expected return predicted by the

one-factor (∆ log G/O) model without an intercept.

Figure 5 shows the same thing for ∆ log G · O. As shown, portfolios’ exposures to

∆ log G · O are mostly positive, as they should be if ∆ log G · O is positively priced (or is

procyclical). Since portfolios largely have positive exposures to ∆ log G/O and positive

average returns, a fitted line that is forced to pass through the origin must have a positive

slope (i.e., λ∆ log G·O > 0). The right panel depicts the realized average return to each port-

folio against the expected return predicted by the one-factor (∆ log G · O) model without

an intercept. In both cases, we don’t expect portfolios to line up along the 45-degree line

extremely well because we’re considering non-traded factors. However, our results do

confirm that the factors are priced with an expected sign.

5 A State-Space Model

The analysis in the previous section is based on predictive regression coefficients at short

horizons. However, we haven’t been able to identify the dynamics that µt and gt follow

and their correlation. We accomplish this goal by estimating a state-space model.
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5.1 The Model

Consider the model

log Gt = αG + βG
µ (µt − µ̄) + βG

g (gt − ḡ) + εG,t

log Ot = αO + βO
µ (µt − µ̄) + βO

g (gt − ḡ) + εO,t

rt = µt−1 + εr,t

∆dt = gt−1 + εd,t

µt = (1 − ρµ)µ̄ + ρµµt−1 + εµ,t

gt = (1 − ρg)ḡ + ρggt−1 + εg,t

with

Cov




εG,t

εO,t

εr,t

εd,t



 =


σ2

G

σ2
O

σ2
r

σ2
d


Cov

εµ,t

εg,t

 =

 σ2
µ σµ,g

σµ,g σ2
g



The system has four observed variables (log Gt, log Ot, rt, ∆dt) and two latent state vari-

ables (µt, gt). The first four equations are measurement equations. The first two equations

follow from equations (4.1) and (4.2) except that, for simplicity, we assume that the two

shocks εG,t and εO,t are i.i.d. instead of being any persistent stationary processes. The third

and fourth equations are the definitions of µt and gt. For simplicity, we assume that the

covariance matrix for the innovations to observations is diagonal. The last two equations

are the transition equations of the latent state variables µt and gt. We follow Van Bins-

bergen and Koijen (2010) and assume that each state variable follows an AR(1) process.

We allow for an arbitrary covariance structure for the shocks to the AR(1) processes. All

innovations follow normal distributions.
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We estimate the model via maximum likelihood, using the Kalman Filter to construct

the likelihood, like in Van Binsbergen and Koijen (2010).11 We obtain deseasoned div-

idend data from Robert Shiller’s website and estimate the model under a monthly fre-

quency to sharpen parameter identification, given our relatively short sample. Because

dividends contain strong seasonality, Van Binsbergen and Koijen (2010) estimate an an-

nual model. However, commodity prices move substantially at a relatively high fre-

quency. If we use annual dividend data instead, we will lose most of the information

contained in commodity prices.

5.2 Estimation Results

The estimation results are shown below. The parentheses contain standard errors, that are

derived by inverting the estimated information matrix.

log Gt = const + 0.036
(0.016)

(µt − 12.5
(4.2)

) + 0.228
(0.068)

(gt − 6.3
(1.5)

) + εG,t (5.1)

log Ot = const − 0.022
(0.015)

(µt − 12.5
(4.2)

) + 0.244
(0.063)

(gt − 6.3
(1.5)

) + εO,t (5.2)

rt = µt−1 + εr,t (5.3)

∆dt = gt−1 + εd,t (5.4)

µt = (1 − 0.972
(0.010)

)12.5
(4.2)

+ 0.972
(0.010)

µt−1 + εµ,t (5.5)

gt = (1 − 0.991
(0.005)

) 6.3
(1.52)

+ 0.991
(0.005)

gt−1 + εg,t (5.6)

11See Appendix A of Van Binsbergen and Koijen (2010) for how to use Kalman Filter to recursively
update latent states and then write down the likelihood.
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with

Cov




εG,t

εO,t

εr,t

εd,t



 =



2 × 10−31

7 × 10−55

(54.5)2

(11.2)2

(6.9)2

(1.3)2


(5.7)

Cov

εµ,t

εg,t

 =

 3.0
(2.2)

−0.32
(0.22)

−0.32
(0.22)

0.07
(0.05)

 . (5.8)

The above equations further imply the following two equations (standard errors are

derived using the Delta method):

log Gt/Ot = const + 0.058
(0.021)

(µt − 12.5
(4.2)

) − 0.016
(0.068)

(gt − 6.3
(1.5)

) + εG/O,t (5.9)

log Gt · Ot = const − 0.014
(0.024)

(µt − 12.5
(4.2)

) + 0.472
(0.112)

(gt − 6.3
(1.5)

) + εG·O,t (5.10)

As seen, the pricing errors σG and σO are negligibly small, although we didn’t assume

it. Thus, given model parameters, the two observations log Gt and log Ot almost help pin

down the two underlying states µt and gt. Note, however, that this does not mean that

return and dividend data are uninformative about the underlying states because they

help determine model parameters. The essence of our state-space approach is indeed to

search for the optimal 2 × 2 coefficient matrix that links (log Gt, log Ot) and (µt, gt) that

makes the observed return and dividend growth data most likely.

When interpreting the estimation results, note that rt, ∆dt, µt, and gt are all annual-

ized in percent. There are several key observations. First, the values of the estimated

coefficients (βG
µ , βG

g , βO
µ , βO

g ) are similar to those in equations (4.3) and (4.4) both qualita-

tively and quantitatively. Our previous conjecture (1/40,1/4,-1/40,1/4) lies well within

one standard error of the four parameter estimates. At the same time, all four parameter

estimates are significantly different from zero (except βO
µ , which is marginally so).
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Second, the discount rate process has an AC(1) of 0.972 monthly. We can strongly reject

the null that µt is nonstationary. The persistence is low relative to the typical findings in

the literature. For example, Van Binsbergen and Koijen (2010) estimate this value at 0.994

monthly (or 0.932 annually) in a similar state-space model using price-dividend ratio and

dividend growth as observations. Avdis and Wachter (2017) use the price-dividend ratio

to proxy for the discount rate, thus estimating this value at 0.994 monthly (in our sample).

Wachter (2013) uses a value of 0.993 monthly. Bansal and Yaron (2004) uses a value of

0.987 monthly. Figure 6 upper panel plots the filtered µt process, which moves closely

with the log gold-oil price ratio.

Third, the expected dividend growth process has an AC(1) of 0.991 monthly. We can

reject the null that gt is nonstationary marginally. The persistence is very high relative to

the typical findings in the literature, even higher than that in the long-run risks model of

Bansal and Yaron (2004), 0.979 monthly. Figure 6 lower panel plots the filtered gt process,

moving closely with the sum of log gold and oil prices.

We then use corresponding filtered states to predict returns and dividend growth in

the data. Table 23 shows that our filtered states µt and gt are good predictors of returns

and dividend growth, respectively. Moreover, we cannot reject that the slope coefficients

are equal to one at various horizons, as expected.

5.3 Omitted Variable Bias

The state-space model allows us to highlight how the omitted variable bias (which in

special cases reduces to the attenuation bias) affects slope coefficient estimates in return

and cash flow growth predictability studies. We first present a proposition.

PROPOSITION 1 Suppose the price of asset i follows:

log P i
t = αi + βi

µµt + βi
ggt. (5.11)

19

Electronic copy available at: https://ssrn.com/abstract=4615771



Then if we run rt+1 = µt + εr,t+1 onto log P i
t in a univariate OLS regression, the slope coefficient

is

β̂OLS = 1
βi

µ

V ar(βi
µµt) + Cov(βi

µµt, βi
ggt)

V ar(log P i
t )

. (5.12)

Equivalently, the "omitted variable bias" (i.e., OVB) is V ar(βi
ggt)+Cov(βi

µµt,βi
ggt)

V ar(log P i
t ) . When Cov(µt, gt) =

0, the OVB reduces to the "attenuation bias":

β̂OLS = 1
βi

µ

V ar(βi
µµt)

V ar(βi
µµt) + V ar(βi

ggt)
. (5.13)

Similar expressions can be obtained for OLS slope coefficients from running ∆dt+1 = gt + εd,t+1

onto log P i
t .

Proof. The true (unbiased) model is

rt+1 = µt + εr,t+1

= − αi

βi
µ

+ 1
βi

µ

log P i
t −

βi
g

βi
µ

gt + εr,t+1

= − αi

βi
µ

+ βxxt + βyyt + εr,t+1

If we ignore the yt term and run a univariate OLS regression of rt+1 on xt (the biased

model), standard formula for OVB implies that the OLS slope coefficient is

β̂OLS = βx + βyδ, (5.14)

where

βx = 1
βi

µ

, βy = −
βi

g

βi
µ

and δ is the OLS slope from running yt onto xt:

δ = Cov(xt, yt)
V ar(xt)

= Cov(log P i
t , gt)

V ar(log P i
t )

(5.15)
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Substituting (5.11) into (5.15), and then back to (5.14), one can easily obtain (5.12).12

Proposition 1 shows that OVB in OLS predictive regressions depends on asset i’s

loadings on µt and gt and the relative variance of and the covariance between µt and

gt. We therefore first show a variance decomposition result. Table 22 Panel A decomposes

the variance of log gold and oil prices respectively into three components: V ar(βi
µµt),

V ar(βi
ggt), and 2Cov(βi

µµt, βi
ggt).

Our results show that more than 100% of the gold price variation is driven by expected

dividend growth news. This implies if we run returns onto lagged gold price, the OVB

will be huge. Oil price is also driven mostly by expected dividend growth, implying the

OVB is also very large. Because log gold and oil prices load quite similarly on expected

dividend growth (See Equations (5.1) and (5.2)), when we take the difference between

them, cash flow components cancel (See Equation (5.9)). Thus, log G/O is a clean discount

rate proxy, the variation of which is driven 91% by discount rate news. Expected dividend

growth news only explains 1% of log G/O. This is why it predicts returns robustly - it is

clean and OVB is small. Also because log gold and oil prices load quite similarly on

discount rate but with opposite signs (See Equations (5.1) and (5.2)), when we take the

sum of them, discount rate components cancel (See Equation 5.10). Thus, log G · O is a

clean expected dividend growth proxy, the variation of which is driven 113% by cash

flow news. Discount rate news only explains 1% of log G · O. This is why it predicts

dividend growth so robustly.

12In this paper, we focus on the effect of OVB on the level of OLS slope estimates. The effect of OVB on
the standard error of OLS slope estimator is known to be ambiguous. Specifically, standard error of β̂x in
the unbiased model is

s.e(β̂x) =
√

σ2
r∑T

t=1(xt − x̄t)(1 − R2
x,y)

, (5.16)

where σ2
r = V ar(εr,t+1) and R2

x,y is the R-squared if one regresses yt onto xt. There is a trade-off in com-
paring standard errors across unbiased and biased models. First, since the unbiased model is better able to
explain the variation in rt+1, σ2

r is smaller, which decreases s.e.(β̂x) in the unbiased model relative to the
biased model. Second, if xt and yt are correlated, then R2

x,y > 0 in the unbiased model, which increases
s.e.(β̂x) in the unbiased model relative to the biased model. When we compare across tables, we didn’t find
that OVB significantly affects standard errors.
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Table 22 Panel B then decomposes the variance of realized returns/dividend growth

into the part due to expected returns/dividend growth news and unexpected shocks. At

the monthly frequency, discount rate news only explains 1.9% of realized return variance.

