Bayesian realized-GARCH models for financial tail risk forecasting incorporating the two-sided Weibull distribution
2020-01-08 16:13:55
by Wang Chao*, Chin Qian, Gerlach Richard                                            

ARTICLE  | Quantitative Finance | Vol.19, Issue 6, 2019


                   

Abstract


The realized-GARCH framework is extended to incorporate the two-sided Weibull distribution, for the purpose of volatility and tail risk forecasting in a financial time series. Further, the realized range, as a competitor for realized variance or daily returns, is employed as the realized measure in the realized-GARCH framework. Sub-sampling and scaling methods are applied to both the realized range and realized variance, to help deal with inherent micro-structure noise and inefficiency. A Bayesian Markov Chain Monte Carlo (MCMC) method is adapted and employed for estimation and forecasting, while various MCMC efficiency and convergence measures are employed to assess the validity of the method. In addition, the properties of the MCMC estimator are assessed and compared with maximum likelihood, via a simulation study. Compared to a range of well-known parametric GARCH and realized-GARCH models, tail risk forecasting results across seven market indices, as well as two individual assets, clearly favour the proposed realized-GARCH model incorporating the two-sided Weibull distribution; especially those employing the sub-sampled realized variance and sub-sampled realized range.