This number represents an upper bound on the R-squared from regressing one-month

ahead returns onto discount rate proxies. That is, even if the regressor is an accurate

measure of µt, the R-squared is 1.9% at most. At the monthly frequency, expected div-

idend growth news explains 8.4% of realized dividend growth variance. This number

represents an upper bound on the R-squared from regressing one-month ahead dividend

growth rates onto expected dividend growth proxies.

5.4 Predictive Regressions under Model-Simulated Data

To support the above arguments, we then simulate data from the model and perform

similar OLS predictive regressions as in Section 4. Table 24 shows the results for return

regressions. As seen, if we naively use gold or oil price as the regressor, then the slope

coefficient will be biased toward 0. The bias is particularly severe in the case of gold. For

gold, the OVB is V ar(βG
g gt)+Cov(βG

µ µt,βG
g gt)

V ar(log P G
t ) = (1.54 − 1.01/2)/1 ≈ 100%. The OVB is almost

100% - it’s completely normal that one finds a weak or even negative relation between

the gold price and future stock market returns, but, ceteris paribus, gold price indeed sig-

nificantly rises with the expected return after one controls for expected cash flow growth.

For oil, OVB becomes smaller ((0.68 + 0.26/2)/1 ≈ 81%) but is still substantial, which is

again enough to lead to statistically insignificant estimates. Though not precisely, these

are close to what we observe in the data (See Table 4).

Table 25 shows dividend growth predictive regression results. As seen, if we naively

use log gold or oil price as the regressor, then there will again be OVB on slope coefficients.

However, the biases are not large enough to lead to statistically insignificant estimates.

OVB is (0.48−1.01/2)/1 ≈ 0% for gold and (0.07+0.26/2)/1 ≈ 20% for oil. The coefficients
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are again close to what we observe in the data (See Table 16). In a nutshell, if we compare

across tables, all the data OLS slope coefficients are well within one standard error from

their model counterparts at relatively short horizons. And vice versa.

5.5 Relation to the Literature

Huang and Kilic (2019) argue that gold is a risky investment asset whose price falls in

bad times. Hou, Tang, and Zhang (2020) find that gold price falls during political uncer-

tainty. Erb and Harvey (2013) fail to find a significant relation between gold price and

future stock market returns. All these papers conclude that their findings cast doubt on

conventional wisdom that gold is a hedging asset. We show that gold is indeed a hedging

asset after controlling for the expected cash flow growth.

Huang and Kilic (2019) base the assumption that gold is a risky asset on an obser-

vation that gold price falls during recessions. This observation however is too casual.

Figure 1 shows that gold price does not fall in every recession. For instance, it falls in

prolonged recessions such as 2008, but not COVID-19. We argue that this contrast can

be explained by cash flow and discount rate effects. Discount rate goes up a lot in both

crises. Cash flow expectations fall a lot in 2008 but much less in COVID-19. Thus, cash

flow effect dominates in 2008 while discount rate effect dominates in COVID-19. As a

result, gold prices fall in 2008 but rise in COVID-19. In short, the conclusions in Huang

and Kilic (2019), Hou, Tang, and Zhang (2020), and Erb and Harvey (2013) are one way or

another affected by the omitted variable bias. Our marginal contribution is to formalize

this omitted variable bias.

Our findings are consistent with Baur and Smales (2020), which find that gold price

rises during geopolitical uncertainty, times during which discount rate goes up. But Baur

and Smales (2020) didn’t proceed to analyze then why gold price does not significantly

positively predict stock returns in the data.
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6 Disciplining the Model with the Price-Dividend Ratio

In Section 5, we didn’t consider the restrictions on model parameters imposed by the

Campbell and Shiller (1988) identity and the price-dividend ratio. As shown in Van Bins-

bergen and Koijen (2010), Campbell-Shiller present value calculation implies that, given

the AR(1) dynamics for µt and gt, the log price-dividend ratio is a linear function in µt

and gt. Thus, we do not have two free state variables once we observe the price-dividend

ratio. In the next, we consider a model disciplined by the price-dividend ratio and show

that not only our main findings hold well, but there are new insights.

6.1 The Model

Given the literature evidence that PD is primarily driven by long-term discount rate news

(Cochrane (2011), Van Binsbergen and Koijen (2010)), we introduce another discount rate

process component θt, on top of µt, gt. The idea is that different linear combinations of µt

and θt can help generate fast-moving and slow-moving discount rates that predict returns

at corresponding horizons. Consider an extension of the model in Section 5.

log Gt = αG + βG
µ (µt − µ̄) + βG

θ θt + βG
g (gt − ḡ) + εG,t (6.1)

log Ot = αO + βO
µ (µt − µ̄) + βO

θ θt + βO
g (gt − ḡ) + εO,t (6.2)

rt = µt−1 + θt−1 + εr,t (6.3)

∆dt = gt−1 + εd,t (6.4)

µt = (1 − ρµ)µ̄ + ρµµt−1 + εµ,t (6.5)

θt = ρθθt−1 + εθ,t (6.6)

gt = (1 − ρg)ḡ + ρggt−1 + εg,t (6.7)
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with

Cov



εG,t

εO,t

εd,t


 =


σ2

G

σ2
O

σ2
d

 (6.8)

Cov



εµ,t

εθ,t

εg,t


 =


σ2

µ ρµ,θσµσθ ρµ,gσµσg

ρµ,θσµσθ σ2
θ ρθ,gσθσg

ρµ,gσµσg ρθ,gσθσg σ2
g

 , (6.9)

where note that we have normalized the unconditional mean of θt, θ̄, to zero since accord-

ing to our specification µ̄ and θ̄ cannot be separately identified. In equation (6.8), we also

have supressed parameter σ2
r = V ar(εr,t), which will be automatically pinned down by

the Campbell-Shiller identity once other parameters are estimated. We interpret µt and

θt as two separate components of discount rates, and gt is still expected dividend growth.

Iterating on the Campbell-Shiller identity rt+1 = ∆dt+1 − pdt + κ0 + κ1pdt+1 allows us to

obtain

pdt = κ0

1 − κ1
+ Et

[ ∞∑
j=0

κj
1∆dt+1+j

]
− Et

[ ∞∑
j=0

κj
1rt+1+j

]
, (6.10)

where κ0 and κ1 are log-linearization coefficients (p̄d is the sample average of log PD):

κ0 = log(1 + ep̄d) − κ1p̄d

κ1 = ep̄d

1 + ep̄d
.

We can then substitute Equations (6.3), (6.4), (6.5), (6.6), and (6.7) into Equation (6.10) to

express pdt as a linear function in states:

pdt = A − B1(µt − µ̄) − B2θt + B3(gt − ḡ) (6.11)
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for

A = κ0 − µ̄ + ḡ

1 − κ1

B1 = 1
1 − κ1ρµ

B2 = 1
1 − κ1ρθ

B3 = 1
1 − κ1ρg

.

It follows that we can reduce one state variable µt, and (by Campbell-Shiller identity)

also reduce one observation rt. Eventually, our system has two state variables (θt, gt),

whose dynamics are described by equations (6.6) and (6.7), and four observed variables

(log Gt, log Ot, pdt, ∆dt), whose dynamics are described by equations (6.1), (6.2), (6.11), and

(6.4), implicitly with equation (6.5). Assuming all the shocks are normally distributed, we

can again use the Kalman Filter to construct the likelihood function, and estimate the

model under monthly data.

6.2 Estimation Results

The estimation results are shown below. The parentheses contain standard errors.

log Gt = const + 0.0365
(0.0200)

(µt − 8.6
(1.2)

) + 0.0354
(0.0190)

θt + 0.294
(0.179)

(gt − 6.2
(0.8)

) + εG,t (6.12)

log Ot = const − 0.012
(0.011)

(µt − 8.6
(1.2)

) − 0.010
(0.011)

θt + 0.152
(0.088)

(gt − 6.2
(0.8)

) + εO,t (6.13)

rt = µt−1 + θt−1 + εr,t (6.14)

∆dt = gt−1 + εd,t (6.15)

µt = (1 − 0.981
(0.005)

)8.6
(1.2)

+ 0.981
(0.005)

µt−1 + εµ,t (6.16)

θt = 0.982
(0.005)

θt−1 + εθ,t (6.17)

gt = (1 − 0.981
(0.007)

)6.2
(0.8)

+ 0.981
(0.007)

gt−1 + εg,t (6.18)
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with

Cov



εG,t

εO,t

εd,t


 =


(6 × 10−133)2

(3 × 10−122)2

6.82
(0.1)2


and

σµ = 22.5
(4.5)

, σθ = 21.1
(4.4)

, σg = 0.30
(0.09)

ρµ,θ = −0.998
(0.0005)

, ρµ,g = −0.76
(0.26)

, ρθ,g = 0.74
(0.26)

The above equations further imply the following two equations:

log Gt/Ot = const + 0.049
(0.023)

(µt − 8.6
(1.2)

) + 0.046
(0.022)

θt + 0.142
(0.236)

(gt − 6.2
(0.8)

) + εG/O,t

log Gt · Ot = const − 0.024
(0.023)

(µt − 8.6
(1.2)

) − 0.025
(0.022)

θt + 0.446
(0.155)

(gt − 6.2
(0.8)

) + εG·O,t

together with the pricing equation for pd:

pdt = 6.23
(0.28)

− 0.039
(0.009)

(µt − 8.6
(1.2)

) − 0.043
(0.01)

θt + 0.039
(0.012)

(gt − 6.2
(0.8)

)

Again, the pricing errors σG and σO are negligibly small, although we didn’t assume

it. Together with the fact that pdt is a linear function in the states without errors, the three

observations log Gt, log Ot, and pdt help almost pin down the three underlying states µt,

θt, and gt. The essence of our state-space approach in this case is thus to search for the

optimal 3 × 3 coefficient matrix that makes the observed return and dividend growth

data most likely, under the constraints on parameters imposed by the Campbell-Shiller

identity. We’re interested in seeing how commodity prices load on these states.
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6.3 Short-Term vs. Long-Term Discount Rates

Let’s make several definitions. We define µt + θt as the "short-term discount rate" because

it is a relatively fast-moving process (with monthly AC(1) of 0.975). Note from equation

(6.14) that µt +θt is also the conditional expected one-period return, which predicts imme-

diate returns. Thus, it is appropriate to interpret it as a short-term discount rate. We then

define B1µt + B2θt as the "long-term discount rate" because it is a relatively slow-moving

process (with monthly AC(1) of 0.994). The intuition for this definition can be seen from

the Campbell-Shiller present value calculation:

pdt = κ0

1 − κ1
+ Et

[ ∞∑
j=0

κj
1∆dt+1+j

]
︸ ︷︷ ︸

B3gt

− E
[ ∞∑

j=0
κj

1rt+1+j

]
︸ ︷︷ ︸

B1µt+B2θt

, (6.19)

where B1µt + B2θt captures the expected weighted sum of returns at infinitely long terms.

We find the correlation coefficient between short-term and long-term discount rates is

0.59. Third, note that gt is still the expected dividend growth rate (with monthly AC(1)

of 0.981). Moreover, we can now strongly reject the null that gt is nonstationary, and its

persistence looks more reasonable. For example, it is close to that in the long-run risks

model of Bansal and Yaron (2004), 0.979 monthly.

Figure 7 then illustrates how the model extracts the three states. First, log G/O is very

informative about the short-term discount rate. Second, the PD ratio is very informative

about the long-term discount rate. Third, log G · O is very informative about the expected

dividend growth rate. These results are well consistent with our findings in previous

sections.

Again, we find that both commodity prices load positively on gt with similar coeffi-

cients, though not precisely the same (See Equations (6.12) and (6.13)). When we take the

difference, the loadings get canceled, as we can see that log G/O loads insignificantly on

gt. When we take the sum, the loadings get strengthened, as we can see that log G·O loads
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significantly positively on gt and the coefficient is much larger relative to log G/O’s and

pd’s. Overall, we find that the three price ratios, (log G, log O, pd), contain independent

information about the three states - none is redundant.

The above analysis is consistent with the variance decomposition results in Table 26

panel A, which shows that the variation in log G/O is 180% driven by (short-term) dis-

count rate news. The variation in pd is 107% driven by long-term discount rate news

(consistent with previous studies such as Cochrane (2011) and Van Binsbergen and Koi-

jen (2010)). The variation in log G · O is 102% driven by expected cash flow growth news.

Variance decomposition results for realized returns and dividend growth do not change

much, as shown in Table 26 Panel B.

6.4 How Do Gold/Oil Prices Respond to Long-/Short-Term Discount Rates?

Figures 8 and 9 plot our key results. Figure 8 (Figure 9) upper panel plots the portion

of gold price explained by discount rates against short-term (long-term) discount rates,

while the lower panel plots the portion of oil price explained by discount rates against

short-term (long-term) discount rate. The two figures therefore illustrate how gold and

oil prices respectively move with short-term/long-term discount rates after controlling

for expected cash flow growth. As shown, gold price moves strongly positively with the

short-term discount rate (correlation coefficient is 0.92); oil price moves strongly nega-

tively with the short-term discount rate (correlation coefficient is -0.47). However, gold

and oil’s relation with long-term discount rates is less clear, though it seems that, in terms

of long-run trends, both gold and oil prices rise with long-term discount rates (correlation

coefficients are 0.26 and 0.42 respectively for gold and oil). Finally, it seems there was a

structural break that occurred around 1986.
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6.5 Predictive Regressions Under Model-Simulated Data

Table 27 reports results from using corresponding filtered states to predict returns and

dividend growth rates in the data, close to the results in the last section.13

Tables 28 and 30 report univariate return and cash flow predictive regression results

under model-simulated data. All these results are similar to those in Section 5 (Tables 24

and 25), further close to the data (Tables 4 and 16). One major miss, however, is that our

model seems to generate too high R-squared in dividend growth predictive regressions.

This is partially because our model fails to capture a structural break in the data which

occurred around 1986. Table 17 shows that when we use data since 1986, the R-squared

increases substantially.14

Table 29 further reports results from a bivariate return predictive regression under

model-simulated data in which we use log G/O and log PD as the two predictors. As seen,

the model largely reproduces the data (See Table 8) - at short horizons, log G/O dominates,

while at long horizons, log PD dominates, consistent with our previous analysis that these

two variables respectively proxy for short and long-term discount rates of the economy.

To sharpen our results even further, Table 31 reports bivariate predictive regressions in

which we use log G and log O as the two regressors. For return regressions, the coefficients

at short horizons are roughly 20 and -20. For cash flow regressions, the coefficients are

close to 2 and 2, though not precisely. These patterns are similar to what we observe

in the data (See Tables 15 and 19). Table 32 further reports results from bivariate return

predictive regressions where we control for expected cash flow growth, as proxied by

log G · O. As shown, the coefficients on log G and log G · O are respectively 40 and -20, and

the coefficients on log O and log G · O are respectively -40 and 20. These results are again

highly consistent with what we observe in the data (See Table 20). Overall, the message

13Again, we add a time fixed effect on the RHS when regressing returns onto long-term discount rate,
which is closely correlated with PD, which has a trend in our sample.

14In fact, all this paper’s found relations hold more significant if we only use post-1986 data.
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in this section is highly consistent with that in the previous section.

6.6 How Accurate are the Returns Implied by the Campbell-Shiller Identity?

In Section 6, we didn’t use returns data, which will be automatically pinned down from

the Campbell-Shiller identity once we have supplied the price-dividend ratio and divi-

dend growth data. But since the latter are both based on deseasoned monthly dividend

data, a natural question is how far the recovered returns will deviate from their actual

realized values without deseasoning. Figure 10 compares the actual realized monthly re-

turn rt+1 with the monthly return implied by Campbell-Shiller identity rCS
t+1 = ∆dt+1 −

pdt + κ0 + κ1pdt+1 using deseasoned dt and ∆dt+1.

As shown, the difference is negligible. This is because at monthly frequency, most of

the variation in rt+1 comes from that in pt+1, not dt+1 or ∆dt+1. The two return time series

have a correlation coefficient of 0.98. Standard deviations are respectively std(rt+1) =

4.39% and std(rCS
t+1) = 4.53%. Means are respectively E(rt+1) = 0.89% and E(rCS

t+1) =

1.06%.

7 Principal Component Analysis

In this section, we perform PCA and relate to the previous sections. Specifically, we ex-

tract five principal components from prices of a cross-section of commodities including

gold, crude oil, silver, copper, and platinum. We still use montly data from 1975-2022.

We again first detrend real commodity prices using real dividends, which are shown in

Figure 11.

We find that the five orthognal PCs respectively account for 72.3%, 8.3%, 5.0%, 4.3%,

and 2.0% of commodity price fluctuations. These PCs are illustrated in Figure 12. As seen,

the first PC is basically expected dividend growth gt. The second PC is basically expected
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return µt.15 These are confirmed by predictive regressions as shown in Table 33. These

two PCs combined account for more than 80% of commodity price variations. We don’t

know how to interpret the third and fourth PCs, which likely capture commodity-market-

specific information. The fifth PC can be interpreted as some long-term expected return,

as suggested by predictive regressions in Table 33, and it is not subsumed by the PD ratio.

The loadings of commodity prices on the PCs are given by

PC(1) PC(2) PC(3) PC(4) PC(5)

Gold 0.41 0.44 −0.05 0.28 0.75

Oil 0.45 −0.62 −0.48 −0.36 0.21

Silver 0.61 0.49 −0.19 −0.16 −0.57

Copper 0.37 −0.16 0.84 −0.35 0.08

Platinum 0.35 −0.40 0.13 0.80 −0.24.



(7.1)

Consistent with our previous findings, gold and silver rise with short-term expected

returns, PC(2). It seems gold and silver are short-term hedging assets. But their long-

term performance are quite different: gold rises with long-term expected returns, PC(5);

while silver behaves inversely. These loadings are also consistent with Huang and Kilic

(2019), which take gold-platinum price ratio to cancel loadings on PC(1) and strengthen

loadings on PC(2) and PC(5). This constructs them a return predictor at both short and

long horizons. Our marginal contribution to the literature is to demonstrate that gold is a

strong hedging asset using three different approaches: predictive regressions, state-space

models, and PCA.

15We say basically, not essentially, because the definition of PCA implies that PCs are independent. But
the state-space model suggests that gt and µt are negative correlated (unconditional correlation is around
-0.2). So there must be some small difference.
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8 Conclusion

We show that gold serves as a prominent hedging asset, provided the "omitted-variable"

or "error-in-variable" bias related to expected economic fundamentals is appropriately

addressed. We reach this conclusion by employing three distinct methodologies: a state-

space model, predictive regressions, and principal component analysis. Notably, each

approach offers unique insights without redundancy.

The state-space model quantifies the impact of the omitted variable bias by decompos-

ing the variance of gold prices into effects of expected dividend growth, expected returns,

and their covariance. Remarkably, the model reveals a near 100% OVB when regressing

future stock returns on current gold prices. This result explains the myriad contrasting

findings in the literature concerning the relationship between gold prices and stock mar-

kets.

Through predictive regressions, we establish that the gold-oil price ratio emerges as a

robust predictor of stock market returns, even at a one-day horizon, displaying predictive

power independent of all existing literature predictors.

We perform PCA on a large cross-section of commodity prices. The first PC, which

accounts for 72% of all commodity price variations, is basically expected dividend growth.

The second PC, which accounts for another 8%, is basically short-horizon expected stock

return. The fifth PC, basically some long-term expected return measure, only accounts for

2%, implying commodity prices are on average not reponsive to long-term discount rate

news.
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Figure 1. The figure plots detrended log real gold and oil prices, log PD ratio, and NBER recessions.
Data are monthly from Jan 1975 to Dec 2022.
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Figure 2. The top figure plots log G · O and cumulative dividend growth rates realized over the
next year, using dividend data from Robert Shiller’s website. The bottom figure plots log G/O and
cumulative excess returns realized over the next year. All series are annualized in percent. Data
are monthly from Jan 1975 to Dec 2022.
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Figure 3. The top figure plots log G · O and cumulative dividend growth rates realized over the
next 4 quarters, using quarterly dividend data from CRSP. The bottom figure plots log G/O and
cumulative excess returns realized over the next 4 quarters. All series are annualized in percent.
Data are quarterly from 1975 Q1 to 2022 Q4.

40

Electronic copy available at: https://ssrn.com/abstract=4615771



Figure 4. Left panel depicts realized sample-time-series-average return to each portfolio against
the portfolio’s exposure to ∆ log G/O estimated using the full sample. Right panel depicts re-
alized average return to each portfolio against the expected return predicted by the one-factor
(∆ log G/O) model without an intercept. Test portfolios are Fama-French size/book-to-market 25
portfolios. Data are monthly from Jan 1975 to Dec 2022.
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Figure 5. Left panel depicts realized sample-time-series-average return to each portfolio against
the portfolio’s exposure to ∆ log G ·O estimated using the full sample. Right panel depicts realized
average return to each portfolio against the expected return predicted by the one-factor (∆ log G·O)
model without an intercept. Test portfolios are Fama-French size/book-to-market 25 portfolios.
Data are monthly from Jan 1975 to Dec 2022.
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Figure 6. The upper figure plots filtered µt and log G/O. The lower figure plots filtered gt and
log G · O. All numbers are annualized in percent. Data are monthly from Jan 1975 to Dec 2022.
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Figure 7. The top figure plots filtered expected return µt +θt and log G/O. The middle figure plots
filtered long-term discount rate B1µt + B2θt and log PD. The bottom figure plots filtered expected
dividend growth gt and log G · O. All filtered series are annualized in percent. Data are monthly
from Jan 1975 to Dec 2022.
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Figure 8. The upper figure plots filtered log G’s loading on discount rates βG
µ µt + βG

θ θt and filtered
short-term discount rate µt + θt. The lower figure plots filtered log O’s loading on discount rates
βO

µ µt + βO
θ θt and filtered short-term discount rate µt + θt. µt + θt is annualized in percent. Data

are monthly from Jan 1975 to Dec 2022.
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Figure 9. The upper figure plots filtered log G’s loading on discount rates βG
µ µt + βG

θ θt and long-
term discount rate B1µt + B2θt. The lower figure plots filtered log O’s loading on discount rates
βO

µ µt + βO
θ θt and long-term discount rate B1µt + B2θt. B1µt + B2θt is annualized in percent. Data

are monthly from Jan 1975 to Dec 2022.
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Figure 10. The figure plots monthly realized returns (true values vs. values implied by the
Campbell-Shiller accounting identity and de-seasoned dividend data). The correlation coefficient
is 0.98. Data are monthly from Jan 1975 to Dec 2022.
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Figure 11. The figure plots real commodity (gold, oil, silver, copper, and platinum) prices de-
tredned using real dividends (so that all processes are stationary). Data are monthly from Jan 1975
to Dec 2022.
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Figure 12. The figure plots the 5 principal components extracted from the cross-section of de-
trended real commodity prices. Data are monthly from Jan 1975 to Dec 2022. In the first panel, we
compare PC(1) with gt. In the second panel, we compare PC(2) with µt.
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Table 1. Johansen (1988) Rank Test

We estimate an Engle and Granger (1987) vector error-correction model (VECM)

∆Yt = µ + ΠYt−1 +
p−1∑
j=1

Γj∆Yt−j + εt

and conduct Johansen (1988) rank test for cointegration based on the rank of the matrix
Π. The null hypothesis for the rank test is that there are no more than r cointegration
relations.

statistic c-value p-value

Yt = [log Gt, log Ot]′

H0 : r = 0 12.6 15.5 0.129

H0 : r = 1 1.0 3.8 0.454

Yt = [log Gt, log Dt]′

H0 : r = 0 16.9 15.5 0.031

H0 : r = 1 2.6 3.8 0.111

Yt = [log Ot, log Dt]′

H0 : r = 0 23.9 15.5 0.003

H0 : r = 1 5.1 3.8 0.024

Yt = [log Gt/Ot, log Dt]′

H0 : r = 0 28.8 15.5 0.001

H0 : r = 1 8.1 3.8 0.005

Yt = [log Gt · Ot, log Dt]′

H0 : r = 0 19.2 15.5 0.013

H0 : r = 1 3.0 3.8 0.083

Yt = [log Gt, log Ot, log Dt]′

H0 : r = 0 33.4 29.8 0.018

H0 : r = 1 10.5 15.5 0.269

H0 : r = 2 2.3 3.8 0.129
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Table 2. Stock and Watson (1993) Dynamic Least Square

We estimate cointegration vector between log commodity prices and log dividends using
Stock and Watson (1993) dynamic least square with Newey-West robust standard errors.

log Xt = β0 + βD log Dt +
i=k∑

i=−k

γi∆ log Dt−i + ϵt

X = G

estimate s.e. t-stat [95% CI]

βD(k = 1) 0.62 0.06 10.54 [0.50, 0.73]

βD(k = 2) 0.62 0.07 8.58 [0.48, 0.76]

βD(k = 3) 0.62 0.08 7.46 [0.46, 0.78]

X = O

estimate s.e. t-stat [95% CI]

βD(k = 1) 0.16 0.08 1.96 [0.00, 0.32]

βD(k = 2) 0.16 0.09 1.62 [-0.03, 0.35]

βD(k = 3) 0.16 0.11 1.44 [-0.06, 0.38]

X = G/O

estimate s.e. t-stat [95% CI]

βD(k = 1) 0.46 0.08 5.64 [0.30, 0.62]

βD(k = 2) 0.46 0.10 4.76 [0.27, 0.65]

βD(k = 3) 0.46 0.11 4.25 [0.25, 0.67]

X = G · O

estimate s.e. t-stat [95% CI]

βD(k = 1) 0.78 0.12 6.66 [0.55, 1.01]

βD(k = 2) 0.78 0.14 5.47 [0.50, 1.05]

βD(k = 3) 0.78 0.16 4.80 [0.46, 1.10]
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Table 3. Summary Statistics

All data are monthly. log Gt is log real gold price. log Ot is log real oil price. log Dt is
log real dividend. log Gt/Pt is log gold to platinum price ratio from Huang and Kilic
(2019). VRP=IV-RV from Bollerslev, Tauchen, and Zhou (2009). log PDt is log price-
dividend ratio. SentimentBW

t is investor sentiment index from Baker and Wurgler (2006).
SentimentP LS

t is sentiment index estimated using partial least square from Huang, Jiang,
Tu, and Zhou (2015). Risk_AversionBEX

t is risk aversion index from Bekaert, Engstrom,
and Xu (2022). VIX is CBOE VIX index. Interest_Ratet is one-month nominal interest
rate from Ken French. Inflationt is inflation rate from FRED. DFSP is default spread from
FRED. TMSP is term spread from FRED. ICCt is implied cost of capital from Li, Ng, and
Swaminathan (2013). SkewQ

t and KurtQ
t are one-month risk-neutral skewness and kurto-

sis computed from S&P 500 option prices using spanning formula in Bakshi and Madan
(2000). Crash_Probt is one-month physical probability of a 10% market crash backed out
from SPX option prices as in Martin (2017) and Chabi-Yo and Loudis (2020). ADF p.val
denotes p-value in the agumented Dickey and Fuller (1979) one-sided unit root test.

Variable Std AR(1) ADF p.val Start End

log G ≡ log Gt − 0.62 log Dt 0.39 0.992 0.059 1975.1 2022.12

log O ≡ log Ot − 0.16 log Dt 0.45 0.976 0.005 1975.1 2022.12

log G/O ≡ log Gt/Ot − 0.46 log Dt 0.36 0.957 0.000 1975.1 2022.12

log G · O ≡ log Gt · Ot − 0.78 log Dt 0.76 0.989 0.036 1975.1 2022.12

log Gt/Pt 0.35 0.978 0.023 1975.1 2022.12

V RPt 22.42 0.329 0.000 1990.1 2019.12

log PDt 0.44 0.994 0.073 1975.1 2022.12

SentimentBW
t 0.87 0.981 0.010 1975.1 2022.6

SentimentP LS
t 0.96 0.988 0.035 1975.1 2020.12

Risk_AversionBEX
t 0.67 0.788 0.000 1986.7 2022.12

V IXt 7.56 0.808 0.000 1990.1 2022.12

Interest_Ratet 0.29 0.978 0.005 1975.1 2022.12

Inflationt 0.14 0.644 0.000 1975.1 2022.12

DFSPt 0.45 0.959 0.000 1975.1 2022.12

TMSPt 1.12 0.952 0.001 1975.1 2022.12

ICCt 3.10 0.983 0.035 1977.1 2017.12

SkewQ
t 0.41 0.847 0.000 1996.1 2021.12

KurtQ
t 1.11 0.863 0.000 1996.1 2021.12

Crash_Probt 2.70 0.776 0.000 1996.1 2021.12
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Table 4. Univariate Return Predictability: Gold and Oil

Univariate monthly return predictive regressions for the U.S. equity market, Jan 1975
to Dec 2022. S.E. are Newey-West HAC robust standard errors with 3 more lags than
forecasting horizon. All LHS returns are annual in percent. Univariate regressions are
run separately:

12
h

h∑
i=1

(
rt+i − rf

t+i

)
= β0 + βXXt + ϵt+h

1m 2m 3m 6m 9m 1y 3y 5y

X = log G/O

βlog G/O 20.03 18.17 18.02 16.73 15.54 14.48 8.01 5.32

s.e. [6.67] [6.53] [6.65] [6.91] [6.41] [5.88] [3.77] [2.53]

R2
adj (%) 1.58 2.63 4.08 7.31 9.46 11.04 11.74 9.78

X = log G · O

βlog G·O -1.25 -0.86 -0.88 -0.91 -0.95 -0.71 1.88 2.29

s.e. [3.17] [3.04] [3.00] [3.03] [2.98] [2.83] [2.10] [1.49]

R2
adj (%) -0.14 -0.15 -0.13 -0.08 -0.01 -0.06 3.11 9.10

X = log G

βlog G 6.15 6.10 5.99 5.39 4.78 4.80 6.63 6.37

s.e. [6.06] [5.69] [5.51] [5.43] [5.51] [5.57] [4.05] [2.73]

R2
adj (%) 0.02 0.20 0.38 0.74 0.90 1.27 10.57 18.72

X = log O

βlog O -8.18 -7.03 -7.01 -6.64 -6.34 -5.66 0.42 1.83

s.e. [5.42] [5.31] [5.35] [5.54] [5.28] [4.76] [3.62] [2.69]

R2
adj (%) 0.28 0.48 0.84 1.67 2.33 2.50 -0.13 1.81
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Table 5. Univariate Return Predictability: I

Univariate monthly return predictive regressions for the U.S. equity market, Jan 1975
to Dec 2022. S.E. are Newey-West HAC robust standard errors with 3 more lags than
forecasting horizon. All LHS returns are annual in percent. Univariate regressions are
run separately:

12
h

h∑
i=1

(
rt+i − rf

t+i

)
= β0 + βXXt + ϵt+h

1m 2m 3m 6m 9m 1y 3y 5y

X = log G/P

βlog G/P 14.54 14.43 14.66 15.54 16.07 16.53 14.01 12.07

s.e. [6.55] [6.35] [6.49] [7.15] [7.20] [6.52] [3.20] [1.46]

R2
adj (%) 0.71 1.51 2.49 5.77 9.05 12.58 27.50 31.86

X = log PD

βlog P D -19.14 -19.57 -19.13 -19.61 -19.93 -19.93 -15.56 -15.08

s.e. [9.53] [8.93] [8.60] [7.96] [7.66] [7.29] [3.93] [1.49]

R2
adj (%) 0.57 1.53 2.43 5.68 8.96 12.28 30.85 51.27

X=Interest Rate

βIR -7.70 -7.42 -6.64 -6.31 -6.45 -6.49 -6.63 -3.93

s.e. [7.60] [7.48] [7.58] [7.44] [6.97] [5.88] [3.19] [3.83]

R2
adj (%) 0.00 0.13 0.21 0.53 0.91 1.29 5.48 3.52

X=DFSP

βDF SP 3.75 3.14 3.70 5.39 5.24 4.77 1.99 3.42

s.e. [7.47] [6.93] [6.35] [4.87] [4.14] [3.57] [2.67] [2.19]

R2
adj (%) -0.08 -0.04 0.11 1.04 1.55 1.74 1.09 6.95

X=TMSP

βT MSP 0.34 0.33 0.40 0.46 1.22 1.69 3.05 2.53

s.e. [2.36] [2.19] [2.14] [1.89] [1.73] [1.64] [1.32] [0.81]

R2
adj (%) -0.20 -0.20 -0.19 -0.15 0.34 1.20 16.21 19.38
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Table 6. Univariate Return Predictability: II

Univariate monthly return predictive regressions for the U.S. equity market, Jan 1975
to Dec 2022. S.E. are Newey-West HAC robust standard errors with 3 more lags than
forecasting horizon. All LHS returns are annual in percent. Univariate regressions are
run separately:

12
h

h∑
i=1

(
rt+i − rf

t+i

)
= β0 + βXXt + ϵt+h

1m 2m 3m 6m 9m 1y 3y 5y

X=VIX

βV IX 0.44 0.57 0.54 0.51 0.33 0.34 0.02 -0.01

s.e. [0.60] [0.51] [0.47] [0.28] [0.25] [0.22] [0.26] [0.27]

R2
adj (%) 0.15 1.05 1.51 2.86 2.42 2.34 -0.26 -0.29

X=VRP

βV RP 0.54 0.42 0.39 0.19 0.09 0.06 -0.00 -0.03

s.e. [0.09] [0.09] [0.06] [0.05] [0.05] [0.05] [0.02] [0.02]

R2
adj (%) 6.09 7.08 8.87 3.81 1.19 0.55 -0.30 1.02

X=Risk-Neutral Skewness

βSkewQ -6.30 -5.73 -4.61 -4.49 -4.24 -3.66 -5.15 -5.25

s.e. [9.23] [8.65] [8.46] [7.01] [6.49] [6.24] [3.27] [2.59]

R2
adj (%) -0.10 0.03 0.03 0.30 0.47 0.43 4.32 8.53

X=Risk-Neutral Kurtosis

βKurtQ 0.30 -0.66 -0.30 0.40 0.95 0.73 1.93 1.93

s.e. [2.90] [2.91] [2.84] [2.33] [2.16] [2.12] [1.12] [1.06]

R2
adj (%) -0.32 -0.29 -0.31 -0.29 -0.03 -0.10 4.35 7.25

X=Crash-Probability

βCrash−P rob 0.13 1.19 1.14 0.62 0.67 0.58 0.56 0.23

s.e. [1.44] [1.16] [1.07] [0.85] [0.77] [0.74] [0.56] [0.53]

R2
adj (%) -0.32 0.35 0.61 0.20 0.54 0.51 1.64 0.29
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Table 7. Univariate Return Predictability: III

Univariate monthly return predictive regressions for the U.S. equity market, Jan 1975
to Dec 2022. S.E. are Newey-West HAC robust standard errors with 3 more lags than
forecasting horizon. All LHS returns are annual in percent. Univariate regressions are
run separately:

12
h

h∑
i=1

(
rt+i − rf

t+i

)
= β0 + βXXt + ϵt+h

1m 2m 3m 6m 9m 1y 3y 5y

X=Inflation

βInflation -24.72 14.45 -14.22 -17.84 -23.37 -21.87 -9.43 -5.95

s.e. [18.27] [17.71] [16.47] [10.07] [10.45] [9.64] [3.38] [3.95]

R2
adj (%) 0.23 0.09 1.41 0.23 1.11 3.07 3.59 2.40

X=Baker-Wurgler Sentiment

βSentimentBW -4.87 -4.56 -4.53 -4.26 -4.10 -3.55 -0.02 0.15

s.e. [2.45] [2.29] [2.21] [2.10] [2.13] [2.24] [1.32] [1.04]

R2
adj (%) 0.45 0.88 1.41 2.68 3.74 3.67 -0.19 -0.15

X=PLS Sentiment

βSentimentP LS -7.87 -7.41 -6.89 -5.69 -4.97 -4.45 -1.39 -0.17

s.e. [1.97] [1.79] [1.70] [1.81] [1.96] [2.06] [1.42] [0.95]

R2
adj (%) 1.82 3.20 4.31 6.14 7.04 7.53 2.67 -0.12

X=BEX Risk Aversion

βRABEX 5.34 6.53 5.71 6.17 5.29 4.82 1.37 1.61

s.e. [7.79] [6.44] [5.89] [2.95] [2.14] [1.74] [1.81] [1.66]

R2
adj (%) 0.21 1.07 1.29 3.37 3.69 4.11 0.86 2.62

X=ICC

βICC 0.39 0.51 0.48 0.55 0.56 0.57 0.61 0.55

s.e. [0.86] [0.86] [0.87] [0.86] [0.79] [0.69] [0.46] [0.38]

R2
adj (%) -0.15 -0.03 0.02 0.39 0.72 1.10 5.16 7.79
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Table 8. Bivariate Return Predictability: I

Bivariate monthly return predictive regressions for the U.S. equity market, Jan 1975 to Dec
2022. S.E. are Newey-West HAC robust standard errors with 3 more lags than forecasting
horizon. All LHS returns are annual in percent. Bivariate regressions are run separately
in which log G/O is always included:

12
h

h∑
i=1

(
rt+i − rf

t+i

)
= β0 + βlog G/O log Gt/Ot + βXXt + ϵt+h

1m 2m 3m 6m 9m 1y 3y 5y

βlog G/O 17.22 14.84 14.52 12.31 10.36 8.59 2.58 0.20

s.e. [8.22] [7.90] [7.87] [7.39] [6.26] [5.22] [2.36] [1.83]

βlog G/P 5.70 6.77 7.09 8.87 10.18 11.48 12.54 11.93

s.e. [7.73] [7.34] [7.25] [7.25] [7.13] [6.26] [3.00] [1.74]

R2
adj (%) 1.51 2.74 4.38 8.57 11.94 15.19 28.31 31.74

βlog G/O 18.08 16.09 16.03 14.61 13.24 12.15 7.20 4.48

s.e. [7.17] [7.09] [7.19] [7.29] [6.56] [5.78] [3.53] [2.15]

βlog P D -13.84 -14.85 -14.42 -15.29 -15.98 -16.32 -13.87 -14.12

s.e. [9.90] [9.41] [9.02] [8.02] [7.39] [6.73] [3.91] [1.59]

R2
adj (%) 1.74 3.43 5.43 10.88 15.39 19.56 39.57 57.63

βlog G/O 20.54 18.65 18.46 17.14 15.92 14.85 8.93 5.89

s.e. [6.53] [6.39] [6.53] [6.85] [6.32] [5.75] [3.75] [2.60]

βI.R. -9.42 -8.97 -8.17 -7.71 -7.67 -7.61 -8.10 -4.94

s.e. [7.27] [7.12] [7.24] [7.26] [6.96] [6.06] [3.74] [4.05]

R2
adj (%) 1.66 2.91 4.49 8.19 10.83 12.89 19.88 15.36

βlog G/O 19.38 17.82 17.69 16.27 14.94 13.94 7.86 5.23

s.e. [6.82] [6.75] [6.85] [6.90] [6.32] [5.79] [3.79] [2.54]

βInflation -20.72 -10.76 -10.58 -14.43 -20.44 -19.20 -8.57 -5.41

s.e. [17.60] [17.28] [15.87] [9.30] [9.68] [8.91] [3.74] [4.07]

R2
adj (%) 1.69 2.61 4.14 7.99 11.77 13.77 13.72 11.21
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Table 9. Bivariate Return Predictability: II

Bivariate monthly return predictive regressions for the U.S. equity market, Jan 1975 to Dec
2022. S.E. are Newey-West HAC robust standard errors with 3 more lags than forecasting
horizon. All LHS returns are annual in percent. Bivariate regressions are run separately
in which log G/O is always included:

12
h

h∑
i=1

(
rt+i − rf

t+i

)
= β0 + βlog G/O log Gt/Ot + βXXt + ϵt+h

1m 2m 3m 6m 9m 1y 3y 5y

βlog G/O 19.94 18.09 17.94 16.60 15.41 14.37 7.96 5.24

s.e. [6.77] [6.64] [6.79] [7.08] [6.53] [5.96] [3.77] [2.60]

βDF SP 3.42 2.85 3.41 5.12 4.99 4.56 1.88 3.35

s.e. [7.32] [6.79] [6.21] [4.87] [4.23] [3.65] [2.38] [1.96]

R2
adj (%) 1.49 2.57 4.15 8.25 10.87 12.63 12.72 16.47

βlog G/O 19.63 17.88 17.61 16.08 15.10 14.33 7.80 4.78

s.e. [6.92] [6.80] [7.00] [7.35] [6.86] [6.24] [3.34] [2.40]

βT MSP 0.28 0.27 0.35 0.43 1.19 1.67 2.88 2.40

s.e. [2.33] [2.13] [2.06] [1.79] [1.62] [1.48] [1.09] [0.85]

R2
adj (%) 1.48 2.63 4.10 7.13 9.96 12.91 27.56 27.31

βlog G/O 17.62 17.90 18.28 20.48 20.30 20.42 14.44 9.00

s.e. [7.19] [7.57] [8.13] [9.51] [8.77] [7.78] [2.79] [2.28]

βV RP 0.51 0.39 0.35 0.15 0.05 0.02 -0.04 -0.05

s.e. [0.09] [0.08] [0.06] [0.05] [0.05] [0.05] [0.02] [0.02]

R2
adj (%) 7.26 9.63 12.96 14.11 16.58 20.88 28.79 21.00
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Table 10. Bivariate Return Predictability: III

Bivariate monthly return predictive regressions for the U.S. equity market, Jan 1975 to Dec
2022. S.E. are Newey-West HAC robust standard errors with 3 more lags than forecasting
horizon. All LHS returns are annual in percent. Bivariate regressions are run separately
in which log G/O is always included:

12
h

h∑
i=1

(
rt+i − rf

t+i

)
= β0 + βlog G/O log Gt/Ot + βXXt + ϵt+h

1m 2m 3m 6m 9m 1y 3y 5y

βlog G/O 25.77 24.29 24.29 23.05 21.95 21.15 14.02 9.10

s.e. [7.85] [7.80] [8.17] [8.59] [7.67] [6.84] [2.91] [2.22]

βV IX 0.37 0.50 0.46 0.44 0.32 0.27 0.06 0.02

s.e. [0.55] [0.45] [0.42] [0.24] [0.22] [0.20] [0.22] [0.22]

R2
adj (%) 3.03 6.25 9.61 17.16 21.67 25.83 26.98 21.02

βlog G/O 32.26 31.96 33.14 31.24 28.72 26.87 14.13 5.59

s.e. [7.66] [6.85] [7.16] [8.30] [7.61] [6.69] [4.21] [4.28]

βSkewQ 2.42 2.90 4.34 3.95 3.51 3.59 -1.67 -3.82

s.e. [8.49] [7.65] [7.24] [5.76] [5.52] [5.29] [3.62] [3.18]

R2
adj (%) 3.98 7.89 13.17 22.48 27.24 30.42 24.82 14.91

βlog G/O 32.66 32.82 33.30 31.01 28.15 26.34 14.03 5.84

s.e. [7.84] [7.16] [7.38] [8.29] [7.41] [6.53] [3.98] [4.20]

βKurtQ -1.93 -2.91 -2.58 -1.73 -0.98 -1.07 0.91 1.41

s.e. [2.54] [2.38] [2.21] [1.58] [1.51] [1.46] [1.32] [1.40]

R2
adj (%) 4.10 8.46 13.67 22.70 27.04 30.21 25.36 14.45

βlog G/O 32.82 30.56 31.38 30.39 27.81 25.98 14.56 6.84

s.e. [8.65] [8.32] [8.51] [8.58] [7.66] [6.90] [3.25] [3.76]

βCrash−P rob -0.85 0.28 0.19 -0.29 -0.16 -0.19 0.45 0.16

s.e. [1.35] [1.09] [0.97] [0.69] [0.65] [0.65] [0.39] [0.45]

R2
adj (%) 4.12 7.85 12.92 22.15 26.79 29.84 25.62 10.93
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Table 11. Bivariate Return Predictability: IV

Bivariate monthly return predictive regressions for the U.S. equity market, Jan 1975 to Dec
2022. S.E. are Newey-West HAC robust standard errors with 3 more lags than forecasting
horizon. All LHS returns are annual in percent. Bivariate regressions are run separately
in which log G/O is always included:

12
h

h∑
i=1

(
rt+i − rf

t+i

)
= β0 + βlog G/O log Gt/Ot + βXXt + ϵt+h

1m 2m 3m 6m 9m 1y 3y 5y

βlog G/O 20.03 18.13 18.18 16.93 15.78 14.73 8.01 5.32

s.e. [6.54] [6.40] [6.50] [6.72] [6.16] [5.59] [3.76] [2.53]

βSentimentBW -5.03 -4.70 -4.67 -4.38 -4.25 -3.72 -0.07 0.11

s.e. [2.26] [2.09] [1.99] [1.88] [1.90] [1.99] [1.14] [0.94]

R2
adj (%) 2.06 3.54 5.59 10.19 13.53 15.11 11.59 9.64

βlog G/O 14.92 13.40 13.62 13.62 13.12 12.64 7.49 5.59

s.e. [6.67] [6.59] [6.74] [7.19] [6.75] [6.20] [4.02] [2.37]

βSentimentP LS -6.46 -6.14 -5.60 -4.40 -3.73 -3.26 -0.68 0.37

s.e. [1.93] [1.74] [1.66] [1.84] [2.02] [2.07] [1.29] [0.72]

R2
adj (%) 2.60 4.49 6.47 10.78 13.55 15.60 12.22 9.96

βlog G/O 19.09 18.13 18.51 18.05 16.96 15.73 9.31 6.15

s.e. [7.51] [7.43] [7.60] [7.81] [7.13] [6.51] [3.99] [2.64]

βRABEX 4.89 6.61 5.27 5.73 4.85 4.40 1.53 1.72

s.e. [7.34] [5.99] [5.42] [2.56] [1.92] [1.60] [1.63] [1.42]

R2
adj (%) 1.85 4.12 6.34 13.37 16.88 19.27 16.87 15.84

βlog G/O 14.97 13.10 13.12 13.15 12.13 11.34 7.27 4.38

s.e. [7.20] [7.30] [7.53] [7.93] [7.07] [6.28] [3.57] [2.51]

βICC -0.00 0.16 0.13 0.20 0.24 0.27 0.41 0.43

s.e. [0.86] [0.87] [0.88] [0.87] [0.78] [0.65] [0.39] [0.34]

R2
adj (%) 0.63 1.17 1.96 4.50 6.02 7.38 14.67 14.01
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Table 12. G/O and Other Variables

The table reports results from regressing variable Xt onto log Gt/Ot, monthly from Jan
1975 to Dec 2022. S.E. are Newey-West HAC robust standard errors with 10 lags.

Xt = β0 + βlog G/O log Gt/Ot + ϵt

X = SentimentP LS ICC SkewQ KurtQ log G/P V RP

βlog G/O -0.67 1.99 -0.33 0.62 0.49 8.76

s.e. [0.35] [0.66] [0.12] [0.33] [0.11] [4.79]

R2
adj (%) 6.12 5.08 8.67 3.96 24.90 1.40

Table 13. A Three-Factor Model

Multivariate monthly return predictive regressions for the U.S. equity market, Jan 1975
to Dec 2022. S.E. are Newey-West HAC robust standard errors with 3 more lags than
forecasting horizon. All LHS returns are annual in percent. Regression:

12
h

h∑
i=1

(
rt+i − rf

t+i

)
= β0 + βlog G/O log Gt/Ot + βSentimentBW SentimentBW

t + βSkewQSkewQ
t + ϵt+h

1m 2m 3m 6m 9m 1y 3y 5y

βlog G/O 31.62 31.33 32.51 30.45 27.83 25.97 13.49 5.07

s.e. [7.65] [6.83] [7.12] [8.15] [7.34] [6.22] [4.17] [4.00]

βSentimentBW -8.40 -8.39 -8.38 -10.43 -11.61 -11.80 -3.61 -3.08

s.e. [3.94] [3.32] [2.85] [2.27] [1.96] [1.60] [1.51] [2.59]

βSkewQ 4.85 5.33 6.77 6.97 6.88 7.01 0.05 -2.26

s.e. [8.68] [7.63] [6.92] [4.49] [3.12] [2.31] [3.23] [3.12]

R2
adj (%) 4.76 9.66 16.04 31.38 43.16 51.53 29.81 22.66

61

Electronic copy available at: https://ssrn.com/abstract=4615771



Table 14. Daily Regressions

Daily return predictive regressions for the U.S. equity market, Jan 1986 to Dec 2022. S.E.
are Newey-West HAC robust standard errors with 3 more lags than forecasting horizon.
All LHS returns are annual in percent.

260
h

h∑
i=1

(
rt+i − rf

t+i

)
= β0 + βXXt + ϵt+h

1d 2d 3d 4d 1w 2w

X = log G/O

βlog G/O 18.26 18.77 19.33 19.95 20.38 21.01

s.e. [8.30] [7.79] [7.47] [7.28] [7.15] [7.09]

R2
adj (%) 0.05 0.12 0.19 0.28 0.38 0.69

X = SentimentBW

βBW -10.74 -10.71 -10.65 -10.63 -10.64 -10.65

s.e. [5.26] [4.98] [4.82] [4.71] [4.63] [4.56]

R2
adj (%) 0.04 0.10 0.16 0.23 0.29 0.50

260
h

h∑
i=1

(
rt+i − rf

t+i

)
= β0 + βlog G/O log Gt/Ot + βBW SentimentBW

t + ϵt+h

1d 2d 3d 4d 1w 2w

βlog G/O 17.95 18.44 18.97 19.58 20.04 20.78

s.e. [8.28] [7.77] [7.44] [7.25] [7.11] [7.04]

βBW -10.54 -10.51 -10.45 -10.42 -10.42 -10.43

s.e. [5.23] [4.95] [4.79] [4.68] [4.59] [4.51]

R2
adj (%) 0.09 0.22 0.36 0.51 0.67 1.19
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Table 15. Bivariate Return Predictability: Gold and Oil

Univariate monthly return predictive regressions for the U.S. equity market, Jan 1975
to Dec 2022. S.E. are Newey-West HAC robust standard errors with 3 more lags than
forecasting horizon. All LHS returns are annual in percent. Regression:

12
h

h∑
i=1

(
rt+i − rf

t+i

)
= β0 + βlog G log Gt + βlog O log Ot + ϵt+h

1m 2m 3m 6m 9m 1y 3y 5y

βlog G 20.77 19.23 19.03 17.54 16.09 15.24 11.53 9.12

s.e. [7.97] [7.57] [7.51] [7.56] [7.30] [7.20] [5.08] [3.19]

βlog O -19.71 -17.70 -17.58 -16.38 -15.29 -14.14 -6.42 -3.60

s.e. [6.91] [6.83] [6.97] [7.29] [6.70] [5.97] [3.83] [2.78]

R2
adj (%) 1.41 2.48 3.94 7.19 9.32 10.95 17.51 22.79
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Table 16. Univariate Dividend Growth Predictability: Gold and Oil

Univariate monthly dividend growth predictive regressions for the U.S. equity market,
Jan 1975 to Dec 2022. S.E. are Newey-West HAC robust standard errors with 3 more lags
than forecasting horizon. All LHS dividend growth rates are annual in percent. Univari-
ate regressions are run separately:

12
h

h∑
i=1

∆dt+i = β0 + βXXt + ϵt+h

1m 2m 3m 6m 9m 1y 3y 5y

X = log G/O

βlog G/O -1.91 -1.83 -1.77 -1.38 -0.85 -0.17 2.24 0.44

s.e. [1.39] [1.52] [1.63] [1.96] [2.26] [2.54] [2.54] [1.81]

R2
adj (%) 0.77 0.73 0.69 0.39 0.05 -0.17 0.28 0.05

X = log G · O

βlog G·O 2.10 2.11 2.13 2.13 2.10 2.01 1.45 1.36

s.e. [0.67] [0.70] [0.73] [0.80] [0.88] [0.96] [1.17] [0.90]

R2
adj (%) 4.93 5.20 5.43 5.87 6.01 5.89 6.07 11.57

X = log G

βlog G 3.20 3.26 3.31 3.48 3.63 3.74 3.62 2.76

s.e. [1.37] [1.45] [1.52] [1.68] [1.81] [1.91] [2.39] [1.90]

R2
adj (%) 2.92 3.16 3.37 4.05 4.70 5.37 10.03 12.51

X = log O

βlog O 3.62 3.61 3.61 3.49 3.27 2.93 1.49 1.89

s.e. [1.10] [1.16] [1.22] [1.38] [1.59] [1.82] [2.23] [1.55]

R2
adj (%) 5.10 5.30 5.46 5.48 5.09 4.34 2.03 7.45
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Table 17. Univariate Dividend Growth Predictability: Gold and Oil, Post-1986

Univariate monthly dividend growth predictive regressions for the U.S. equity market,
Jan 1986 to Dec 2022. S.E. are Newey-West HAC robust standard errors with 3 more lags
than forecasting horizon. All LHS dividend growth rates are annual in percent. Univari-
ate regressions are run separately:

12
h

h∑
i=1

∆dt+i = β0 + βXXt + ϵt+h

1m 2m 3m 6m 9m 1y 3y 5y

X = log G/O

βlog G/O -1.32 -1.22 -1.16 -0.78 -0.26 0.39 2.80 0.87

s.e. [1.50] [1.63] [1.75] [2.09] [2.41] [2.72] [2.64] [1.65]

R2
adj (%) 0.24 0.19 0.16 -0.04 -0.21 -0.18 4.47 0.75

X = log G · O

βlog G·O 2.78 2.88 2.97 3.17 3.26 3.25 2.92 2.38

s.e. [1.20] [1.24] [1.27] [1.31] [1.37] [1.45] [1.40] [0.97]

R2
adj (%) 5.63 6.31 6.95 8.52 9.59 10.15 15.76 23.17

X = log G

βlog G 4.24 4.48 4.70 5.31 5.81 6.20 6.70 4.64

s.e. [2.14] [2.23] [2.29] [2.38] [2.39] [2.37] [2.34] [2.22]

R2
adj (%) 3.48 4.09 4.65 6.45 8.27 10.10 23.78 25.28

X = log O

βlog O 4.01 4.10 4.19 4.26 4.15 3.85 2.69 2.79

s.e. [1.77] [1.85] [1.91] [2.10] [2.37] [2.69] [3.26] [2.10]

R2
adj (%) 4.71 5.12 5.51 6.16 6.19 5.66 4.86 11.85
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Table 18. Quarterly Dividend Growth Predictability: Gold and Oil

Univariate quarterly dividend growth predictive regressions for the U.S. equity market,
1975-Q1 to 2022-Q4. S.E. are Newey-West HAC robust standard errors with 3 more lags
than forecasting horizon. ∆dt+i is quarterly dividend growth. All LHS variables are an-
nual in percent. Univariate regressions are run separately:

4
h

h∑
i=1

∆dt+i = β0 + βXXt + ϵt+h

1Q 2Q 3Q 1y 3y 5y

X = log G/O

βlog G/O 2.50 0.12 1.55 1.47 -0.63 -2.45

s.e. [5.84] [3.42] [3.32] [3.46] [2.76] [2.13]

R2 (%) -0.47 -0.53 -0.37 -0.20 -0.39 5.30

X = log G · O

βlog G·O 5.98 2.97 2.89 1.96 0.99 0.98

s.e. [2.29] [1.48] [1.48] [1.47] [1.30] [0.90]

R2 (%) 0.75 1.22 1.66 1.78 1.33 3.61

X = log G

βlog G 13.10 5.94 6.50 4.60 1.67 0.85

s.e. [5.06] [3.30] [2.99] [2.88] [2.78] [1.83]

R2 (%) 1.03 1.24 2.27 2.71 0.80 0.21

X = log O

βlog O 7.12 3.92 3.34 2.11 1.56 2.13

s.e. [3.79] [2.39] [2.62] [2.72] [2.12] [1.31]

R2 (%) 0.15 0.61 0.56 0.47 1.15 6.52
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Table 19. Bivariate Dividend Growth Predictability: Gold and Oil

Bivariate monthly dividend growth predictive regressions for the U.S. equity market, Jan
1975 to Dec 2022. S.E. are Newey-West HAC robust standard errors with 3 more lags than
forecasting horizon. All LHS dividend growth rates are annual in percent. Regression:

12
h

h∑
i=1

∆dt+i = β0 + βlog G log Gt + βlog O log Ot + ϵt+h

1m 2m 3m 6m 9m 1y 3y 5y

βlog G 0.88 0.99 1.07 1.52 2.05 2.68 4.54 2.41

s.e. [1.75] [1.89] [2.03] [2.37] [2.65] [2.90] [3.33] [2.30]

βlog O 3.13 3.06 3.01 2.64 2.13 1.44 -1.21 0.45

s.e. [1.40] [1.51] [1.62] [1.95] [2.29] [2.63] [2.70] [1.82]

R2
adj (%) 5.08 5.31 5.51 5.79 5.85 5.84 10.66 12.58
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Table 20. Return Predictability: Controlling For Expected Dividend Growth

Bivariate monthly dividend growth predictive regressions for the U.S. equity market, Jan
1975 to Dec 2022. S.E. are Newey-West HAC robust standard errors with 3 more lags than
forecasting horizon. All LHS returns are annual in percent. Bivariate regression:

12
h

h∑
i=1

(rM
t+i − rf

t+i) = β0 + βXXt + βlog G·O(log Gt · Ot) + ϵt+h

1m 2m 3m 6m 9m 1y 3y 5y

X = log G

βlog G 40.48 36.93 36.61 33.92 31.39 29.38 17.94 12.71

s.e. [13.61] [13.23] [13.39] [13.82] [12.93] [12.14] [8.03] [5.26]

βlog G·O -19.71 -17.70 -17.58 -16.38 -15.29 -14.14 -6.42 -3.60

s.e. [6.91] [6.83] [6.97] [7.29] [6.70] [5.97] [3.83] [2.78]

R2
adj (%) 1.41 2.48 3.94 7.19 9.32 10.95 17.51 22.79

X = log O

βlog O -40.48 -36.93 -36.61 -33.92 -31.39 -29.38 -17.94 -12.71

s.e. [13.61] [13.23] [13.40] [13.82] [12.93] [12.14] [8.03] [5.26]

βlog G·O 20.77 19.23 19.03 17.54 16.09 15.24 11.53 9.12

s.e. [7.97] [7.57] [7.51] [7.56] [7.30] [7.20] [5.08] [3.19]

R2
adj (%) 1.41 2.48 3.94 7.19 9.32 10.95 17.51 22.79
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Table 21. Fama-Macbeth and Panel Regressions

Panel A shows Fama-Macbeth regression results. Test assets are Fama-French 100 size
and book-to-market portfolios. Data are monthly from Jan 1975 to Dec 2022. We first use
a rolling window of 180 months to update each portfolio’s exposure to monthly AR(1)
innovation in log G/O and log G · O. We then use exposure estimates as RHS variables
in cross-sectional regressions. t-stat are based on Newey-West robust standard errors.
Average R-squared across periods are reported. Panel B shows panel regression results in
which we regress portfolio returns onto one-period lagged portfolio factor exposures. We
include time and portfolio fixed effects and cluster standard errors by time.

Panel A: Fama-Macbeth Regressions

λ∆ log G/O -0.14 -0.12

t-stat [-3.48] [-2.90]

λ∆ log G·O 0.10 0.07

t-stat [2.88] [2.28]

average R2 (%) 8.23 6.74 12.56

Panel B: Panel Regressions

λ∆ log G/O -0.09 -0.14

t-stat [-4.91] [-4.33]

λ∆ log G·O 0.16 0.14

t-stat [8.83] [7.21]

R2 (%) 48.78 49.42 49.72
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Table 22. Variance Decomposition: Model I

Panel A

Dis rate (µt) Div growth (gt) Covariance

V ar(log G) 48% 154% -101%

V ar(log O) 7% 68% 26%

V ar(log G/O) 91% 1% 9%

V ar(log G · O) 1% 113% -14%

Panel B

V ar(r) Expected (µt) Unexpected (εr,t)

100% 1.9% 98.1%

V ar(∆d) Expected (gt) Unexpected (εd,t)

100% 8.4% 91.6%
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Table 23. Univariate Predictability Using Filtered States: Model I

Using filtered states to predict returns and dividend growth, monthly from Jan 1975 to
Dec 2022. S.E. are Newey-West HAC robust standard errors with 3 more lags than fore-
casting horizon. All LHS variables are annual in percent. Univariate regressions are run
separately:

12
h

h∑
i=1

(
rt+i − rf

t+i

)
= β0 + βµµt + ϵt+h

12
h

h∑
i=1

∆dt+i = β0 + βggt + ϵt+h

1m 2m 3m 6m 9m 1y 3y 5y

Returns

βµ 1.21 1.10 1.09 1.01 0.94 0.88 0.51 0.36

s.e. [0.40] [0.40] [0.40] [0.42] [0.39] [0.36] [0.23] [0.15]

R2 (%) 1.58 2.65 4.11 7.35 9.47 11.11 13.36 12.11

Dividend growth

βg 1.00 1.00 1.01 0.99 0.95 0.88 0.56 0.59

s.e. [0.31] [0.32] [0.34] [0.37] [0.42] [0.47] [0.57] [0.41]

R2 (%) 5.23 5.47 5.67 5.92 5.80 5.33 4.02 9.85
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Table 24. Univariate Return Predictability: Model I

Univariate monthly return predictive regressions under data simulated from the model.
The model is simulated 1,000 times at estimated parameters. We report average OLS
slope coefficients and R2 across simulations. S.E. are standard deviations of coefficients
across simulations. All LHS returns are annual in percent. Univariate regressions are run
separately:

12
h

h∑
i=1

rt+i = β0 + βXXt + ϵt+h

1m 2m 3m 6m 9m 1y 3y 5y

X = log G/O

βlog G/O 15.83 15.55 15.28 14.50 13.79 13.10 9.05 6.48

s.e. [5.40] [5.40] [5.35] [5.30] [5.25] [5.22] [5.05] [4.74]

R2 (%) 1.82 3.46 4.93 8.54 11.20 13.18 17.54 15.80

X = log G · O

βlog G·O -4.98 -4.86 -4.74 -4.40 -4.10 -3.82 -2.27 -1.36

s.e. [4.04] [4.03] [4.04] [4.05] [4.06] [4.08] [4.21] [4.04]

R2 (%) 0.66 1.25 1.79 3.16 4.24 5.12 8.85 10.54

X = log G

βlog G 3.92 3.94 3.98 3.98 3.98 3.96 3.61 3.12

s.e. [11.4] [11.4] [11.4] [11.4] [11.4] [11.3] [10.9] [10.5]

R2 (%) 0.35 0.67 0.99 1.87 2.68 3.41 7.88 10.96

X = log O

βlog O -10.59 -10.38 -10.16 -9.56 -9.00 -8.49 -5.52 -3.69

s.e. [5.35] [5.34] [5.31] [5.22] [5.14] [5.10] [4.99] [4.72]

R2 (%) 1.20 2.26 3.22 5.56 7.30 8.62 12.19 12.07
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Table 25. Univariate Dividend Growth Predictability: Model I

Univariate monthly dividend growth predictive regressions under data simulated from
the model. The model is simulated 1,000 times at estimated parameters. We report av-
erage OLS slope coefficients and R2 across simulations. S.E. are standard deviations of
coefficients across simulations. All LHS dividend growth rates are annual in percent.
Univariate regressions are run separately:

12
h

h∑
i=1

∆dt+1 = β0 + βXXt + ϵt+h

1m 2m 3m 6m 9m 1y 3y 5y

X = log G/O

βlog G/O -2.78 -2.75 -2.73 -2.66 -2.60 -2.54 -2.09 -1.76

s.e. [1.03] [1.03] [1.03] [1.03] [1.03] [1.02] [1.01] [1.02]

R2 (%) 3.46 6.33 8.75 14.17 17.79 20.25 25.30 24.09

X = log G · O

βlog G·O 2.33 2.31 2.29 2.23 2.17 2.11 1.71 1.39

s.e. [0.44] [0.44] [0.44] [0.44] [0.45] [0.45] [0.49] [0.53]

R2 (%) 5.99 10.97 15.18 24.57 30.70 34.87 41.61 36.34

X = log G

βlog G 3.72 3.69 3.66 3.56 3.45 3.36 2.67 2.10

s.e. [1.71] [1.72] [1.71] [1.72] [1.73] [1.73] [1.77] [1.75]

R2 (%) 3.18 5.78 7.97 12.78 15.86 17.97 21.80 19.78

X = log O

βlog O 3.22 3.20 3.17 3.09 3.01 2.94 2.39 1.96

s.e. [0.61] [0.60] [0.60] [0.60] [0.61] [0.62] [0.66] [0.72]

R2 (%) 6.04 11.06 15.31 24.81 31.06 35.30 42.52 37.66
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Table 26. Variance Decomposition: Model II

Panel A

Dis rate (µt, θt) Div growth (gt) Covariance

V ar(log G) 103% 181% -183%

V ar(log O) 28% 27% 45%

V ar(log G/O) 180% 28% -108%

V ar(log G · O) 8% 102% -11%

V ar(pd) 107% 2% -9%

Panel B

V ar(r) Expected (µt + θt) Unexpected (εr,t)

100% 1.7% 98.3%

V ar(∆d) Expected (gt) Unexpected (εd,t)

100% 4.9% 95.1%
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Table 27. Univariate Predictability Using Filtered States: Model II

Using filtered states to predict returns and dividend growth, monthly from Jan 1975 to
Dec 2022. S.E. are Newey-West HAC robust standard errors with 3 more lags than fore-
casting horizon. All LHS variables are annual in percent. Univariate regressions are run
separately:

12
h

h∑
i=1

(
rt+i − rf

t+i

)
= β0 + βEShort[r](µt + θt) + ϵt+h

12
h

h∑
i=1

(
rt+i − rf

t+i

)
= β0 + βELong [r](B1µt + B2θt) + ϵt+h

12
h

h∑
i=1

∆dt+i = β0 + βggt + ϵt+h

1m 2m 3m 6m 9m 1y 3y 5y

Returns by short-term discount rate

βEShort[r] 0.88 0.80 0.79 0.74 0.71 0.66 0.30 0.22

s.e. [0.28] [0.28] [0.28] [0.30] [0.28] [0.27] [0.19] [0.13]

R2 (%) 1.47 2.51 3.84 7.01 9.57 11.22 8.79 8.73

Returns by long-term discount rate

βELong [r] 13.60 14.25 13.89 13.92 13.97 14.06 12.26 12.06

s.e. [8.47] [8.02] [7.75] [7.35] [7.09] [6.81] [3.91] [1.49]

R2 (%) 0.26 0.96 1.58 3.67 5.72 8.01 25.74 44.33

Dividend growth

βg 1.00 1.01 1.02 1.02 1.00 0.94 0.60 0.61

s.e. [0.31] [0.32] [0.33] [0.36] [0.40] [0.44] [0.56] [0.40]

R2 (%) 5.39 5.74 6.03 6.53 6.59 6.22 4.86 11.09

75

Electronic copy available at: https://ssrn.com/abstract=4615771



Table 28. Univariate Return Predictability: Model II

Univariate monthly return predictive regressions under data simulated from the model.
The model is simulated 1,000 times at estimated parameters. We report average OLS
slope coefficients and R2 across simulations. S.E. are standard deviations of coefficients
across simulations. All LHS returns are annual in percent. Univariate regressions are run
separately:

12
h

h∑
i=1

rt+i = β0 + βXXt + ϵt+h

1m 2m 3m 6m 9m 1y 3y 5y

X = log G/O

βlog G/O 19.16 18.78 18.41 17.43 16.49 15.57 9.76 6.19

s.e. [6.18] [6.05] [6.00] [5.86] [5.70] [5.56] [4.99] [4.56]

R2 (%) 1.68 3.22 4.63 8.19 10.90 12.88 16.19 13.36

X = log G · O

βlog G·O -5.23 -5.02 -4.83 -4.26 -3.71 -3.19 -0.13 1.45

s.e. [4.97] [4.95] [4.92] [4.81] [4.73] [4.63] [3.96] [3.55]

R2 (%) 0.40 0.75 1.07 1.83 2.36 2.74 4.36 7.31

X = log G

βlog G 8.15 8.23 8.29 8.53 8.78 8.97 9.65 9.31

s.e. [9.16] [9.14] [9.20] [9.15] [9.01] [8.92] [8.23] [7.61]

R2 (%) 0.30 0.61 0.92 1.83 2.75 3.67 10.64 16.12

X = log O

βlog O -13.89 -13.50 -13.15 -12.13 -11.16 -10.23 -4.55 -1.35

s.e. [6.92] [6.84] [6.78] [6.59] [6.46] [6.32] [5.31] [4.66]

R2 (%) 1.02 1.93 2.74 4.68 6.00 6.85 6.64 5.69

76

Electronic copy available at: https://ssrn.com/abstract=4615771



Table 29. Bivariate Return Predictability: Model II

Bivariate monthly return predictive regressions under data simulated from the model.
The model is simulated 1,000 times at estimated parameters. We report average OLS
slope coefficients and R2 across simulations. S.E. are standard deviations of coefficients
across simulations. All LHS returns are annual in percent. Regression:

12
h

h∑
i=1

rt+i = β0 + βlog G/O log Gt/Ot + βpdpdt + ϵt+h

1m 2m 3m 6m 9m 1y 3y 5y

βlog G/O 18.04 17.63 17.26 16.13 15.06 14.05 7.88 4.27

s.e. [6.94] [6.87] [6.76] [6.58] [6.37] [6.18] [4.81] [3.86]

βpd -14.67 -14.81 -14.89 -15.07 -15.23 -15.35 -15.37 -14.43

s.e. [9.39] [9.34] [9.28] [9.04] [8.74] [8.47] [6.27] [4.73]

R2 (%) 2.33 4.53 6.60 12.19 16.95 21.06 41.04 51.90
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Table 30. Univariate Dividend Growth Predictability: Model II

Univariate monthly dividend growth predictive regressions under data simulated from
the model. The model is simulated 1,000 times at estimated parameters. We report av-
erage OLS slope coefficients and R2 across simulations. S.E. are standard deviations of
coefficients across simulations. All LHS dividend growth rates are annual in percent.
Univariate regressions are run separately:

12
h

h∑
i=1

∆dt+1 = β0 + βXXt + ϵt+h

1m 2m 3m 6m 9m 1y 3y 5y

X = log G/O

βlog G/O -1.82 -1.79 -1.78 -1.73 -1.68 -1.63 -1.28 -1.03

s.e. [1.03] [1.03] [1.03] [1.02] [1.02] [1.00] [0.95] [0.89]

R2 (%) 1.48 2.77 3.93 6.73 8.79 10.29 14.34 14.26

X = log G · O

βlog G·O 2.27 2.23 2.20 2.12 2.04 1.96 1.44 1.05

s.e. [0.53] [0.52] [0.52] [0.52] [0.51] [0.51] [0.52] [0.54]

R2 (%) 4.15 7.73 10.85 18.08 23.03 26.39 30.73 24.94

X = log G

βlog G 3.04 3.00 2.95 2.81 2.69 2.58 1.79 1.21

s.e. [1.35] [1.35] [1.36] [1.37] [1.37] [1.37] [1.38] [1.41]

R2 (%) 2.04 3.80 5.33 8.82 11.21 12.83 15.59 14.08

X = log O

βlog O 3.13 3.09 3.05 2.94 2.84 2.75 2.07 1.56

s.e. [0.74] [0.75] [0.75] [0.74] [0.74] [0.74] [0.76] [0.76]

R2 (%) 3.97 7.40 10.40 17.41 22.29 25.67 30.82 25.82
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Table 31. Bivariate Predictability, Gold and Oil: Model II

Bivariate monthly return predictive regressions under data simulated from the model.
The model is simulated 1,000 times at estimated parameters. We report average OLS
slope coefficients and R2 across simulations. S.E. are standard deviations of coefficients
across simulations. All LHS variables are annual in percent. Bivariate regressions:

12
h

h∑
i=1

rt+i = β0 + βlog G log Gt + βlog O log Ot + ϵt+h

12
h

h∑
i=1

∆dt+i = β0 + βlog G log Gt + βlog O log Ot + ϵt+h

1m 2m 3m 6m 9m 1y 3y 5y

Returns

βlog G 19.28 19.09 18.89 18.46 18.05 17.61 14.45 11.89

s.e. [9.89] [9.79] [9.77] [9.57] [9.31] [9.11] [8.47] [7.88]

βlog O -19.57 -19.10 -18.67 -17.48 -16.34 -15.23 -8.43 -4.46

s.e. [6.70] [6.57] [6.50] [6.31] [6.15] [6.00] [5.24] [4.61]

R2 (%) 1.83 3.51 5.06 9.03 12.12 14.52 22.08 24.38

Dividend growth

βlog G 1.47 1.44 1.41 1.32 1.24 1.17 0.69 0.33

s.e. [1.22] [1.21] [1.21] [1.22] [1.22] [1.22] [1.28] [1.35]

βlog O 2.72 2.69 2.66 2.57 2.48 2.40 1.82 1.40

s.e. [0.82] [0.81] [0.81] [0.81] [0.80] [0.79] [0.78] [0.77]

R2 (%) 4.45 8.30 11.68 19.57 25.09 28.91 35.85 32.02
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Table 32. Return Predictability Controlling For Expected Dividend Growth: Model II

Bivariate monthly return predictive regressions under data simulated from the model.
The model is simulated 1,000 times at estimated parameters. We report average OLS
slope coefficients and R2 across simulations. S.E. are standard deviations of coefficients
across simulations. All LHS returns are annual in percent. Bivariate regression:

12
h

h∑
i=1

rt+i = β0 + βXXt + βlog G·O(log Gt · Ot) + ϵt+h

1m 2m 3m 6m 9m 1y 3y 5y

X = log G

βlog G 38.86 38.20 37.57 35.94 34.39 32.84 22.88 16.35

s.e. [13.94] [13.70] [13.62] [13.28] [12.86] [12.52] [11.43] [10.36]

βlog G·O -19.57 -19.10 -18.67 -17.47 -16.34 -15.23 -8.43 -4.46

s.e. [6.70] [6.57] [6.50] [6.31] [6.15] [6.00] [5.23] [4.61]

R2 (%) 1.83 0.80 5.06 9.03 12.12 14.52 22.08 24.38

X = log O

βlog O -38.86 -38.20 -37.57 -35.93 -34.39 -32.84 -22.88 -16.36

s.e. [13.94] [13.71] [13.63] [13.29] [12.86] [12.52] [11.43] [10.36]

βlog G·O 19.28 19.09 18.89 18.46 18.05 17.61 14.45 11.89

s.e. [9.89] [9.79] [9.77] [9.57] [9.31] [9.11] [8.47] [7.88]

R2 (%) 1.83 0.80 5.06 9.03 12.12 14.52 22.08 24.38
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Table 33. PC Predictive Regressions

Using PCA to predict returns or dividend growth, monthly Jan 1975 to Dec 2022. S.E. are
Newey-West HAC robust standard errors with 3 more lags than forecasting horizon. All
LHS variables are annual in percent.

1m 2m 3m 6m 9m 1y 3y 5y

12
h

∑h
i=1 ∆dt+i = β0 + β1PC(1)t + ϵt+h

β1 2.23 2.26 2.29 2.34 2.32 2.25 1.38 1.19

s.e. [0.56] [0.59] [0.61] [0.66] [0.72] [0.79] [1.08] [0.82]

R2 (%) 7.28 7.76 8.18 9.20 9.66 9.73 7.20 11.48

12
h

∑h
i=1 rt+i = β0 + β2PC(2)t + ϵt+h

β2 22.24 20.32 20.38 19.22 18.62 17.46 7.90 4.34

s.e. [8.23] [8.15] [8.32] [8.86] [8.29] [7.50] [4.19] [3.27]

R2 (%) 1.41 2.28 3.55 6.44 9.04 10.67 7.43 4.22

12
h

∑h
i=1 rt+i = β0 + β5PC(5)t + ϵt+h

β5 19.80 20.69 20.56 23.79 22.74 24.06 27.48 22.56

s.e. [15.71] [13.78] [12.75] [11.75] [12.40] [12.12] [8.99] [5.62]

R2 (%) 0.27 0.56 0.86 2.33 3.15 4.71 23.93 30.62
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